JP2008201989A - Expandable particle of polystyrene-based resin and method for producing the same, expanded particle of polystyrene-based resin and expansion-molded product of polystyrene-based resin - Google Patents
Expandable particle of polystyrene-based resin and method for producing the same, expanded particle of polystyrene-based resin and expansion-molded product of polystyrene-based resin Download PDFInfo
- Publication number
- JP2008201989A JP2008201989A JP2007042334A JP2007042334A JP2008201989A JP 2008201989 A JP2008201989 A JP 2008201989A JP 2007042334 A JP2007042334 A JP 2007042334A JP 2007042334 A JP2007042334 A JP 2007042334A JP 2008201989 A JP2008201989 A JP 2008201989A
- Authority
- JP
- Japan
- Prior art keywords
- polystyrene resin
- resin particles
- monomer
- polystyrene
- expandable polystyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、食品容器、梱包材、緩衝材等に好適なポリスチレン系樹脂発泡成形品製造用の発泡性ポリスチレン系樹脂粒子、及びこれを用いたポリスチレン系樹脂発泡成形品に関する。 The present invention relates to an expandable polystyrene resin particle for producing a polystyrene resin foam molded article suitable for food containers, packing materials, cushioning materials, and the like, and a polystyrene resin foam molded article using the same.
ポリスチレン系樹脂発泡成形品は、易揮発性発泡剤を含有する発泡性ポリスチレン系樹脂粒子を水蒸気等の加熱媒体によって加熱してポリスチレン系樹脂発泡粒子とし、このポリスチレン系樹脂発泡粒子を成形型内に充填し、水蒸気等で加熱、再発泡させてポリスチレン系樹脂発泡粒子間の隙間を埋めながら発泡圧によって互いに融着一体化させた後、得られたポリスチレン系樹脂発泡成形品を成形型内で冷却する冷却工程を経て製造されている。 Polystyrene resin foam molded products are obtained by heating expandable polystyrene resin particles containing a readily volatile foaming agent with a heating medium such as water vapor to form polystyrene resin foam particles, and placing the polystyrene resin foam particles in a mold. Filled, heated with water vapor, etc., re-foamed and fused and integrated with each other by foaming pressure while filling the gaps between polystyrene resin foam particles, then cooled the resulting polystyrene resin foam molded product in the mold It is manufactured through a cooling process.
そして、発泡性ポリスチレン系樹脂粒子(ビーズなどとも称される。)を原料とした前記製造方法(以下、ビーズ法と記す場合がある。)で得られるポリスチレン系樹脂発泡成形品は、断熱性、緩衝性等に優れていることから、食品容器、梱包材、緩衝材等に好適に使用されている。さらに、最近では、物性に加えて発泡成形品の外観の美麗性、成形サイクルの短縮による生産性の向上が求められている。 A polystyrene resin foam molded article obtained by the above-described production method (hereinafter sometimes referred to as a bead method) using expandable polystyrene resin particles (also referred to as beads) is a heat-insulating material. Since it has excellent buffering properties, it is suitably used for food containers, packing materials, cushioning materials and the like. Furthermore, recently, in addition to physical properties, the appearance of foamed molded products has been required to be beautiful and the productivity can be improved by shortening the molding cycle.
一般に、ビーズ法によってポリスチレン系樹脂発泡成形品を製造する際には、加熱媒体の温度、加熱時間等の製造条件において得られた発泡成形品の外観、強度が変化する。
加熱媒体の温度を高く、例えば、加熱媒体が水蒸気の場合は成形型内に投入する水蒸気の圧力を高くすると、発泡成形品としては良好なものが得られるが、エネルギー消費が大きいこと、更に冷却時間の遅延に伴い、成形時間が長くなり、生産性が低くなるという問題があった。更に加熱媒体の温度を高くするとポリスチレン系樹脂粒子表面の耐熱性が低い場合は、溶けが発生し、外観に劣るものとなる。
一方、加熱媒体の温度を低くすれば、成形時間が短くなり生産性は向上するが、発泡粒子同士の接着が弱くなりやすく物性が低下するばかりでなく、粒間が多いものとなり、発泡成形品外観の美麗性が低下する。
よって、物性、外観、生産性全てを満足できる発泡性ポリスチレン系樹脂粒子が求められている。
In general, when a polystyrene-based resin foam molded article is produced by the bead method, the appearance and strength of the foam molded article obtained under production conditions such as the temperature of the heating medium and the heating time vary.
If the temperature of the heating medium is increased, for example, if the heating medium is water vapor, increasing the pressure of the water vapor to be injected into the mold will give a good foamed molded product, but the energy consumption is large, and further cooling is required. With the time delay, there is a problem that the molding time becomes longer and the productivity is lowered. Further, when the temperature of the heating medium is increased, if the heat resistance of the surface of the polystyrene resin particles is low, melting occurs and the appearance is inferior.
On the other hand, if the temperature of the heating medium is lowered, the molding time is shortened and the productivity is improved. However, the adhesion between the foamed particles tends to be weakened, and the physical properties are deteriorated. The beauty of the appearance is reduced.
Therefore, there is a demand for expandable polystyrene resin particles that can satisfy all of the physical properties, appearance, and productivity.
尚、以下の記載において、水蒸気圧力が通常の型内発泡成形条件に比べて低い場合は「低圧条件」、圧力が高い場合を「高圧条件」とする。 In the following description, when the water vapor pressure is lower than the normal in-mold foam molding conditions, it is referred to as “low pressure condition”, and when the pressure is high, it is referred to as “high pressure condition”.
従来、低圧条件での前述したような諸問題を解決するため、溶剤や可塑剤を添加して樹脂の耐熱性を低下させ、低圧条件での成形性を向上させることが試みられている。
しかし、この方法では低圧条件での成形性は改善されるが、高圧条件で成形した場合に溶けが発生し、外観不良となるばかりでなく、物性低下も起こる。即ち、適正な成形条件が狭くなり、生産し難くなるという問題がある。
更に、最近では揮発性有機化合物(VOC)の排出抑制の対策等に関連して、発泡成形品についても、溶剤、可塑剤等の含有量を少なくすることが要望されており、この点から、溶剤、可塑剤等で成形性を改善することは好ましくない。
Conventionally, in order to solve the above-described problems under low pressure conditions, attempts have been made to add solvents and plasticizers to reduce the heat resistance of the resin and to improve the moldability under low pressure conditions.
However, in this method, the moldability under low pressure conditions is improved, but when molded under high pressure conditions, melting occurs and not only the appearance is deteriorated but also the physical properties are deteriorated. That is, there is a problem that proper molding conditions are narrowed and production is difficult.
Furthermore, recently, in relation to measures for suppressing emission of volatile organic compounds (VOC), it has been demanded to reduce the content of solvents, plasticizers, etc. for foamed molded products. It is not preferable to improve the moldability with a solvent, a plasticizer or the like.
一方、前記ポリスチレン系樹脂発泡成形品の製造工程における冷却工程を短縮することを目的として、特許文献1〜6に開示された技術が提案されている。 On the other hand, technologies disclosed in Patent Documents 1 to 6 have been proposed for the purpose of shortening the cooling step in the manufacturing process of the polystyrene-based resin foam molded article.
特許文献1には、ポリスチレン系樹脂100質量部、常圧における沸点が5℃以下である有機発泡剤を1.5〜5質量部及び可塑剤0.3〜2質量部を含有する発泡性ポリスチレン系樹脂粒子の表面および/または表面付近に脂肪酸のトリグリセライドであって分子中にヒドロキシル基を有せずヨウ素価30以上であり、かつ液状のものをポリスチレン系樹脂100質量部に対して0.02〜0.1質量部存在させてなる密度0.02g/cm3以上の成形体の製造に供するための発泡性ポリスチレン系樹脂粒子が開示されている。 Patent Document 1 includes 100 parts by mass of a polystyrene resin, 1.5 to 5 parts by mass of an organic foaming agent having a boiling point of 5 ° C. or less at normal pressure, and an expandable polystyrene containing 0.3 to 2 parts by mass of a plasticizer. Triglyceride of fatty acid on the surface and / or in the vicinity of the surface of the resin-based resin particles, having no hydroxyl group in the molecule and having an iodine value of 30 or more, and having a liquid content of 0.02 with respect to 100 parts by mass of the polystyrene-based resin Expandable polystyrene-based resin particles for use in the production of a molded article having a density of 0.02 g / cm 3 or more in the presence of 0.1 mass part are disclosed.
特許文献2には、融点40〜70℃のパラフィンワックスのエマルジョン又はパラフィンワックスのエマルジョンと微粉滑剤を発泡性ポリスチレン系樹脂粒子と撹拌混合することを特徴とする被覆された発泡性ポリスチレン系樹脂粒子の製造方法が開示されている。
特許文献3には、約1〜2.5未満の多分散性、約18万〜約30万の重量平均分子量、及びMz:Mn2〜4.5を示し、0〜5質量%未満分枝しているポリスチレン重合体94.5〜98質量%と、発泡剤約25.5質量%未満の量とを含む発泡性処方物が開示されている。 Patent Document 3 shows a polydispersity of less than about 1 to 2.5, a weight average molecular weight of about 180,000 to about 300,000, and Mz: Mn of 2 to 4.5, and is branched from 0 to 5% by mass. A foamable formulation is disclosed comprising 94.5-98% by weight polystyrene polymer and an amount less than about 25.5% by weight blowing agent.
特許文献4には、Z平均分子量Mzが160万〜300万で且つZ平均分子量Mzと重量平均分子量Mwとの比(Mz/Mw)が4.0〜5.0であると共に、温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が1.5〜3.0であるポリスチレン系樹脂からなり、物理型発泡剤2.5〜5.0質量%及び発泡助剤1.0〜2.5質量%を含有することを特徴とする発泡性ポリスチレン系樹脂粒子が開示されている。 In Patent Document 4, the Z average molecular weight Mz is 1.6 million to 3 million, the ratio (Mz / Mw) of the Z average molecular weight Mz to the weight average molecular weight Mw is 4.0 to 5.0, and the temperature is 200 ° C. , Comprising a polystyrene resin having an expansion ratio SR (A / B) of 1.5 to 3.0 between the outer diameter A of the resin strand and the inner diameter B of the orifice when the melt flow rate is measured under a load of 49 N. Expandable polystyrene resin particles characterized by containing 2.5 to 5.0% by mass of a physical foaming agent and 1.0 to 2.5% by mass of a foaming aid are disclosed.
特許文献5には、ポリスチレン系樹脂からなり、粒子最表層部と粒子中心部が低分子量であり、粒子中間部が高分子量である樹脂粒子に易揮発性発泡剤を含浸させてなる発泡性スチレン樹脂粒子が開示されている。 Patent Document 5 discloses an expandable styrene obtained by impregnating a resin particle having a low molecular weight at the outermost surface layer and a particle central portion of a polystyrene resin and having a high molecular weight at a middle portion of the particle with an easily volatile foaming agent. Resin particles are disclosed.
