JPS60156736A - Primarily expanded particle of styrene based resin and production of expansion molded article - Google Patents

Primarily expanded particle of styrene based resin and production of expansion molded article

Info

Publication number
JPS60156736A
JPS60156736A JP1272284A JP1272284A JPS60156736A JP S60156736 A JPS60156736 A JP S60156736A JP 1272284 A JP1272284 A JP 1272284A JP 1272284 A JP1272284 A JP 1272284A JP S60156736 A JPS60156736 A JP S60156736A
Authority
JP
Japan
Prior art keywords
temperature
heating
particles
styrene
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272284A
Other languages
Japanese (ja)
Inventor
Takeo Kudo
工藤 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1272284A priority Critical patent/JPS60156736A/en
Publication of JPS60156736A publication Critical patent/JPS60156736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:Expanded particles, obtained by heating specific expansible styrene based resin particles at a specific temperature, and primarily expanding at a low temperature with small energy consumption. CONSTITUTION:Expanded particles obtained by heating expansible styrene based resin particles prepared by impregnating a copolymer, constituted of a styrene based monomer and an acrylic acid ester and/or methacrylic acid ester, and having 60-97 deg.C second order transition temperature with an organic foaming agent with a heating medium at 60-100 deg.C. Warm water is used as the heating medium, and the particles are packed in a mold and hot molded.

Description

【発明の詳細な説明】 本発明は、比較的低温で発泡させるスチレン系樹脂の一
次発泡粒子及び発泡成形体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing primary foamed particles of a styrenic resin and a foamed molded article that are foamed at a relatively low temperature.

従来、スチレン系樹脂粒子にプロパン、ブタン。Conventionally, propane and butane were used for styrene resin particles.

ペンタン、ジクロロフルオロメタン等の有機発泡剤を含
有させてなる発泡性スチレン系樹脂粒子は一般に水蒸気
で加熱して一次発泡粒子とした後。
Expandable styrenic resin particles containing an organic blowing agent such as pentane or dichlorofluoromethane are generally heated with water vapor to form primary expanded particles.

これを閉鎖型の形窩中に充填して水蒸気で加熱すること
によって−F記−次発泡粒子を融着させ9発泡成形体と
される。
By filling this into a closed mold cavity and heating it with steam, the -F-sub-expanded particles are fused to form a foamed molded article.

このような従来の水蒸気を用いた発泡成形体の製造法は
、最も一般的な方法であるが9次のような欠点もめる。
Although this conventional method of producing a foamed molded article using steam is the most common method, it also has the following drawbacks.

(1)水蒸気(110℃〜125℃)による−次発泡の
温度が高い。
(1) The temperature of secondary foaming by water vapor (110°C to 125°C) is high.

(2)発泡成形時の加熱媒体は水蒸気の使用が必須条件
であり、また成形温度(110〜125℃) ′が高く
、エネルギーの消費量が大きい。
(2) It is essential to use water vapor as the heating medium during foam molding, and the molding temperature (110 to 125°C) is high, resulting in large energy consumption.

(3)従って、金型温度が高くなるため冷却水の使用量
が多い。
(3) Therefore, since the mold temperature becomes high, the amount of cooling water used is large.

このため1発泡成形体価格に占めるエネルギー代が約4
〜5割と言われている。
For this reason, the energy cost of one foam molded product is approximately 4.
It is said to be ~50%.

本発明は、このような問題点を解決するものであり、エ
ネルギー消費の少ないスチレン系樹脂の発泡体の製造法
に関するものである。
The present invention solves these problems and relates to a method for producing a styrene resin foam that consumes less energy.

すなわち、第1の発明は、スチレン系単量体とアクリル
酸エステル及び/又はメタクリル酸エステルから構成さ
れ、二次転移温度が60〜97℃である共重合体に有機
発泡剤を含浸させてなる発泡性スチレン系樹脂粒子を6
0〜100℃の加熱媒体によって加熱することを特徴と
するスチレン系樹脂の一次発泡粒子の製造法に関する。
That is, the first invention is made by impregnating an organic blowing agent into a copolymer composed of a styrene monomer and an acrylic ester and/or a methacrylic ester and having a secondary transition temperature of 60 to 97°C. 6 expandable styrene resin particles
The present invention relates to a method for producing primary expanded particles of styrenic resin, which is characterized by heating with a heating medium of 0 to 100°C.