特許文献6には、易揮発性発泡剤を含有する発泡性スチレン系重合体粒子において、前記スチレン系重合体粒子表層部の重量平均分子量が、重合体粒子全体の重量平均分子量より3〜30%高くされていることを特徴とする発泡性スチレン系重合体粒子が開示されている。
しかしながら、特許文献1〜6に開示された従来技術には、次のような問題があった。
特許文献1,2に開示されているように、脂肪酸トリグリセライドやパラフィンワックスで発泡性ポリスチレン系樹脂粒子を被覆した場合、発泡性ポリスチレン系樹脂粒子の表面が侵されて物理型発泡剤の逸散量が多くなり、成形時間は短くできるが、発泡粒子同士の融着一体化が不十分となって、得られるポリスチレン系樹脂発泡成形品の機械的強度や外観が低下するといった問題がある。
また、特許文献3に開示された発泡性処方物は、発泡性が低いために、発泡性ポリスチレン系樹脂粒子を目標の発泡倍率まで発泡するためには2回以上の発泡工程が必要であって、製造効率が低いといった問題点がある。
また、特許文献4に開示された方法では、低圧条件での成形性が十分とは言えず、成形品の厚み、形状によって得られる成形品の外観、強度において期待される効果が低いという問題がある。
更に、特許文献5,6に開示されたように、ポリスチレン系樹脂粒子の最表面の分子量を調整しても、得られる発泡成形品の外観、発泡性能の低下の改善効果は充分とは言えない。
However, the conventional techniques disclosed in Patent Documents 1 to 6 have the following problems.
As disclosed in
In addition, since the foamable formulation disclosed in Patent Document 3 has low foamability, two or more foaming steps are required to foam the expandable polystyrene resin particles to the target foaming ratio. There is a problem that the production efficiency is low.
Further, the method disclosed in Patent Document 4 cannot be said to have sufficient moldability under low pressure conditions, and there is a problem that the expected effect on the appearance and strength of the molded product obtained by the thickness and shape of the molded product is low. is there.
Furthermore, as disclosed in Patent Documents 5 and 6, even if the molecular weight of the outermost surface of the polystyrene resin particles is adjusted, it cannot be said that the effect of improving the appearance and foaming performance of the obtained foamed molded product is sufficient. .
本発明は、前記事情に鑑みてなされ、低圧条件での発泡成形品の製造において機械的強度や外観に優れた発泡成形品が得られ、高圧条件でも溶けや収縮が無く、外観、物性ともに優れた発泡成形品が得られる発泡性ポリスチレン系樹脂粒子の提供を目的とする。 The present invention has been made in view of the above circumstances, and in the production of a foam molded product under low pressure conditions, a foam molded product excellent in mechanical strength and appearance can be obtained. There is no melting or shrinkage even under high pressure conditions, and the appearance and physical properties are excellent. It is an object of the present invention to provide expandable polystyrene resin particles from which a foamed molded product can be obtained.
前記目的を達成するため、本発明は、ポリスチレン系樹脂に揮発性発泡剤を含有させた発泡性ポリスチレン系樹脂粒子において、
前記ポリスチレン系樹脂は、温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が1.5〜2.5の範囲内であり、
発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztが70万〜100万の範囲であり、
且つ前記Z平均分子量Mztと、発泡性ポリスチレン系樹脂粒子表層部のZ平均分子量Mzsとの比率(Mzs/Mzt)が1.02〜1.5の範囲であることを特徴とする発泡性ポリスチレン系樹脂粒子を提供する。
In order to achieve the above object, the present invention provides an expandable polystyrene resin particle containing a volatile foaming agent in a polystyrene resin.
The polystyrene resin has an expansion ratio SR (A / B) between the outer diameter A of the resin strand and the inner diameter B of the orifice at the time of melt flow rate measurement at a temperature of 200 ° C. and a load of 49 N. Within the range of 5,
The Z average molecular weight Mzt of the whole expandable polystyrene resin particles is in the range of 700,000 to 1,000,000,
The ratio (Mzs / Mzt) between the Z average molecular weight Mzt and the Z average molecular weight Mzs of the surface part of the expandable polystyrene resin particles is in the range of 1.02 to 1.5. Resin particles are provided.
本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂は、(a)スチレン系単量体、(b)2官能性単量体、(c)5官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体との共重合体を含有していることが好ましい。 In the expandable polystyrene resin particles of the present invention, the polystyrene resin comprises (a) a styrene monomer, (b) a bifunctional monomer, and (c) a polyfunctional monomer having 5 or more functional groups. It preferably contains a copolymer with one or more polyfunctional monomers selected from the group.
本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂は、(a)スチレン系単量体、(b)2官能性単量体、(c)6官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体との共重合体を含有していることが好ましい。 In the expandable polystyrene resin particles of the present invention, the polystyrene resin comprises (a) a styrene monomer, (b) a bifunctional monomer, and (c) a polyfunctional monomer having 6 or more functional groups. It preferably contains a copolymer with one or more polyfunctional monomers selected from the group.
本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂は、(a)スチレン系単量体、(b)2官能性単量体、(c)6官能性単量体との共重合体を含有していることが好ましい。 In the expandable polystyrene resin particles of the present invention, the polystyrene resin is a copolymer of (a) a styrene monomer, (b) a bifunctional monomer, and (c) a hexafunctional monomer. It is preferable to contain.
本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂を構成する前記各単量体の比率は、(a)スチレン系単量体100molに対して、(b)が0.008〜0.032molの範囲であり、(c)が0.009〜0.027molの範囲であることが好ましい。 In the expandable polystyrene resin particles of the present invention, the ratio of the respective monomers constituting the polystyrene resin is (b) 0.008 to 0.00 with respect to 100 mol of (a) styrene monomer. It is preferably in the range of 032 mol, and (c) is preferably in the range of 0.009 to 0.027 mol.
また本発明は、(a)スチレン系単量体を主体とし、これに、(b)2官能性単量体、及び(c)5官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体を添加してなる単量体混合物を、懸濁重合法又はポリスチレン系樹脂種粒子を用いたシード重合法により重合してポリスチレン系樹脂を作製し、この重合の途中又は重合した後の樹脂に、揮発性発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得ることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法を提供する。 The present invention is mainly composed of (a) a styrene-based monomer, and is selected from the group consisting of (b) a bifunctional monomer and (c) a polyfunctional monomer having 5 or more functional groups. A monomer mixture obtained by adding one or more polyfunctional monomers is polymerized by a suspension polymerization method or a seed polymerization method using polystyrene resin seed particles to produce a polystyrene resin. The present invention provides a method for producing expandable polystyrene resin particles, wherein a expandable polystyrene resin particle is obtained by adding a volatile foaming agent to the resin during or after the polymerization.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン系樹脂は、温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が1.5〜2.5の範囲内であり、
発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztが70万〜100万の範囲であり、
且つ前記Z平均分子量Mztと、発泡性ポリスチレン系樹脂粒子表層部のZ平均分子量Mzsとの比率(Mzs/Mzt)が1.02〜1.5の範囲であることが好ましい。
In the method for producing expandable polystyrene resin particles of the present invention, the polystyrene resin expands between the outer diameter A of the resin strand and the inner diameter B of the orifice when the melt flow rate is measured at a temperature of 200 ° C. and a load of 49 N. The ratio SR (A / B) is in the range of 1.5 to 2.5,
The Z average molecular weight Mzt of the whole expandable polystyrene resin particles is in the range of 700,000 to 1,000,000,
And it is preferable that ratio (Mzs / Mzt) of said Z average molecular weight Mzt and Z average molecular weight Mzs of an expandable polystyrene-type resin particle surface layer part is the range of 1.02-1.5.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記(c)多官能性単量体が、6官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体であることが好ましい。 In the method for producing expandable polystyrene resin particles of the present invention, the (c) polyfunctional monomer is one or two or more selected from the group of polyfunctional monomers having 6 or more functional groups. It is preferably a functional monomer.
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記ポリスチレン系樹脂を構成する前記各単量体の比率は、(a)スチレン系単量体100molに対して、(b)が0.008〜0.032molの範囲であり、(c)が0.009〜0.027molの範囲であることが好ましい。 In the method for producing expandable polystyrene resin particles of the present invention, the ratio of each monomer constituting the polystyrene resin is (a) 100 mol of styrene monomer and (b) is 0.008. It is preferable that it is in the range of ˜0.032 mol, and (c) is in the range of 0.009 to 0.027 mol.
また本発明は、前記本発明に係る発泡性ポリスチレン系樹脂粒子を加熱し発泡させて得られたポリスチレン系樹脂発泡粒子を提供する。 The present invention also provides polystyrene resin foam particles obtained by heating and foaming the expandable polystyrene resin particles according to the present invention.
また本発明は、前記本発明に係るポリスチレン系樹脂発泡粒子を成形型のキャビティ内に充填し、成形型を蒸気加熱し型内発泡成形して得られたことを特徴とするポリスチレン系樹脂発泡成形品を提供する。 Further, the present invention is a polystyrene resin foam molding obtained by filling the polystyrene resin foam particles according to the present invention in a cavity of a molding die, and heating the molding die by steam heating. Provide goods.
本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂に揮発性発泡剤を含有させたものであり、前記ポリスチレン系樹脂が温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が1.5〜2.5の範囲であることから、少ない発泡剤で高度に発泡すると共に、外観が美麗で、且つ低嵩密度にして高強度なポリスチレン系樹脂発泡成形品を短時間で製造することができる。
更に、本発明の発泡性ポリスチレン系樹脂粒子は、発泡性ポリスチレン系樹脂粒子全体のZ平均分子量(Mzt)が70万〜100万で、且つ発泡性ポリスチレン系樹脂粒子の表層部のZ平均分子量(Mzs)との比(Mzs/Mzt)が1.02〜1.50であることから、ポリスチレン系樹脂粒子の表層部のZ平均分子量が高く、高圧成形時の耐熱性を向上できるばかりでなく、スチレン系単量体と6官能性単量体、及び2官能性単量体の共重合成分を含有するために、一般に直鎖状で高分子化された場合と比べて、樹脂の流動性が高く、高分子量でも成形性に優れるという特徴を持つ。
つまり、本発明の発泡性ポリスチレン系樹脂粒子を用いれば、低圧成形しても物性、外観に良好な成形品が得られ、ポリスチレン系樹脂発泡成形品の製造工程において最も長時間を要するポリスチレン系樹脂発泡成形品の冷却工程の短縮化を図ることができるとともに、高圧条件でも溶け、収縮等が無く、外観、物性ともに優れた成形品が得られる。
即ち、本発明では成形条件の規制が少なく、連続生産に適した発泡性ポリスチレン系樹脂粒子を得ることができる。
The expandable polystyrene resin particles of the present invention are those in which a volatile foaming agent is contained in a polystyrene resin, and the polystyrene resin is a resin strand when the melt flow rate is measured at a temperature of 200 ° C. and a load of 49 N. Since the expansion ratio SR (A / B) between the outer diameter A and the inner diameter B of the orifice is in the range of 1.5 to 2.5, the foam is highly foamed with a small amount of foaming agent, the appearance is beautiful, and A high-strength polystyrene resin foam-molded article having a low bulk density can be produced in a short time.
Furthermore, the expandable polystyrene resin particles of the present invention have a Z average molecular weight (Mzt) of the entire expandable polystyrene resin particles of 700,000 to 1,000,000, and the Z average molecular weight of the surface layer portion of the expandable polystyrene resin particles ( Mzs) ratio (Mzs / Mzt) is 1.02-1.50, so the Z-average molecular weight of the surface layer portion of the polystyrene resin particles is high, and not only can improve the heat resistance during high pressure molding, Since it contains a copolymer component of a styrenic monomer, a hexafunctional monomer, and a difunctional monomer, the fluidity of the resin is generally lower than that of a linear polymer. It is high and has the characteristics of excellent moldability even at high molecular weight.
In other words, if the expandable polystyrene resin particles of the present invention are used, a molded product with good physical properties and appearance can be obtained even by low pressure molding, and the polystyrene resin that takes the longest time in the production process of the polystyrene resin foam molded product. The cooling process of the foamed molded product can be shortened, and a molded product excellent in appearance and physical properties can be obtained without melting or shrinking even under high pressure conditions.
That is, in the present invention, there are few restrictions on molding conditions, and expandable polystyrene resin particles suitable for continuous production can be obtained.
本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂に揮発性発泡剤を含有させたものであり、前記ポリスチレン系樹脂が、温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が特定の1.5〜2.5であり、発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztが70万〜100万の範囲であり、且つ前記Z平均分子量Mztと、発泡性ポリスチレン系樹脂粒子表層部のZ平均分子量Mzsとの比率(Mzs/Mzt)が1.02〜1.5の範囲であることを特徴としている。 The expandable polystyrene resin particles of the present invention are those in which a volatile foaming agent is contained in a polystyrene resin, and the polystyrene resin is a resin at the time of melt flow rate measurement at a temperature of 200 ° C. and a load of 49 N. The expansion ratio SR (A / B) between the outer diameter A of the strand and the inner diameter B of the orifice is a specific 1.5 to 2.5, and the Z average molecular weight Mzt of the entire expandable polystyrene resin particle is 700,000 to 100 And the ratio (Mzs / Mzt) of the Z-average molecular weight Mzt to the Z-average molecular weight Mzs of the surface portion of the expandable polystyrene resin particles is in the range of 1.02 to 1.5. It is said.
本発明の好ましい実施形態において、発泡性ポリスチレン系樹脂粒子を構成しているポリスチレン系樹脂としては、次の[1]〜[3]のいずれかを用いることが好ましい。
[1]: (a)スチレン系単量体、(b)2官能性単量体、(c)5官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体との共重合体を含有しているポリスチレン系樹脂。
[2]: (a)スチレン系単量体、(b)2官能性単量体、(c)6官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体との共重合体を含有しているポリスチレン系樹脂。
[3]: (a)スチレン系単量体、(b)2官能性単量体、(c)6官能性単量体との共重合体を含有しているポリスチレン系樹脂。
In a preferred embodiment of the present invention, it is preferable to use any one of the following [1] to [3] as the polystyrene resin constituting the expandable polystyrene resin particles.
[1]: (a) a styrene-based monomer, (b) a bifunctional monomer, (c) one or more polyfunctional monomers selected from the group of five or more functional monomers Polystyrene resin containing a copolymer with a functional monomer.
[2]: (a) a styrene-based monomer, (b) a bifunctional monomer, (c) one or more polyfunctional monomers selected from the group of six or more functional monomers Polystyrene resin containing a copolymer with a functional monomer.
[3]: A polystyrene resin containing a copolymer of (a) a styrene monomer, (b) a bifunctional monomer, and (c) a hexafunctional monomer.
前記(a)スチレン系単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられ、これらのうちの1種、或いは2種以上を混合して用いることができる。(a)スチレン系単量体として、特に好ましいものは、スチレンである。 Examples of the (a) styrenic monomer include styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and the like. Or 2 or more types can be mixed and used. As the styrene monomer (a), styrene is particularly preferable.
前記(b)2官能性単量体は、(a)スチレン系単量体と重合可能な官能基を1分子中に2個有する単量体を用いることができ、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレートなどが挙げられる。これらの中でも、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。なお、これらの2官能性単量体は、単独で用いても良いし、2種以上を併用しても良い。また、ジビニルベンゼンとしては、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼンのそれぞれ単独でも良いし、これらの混合物でも良い。 As the (b) bifunctional monomer, (a) a monomer having two functional groups polymerizable with a styrene monomer in one molecule can be used. For example, o-divinylbenzene, Examples thereof include divinylbenzene such as m-divinylbenzene and p-divinylbenzene, and alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. Among these, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and divinylbenzene are more preferable, and divinylbenzene and ethylene glycol di (meth) acrylate are particularly preferable. In addition, these bifunctional monomers may be used independently and may use 2 or more types together. Moreover, as divinylbenzene, each of o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene may be used alone or a mixture thereof.
前記(c)5官能以上の多官能性単量体としては、スチレン系単量体と共重合可能な官能基を5つ以上、好ましくは6つ以上有する化合物を用いることができる。典型的には、6官能性単量体、15官能性単量体などが挙げられる。スチレン系単量体と共重合可能な6官能性単量体としては、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等が挙げられる。スチレン系単量体と共重合可能な15官能性単量体としては、ウレタンアクリレートなどが挙げられる。その他の(c)5官能以上の多官能性単量体としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等が挙げられる。 As the polyfunctional monomer having 5 or more functional groups (c), a compound having 5 or more, preferably 6 or more functional groups copolymerizable with a styrene monomer can be used. Typically, a hexafunctional monomer, a 15 functional monomer, etc. are mentioned. Examples of the hexafunctional monomer copolymerizable with the styrene monomer include dipentaerythritol hexaacrylate and dipentaerythritol hexamethacrylate. Examples of the 15 functional monomer copolymerizable with the styrene monomer include urethane acrylate. Other (c) pentafunctional or higher polyfunctional monomers include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, diester Examples include pentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer.
本発明の発泡性ポリスチレン系樹脂粒子において、前記ポリスチレン系樹脂を構成する前記各単量体の比率は、(a)スチレン系単量体100molに対して、(b)が0.008〜0.032molの範囲、更に好ましくは0.010〜0.030molの範囲であり、また(c)が0.009〜0.027molの範囲、更に好ましくは0.010〜0.025molである。(b)2官能性単量体及び(c)多官能性単量体の量が前記範囲未満であると、発泡性ポリスチレン系樹脂粒子の低圧成形性が向上できず低圧成形にて良好な成形品が得られない。また、これらの量が前記範囲を超えると、ゲルを発生しやすくなり、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、低密度のポリスチレン系樹脂発泡成形品を得ることができない。 In the expandable polystyrene resin particles of the present invention, the ratio of the respective monomers constituting the polystyrene resin is (b) 0.008 to 0.00 with respect to 100 mol of (a) styrene monomer. It is the range of 032 mol, More preferably, it is the range of 0.010-0.030 mol, (c) is the range of 0.009-0.027 mol, More preferably, it is 0.010-0.025 mol. When the amount of the (b) bifunctional monomer and (c) the polyfunctional monomer is less than the above range, the low-pressure moldability of the expandable polystyrene resin particles cannot be improved, and good molding is achieved by low-pressure molding. I can not get the goods. Moreover, when these amounts exceed the above range, gel is likely to be generated, the foamability of the expandable polystyrene resin particles is lowered, and a low density polystyrene resin foam molded product cannot be obtained.
本発明の発泡性ポリスチレン系樹脂粒子において、前記(a)〜(c)の各単量体から生成した共重合体成分は、発泡性ポリスチレン系樹脂粒子中に均一に存在している必要はなく、不均一に存在していても良い。特に、後述する懸濁重合法やシード重合法によってポリスチレン系樹脂を製造する場合、前記共重合体成分は、樹脂粒子の中心部よりも粒子表層に多く含まれることが確認された。 In the expandable polystyrene resin particles of the present invention, the copolymer component generated from each of the monomers (a) to (c) need not be present uniformly in the expandable polystyrene resin particles. , It may exist non-uniformly. In particular, when a polystyrene resin is produced by a suspension polymerization method or a seed polymerization method, which will be described later, it is confirmed that the copolymer component is contained more in the particle surface layer than in the central part of the resin particles.
本発明の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂全体の重量平均分子量は20〜50万、好ましくは25〜40万である。更に、発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztは70〜100万、好ましくは70〜90万である。この範囲より低い場合には、樹脂の耐熱性が低く、高圧条件での成形時に溶けが発生しやすい。又、この範囲以上となると逆に樹脂の耐熱性が高過ぎて、発泡粒同士の融着率が低下して、成形品の物性が低下する。 In the expandable polystyrene resin particles of the present invention, the weight average molecular weight of the entire expandable polystyrene resin is 200 to 500,000, preferably 25 to 400,000. Furthermore, the Z average molecular weight Mzt of the whole expandable polystyrene resin particles is 700 to 1,000,000, preferably 700 to 900,000. When it is lower than this range, the heat resistance of the resin is low, and melting is likely to occur during molding under high pressure conditions. On the other hand, if it exceeds this range, the heat resistance of the resin is too high, the fusion rate between the foamed particles is lowered, and the physical properties of the molded product are lowered.
更に、前記発泡性ポリスチレン系樹脂粒子表層部におけるZ平均分子量Mzsと全体のZ平均分子量Mztとの比(Mzs/Mzt)は、1.02〜1.50の範囲であり、好ましくは1.05〜1.45の範囲である。MzsとMztとの比が1.02未満であると、発泡性ポリスチレン系樹脂粒子表層の耐熱性が低下し、外観に劣るものとなる。MzsとMztとの比が、1.50を超えると、ポリスチレン系樹脂粒子の耐熱性が高くなりすぎて流動性が低下し、外観性が低下する。 Furthermore, the ratio (Mzs / Mzt) of the Z average molecular weight Mzs to the overall Z average molecular weight Mzt in the surface layer part of the expandable polystyrene resin particles is in the range of 1.02 to 1.50, preferably 1.05. It is in the range of ˜1.45. When the ratio of Mzs to Mzt is less than 1.02, the heat resistance of the surface layer of the expandable polystyrene resin particles is lowered and the appearance is inferior. If the ratio of Mzs to Mzt exceeds 1.50, the heat resistance of the polystyrene resin particles becomes too high, the fluidity is lowered, and the appearance is lowered.
なお、本発明においては、以下のGPC法によってZ平均分子量Mzと重量平均分子量Mwと数平均分子量Mnを測定した値を採用している。
測定装置:Waters HPLC(Detector484 、東ソーPump DP-8020、同 検出器UV−8020)
カラム:Shodex製 GPC K-806L 2本
測定条件:カラム温度(40℃)、移動相(クロロホルム)。
移動相流量(1.2ミリリットル/min)、
注入・ポンプ温度(室温)、測定時間(25分)、検出(UV254nm)
注入量:50マイクロリットル
検量線用標準ポリスチレン:昭和電工社製、商品名「Shodex」、分子量:1,030,000、東ソー社製、分子量:5,480,000 、3,840,000 、355,000 、102,000、379,000 、9,100 、2,630 、495。
In the present invention, values obtained by measuring the Z average molecular weight Mz, the weight average molecular weight Mw, and the number average molecular weight Mn by the following GPC method are employed.
Measuring equipment: Waters HPLC (Detector484, Tosoh Pump DP-8020, detector UV-8020)
Column: 2 GPC K-806L manufactured by Shodex Measurement conditions: Column temperature (40 ° C.), mobile phase (chloroform).
Mobile phase flow rate (1.2 ml / min),
Injection / pump temperature (room temperature), measurement time (25 minutes), detection (UV254 nm)
Injection amount: 50 microliters Standard polystyrene for calibration curve: Showa Denko Co., Ltd., trade name “Shodex”, molecular weight: 1,030,000, manufactured by Tosoh Corporation, molecular weight: 5,480,000, 3,840,000, 355,000, 102,000, 379,000, 9,100, 2,630, 495.