本発明におけるスチレン系単量体とは、スチレン、α−
メチルスチレン、ビニルトルエン、クロロスチレン等の
スチレン誘導体を50重量−以上含有するスチレン系単
量体でおり、その他、アクリロニトリル等のシアン化ビ
ニル単量体、酢酸ビニル、塩化ビニルのスチレンまたは
スチレン誘導体と共重合可能な単量体を含んでいてもよ
い。これらの単量体を2種以上使用する場合、必ずしも
混合して使用するとは限らず□、別々に使用してもよい
The styrenic monomer in the present invention refers to styrene, α-
It is a styrene monomer containing 50% by weight or more of styrene derivatives such as methylstyrene, vinyltoluene, and chlorostyrene, and also contains styrene or styrene derivatives of vinyl cyanide monomers such as acrylonitrile, vinyl acetate, and vinyl chloride. It may also contain copolymerizable monomers. When two or more of these monomers are used, they are not necessarily used in combination, but may be used separately.

本発明におけるスチレン系単量体と共重合させる。アク
リル酸エステル単量体及びメタクリル酸エステル単量体
とは1例えば、アクリル酸メチル。
It is copolymerized with the styrene monomer in the present invention. The acrylic ester monomer and methacrylic ester monomer are 1, for example, methyl acrylate.

アクリル酸エチル、アクリル酸プロピル、アクリル酸ブ
チル、アクリル酸ヘキシル、アクリル酸オクチル等のア
クリル酸エステルであり、また、メタクリル酸エステル
とは9例えばメタクリル酸メチル、メタクリル酸エチル
、メタクリル酸プロピル、メタクリル酸ブチル、メタク
リル酸ヘキシル。
Acrylic esters such as ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, and octyl acrylate, and methacrylic esters include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and methacrylic acid. Butyl, hexyl methacrylate.

メタクリル酸オクチル、メタクリル酸ドデシル。Octyl methacrylate, dodecyl methacrylate.

メタクリル酸オクタデシル等である。これらの単量体は
単独又は2種以上混合して用いることがで今る・ 上記共重合体は、上記スチレン系単量体とアクリル酸エ
ステル及びメタクリ化酸エステルから構成されるが、そ
の二次転位温度は60〜97℃の範囲でるる。発泡性能
、成形体性能からみた好ましい二次転位温度は75〜9
0℃でるる。もし。
These include octadecyl methacrylate. These monomers can be used alone or in a mixture of two or more types. The above copolymer is composed of the above styrene monomer, an acrylic acid ester, and a methacrylic acid ester. The next rearrangement temperature is in the range of 60 to 97°C. The preferred secondary transition temperature from the viewpoint of foaming performance and molded product performance is 75 to 9.
It's 0℃. if.

二次転位温度が97℃を越えると温水で成形体を製造す
ることが困難となる。また、60℃未満アは発泡成形体
の機械的強度が低く実用的でない。
If the secondary dislocation temperature exceeds 97°C, it becomes difficult to produce a molded body using hot water. Further, if the temperature is lower than 60°C, the mechanical strength of the foamed molded product is low and is not practical.

二次転位温度は共重合、体粒子中に、残存モノマ。Secondary rearrangement temperature is the residual monomer in the copolymerization body particles.

発泡剤、可塑剤等が含ゼするとその測定値が大きく変動
するため、これらの変動要因を取り除く必11’ 力1
6る。その方法としては9.まず、樹脂粒子をシャーレ
等の容器に少蓋(2〜5.ダラム)取り。
If foaming agents, plasticizers, etc. are included, the measured value will fluctuate greatly, so it is necessary to remove these fluctuation factors.
6ru. The method is 9. First, place a small lid (2 to 5 durams) of resin particles in a container such as a petri dish.

9t1.を18Q〜220℃の減圧乾燥器に入れ、減圧
度30mmHg以下で4〜6時間、前処理をし次ものを
二次転位温度の測定用試料とする。
9t1. The sample was placed in a vacuum dryer at 18Q to 220°C, pretreated for 4 to 6 hours at a vacuum degree of 30 mmHg or less, and then used as a sample for measuring the secondary dislocation temperature.

二次転位温度の測定方法輪差動熱量針(DEC)を用い
る方法、熱物理試験器(TMA)を用いる方法等がめる
Methods for measuring the secondary dislocation temperature include a method using a differential calorimeter (DEC) and a method using a thermophysical tester (TMA).

=5− 上記共重合体の二次転移温度を60〜97℃に調整する
ために、スチレン系単量体とアクリル酸エステル及び/
又はメタクリル酸エステルの11類及び使用量が適宜決
定され、−概にこれらの使用量を決めることはできない
が、スチレン系単量体は大体95〜50重量%でおる。
=5- In order to adjust the secondary transition temperature of the above copolymer to 60 to 97°C, styrenic monomer, acrylic ester and/or
Alternatively, the type 11 of the methacrylic acid ester and the amount to be used are determined as appropriate; although the amount to be used cannot generally be determined, the styrenic monomer is approximately 95 to 50% by weight.

上記共重合体の製造にめたっては、塊状重合。Bulk polymerization is often used to produce the above copolymers.

溶液重合、懸濁重合等任意の重合法を採用することがで
きるが、懸濁重合法が球状粒子状で共重合体を得ること
ができるため、最も好ましい。
Although any polymerization method such as solution polymerization or suspension polymerization can be employed, the suspension polymerization method is most preferable because it can obtain a copolymer in the form of spherical particles.

懸濁重合は、水性媒体中で行なわれるが、その場合9分
散剤としては難溶性無機物質、陰イオン界面活性剤、水
溶性高分子分散剤等を使用することができる。
Suspension polymerization is carried out in an aqueous medium, and in that case, a sparingly soluble inorganic substance, an anionic surfactant, a water-soluble polymer dispersant, etc. can be used as the dispersant.

難溶性無機物質としては、一般によく知られたものが1
史用できる。例えば、燐酸カルシウム、ヒドロキシアパ
タイト、燐酸マグネシウム、ピロ燐酸・、マグネシウム
等がある。
Generally speaking, there are 1 well-known poorly soluble inorganic substances.
Can be used for historical purposes. Examples include calcium phosphate, hydroxyapatite, magnesium phosphate, and magnesium pyrophosphate.

難溶性無機物質分散剤は、水性媒体中に、得られるスチ
レン系樹脂粒子(仕込時のスチレン系単6− 量体とアクリル酸エステル及びメタクリル酸エステルの
総量を意味する。以下、同様)に対して。
The sparingly soluble inorganic substance dispersant is a dispersing agent for styrenic resin particles obtained in an aqueous medium (meaning the total amount of styrenic hexamer, acrylic acid ester, and methacrylic acid ester at the time of preparation; the same applies hereinafter). hand.

o、ooi〜5重1チの範囲で使用される。0.01重
i!:%未満の使用では分散剤として機能しにくい。
It is used in the range of o, ooi to 5 layers and 1 inch. 0.01 heavy i! : If less than % is used, it is difficult to function as a dispersant.

また、5重量1:%を越えると分散剤としての効果が出
すぎるため、生成される粒子は小さく、必要な粒子径(
0,1〜4 mm )を収率よく得ることは困難となる
ばかりではなく、場合によっては乳化することもめる。
In addition, if the amount exceeds 1:% by weight, the effect as a dispersant will be too strong, and the particles produced will be small and the required particle size (
It is not only difficult to obtain 0.1-4 mm) in good yield, but also emulsification may occur in some cases.

捷た。#溶性無機分散剤と同時に陰イオン界面活性剤を
存在させることが必須条件であり、陰イオン界面活性剤
が存在しないと分散剤として機能しない。
I cut it. #It is essential to have an anionic surfactant present at the same time as a soluble inorganic dispersant; if the anionic surfactant is not present, it will not function as a dispersant.

陰イオン界面活性剤としては、一般に知られたものが使
用できる。例えば、アルキルベンゼンスルホン酸ナトリ
ウム、α−オレフィンスルポン酸ナトリウム、アルキル
スルホン酸ナトリウノ・等である。
As the anionic surfactant, commonly known ones can be used. For example, sodium alkylbenzene sulfonate, sodium α-olefin sulfonate, sodium alkyl sulfonate, and the like.

陰イオン界面活性剤は水性媒体中に得られるスチレン系
樹脂粒子に対して0.0001〜0.021fit%で
使用される。この範囲外の使用では分散剤として機能し
にくい。
The anionic surfactant is used in an amount of 0.0001 to 0.021 fit% based on the styrenic resin particles obtained in the aqueous medium. If it is used outside this range, it will hardly function as a dispersant.