<測定方法>
試料約10mgをクロロホルム4ミリリットルで溶解し、非水系45μmクロマトディスクで濾過してから測定する。
ここで、前記GPC法によって測定される重量平均分子量Mw、及びZ平均分子量Mzは、Miなる分子量をもつ高分子がNi個存在する場合、下記の通り定義される。重量平均分子量Mwは、測定される物性値が高分子の重量に直接関係する時に求められる平均分子量であって、分子量の2乗平均であり、数平均分子量Mnより高重合度分子に依存する。Z平均分子量Mzは、最も高次の平均分子量で分子量の3乗平均である。重量平均分子量Mwよりも更に高重合度分子に依存する。
<Measurement method>
About 10 mg of the sample is dissolved in 4 ml of chloroform, filtered through a non-aqueous 45 μm chromatographic disk, and then measured.
Here, the weight average molecular weight Mw and the Z average molecular weight Mz measured by the GPC method are defined as follows when Ni polymers having a molecular weight of Mi exist. The weight average molecular weight Mw is an average molecular weight obtained when the physical property value to be measured is directly related to the weight of the polymer, and is a square average of the molecular weight, and depends on a higher polymerization degree molecule than the number average molecular weight Mn. The Z average molecular weight Mz is the highest average molecular weight and is the cube average of the molecular weight. It depends on molecules having a higher degree of polymerization than the weight average molecular weight Mw.
更に、本発明の発泡性ポリスチレン系樹脂粒子は、ポリスチレン系樹脂に揮発性発泡剤を含有させたものであり、前記ポリスチレン系樹脂が温度200℃、荷重49N条件下、ポリスチレン系樹脂成分のメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が、1.5〜2.5の範囲、好ましくは1.6〜2.4の範囲である。膨張割合SRが1.5未満であると、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、多くの溶剤、可塑剤が必要となってしまう。一方、膨張割合SRが2.5を超えると、発泡性ポリスチレン系樹脂粒子の発泡性が低下して、低密度のポリスチレン系樹脂発泡成形品を得ることができない。 Furthermore, the expandable polystyrene resin particles of the present invention are those in which a volatile foaming agent is contained in a polystyrene resin, and the polystyrene resin has a temperature of 200 ° C. and a load of 49 N, and the melt flow of the polystyrene resin component. The expansion ratio SR (A / B) between the outer diameter A of the resin strand and the inner diameter B of the orifice at the time of rate measurement is in the range of 1.5 to 2.5, preferably in the range of 1.6 to 2.4. . When the expansion ratio SR is less than 1.5, the foamability of the expandable polystyrene resin particles is lowered, and many solvents and plasticizers are required. On the other hand, when the expansion ratio SR exceeds 2.5, the foamability of the expandable polystyrene resin particles is lowered, and a low density polystyrene resin foam molded product cannot be obtained.
ここで、前記ポリスチレン系樹脂の膨張割合SR(A/B)は下記の要領で測定されたものをいう。即ち、ポリスチレン系樹脂粒子5gを予め200℃に加熱した上でメルトフローレート測定器内に供給して3分間放置した後、ポリスチレン系樹脂に49Nの荷重を加えて内径B(mm)のオリフィスから溶融したポリスチレン系樹脂を押出す。本発明でのオリフィス径Bは2.1mmとした。
そして、最初に押出されたポリスチレン系樹脂ストランドの先端から押出方向とは逆方向に5mmの部分における任意5箇所の外径を測定し、それら外径の平均値をポリスチレン系樹脂の外径A(mm)として下記式によりポリスチレン系樹脂の膨張割合SR(A/B)を算出する。
ポリスチレン系樹脂の膨張割合 SR=A/B
Here, the expansion ratio SR (A / B) of the polystyrene resin refers to that measured in the following manner. That is, 5 g of polystyrene resin particles are heated in advance to 200 ° C., then supplied into a melt flow rate measuring device and left for 3 minutes, and then a load of 49 N is applied to the polystyrene resin from an orifice having an inner diameter B (mm). Extruded molten polystyrene resin. In the present invention, the orifice diameter B was 2.1 mm.
And the outer diameter of arbitrary 5 places in the part of 5 mm from the front-end | tip of the polystyrene-type resin strand extruded first in the direction opposite to an extrusion direction is measured, and the average value of those outer diameters is the outer diameter A ( mm), the expansion ratio SR (A / B) of the polystyrene resin is calculated by the following formula.
Expansion ratio of polystyrene resin SR = A / B
なお、前記ポリスチレン系樹脂の膨張割合SR(A/B)は、東洋精機製作所から商品名「メルトインデクサー」で市販されているメルトフローレート測定器を用いて測定することができ、ポリスチレン系樹脂のメルトフローレートは、JIS K7210に準拠して測定されたものをいう。
また、前記方法で測定した当該ポリスチレン系樹脂のメルトフローレートは、1〜15g/10分であり、更に1〜10g/10分が好ましい。
The expansion ratio SR (A / B) of the polystyrene resin can be measured by using a melt flow rate measuring device commercially available from Toyo Seiki Seisakusho under the trade name “Melt Indexer”. The melt flow rate of is the one measured in accordance with JIS K7210.
Moreover, the melt flow rate of the said polystyrene-type resin measured by the said method is 1-15 g / 10min, Furthermore, 1-10 g / 10min is preferable.
前記ポリスチレン系樹脂は、スチレン系単量体に、これと共重合可能な2官能性単量体及び多官能性単量体を共重合した成分を含有し、Z平均分子量Mzが70万〜100万であるにもかかわらず、メルトフローレートは1〜10g/10分であり、溶融時における優れた流動性を保持して、発泡性ポリスチレン系樹脂粒子に低圧から高圧まで良好な成形品が得られ、成形可能条件が広いものとなる。 The polystyrene resin contains a component obtained by copolymerizing a styrene monomer with a bifunctional monomer and a polyfunctional monomer copolymerizable therewith, and has a Z average molecular weight Mz of 700,000 to 100 Despite the fact that the melt flow rate is 1 to 10 g / 10 min, excellent flowability at the time of melting is maintained, and a good molded product from low pressure to high pressure is obtained for the expandable polystyrene resin particles. Therefore, the moldable conditions are wide.
本発明の発泡性ポリスチレン系樹脂粒子中に含有されている揮発性発泡剤は、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されずに使用でき、例えば、イソブタン、n−ブタン、イソペンタン、ネオペンタン等の炭素数5以下の脂肪族炭化水素が挙げられ、これらを単独で、或いは2種以上を混合して用いることができる。本発明においては、ブタン系発泡剤が好ましい。 The volatile foaming agent contained in the expandable polystyrene resin particles of the present invention can be used without particular limitation as long as it is conventionally used for foaming polystyrene resins, for example, isobutane, Examples thereof include aliphatic hydrocarbons having 5 or less carbon atoms such as n-butane, isopentane, neopentane, etc., and these can be used alone or in admixture of two or more. In the present invention, a butane-based foaming agent is preferred.
本発明の発泡性ポリスチレン系樹脂粒子中における揮発性発泡剤の含有量は、ポリスチレン系樹脂100質量部に対し、3.0〜9.0質量部の範囲が好ましく、4.0〜8.0質量部の範囲がより好ましい。揮発性発泡剤の量が3.0質量部未満であると、発泡性ポリスチレン系樹脂粒子から低密度のポリスチレン系樹脂発泡成形品を得ることができないと共に、成形時の二次発泡力を高める効果が得られないために、得られるポリスチレン系樹脂発泡成形品の外観性が低下する。揮発性発泡剤の量が9.0質量部を超えると、発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形品の製造工程における冷却工程に要する時間が長くなって、生産性が低下する。
なお、前記発泡性ポリスチレン系樹脂粒子中における揮発性発泡剤の含有量は、発泡性ポリスチレン系樹脂粒子を150℃の熱分解炉に入れ、この熱分解炉で発生した炭化水素量をクロマトグラフにて測定する方法などで測定可能である。
The content of the volatile foaming agent in the expandable polystyrene resin particles of the present invention is preferably in the range of 3.0 to 9.0 parts by mass with respect to 100 parts by mass of the polystyrene resin, and 4.0 to 8.0. The range of parts by mass is more preferable. When the amount of the volatile foaming agent is less than 3.0 parts by mass, it is not possible to obtain a low-density polystyrene resin foam molded product from the expandable polystyrene resin particles, and the effect of increasing the secondary foaming power during molding. Is not obtained, the appearance of the resulting polystyrene-based resin foam-molded product is deteriorated. When the amount of the volatile foaming agent exceeds 9.0 parts by mass, the time required for the cooling step in the production process of the polystyrene-based resin foam molded article using the expandable polystyrene-based resin particles becomes long, and the productivity is lowered. .
The content of the volatile blowing agent in the expandable polystyrene resin particles is determined by placing the expandable polystyrene resin particles in a 150 ° C. pyrolysis furnace and chromatographing the amount of hydrocarbons generated in the pyrolysis furnace. It is possible to measure by the measuring method.
本発明の発泡性ポリスチレン系樹脂粒子中には、揮発性発泡剤とともに発泡助剤を含有させることが好ましい。この発泡助剤は、従来から発泡性ポリスチレン系樹脂粒子に用いられているものであれば、特に限定されずに使用でき、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の一気圧下における沸点が200℃以下の溶剤などが挙げられる。 The foamable polystyrene resin particles of the present invention preferably contain a foaming aid together with a volatile foaming agent. This foaming aid can be used without particular limitation as long as it is conventionally used for expandable polystyrene resin particles, for example, aromatic organic compounds such as styrene, toluene, ethylbenzene, xylene, cyclohexane, Examples thereof include cycloaliphatic hydrocarbons such as methylcyclohexane, solvents having a boiling point of 200 ° C. or less under one atmospheric pressure, such as ethyl acetate and butyl acetate.
本発明の発泡性ポリスチレン系樹脂粒子中における発泡助剤の含有量は、ポリスチレン系樹脂100質量部に対し、0.5〜2.5質量部の範囲が好ましく、0.7〜2.2質量部の範囲がより好ましい。発泡助剤の量が0.5質量部未満であると、ポリスチレン系樹脂の可塑化効果が発現しない。発泡助剤の量が2.5質量部を超えると、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形品に収縮や溶けが発生して外観性が低下したり、或いは発泡性ポリスチレン系樹脂粒子を用いたポリスチレン系樹脂発泡成形品の製造工程における冷却工程に要する時間が長くなるので、生産性が低下する。
なお、前記発泡性ポリスチレン系樹脂粒子における発泡助剤の含有量は、発泡性ポリスチレン系樹脂粒子をジメチルホルムアミドに溶解させると共に内部標準液としてシクロペンタノールを加えてガスクロマトグラフにて測定する方法などで測定可能である。
The content of the foaming aid in the expandable polystyrene resin particles of the present invention is preferably in the range of 0.5 to 2.5 parts by mass, and 0.7 to 2.2 parts by mass with respect to 100 parts by mass of the polystyrene resin. A range of parts is more preferred. When the amount of the foaming aid is less than 0.5 parts by mass, the plasticizing effect of the polystyrene resin does not appear. When the amount of the foaming aid exceeds 2.5 parts by mass, the polystyrene resin foam molded product obtained by foaming the expandable polystyrene resin particles may be shrunk or melted to reduce the appearance or foam. Since the time required for the cooling process in the manufacturing process of the polystyrene resin foam molded article using the conductive polystyrene resin particles becomes longer, the productivity is lowered.
In addition, the content of the foaming aid in the expandable polystyrene resin particles is determined by, for example, a method of dissolving the expandable polystyrene resin particles in dimethylformamide and adding cyclopentanol as an internal standard solution and measuring with a gas chromatograph. It can be measured.