水溶性高分子分散剤としては、一般によく知られたもの
が使用できる。例えば1部分けん化ポリビニルアルコー
ル、アルキルセルロース、ヒドロキシアルギルアルコー
ル、カルボキシアルキルセルロース、ポリアクリルアミ
ド、ポリアクリル酸ナトリウム、ポリビニルピロリドン
等がある。
As the water-soluble polymer dispersant, generally well-known ones can be used. Examples include partially saponified polyvinyl alcohol, alkylcellulose, hydroxyargyl alcohol, carboxyalkylcellulose, polyacrylamide, sodium polyacrylate, polyvinylpyrrolidone, and the like.

水溶性高分子分散剤の使用量は、その種類により9分散
効果が大きく異なるため、一義的には決まらないが、お
よそ水性媒体中に、得られるスチレン系樹脂粒子に対し
て0.0001〜3M量チの範囲で使用される。o、o
ooi重量饅未満では分散剤として機能しにくい。また
3重量%を越えると分散剤としての効果が出すぎるため
、生成される粒子は小さく、必要な粒子径(0,1〜4
 mm )を収率よく、得ることが困難となるばかりで
はにく。
The amount of water-soluble polymer dispersant to be used cannot be unambiguously determined because the dispersion effect varies greatly depending on its type, but it is approximately 0.0001 to 3M based on the obtained styrene resin particles in the aqueous medium. Used within a range of quantities. o, o
If the weight is less than ooi, it is difficult to function as a dispersant. In addition, if it exceeds 3% by weight, the effect as a dispersant will be too high, and the particles produced will be small and the required particle size (0.1-4
mm) in good yield.

場合によっては乳化することもめる。In some cases, it can also be emulsified.

また、水性媒体は得られるスチレン系樹脂粒子に対して
約80〜300重童チ、好ましくけ約100車量係以下
で使用さ扛る。
Further, the aqueous medium is used in an amount of about 80 to 300 weight percent, preferably about 100 weight percent or less, based on the styrenic resin particles obtained.

共重合に用いる重合開始剤としては過酸化ベンゾイル、
過安息香酸ブチルのような有機過酸化物。
Polymerization initiators used in copolymerization include benzoyl peroxide,
Organic peroxides such as butyl perbenzoate.

アゾビスイソブチロニトリル、アゾビスジメルバレロニ
トリル等のアゾ化合物など、一般にスチレン糸車蓋体の
ラジカル重合に用いられる重合開始剤が1史用できる。
Polymerization initiators generally used for radical polymerization of styrene spinning wheel covers can be used, such as azo compounds such as azobisisobutyronitrile and azobisdimervaleronitrile.

重合開始剤はスチレン系単量体とそれに共重合するアク
リル酸エステル単量体及びメタクリル酸エステル単量体
の総量に対して。
The polymerization initiator is based on the total amount of the styrene monomer and the acrylic ester monomer and methacrylic ester monomer copolymerized therewith.

約0.1〜5重量%使用される。About 0.1-5% by weight is used.

つぎに本発明に使用される有機発泡剤は生成されるスチ
レン系重合体を溶解しないか、又は僅かに膨潤させるだ
けの性質を持ったもので、その沸点が上記生成重合体の
軟化点よりも低いもので常温で液状のもの又は気体状の
ものが使用できる。
Next, the organic blowing agent used in the present invention has the property of not dissolving the styrenic polymer produced or only slightly swelling it, and its boiling point is higher than the softening point of the produced polymer. Those that are liquid or gaseous at room temperature can be used.

例エバプロパン、ブタン、ペンタン等の脂肪族炭化水素
類、シクロブタン、シクロペンタン等の環式脂肪族炭化
水素類などである。有機発泡剤はスチレン系単量体とア
クリル酸エステル及びメタクリル酸エステルをM濁重合
させる場合1重合反応9− 途中または重合反応終了後に重合系に添加(圧入)して
含浸させることができる。
Examples include aliphatic hydrocarbons such as evapropane, butane, and pentane, and cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane. When turbidly polymerizing a styrene monomer, an acrylic ester, and a methacrylic ester, the organic blowing agent can be added (press-injected) to the polymerization system during or after the completion of the polymerization reaction for impregnation.