更に、発泡性ポリスチレン系樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、一気圧下における沸点が200℃を超える可塑剤、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤を、ポリスチレン系樹脂100質量部に対し2.0質量部未満添加してもよい。 Furthermore, in order to maintain good foaming moldability even when the pressure of water vapor used at the time of heat foaming is low, a plasticizer having a boiling point exceeding 200 ° C. under atmospheric pressure, for example, phthalate is used for the expandable polystyrene resin particles. 2 plasticizers such as acid ester, glycerol diacetomonolaurate, glycerol tristearate, glycerol fatty acid ester such as glycerol diacetomonostearate, adipic acid ester such as diisobutyl adipate, coconut oil, etc. You may add less than 0.0 mass part.
なお、前記発泡性ポリスチレン系樹脂粒子には、発泡成形して得られるポリスチレン系樹脂発泡成形品の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよく、又、ジンクステアレート等の粉末状金属石鹸類を前記発泡性スチレン樹脂粒子の表面に塗布しておけば、発泡性ポリスチレン系樹脂粒子の発泡工程においてポリスチレン系樹脂発泡粒子同士の結合を減少させることができて好ましい。 The foamable polystyrene-based resin particles are within the range that does not impair the physical properties of a polystyrene-based resin foam-molded product obtained by foam molding, a binding inhibitor, a foam regulator, a crosslinking agent, a filler, a flame retardant, Additives such as flame retardant aids, lubricants, colorants, etc. may be added, and if powdered metal soaps such as zinc stearate are applied to the surface of the expandable styrene resin particles, foaming In the foaming step of the polystyrene resin particles, it is preferable because the bonding between the polystyrene resin foam particles can be reduced.
次に、前記発泡性ポリスチレン系樹脂粒子の製造方法について説明する。
本発明の発泡性ポリスチレン系樹脂粒子は、(a)スチレン系単量体を主体とし、これに、(b)2官能性単量体、及び(c)5官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体を添加してなる単量体混合物を、懸濁重合法又はポリスチレン系樹脂種粒子を用いたシード重合法により重合してポリスチレン系樹脂を作製し、この重合の途中又は重合した後の樹脂に、揮発性発泡剤及び発泡助剤を含浸させることによって製造することができる。
Next, a method for producing the expandable polystyrene resin particles will be described.
The expandable polystyrene resin particles of the present invention are mainly composed of (a) a styrene monomer, (b) a bifunctional monomer, and (c) a polyfunctional monomer having five or more functions. A monomer mixture obtained by adding one or two or more multifunctional monomers selected from the group is polymerized by a suspension polymerization method or a seed polymerization method using polystyrene resin seed particles. It can be produced by preparing a polystyrene-based resin and impregnating a volatile foaming agent and a foaming aid into the resin during or after the polymerization.
前記ポリスチレン系樹脂の製造方法としては、従来から汎用の重合方法が用いられ、例えば、
1)原料単量体を水中に懸濁させ重合開始剤の存在下で重合させる懸濁重合方法、
2)水性媒体中に種粒子として微細なポリスチレン系樹脂種粒子を分散させた上でこの水性媒体中に原料単量体を連続的又は断続的に供給して重合開始剤の存在下で懸濁重合するシード重合方法、
3)前記重合方法1)又は2)で得られたポリスチレン系樹脂を押出機にて所望の粒度に調整する方法、
4)前記3)で得られたポリスチレン系樹脂粒子を種粒子とする方法、
等が挙げられる。これらの製造方法の中でも、懸濁重合方法及びシード重合方法が好ましく、発泡性ポリスチレン系樹脂粒子の粒子径を調整しやすい等の利点から、シード重合方法がより好ましい。以下、発泡性ポリスチレン系樹脂粒子の製造方法の一例として、シード重合方法を主に説明する。
As a method for producing the polystyrene-based resin, a general-purpose polymerization method has been conventionally used. For example,
1) A suspension polymerization method in which a raw material monomer is suspended in water and polymerized in the presence of a polymerization initiator,
2) After dispersing fine polystyrene resin seed particles as seed particles in an aqueous medium, the raw material monomer is continuously or intermittently supplied into the aqueous medium and suspended in the presence of a polymerization initiator. Seed polymerization method to polymerize,
3) A method of adjusting the polystyrene resin obtained in the polymerization method 1) or 2) to a desired particle size with an extruder,
4) A method using the polystyrene resin particles obtained in 3) as seed particles,
Etc. Among these production methods, the suspension polymerization method and the seed polymerization method are preferable, and the seed polymerization method is more preferable in view of advantages such as easy adjustment of the particle diameter of the expandable polystyrene resin particles. Hereinafter, a seed polymerization method will be mainly described as an example of a method for producing expandable polystyrene resin particles.
シード重合方法において使用する種粒子の材料であるポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独重合体が挙げられ、ここでスチレン誘導体としては、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンなどが挙げられる。その他、メチルアクリレート、ブチルアクリレート、セチルメタクリレートなどのアクリル酸及びメタクリル酸とそれらの誘導体、アクリロニトリル、ジメチルフマレート、エチルフマレート等のスチレンと共重合可能な単量体とスチレンとの共重合体、ジビニルベンゼン、アルキレングリコールメタクリレート等の多官能性単量体を併用した前記共重合体、適量のゴム状物質を添加した樹脂などが挙げられるが、スチレン成分が50質量%以上である共重体またはスチレン単独重合体であるのが好ましい。このポリスチレン系樹脂は、重量平均分子量が15万〜40万の範囲のものが好ましい。また、このポリスチレン系樹脂は、一部又は全部に、ポリスチレン系樹脂回収品を用いることができる。さらに、種粒子の粒径は、作製するポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば、平均粒子径が1.0mmのポリスチレン系樹脂粒子を作製する場合には、平均粒子径が0.4〜0.7mm程度の種粒子を用いることが好ましい。 Examples of the polystyrene resin, which is a seed particle material used in the seed polymerization method, include homopolymers of styrene or styrene derivatives, and examples of styrene derivatives include α-methylstyrene, paramethylstyrene, and t-butylstyrene. And chlorostyrene. In addition, acrylic acid and methacrylic acid such as methyl acrylate, butyl acrylate, cetyl methacrylate and their derivatives, styrene copolymer such as acrylonitrile, dimethyl fumarate, ethyl fumarate, and a copolymer of styrene, Examples of the copolymer include a polyfunctional monomer such as divinylbenzene and alkylene glycol methacrylate, a resin to which an appropriate amount of rubber-like substance is added, and a copolymer or styrene having a styrene component of 50% by mass or more. A homopolymer is preferred. This polystyrene resin preferably has a weight average molecular weight in the range of 150,000 to 400,000. Moreover, this polystyrene type resin can use a polystyrene type resin collection part for part or all. Furthermore, the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the polystyrene resin particles to be produced. For example, when producing polystyrene resin particles having an average particle diameter of 1.0 mm, the average particle diameter It is preferable to use seed particles having a diameter of about 0.4 to 0.7 mm.
シード重合方法によってポリスチレン系樹脂を作製するには、オートクレーブなどの反応容器内に水性媒体を入れ、該水性媒体に前記種粒子を分散させ、この水性媒体中に、前記(a)〜(c)の単量体の混合物を連続的又は断続的に供給し、重合開始剤の存在下で種粒子表面に、前記(a)〜(c)の共重合体を含むポリスチレン系樹脂を成長させ、所定粒径のポリスチレン系樹脂粒子を作製する。 In order to produce a polystyrene-based resin by a seed polymerization method, an aqueous medium is placed in a reaction vessel such as an autoclave, the seed particles are dispersed in the aqueous medium, and the above-described (a) to (c) A monomer-based mixture of the above (a) to (c) is grown on the seed particle surface in the presence of a polymerization initiator in a continuous or intermittent manner. Polystyrene resin particles having a particle size are prepared.
前記シード重合方法において、種粒子の使用量が少ない場合、原料単量体の重合を適正範囲に制御することができずに、ポリスチレン系樹脂が極端に高分子量化したり或いは微粉末状のポリスチレン系樹脂が多量に発生し、製造効率が低下する。又、使用量が多い場合は、1回の生産で得られる量が少なく、生産性に劣る。よって、種粒子の適正使用量としては、ポリスチレン系樹脂全量に対して、10〜60質量%の範囲が好ましく、15〜50質量%の範囲がより好ましい。 In the seed polymerization method, when the amount of seed particles used is small, the polymerization of the raw material monomer cannot be controlled within an appropriate range, and the polystyrene resin becomes extremely high in molecular weight or is in the form of fine powder polystyrene. A large amount of resin is generated, and the production efficiency is lowered. Moreover, when there is much usage-amount, the quantity obtained by one production is small and it is inferior to productivity. Therefore, as a proper usage-amount of seed particles, the range of 10-60 mass% is preferable with respect to the polystyrene resin whole quantity, and the range of 15-50 mass% is more preferable.
前記シード重合方法において使用可能な重合開始剤としては、従来からポリスチレン系単量体の重合に用いられているものであれば、特に限定されずに使用することができ、例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5−トリメチルヘキサノエート、ジーt−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられる。これらの重合開始剤の中でも、特に10時間の半減期を得るための分解温度が80〜120℃にあるものが好ましい。この重合開始剤は、1種類を単独使用することもできるし、また異なった2種以上の重合開始剤を併用することもできる。 As the polymerization initiator that can be used in the seed polymerization method, any polymerization initiator that has been conventionally used for polymerization of polystyrene monomers can be used without particular limitation. For example, benzoyl peroxide, t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexanoate, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy Organic peroxides such as oxyacetate, 2,2-t-butylperoxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisiso Azotization of butyronitrile, azobisdimethylvaleronitrile, etc. Thing, and the like. Among these polymerization initiators, those having a decomposition temperature of 80 to 120 ° C. for obtaining a half-life of 10 hours are particularly preferable. One kind of the polymerization initiator can be used alone, or two or more different kinds of polymerization initiators can be used in combination.
更に、前記シード重合において、種粒子及び単量体の小滴を水性媒体中に分散させるために用いられる懸濁安定剤としては、従来からポリスチレン系樹脂の懸濁重合に用いられているものであれば、特に限定されずに使用することができ、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。懸濁安定剤は、1種類を単独使用することもできるし、また2種以上の懸濁安定剤を混合使用することもできる。 Further, in the seed polymerization, the suspension stabilizer used for dispersing seed particles and monomer droplets in an aqueous medium is conventionally used for suspension polymerization of polystyrene resins. If there is, it can be used without any particular limitation, and examples thereof include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. . One type of suspension stabilizer can be used alone, or two or more types of suspension stabilizers can be used in combination.
前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用することが好ましい。このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。これらのアニオン界面活性剤は1種類を単独で、もしくは2種類以上を混合して用いることができる。 When using a poorly soluble inorganic compound as the suspension stabilizer, it is preferable to use an anionic surfactant in combination. Examples of such anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkyl naphthalene sulfonates, and dialkyl sulfosuccinates. Sulfonates such as alkyl sulfoacetates and α-olefin sulfonates; sulfates such as higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc. Salt: Phosphate ester salts such as alkyl ether phosphate ester salts and alkyl phosphate ester salts. These anionic surfactants can be used alone or in admixture of two or more.
前記ポリスチレン系樹脂の形状は特に限定されず、例えば球状、楕円球状、円柱状などのものを使用し得るが、球状のものが好ましい。このポリスチレン系樹脂粒子の粒径は、金型内への充填性等を考慮すると、0.3〜2.0mmの範囲が好ましく、0.3〜1.4mmの範囲がより好ましい。更に、前記ポリスチレン系樹脂粒子を製造する場合、所望のZ平均分子量に調整する目的で、一般に使用されている連鎖移動剤等を適宜使用することもできる。 The shape of the polystyrene-based resin is not particularly limited, and for example, a spherical shape, an oval shape, a cylindrical shape, or the like can be used, but a spherical shape is preferable. The particle size of the polystyrene-based resin particles is preferably in the range of 0.3 to 2.0 mm, more preferably in the range of 0.3 to 1.4 mm, considering the filling properties into the mold. Furthermore, when manufacturing the said polystyrene-type resin particle, the generally used chain transfer agent etc. can also be used suitably in order to adjust to desired Z average molecular weight.
前記のようにして得られたポリスチレン系樹脂粒子は、次に、揮発性発泡剤及び発泡助剤を含浸させて、発泡性ポリスチレン系樹脂粒子とする。ポリスチレン系樹脂粒子への揮発性発泡剤及び発泡助剤の含浸方法は、従来から汎用の方法、例えば、ポリスチレン系樹脂粒子に揮発性発泡剤及び発泡助剤を高圧下にて含浸させる方法を用いることができる。 The polystyrene resin particles obtained as described above are then impregnated with a volatile foaming agent and a foaming aid to form expandable polystyrene resin particles. Conventional methods for impregnating polystyrene resin particles with a volatile foaming agent and a foaming aid are conventionally used, for example, a method in which polystyrene resin particles are impregnated with a volatile foaming agent and a foaming aid under high pressure. be able to.
前記ポリスチレン系樹脂粒子に揮発性発泡剤及び発泡助剤を含浸させる際の温度は、60〜120℃の範囲が好ましく、70〜100℃の範囲がより好ましい。この温度が60℃より低いと、ポリスチレン系樹脂粒子に揮発性発泡剤及び発泡助剤を含浸させるのに要する時間が長くなって生産効率が低下する。この温度が120℃より高いと、ポリスチレン系樹脂粒子同士が融着して結合粒が発生し易くなる。
なお、得られた発泡性ポリスチレン系樹脂粒子は、常温又は低温環境下に一定時間、例えば3日間以上、好ましくは1週間程度保存し、粒子内の揮発性発泡剤の分散状態を安定化させる熟成処理を行うことが好ましい。
The temperature when impregnating the polystyrene resin particles with the volatile foaming agent and the foaming aid is preferably in the range of 60 to 120 ° C, more preferably in the range of 70 to 100 ° C. When this temperature is lower than 60 ° C., the time required for impregnating the polystyrene-based resin particles with the volatile foaming agent and the foaming aid becomes long and the production efficiency is lowered. When this temperature is higher than 120 ° C., polystyrene-based resin particles are fused with each other and bond particles are easily generated.
The obtained expandable polystyrene resin particles are stored for a certain period of time in a room temperature or low temperature environment, for example, for 3 days or more, preferably for about 1 week, and aged to stabilize the dispersion state of the volatile foaming agent in the particles. It is preferable to carry out the treatment.
このようにして得られた発泡性ポリスチレン系樹脂粒子は、公知の発泡装置を用いて所望の嵩密度、例えば0.01〜0.033g/cm3、好ましくは嵩密度0.01〜0.025g/cm3に発泡させてポリスチレン系樹脂発泡粒子とする。前記ポリスチレン系樹脂発泡粒子の嵩密度が0.01g/cm3未満であると、ポリスチレン系樹脂発泡粒子を型内発泡成形して得られるポリスチレン系樹脂発泡成形品に収縮が起こり易くなり、外観性が低下したり、或いは充分な機械的強度が得られなくなる。一方、この嵩密度が0.033g/cm3を超えると、ポリスチレン系樹脂発泡成形品の製造工程における冷却工程に要する時間が長くなり、製造効率が低下する。 The expandable polystyrene resin particles thus obtained have a desired bulk density, for example, 0.01 to 0.033 g / cm 3 , preferably 0.01 to 0.025 g, using a known foaming apparatus. / cm 3 to be foamed and polystyrene type resin foamed particles. When the bulk density of the polystyrene resin foam particles is less than 0.01 g / cm 3 , the polystyrene resin foam molded product obtained by in-mold foam molding of the polystyrene resin foam particles is likely to shrink, and the appearance Decreases, or sufficient mechanical strength cannot be obtained. On the other hand, when the bulk density exceeds 0.033 g / cm 3 , the time required for the cooling step in the production process of the polystyrene-based resin foam molded article becomes long, and the production efficiency is lowered.
このポリスチレン系樹脂発泡粒子は、成形型のキャビティ内に充填した上で加熱、再発泡させ、ポリスチレン系樹脂発泡粒子同士を発泡圧により隙間なく融着一体化させた後に、成形型のキャビティ内で所定時間冷却させる型内発泡成形を行うことによって、ポリスチレン系樹脂発泡成形品を得ることができる。この型内発泡成形の実施に用いる成形装置は、従来よりポリスチレン系樹脂発泡成形品の製造に用いられている各種装置の中から適宜選択して使用することができる。 The polystyrene resin foam particles are filled in the mold cavity and heated and re-foamed, and the polystyrene resin foam particles are fused and integrated with each other by a foaming pressure. By performing in-mold foam molding for cooling for a predetermined time, a polystyrene resin foam molded article can be obtained. The molding apparatus used for carrying out the in-mold foam molding can be appropriately selected from various apparatuses conventionally used for producing polystyrene-based resin foam molded products.
[実施例1]
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤として第三リン酸カルシウム100質量部、及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0質量部を供給し、撹拌しながらスチレンモノマー40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加し、90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してポリスチレン系樹脂粒子(A)を得た。
前記ポリスチレン系樹脂粒子(A)を篩分けし、種粒子として粒子径0.5〜0.71mmのポリスチレン系樹脂粒子(B)を得た。
[Example 1]
(Manufacture of seed particles)
To a polymerization vessel equipped with a stirrer having an internal volume of 100 liters, 40000 parts by mass of water, 100 parts by mass of tricalcium phosphate as a suspension stabilizer, and 2.0 parts by mass of calcium dodecylbenzenesulfonate as an anionic surfactant are stirred and stirred. However, 40000 parts by mass of the styrene monomer, 96.0 parts by mass of benzoyl peroxide and 28.0 parts by mass of t-butylperoxybenzoate as polymerization initiators were added, and the temperature was raised to 90 ° C. for polymerization. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours and obtained the polystyrene-type resin particle (A).
The polystyrene resin particles (A) were sieved to obtain polystyrene resin particles (B) having a particle diameter of 0.5 to 0.71 mm as seed particles.
(ポリスチレン系樹脂粒子の製造)
内容量5リットルの攪拌機付き重合容器内に、純水2000質量部、前記ポリスチレン系樹脂粒子(B)500質量部、懸濁安定剤としてピロリン酸マグネシウム5.0質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム0.3質量部を供給して攪拌しながら75℃に昇温した。
一方、スチレン系単量体1500質量部に、多官能性単量体として、6官能性単量体であるジペンタエリスリトールヘキサアクリレート(Mw578)を1.5質量部、2官能性単量体として、ジビニルベンゼンを0.45質量部溶解し、その溶解液200質量部に重合開始剤としてベンゾイルパーオキサイド9.0質量部及びt−ブチルパーオキシベンゾエート1.5質量部を溶解させたものを前記5リットルの重合容器に75℃にて供給し、更に60分75℃で維持した。60分後に150分かけて108℃まで一定昇温しながら、多官能性単量体を含有した残りのスチレン単量体を75℃から108℃まで150分かけてポンプで一定量づつ前記5リットルの重合容器内に供給した上で120℃に昇温して2時間保持し重合を進めた。
2時間保持後、冷却し脱水乾燥してポリスチレン系樹脂粒子(C)を得た。
このポリスチレン系樹脂粒子(C)において、SRを測定した。
(Manufacture of polystyrene resin particles)
In a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 parts by mass of pure water, 500 parts by mass of the polystyrene resin particles (B), 5.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer, and dodecyl as an anionic surfactant The mixture was heated to 75 ° C. while supplying 0.3 parts by mass of calcium benzenesulfonate and stirring.
On the other hand, 1500 parts by mass of styrene monomer, 1.5 parts by mass of dipentaerythritol hexaacrylate (Mw578), which is a hexafunctional monomer, as a polyfunctional monomer, as a bifunctional monomer A solution obtained by dissolving 0.45 parts by mass of divinylbenzene, and dissolving 9.0 parts by mass of benzoyl peroxide and 1.5 parts by mass of t-butylperoxybenzoate as a polymerization initiator in 200 parts by mass of the solution. The mixture was fed to a 5 liter polymerization vessel at 75 ° C., and further maintained at 75 ° C. for 60 minutes. 60 minutes later, while the temperature was raised to 108 ° C. over 150 minutes, the remaining styrene monomer containing the polyfunctional monomer was pumped from 75 ° C. to 108 ° C. over 150 minutes in a fixed amount by the above 5 liters. Then, the temperature was raised to 120 ° C. and held for 2 hours to proceed the polymerization.
After holding for 2 hours, it was cooled and dehydrated and dried to obtain polystyrene resin particles (C).
SR was measured on the polystyrene resin particles (C).
(発泡性ポリスチレン系樹脂粒子の製造)
続いて、別の内容量5リットルの攪拌機付き重合容器に、水2200質量部、ポリスチレン系樹脂粒子(C)1800質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びドデシルベンゼンスルフォン酸カルシウム0.4質量部を供給して攪拌しながら70℃に昇温した。次に、発泡助剤としてシクロヘキサン16.0質量部及び可塑剤としてジイソブチルアジペート13質量部を重合容器内に入れて密閉し100℃に昇温した。
次に、揮発性発泡剤としてn−ブタン140質量部をポリスチレン系樹脂粒子(C)が入った重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し、乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子を得た。
(Manufacture of expandable polystyrene resin particles)
Subsequently, in another polymerization vessel equipped with a stirrer of 5 liters, 2200 parts by mass of water, 1800 parts by mass of polystyrene resin particles (C), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer and dodecylbenzenesulfonic acid 0.4 parts by mass of calcium was supplied and the temperature was raised to 70 ° C. while stirring. Next, 16.0 parts by mass of cyclohexane as a foaming aid and 13 parts by mass of diisobutyl adipate as a plasticizer were placed in a polymerization vessel, sealed and heated to 100 ° C.
Next, 140 parts by mass of n-butane as a volatile foaming agent is pressed into a polymerization vessel containing polystyrene resin particles (C) and held for 3 hours, and then cooled to 30 ° C. or lower and then from the polymerization vessel. After taking out and drying, it was left in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles.
(ポリスチレン系樹脂発泡粒子の製造)
続いて、発泡性ポリスチレン系樹脂粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で発泡装置にて嵩発泡倍数60倍、嵩密度0.0167g/cm3に発泡させた。発泡後、20℃で24時間熟成してポリスチレン系樹脂発泡粒子を得た。
(Manufacture of polystyrene resin foam particles)
Subsequently, zinc stearate and hydroxystearic acid triglyceride are coated on the surface of the expandable polystyrene resin particles as a surface treatment agent, and then expanded to a bulk expansion ratio of 60 times and a bulk density of 0.0167 g / cm 3 using a foaming apparatus. I let you. After foaming, it was aged at 20 ° C. for 24 hours to obtain expanded polystyrene resin particles.