上aC発泡剤のうち、プロパン及びブタンが単独又は併
用で用いられるときは、スチレン系樹脂を少し軟化させ
るに必要な溶剤を少量含浸させることもできる。かかる
溶剤の例としては、エチルベンゼン、ベンゼン、トルエ
ン、キシレン、エチレンジクロライド、トリクロロエチ
レン、テトラクooエチレン、シクロヘキサン等を挙げ
ることができる。その使用量は得られるスチレン系樹脂
粒子に対して0.1〜4重量係である。
Among the above aC blowing agents, when propane and butane are used alone or in combination, a small amount of a solvent necessary for slightly softening the styrenic resin can be impregnated. Examples of such solvents include ethylbenzene, benzene, toluene, xylene, ethylene dichloride, trichloroethylene, tetraethylene, cyclohexane, and the like. The amount used is 0.1 to 4% by weight based on the styrene resin particles obtained.

有機発泡剤の含浸け、その他公知の方法で行なうことが
できる。
Impregnation with an organic blowing agent or other known methods can be used.

以上のようにして得られる発泡性スチレン系樹脂粒子は
、60〜100℃、特に60〜95℃の加熱媒体で加熱
発泡させることにより一次発泡粒子とすることができる
。このように9本発明ではより低温で一次発泡すること
ができる。加熱媒体としては、特に温水を使用すること
により、水蒸気による加熱では、110℃〜125℃に
加熱さ一1〇− れたものが使用されるのに比し、エネルギー消費全車さ
くすることができる。加熱方法としては。
The expandable styrenic resin particles obtained as described above can be made into primary expanded particles by heating and foaming them with a heating medium at 60 to 100°C, particularly 60 to 95°C. As described above, in the present invention, primary foaming can be performed at a lower temperature. In particular, by using hot water as the heating medium, energy consumption can be reduced compared to steam heating, which uses water heated to 110°C to 125°C. . As for the heating method.

発泡性スチレン系樹脂粒子と温水を直接、接触させれば
よい。また、加熱方法として9発泡性樹脂粒子を発泡槽
内に入れ、核檜内を減圧にし、これに80〜90℃の水
蒸気を吹込むことによっても行なうことができる。
The expandable styrene resin particles and hot water may be brought into direct contact. Alternatively, the heating can be carried out by placing the 9 expandable resin particles in a foaming tank, reducing the pressure in the core hinoki, and blowing steam at 80 to 90°C into this.

第2の発明は、第1の発明における発泡性スチレン系樹
脂粒子又はその−次発泡粒子を金型に充填し、60〜1
00℃の加熱媒体によって加熱成形することを特徴とす
るスチレン系樹脂発泡成形体の製造法に関する。
In the second invention, the expandable styrenic resin particles or the sub-expanded particles thereof according to the first invention are filled into a mold, and
The present invention relates to a method for producing a styrenic resin foam molded article, which is characterized by carrying out heat molding using a heating medium of 00°C.

金型としては、全体が完全に閉鎖されるものを使用して
もよいが9発泡性スチレン系樹脂粒子又はその−次発泡
粒子が通過しない微細な通気孔を多数有するものを使用
してもよい。従来、水蒸気による加熱によって発泡成形
体を製造するための金型を使用することができる。加熱
方法としては。
As for the mold, one that is completely closed may be used, but it is also possible to use one that has a large number of fine ventilation holes through which the expandable styrene resin particles or the sub-expanded particles thereof do not pass through. . Conventionally, molds for producing foam molded bodies by heating with steam can be used. As for the heating method.

加熱媒体に発泡性スチレン系樹脂粒子又はその−次発泡
粒子を充填した金型を浸漬してもよく9.金型のまわり
に加熱媒体が流出入する室を設けて。
9. A mold filled with expandable styrene resin particles or sub-expanded particles thereof may be immersed in the heating medium.9. A chamber is provided around the mold where the heating medium flows in and out.

これに加熱媒体を流出入させるようにしてもよい。A heating medium may be allowed to flow in and out of this.

従来の水蒸気加熱用の金型に付設された蒸気室に加熱媒
体を流出入させてもよい。
The heating medium may flow in and out of a steam chamber attached to a conventional steam heating mold.

加熱媒体としては、60〜100℃、特に60〜95℃
の温水を使用することができる。これにより、従来のよ
うに110〜125℃の水蒸気を使用する場合に比し、
エネルギーの節約をすることができる。加熱方法として
は、加熱媒体の流出入室を金型に付設し、該室に減圧下
、80〜90℃の水蒸気を導入するようにしてもよい。
As a heating medium, 60 to 100°C, especially 60 to 95°C
You can use hot water. As a result, compared to the conventional case of using steam at 110 to 125 degrees Celsius,
You can save energy. As a heating method, an inlet/outlet chamber for a heating medium may be attached to the mold, and steam at 80 to 90° C. may be introduced into the chamber under reduced pressure.