(ポリスチレン系樹脂発泡成形品の製造)
内寸300mm×400mm×30mmの直方体形状のキャビティを有する一対の成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製、商品名「エース3型」)のキャビティ内に、前記ポリスチレン系樹脂発泡粒子を充填し、ゲージ圧0.04MPa(低圧条件)、及び0.09Mpa(高圧条件)の水蒸気で15秒間加熱成形を行った。次に、前記成形型のキャビティ内の発泡成形品を5秒間水冷した後、減圧下にて放冷(冷却工程)し、ポリスチレン系樹脂発泡成形品を得た。このポリスチレン系樹脂発泡成形品は、嵩発泡剤数60倍、密度0.0167g/cm3である。
(Manufacture of polystyrene resin foam moldings)
In the cavity of an expanded bead automatic molding machine (trade name “ACE 3 type” manufactured by Sekisui Koki Co., Ltd.) having a pair of molds having a rectangular parallelepiped cavity with an inner dimension of 300 mm × 400 mm × 30 mm, the polystyrene series Resin foam particles were filled, and heat molding was performed for 15 seconds with water vapor at a gauge pressure of 0.04 MPa (low pressure condition) and 0.09 Mpa (high pressure condition). Next, the foamed molded product in the cavity of the mold was water-cooled for 5 seconds and then allowed to cool under reduced pressure (cooling step) to obtain a polystyrene-based resin foam molded product. This polystyrene-based resin foam molded article has a bulk foaming agent number 60 times and a density of 0.0167 g / cm 3 .
(GPC測定)
得られたポリスチレン系樹脂発泡成形品を50℃で24時間乾燥後、ハムスライサー(富士島工機製:FK−18N型)を用い、図1に示すように、ポリスチレン系樹脂発泡成形品1の成形品表皮部2を0.2〜0.3mmでカットし、この成形品表皮部2及びポリスチレン系樹脂発泡成形品1全体のGPC測定を行った。
なお、ポリスチレン系樹脂発泡成形品の強度として、曲げ強度を低圧条件、成形圧0.05Mpaの水蒸気圧力で成形したもので測定した。
(GPC measurement)
The obtained polystyrene resin foam molded product is dried at 50 ° C. for 24 hours, and then molded using a ham slicer (Fujishima Koki: FK-18N type) as shown in FIG. The
In addition, as the strength of the polystyrene-based resin foam molded product, the bending strength was measured by molding with a low pressure condition and a water vapor pressure of a molding pressure of 0.05 Mpa.
[実施例2]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、6官能性単量体であるジペンタエリスリトールヘキサアクリレート(Mw578)を0.83質量部、2官能性単量体として、ジビニルベンゼンを0.19質量部溶解した以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Example 2]
As a polyfunctional monomer to be added when producing polystyrene resin particles (C) by seed polymerization, 0.83 parts by mass of dipentaerythritol hexaacrylate (Mw578), which is a hexafunctional monomer, is bifunctional. Expandable polystyrene resin particles and polystyrene resin foam-molded articles were obtained in the same manner as in Example 1 except that 0.19 parts by mass of divinylbenzene was dissolved as a functional monomer.
[実施例3]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、6官能性単量体であるジペンタエリスリトールヘキサアクリレートを2.1質量部、2官能性単量体として、ジビニルベンゼンを0.57質量部併用した以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Example 3]
2.1 parts by mass of dipentaerythritol hexaacrylate, which is a hexafunctional monomer, is used as a polyfunctional monomer to be added when producing polystyrene resin particles (C) by seed polymerization. A foamable polystyrene resin particle and a polystyrene resin foam molded article were obtained in the same manner as in Example 1 except that 0.57 parts by mass of divinylbenzene was used in combination.
[実施例4]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、15官能性単量体であるウレタンアクリレート(新中村化学工業社製、「NKエステル U−15HA」(Mw:2300))を3.98質量部、2官能性単量体として、ジビニルベンゼンを0.45質量部溶解した以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形体を得た。
[Example 4]
As a polyfunctional monomer to be added when producing the polystyrene resin particles (C) by seed polymerization, urethane acrylate which is a 15 functional monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., “NK Ester U-15HA”) Expandable polystyrene resin particles and polystyrene in the same manner as in Example 1 except that (Mw: 2300)) is 3.98 parts by mass and difunctional benzene is dissolved in 0.45 parts by mass. -Based resin foam molding was obtained.
[比較例1]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に、多官能性単量体及び2官能性単量体を使用せず、スチレンを単独で使用したこと以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Comparative Example 1]
When producing polystyrene-based resin particles (C) by seed polymerization, the same procedure as in Example 1 was conducted, except that styrene was used alone without using the polyfunctional monomer and the bifunctional monomer. Thus, expandable polystyrene resin particles and polystyrene resin foam molded products were obtained.
[比較例2]
シード重合によりポリスチレン系樹脂粒子(B)からポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、6官能体であるジペンタエリスリトールヘキサアクリレートを0.83質量部とし、2官能性単量体を使用しなかったこと以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Comparative Example 2]
As a polyfunctional monomer to be added when the polystyrene resin particles (C) are produced from the polystyrene resin particles (B) by seed polymerization, the hexafunctional dipentaerythritol hexaacrylate is 0.83 parts by mass. Except that the bifunctional monomer was not used, in the same manner as in Example 1, expandable polystyrene resin particles and polystyrene resin foam molded products were obtained.
[比較例3]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に、多官能性単量体を使用せず、2官能性単量体として、ジビニルベンゼン単独で0.45質量部を使用したこと以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Comparative Example 3]
When producing polystyrene-based resin particles (C) by seed polymerization, a polyfunctional monomer is not used, except that 0.45 parts by mass of divinylbenzene alone is used as a bifunctional monomer. In the same manner as in Example 1, expandable polystyrene resin particles and polystyrene resin foam molded products were obtained.
[比較例4]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、6官能体であるジペンタエリスリトールヘキサアクリレートを0.58質量部、2官能性単量体として、ジビニルベンゼン0.13質量部とした以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Comparative Example 4]
As a polyfunctional monomer to be added when producing polystyrene-based resin particles (C) by seed polymerization, 0.58 parts by mass of dipentaerythritol hexaacrylate as a bifunctional monomer is used as a bifunctional monomer. An expandable polystyrene resin particle and a polystyrene resin foam molded article were obtained in the same manner as in Example 1 except that 0.13 parts by mass of divinylbenzene was used.
[比較例5]
シード重合によりポリスチレン系樹脂粒子(C)を製造する際に添加する多官能性単量体として、6官能体であるジペンタエリスリトールヘキサアクリレートを2.5質量部、2官能性単量体として、ジビニルベンゼンを0.66質量部添加とした以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品の製造を試みた。
[Comparative Example 5]
As a polyfunctional monomer to be added when producing the polystyrene resin particles (C) by seed polymerization, 2.5 parts by mass of dipentaerythritol hexaacrylate as a bifunctional monomer as a bifunctional monomer, Except for adding 0.66 parts by mass of divinylbenzene, an attempt was made to produce expandable polystyrene resin particles and polystyrene resin foam-molded articles in the same manner as in Example 1.
[比較例6]
6官能性単量体として、ジペンタエリスリトールヘキサアクリレート(Mw578)を2.1質量部、2官能性単量体として、ジビニルベンゼンを0.56質量部溶解し、重合開始剤としてベンゾイルパーオキサイド(純分75%)6.0質量部とした以外は、実施例1と同様にして、発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形品を得た。
[Comparative Example 6]
As a hexafunctional monomer, 2.1 parts by mass of dipentaerythritol hexaacrylate (Mw578) was dissolved as a bifunctional monomer, and 0.56 parts by mass of divinylbenzene was dissolved, and benzoyl peroxide ( Extensive polystyrene resin particles and polystyrene resin foam-molded articles were obtained in the same manner as in Example 1 except that the content was 6.0 mass parts (75% pure content).
前記実施例1〜4及び比較例1〜6でそれぞれ製造した発泡性ポリスチレン系樹脂粒子を構成しているポリスチレン系樹脂粒子全体の膨張割合SR(A/B)、Z平均分子量Mzt、及びポリスチレン系樹脂粒子表層部のZ平均分子量Mzs、更にMzs/Mzt、及び多官能性単量体の含有量、並びに、型内発泡成形して得られたポリスチレン系樹脂発泡成形品の外観性、成形圧0.05MPaでの冷却工程所要時間、曲げ強度を下記に示した要領で測定し、結果を表1に示した。 The expansion ratio SR (A / B) of the entire polystyrene resin particles constituting the expandable polystyrene resin particles produced in Examples 1 to 4 and Comparative Examples 1 to 6, respectively, the Z average molecular weight Mzt, and the polystyrene system The Z average molecular weight Mzs of the resin particle surface layer part, the content of Mzs / Mzt, and the polyfunctional monomer, and the appearance of the polystyrene resin foam molded product obtained by in-mold foam molding, molding pressure 0 The time required for the cooling process at 0.05 MPa and the bending strength were measured as shown below, and the results are shown in Table 1.
<多官能性単量体、2官能性単量体の含有量>
ポリスチレン系樹脂粒子(B)からポリスチレン系樹脂粒子(C)を作製する際に、重合容器内に供給された多官能性単量体、2官能性単量体及びスチレンは全て重合反応に用いられたものとした。
<Content of polyfunctional monomer and bifunctional monomer>
When producing polystyrene resin particles (C) from polystyrene resin particles (B), the polyfunctional monomer, bifunctional monomer and styrene supplied into the polymerization vessel are all used for the polymerization reaction. It was assumed.
<発泡成形品の外観性>
ポリスチレン系樹脂発泡成形品の表面を目視観察して下記基準によって評価した。
○:発泡粒子間の間隙が無く、表面が溶融した発泡粒子もなく、表面が平滑で見栄えが良い。
×:発泡粒子間の間隙が多く或いは表面に溶融した発泡粒子が多数存在し、表面に凹凸が発生しており見栄えが非常に悪い。
<Appearance of foam molded products>
The surface of the polystyrene resin foam molded article was visually observed and evaluated according to the following criteria.
○: There are no gaps between the foamed particles, the foamed particles are not melted on the surface, the surface is smooth, and the appearance is good.
X: There are many gaps between the foamed particles or many foamed particles melted on the surface, the surface is uneven, and the appearance is very bad.
<冷却工程所要時間>
成形圧0.05MPa、0.09MPaにて成形し、成形型に取り付けられた面圧計によって成形型内の発泡成形品の表面部の発泡圧を測定し、水冷開始から面圧計が0.02MPaになるまでに要した時間を測定した。
なお、得られた成形品の外観が○のもののみ成形サイクル値とした。
<Time required for cooling process>
Molding was performed at molding pressures of 0.05 MPa and 0.09 MPa, and the foaming pressure of the surface portion of the foamed molded product in the molding die was measured with a surface pressure meter attached to the molding die. The time required to become was measured.
In addition, only the thing of the external appearance of the obtained molded article was set as the molding cycle value.
<曲げ強度>
成形圧0.05Mpaの水蒸気圧力で成形したポリスチレン系樹脂発泡成形品から、縦300mm×横75mm×厚さ30mmの試験片を切り出し、この試験片の曲げ試験をJIS−A9511に準拠して行い、曲げ強度とした。
<Bending strength>
A test piece having a length of 300 mm, a width of 75 mm, and a thickness of 30 mm was cut out from a polystyrene resin foam-molded product molded with a water vapor pressure of a molding pressure of 0.05 Mpa, and a bending test of the test piece was performed in accordance with JIS-A9511. It was set as bending strength.