このように第2の発明によれば、従来に比し。As described above, according to the second invention, compared to the prior art.

より低エネルギーでスチレン系樹脂発泡成形体を得るこ
とができる。
A styrenic resin foam molded product can be obtained with lower energy.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 4I!の回転攪拌機付オートクレーブにイオン交換水1
,1009.リン酸三カルシウム22g、ドデシルベン
ゼンスルホン酸ナトリウムの1チ水溶液をa、ag、ス
チレン9009.アクリル酸n−ブチルエステル100
9.過酸化ベンゾイル3.09゜過安息香酸ブチル0.
59i仕込み、攪拌しながら1時間後に90℃になるよ
うに昇温する。以後90℃に保ちつつ重合を進める。と
きどき懸濁液の1部をサンプリングし、油滴の比重を比
重液法で測定し1重合転化率を調べる。重合転化率が9
5%以上となった時点でベンゼン5gを加えて。
Example 1 4I! ion-exchanged water 1 in an autoclave with a rotating stirrer.
, 1009. 22 g of tricalcium phosphate, 1 t aqueous solution of sodium dodecylbenzenesulfonate, a, ag, styrene 9009. Acrylic acid n-butyl ester 100
9. Benzoyl peroxide 3.09° Butyl perbenzoate 0.
After 1 hour, the temperature was raised to 90°C while stirring. Thereafter, polymerization is continued while maintaining the temperature at 90°C. A portion of the suspension is sampled from time to time, and the specific gravity of the oil droplets is measured by the specific gravity liquid method to check the single polymerization conversion rate. Polymerization conversion rate is 9
When it reaches 5% or more, add 5g of benzene.

さらに20分後にブタンガス180mJを窒素ガスで圧
入する。ブタンの圧入終了後再び昇温を始め。
After another 20 minutes, 180 mJ of butane gas was injected under pressure with nitrogen gas. After the injection of butane was completed, the temperature began to rise again.

2啼間後に120℃とした以後、この温度で4時間攪拌
を続ける。この後30℃まで冷却し、系内の余剰ガスを
排出し、f3別、乾燥後9分級して粒子径(0,71〜
1.20 mu+径)の揃った発泡性スチレン系樹脂粒
子を得た。このものを10℃の保冷庫で2日間熟成した
のち、75℃の温水中に浸漬してカサ倍数60倍に一次
発泡した。つぎに室温で24時間風乾したのち、金型(
内容積100mmX 100mmX40mm、アルミ製
で厚さ5mm、1.0鵬φ穴が四面に各20個めけてめ
るもの)に充填し、85℃の温水中に2分間投入した。
After 2 hours, the temperature was raised to 120°C, and stirring was continued at this temperature for 4 hours. After that, it was cooled to 30℃, the excess gas in the system was discharged, and the particle size was classified by f3 and 9 after drying.
Expandable styrenic resin particles of uniform size (1.20 mu+diameter) were obtained. This material was aged for 2 days in a 10° C. cold storage, and then immersed in 75° C. warm water to undergo primary foaming to a bulk ratio of 60 times. Next, after air drying at room temperature for 24 hours, the mold (
It was filled into a container (made of aluminum, 5 mm thick, with an internal volume of 100 mm x 100 mm x 40 mm, and having 20 1.0 φ holes on each side) and placed in hot water at 85° C. for 2 minutes.

つぎに13− 30℃の冷水に15秒投入したところ、金型温度は47
℃であった。直ちに離形して1表面のなめらかな、そし
て融層のよい成形体が得られた。
Next, when the mold was placed in cold water at 13-30℃ for 15 seconds, the mold temperature was 47℃.
It was ℃. The mold was immediately released from the mold to obtain a molded product with a smooth surface and a good melting layer.

実施例2 実施例1のスチレン仕込量を900gから9059に変
更し、アクリル酸n−ブチル100gからメタクリル酸
ドデシルニスプル959に変更した以外は実施例1と同
様に行なった。
Example 2 The same procedure as in Example 1 was carried out except that the amount of styrene charged in Example 1 was changed from 900 g to 9059, and 100 g of n-butyl acrylate was changed to 959 dodecyl methacrylate.

実施例3 実施例1のスチレン仕込量=48309に変更し。Example 3 The amount of styrene charged in Example 1 was changed to 48309.

アクリル酸n−ブチル量を170gに変更して実施例1
と同様にして発泡性スチレン系樹脂粒子を合成した。こ
のものは65℃の温水中で60倍に一次発泡した。さら
に、実施例1と同様にして75℃の温水中で2分間成形
したところ9表面のきれいな、融着のよい成形体が得ら
れた。
Example 1 by changing the amount of n-butyl acrylate to 170g
Expandable styrenic resin particles were synthesized in the same manner as described above. This material was first expanded 60 times in warm water at 65°C. Furthermore, when molded for 2 minutes in hot water at 75° C. in the same manner as in Example 1, a molded product with a clean surface and good fusion bonding was obtained.

比較例1 実施例1の中のスチレン量をi、 o o o gとし
Comparative Example 1 The amount of styrene in Example 1 is i, o o o g.

アクリル酸n−ブチルを使用しなかった以外は実施例1
と同様にして発泡性スチレン系樹脂粒子を14− 合成した。このものは75℃の温水中では全く発泡せず
、90℃の温水中でも透明な粒子がわずかに白く変色し
、不透明になる程度の発泡でめった。
Example 1 except that n-butyl acrylate was not used.
Expandable styrenic resin particles were synthesized in the same manner as described above. This product did not foam at all in hot water at 75°C, and even in hot water at 90°C, the transparent particles slightly turned white and foamed to the extent that they became opaque.

また、実施例1と同様の方法で成形することができなか
った。
Furthermore, it was not possible to mold the sample in the same manner as in Example 1.

上記実施例1〜3及び比較例1におけるスチレン系樹脂
の単量体組成及び二次転位温度、実施例1〜3及び比較
例1で得られた発泡性スチレン系樹脂粒子の温水発泡温
度(3分間の温水中の加熱でカサ倍率が60倍になる温
度)、−次発泡粒子(カサ倍率60チのもの)を実施例
1と同様にして温水中で発泡成形したときに充分良好な
融着がおこる最低温度(温水成形最低温度)並びに該発
泡成形後金型を冷却し、成形品を取出すことができる温
度(金型離形温度)を表1に示す。
The monomer composition and secondary rearrangement temperature of the styrenic resins in Examples 1 to 3 and Comparative Example 1, the hot water foaming temperature (3 Temperature at which the bulk ratio becomes 60 times when heated in hot water for 1 minute), when the secondary foamed particles (with a bulk ratio of 60 inches) were foam-molded in warm water in the same manner as in Example 1, sufficiently good fusion was achieved. Table 1 shows the minimum temperature at which this occurs (minimum hot water molding temperature) and the temperature at which the mold can be cooled and the molded product removed after foam molding (mold release temperature).

以1゛し):自 15−1): from 15-

Claims (1)

【特許請求の範囲】 1、 スチレン系単量体とアクリル酸エステル及び/又
はメタクリル酸エステルから構成され、二次転位温度が
60〜97℃である共重合体に有機発泡剤を含浸させて
なる発泡性スチレン系樹脂粒子を60〜i o O’C
の加熱媒体によって加熱することを特徴とするスチレン
系樹脂の一次発泡粒子の製造法。 2、加熱媒体が60−100’Cの温水である特許請求
の範囲第1項記載のスチレン系樹脂の一次発泡粒子の製
造法。 3、 スチレン系単量体とアクリル酸エステル及び/又
はメタクリル酸エステルから構成され、二次転移温度が
60〜97℃でるる共重合体に有機発泡剤を含浸させて
なる発泡性スチレン系樹脂粒子又はその−次発泡粒子を
金型に充填し、60〜100℃の加熱媒体によって加熱
成形することを特徴とするスチレン系樹脂発泡成形体の
製造法。 4、加熱媒体が60〜100℃の温水である特許請求の
範囲第3項記載のスチレン系樹脂発泡成形体の製造法。
[Claims] 1. A copolymer composed of a styrene monomer and an acrylic ester and/or a methacrylic ester and having a secondary rearrangement temperature of 60 to 97°C is impregnated with an organic blowing agent. Expandable styrene resin particles at 60 to io O'C
A method for producing primary expanded particles of styrenic resin, the method comprising heating with a heating medium. 2. The method for producing primary expanded particles of styrenic resin according to claim 1, wherein the heating medium is hot water of 60-100'C. 3. Expandable styrenic resin particles made by impregnating an organic blowing agent into a copolymer composed of a styrene monomer and an acrylic ester and/or a methacrylic ester and having a secondary transition temperature of 60 to 97°C. A method for producing a styrene-based resin foam molded article, which comprises filling a mold with the or-sub-expanded particles thereof and heating and molding them with a heating medium at a temperature of 60 to 100°C. 4. The method for producing a styrenic resin foam molded article according to claim 3, wherein the heating medium is hot water of 60 to 100°C.
JP1272284A 1984-01-26 1984-01-26 Primarily expanded particle of styrene based resin and production of expansion molded article Pending JPS60156736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272284A JPS60156736A (en) 1984-01-26 1984-01-26 Primarily expanded particle of styrene based resin and production of expansion molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272284A JPS60156736A (en) 1984-01-26 1984-01-26 Primarily expanded particle of styrene based resin and production of expansion molded article

Publications (1)

Publication Number Publication Date
JPS60156736A true JPS60156736A (en) 1985-08-16

Family

ID=11813318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272284A Pending JPS60156736A (en) 1984-01-26 1984-01-26 Primarily expanded particle of styrene based resin and production of expansion molded article

Country Status (1)

Country Link
JP (1) JPS60156736A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026509A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, manufacturing method therefor, pre-expanded particle, and expansion molded article
JP2011026508A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor
JP2011026506A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP2011026505A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle for low density expansion molding, manufacturing method therefor, low density polystyrene-based resin pre-expanded particle, and low density polystyrene-based resin expansion molded article
JP2015048356A (en) * 2013-08-29 2015-03-16 積水化成品工業株式会社 Foamable styrenic resin particle, foamed particle, foam molded body and manufacturing method of foamed particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026509A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, manufacturing method therefor, pre-expanded particle, and expansion molded article
JP2011026508A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle, pre-expanded particle, expansion molded article, and manufacturing method therefor
JP2011026506A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Low volatile expandable polystyrene-based resin particle, manufacturing method therefor, low volatile polystyrene-based resin pre-expanded particle, and low volatile polystyrene-based resin expansion molded article
JP2011026505A (en) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd Expandable polystyrene-based resin particle for low density expansion molding, manufacturing method therefor, low density polystyrene-based resin pre-expanded particle, and low density polystyrene-based resin expansion molded article
JP2015048356A (en) * 2013-08-29 2015-03-16 積水化成品工業株式会社 Foamable styrenic resin particle, foamed particle, foam molded body and manufacturing method of foamed particle

Similar Documents

Publication Publication Date Title
EP0017086B1 (en) Expandable thermoplastic polymer beads and process for their production
EP0049171B1 (en) Expandable styrene polymer particles, a method of producing the particles and foamed styrene polymer articles obtained from the particles
JPS60156736A (en) Primarily expanded particle of styrene based resin and production of expansion molded article
KR100594920B1 (en) Process for the preparation of expanded polyvinylarene particles
US3696060A (en) Production of foamable resins
JPH0249330B2 (en)
JP4653278B2 (en) Expandable styrene resin particles
US2878194A (en) Method for making cellular vinyl aromatic polymers using neopentane as the blowing agent
KR100594911B1 (en) Process for the preparation of expandable polyvinylarene particles
CA2029208A1 (en) Preparation of expandable styrene polymers
JPS6338063B2 (en)
JPS5850663B2 (en) Expandable styrenic resin particles
JP3649829B2 (en) Expandable styrene resin particles and method for producing the same
JPH03192134A (en) Production of expandable styrene polymer particle
JPH05295160A (en) Production of expandable styrene resin particle
JPS60206848A (en) Preparation of expandable thermoplastic copolymer particle
JP4587499B2 (en) Expandable styrenic resin particles and process for producing the same
JPS58109537A (en) Foamable thermoplastic resin composition and preparation thereof
JPS59149933A (en) Expandable styrene resin particle
JPS592692B2 (en) Method for manufacturing expandable styrenic resin particles
JPS6337140A (en) Foamable styrene copolymer particle and production thereof
JPS6337139A (en) Production of foamable copolymer resin particle
JPS5846254B2 (en) Method for manufacturing expandable styrenic resin particles
JPS5848578B2 (en) Method for manufacturing expandable styrenic resin particles
JPS5928582B2 (en) Method for producing expandable polymer particles