表1の結果から、本発明に係る実施例1〜4で得られた発泡性ポリスチレン系樹脂粒子は、成形圧0.05Mpaの水蒸気圧力で成形した場合(低圧条件)、及び成形圧0.09Mpaの水蒸気圧力で成形した場合(高圧条件)のいずれの場合でも、外観が良好で、曲げ強度の高い、高品質のポリスチレン系樹脂発泡成形品を製造できた。
また、実施例1〜4で得られた発泡性ポリスチレン系樹脂粒子は、成形圧0.05Mpaの水蒸気圧力で成形した場合(低圧条件)、及び成形圧0.09Mpaの水蒸気圧力で成形した場合(高圧条件)のいずれの場合でも、型内発泡成形して発泡成形品を製造する際に、成形サイクルを短縮することが可能であった。
From the results of Table 1, the expandable polystyrene resin particles obtained in Examples 1 to 4 according to the present invention were molded at a steam pressure of a molding pressure of 0.05 Mpa (low pressure condition), and a molding pressure of 0.09 Mpa. In any case of molding at a water vapor pressure (high pressure condition), a high-quality polystyrene-based resin foam-molded article having a good appearance and high bending strength could be produced.
In addition, the expandable polystyrene resin particles obtained in Examples 1 to 4 were molded at a water pressure of a molding pressure of 0.05 Mpa (low pressure condition), and were molded at a water pressure of a molding pressure of 0.09 Mpa ( In any case of high-pressure conditions), it was possible to shorten the molding cycle when producing a foam-molded product by in-mold foam molding.
一方、比較例1で得られた発泡性ポリスチレン系樹脂粒子は、膨張割合SR、全体のZ平均分子量、Z平均分子量比の各パラメータについて本発明の範囲を下回った。比較例1で得られた発泡性ポリスチレン系樹脂粒子を使用した場合は、低圧条件での成形性が悪く、外観、物性ともに良好な発泡成形品が得られなかった。更に、高圧条件でも、表面に溶融した発泡粒子が多数存在し、表面に凹凸が発生して外観の良好な発泡成形品が得られなかった。 On the other hand, the expandable polystyrene resin particles obtained in Comparative Example 1 were below the scope of the present invention with respect to each parameter of the expansion ratio SR, the overall Z average molecular weight, and the Z average molecular weight ratio. When the expandable polystyrene resin particles obtained in Comparative Example 1 were used, the moldability under low pressure conditions was poor, and a foam-molded product with good appearance and physical properties could not be obtained. Furthermore, even under high-pressure conditions, many foamed particles melted on the surface, irregularities were generated on the surface, and a foam-molded article having a good appearance could not be obtained.
比較例2で得られた発泡性ポリスチレン系樹脂粒子は、膨張割合SR、全体のZ平均分子量、Z平均分子量比の各パラメータについて本発明の範囲を下回った。比較例2で得られた発泡性ポリスチレン系樹脂粒子を使用した場合は、低圧条件での成形性が不十分で外観、物性ともに良好な発泡成形品が得られなかった。 The expandable polystyrene resin particles obtained in Comparative Example 2 were below the scope of the present invention in terms of the expansion ratio SR, the overall Z average molecular weight, and the Z average molecular weight ratio. When the expandable polystyrene resin particles obtained in Comparative Example 2 were used, the molded product under low pressure conditions was insufficient, and a foamed molded article having good appearance and physical properties could not be obtained.
比較例3で得られた発泡性ポリスチレン系樹脂粒子は、全体のZ平均分子量が本発明の範囲を上回り、Z平均分子量比が本発明の範囲を下回った。比較例3で得られた発泡性ポリスチレン系樹脂粒子を使用した場合は、低圧条件での成形性、外観、物性ともに不十分であった。 The expandable polystyrene resin particles obtained in Comparative Example 3 had an overall Z average molecular weight that exceeded the range of the present invention, and the Z average molecular weight ratio fell below the range of the present invention. When the expandable polystyrene resin particles obtained in Comparative Example 3 were used, the moldability, appearance and physical properties under low pressure conditions were insufficient.
比較例4で得られた発泡性ポリスチレン系樹脂粒子は、膨張割合SR、全体のZ平均分子量、Z平均分子量比の各パラメータについて本発明の範囲を下回った。比較例4で得られた発泡性ポリスチレン系樹脂粒子を使用した場合は、耐熱性が不十分となり、低圧条件、高圧条件ともに、良好な発泡成形品が得られなかった。 The expandable polystyrene resin particles obtained in Comparative Example 4 fell below the scope of the present invention with respect to each parameter of expansion ratio SR, overall Z average molecular weight, and Z average molecular weight ratio. When the expandable polystyrene resin particles obtained in Comparative Example 4 were used, the heat resistance was insufficient, and good foamed molded products could not be obtained under both low and high pressure conditions.
比較例5で得られた発泡性ポリスチレン系樹脂粒子は、ゲルが発生したために、発泡性が極端に低く、低圧条件、高圧条件とも、発泡成形品の製造が困難であった。 The expandable polystyrene resin particles obtained in Comparative Example 5 were extremely low in foamability due to the occurrence of gels, and it was difficult to produce foamed molded products under both low and high pressure conditions.
比較例6で得られた発泡性ポリスチレン系樹脂粒子は、膨張割合SR及びZ平均分子量比について、本発明の範囲を上回った。比較例6で得られた発泡性ポリスチレン系樹脂粒子を使用した場合は、耐熱性が不十分となり、低圧条件、高圧条件ともに、良好な発泡成形品が得られなかった。 The expandable polystyrene resin particles obtained in Comparative Example 6 exceeded the scope of the present invention with respect to the expansion ratio SR and the Z average molecular weight ratio. When the expandable polystyrene resin particles obtained in Comparative Example 6 were used, the heat resistance was insufficient, and good foamed molded articles could not be obtained under both low and high pressure conditions.
1…ポリスチレン系樹脂発泡成形品、2…成形品表皮部。 DESCRIPTION OF SYMBOLS 1 ... Polystyrene-type resin foam molded article, 2 ... Molded article skin part.
Claims (11)
前記ポリスチレン系樹脂は、温度200℃、荷重49N条件下でのメルトフローレート測定時における樹脂ストランドの外径Aとオリフィスの内径Bとの膨張割合SR(A/B)が1.5〜2.5の範囲内であり、
発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztが70万〜100万の範囲であり、
且つ前記Z平均分子量Mztと、発泡性ポリスチレン系樹脂粒子表層部のZ平均分子量Mzsとの比率(Mzs/Mzt)が1.02〜1.5の範囲であることを特徴とする発泡性ポリスチレン系樹脂粒子。 In expandable polystyrene resin particles containing a volatile foaming agent in polystyrene resin,
The polystyrene resin has an expansion ratio SR (A / B) between the outer diameter A of the resin strand and the inner diameter B of the orifice at the time of melt flow rate measurement at a temperature of 200 ° C. and a load of 49 N. Within the range of 5,
The Z average molecular weight Mzt of the whole expandable polystyrene resin particles is in the range of 700,000 to 1,000,000,
The ratio (Mzs / Mzt) between the Z average molecular weight Mzt and the Z average molecular weight Mzs of the surface part of the expandable polystyrene resin particles is in the range of 1.02 to 1.5. Resin particles.
(b)2官能性単量体、及び
(c)5官能以上の多官能性単量体の群から選択される1種又は2種以上の多官能性単量体を添加してなる単量体混合物を、懸濁重合法又はポリスチレン系樹脂種粒子を用いたシード重合法により重合してポリスチレン系樹脂を作製し、この重合の途中又は重合した後の樹脂に、揮発性発泡剤を含有させて発泡性ポリスチレン系樹脂粒子を得ることを特徴とする発泡性ポリスチレン系樹脂粒子の製造方法。 (A) Mainly composed of styrene monomer,
(B) a single amount obtained by adding a bifunctional monomer, and (c) one or more polyfunctional monomers selected from the group of five or more polyfunctional monomers The body mixture is polymerized by a suspension polymerization method or a seed polymerization method using polystyrene resin seed particles to produce a polystyrene resin, and a volatile foaming agent is added to the resin during or after the polymerization. A method for producing expandable polystyrene resin particles, comprising obtaining expandable polystyrene resin particles.
発泡性ポリスチレン系樹脂粒子全体のZ平均分子量Mztが70万〜100万の範囲であり、
且つ前記Z平均分子量Mztと、発泡性ポリスチレン系樹脂粒子表層部のZ平均分子量Mzsとの比率(Mzs/Mzt)が1.02〜1.5の範囲であることを特徴とする請求項6に記載の発泡性ポリスチレン系樹脂粒子の製造方法。 The polystyrene resin has an expansion ratio SR (A / B) between the outer diameter A of the resin strand and the inner diameter B of the orifice at the time of melt flow rate measurement at a temperature of 200 ° C. and a load of 49 N. Within the range of 5,
The Z average molecular weight Mzt of the whole expandable polystyrene resin particles is in the range of 700,000 to 1,000,000,
The ratio (Mzs / Mzt) between the Z average molecular weight Mzt and the Z average molecular weight Mzs of the surface layer portion of the expandable polystyrene resin particles is in the range of 1.02 to 1.5. The manufacturing method of the expandable polystyrene-type resin particle of description.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007042334A JP5144088B2 (en) | 2007-02-22 | 2007-02-22 | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007042334A JP5144088B2 (en) | 2007-02-22 | 2007-02-22 | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008201989A true JP2008201989A (en) | 2008-09-04 |
JP5144088B2 JP5144088B2 (en) | 2013-02-13 |
Family
ID=39779812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007042334A Active JP5144088B2 (en) | 2007-02-22 | 2007-02-22 | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5144088B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012193242A (en) * | 2011-03-15 | 2012-10-11 | Sekisui Plastics Co Ltd | Resin particle, method for producing the same, foamable resin particle, foamed particle and foamed molded article |
JP2012201827A (en) * | 2011-03-25 | 2012-10-22 | Sekisui Plastics Co Ltd | Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body |
JP2012214569A (en) * | 2011-03-31 | 2012-11-08 | Sekisui Plastics Co Ltd | Resin particle, production method therefor, foamable resin particle, foamed particle and foamed molding |
JP2013060497A (en) * | 2011-09-12 | 2013-04-04 | Sekisui Plastics Co Ltd | Polystyrenic resin particle, foamable resin particle, foam molding, and method for manufacturing these |
JP2013060500A (en) * | 2011-09-12 | 2013-04-04 | Sekisui Plastics Co Ltd | Polystyrenic resin particle, foamable resin particle, foamed particle, foam molding, and method for manufacturing these |
KR101297878B1 (en) * | 2008-01-30 | 2013-08-19 | 세키스이가세이힝코교가부시키가이샤 | Expandable polystyrene resin, pre-expanded resin and expanded compact |
JP2013159683A (en) * | 2012-02-03 | 2013-08-19 | Sekisui Plastics Co Ltd | Polystyrene-based resin particle, foamable resin particle, methods for producing them, foam particle and molded foam |
JP2013224410A (en) * | 2012-03-23 | 2013-10-31 | Sekisui Plastics Co Ltd | Foamable styrene resin particle, method for producing the same, prefoamed particle, molded foam, and processed product |
TWI507455B (en) * | 2010-06-09 | 2015-11-11 | Fina Technology | Expandable polystyrene and methods of forming the same |
JP2015214641A (en) * | 2014-05-09 | 2015-12-03 | 積水化成品工業株式会社 | Polystyrene foamed molding and production method thereof |
JP2017186422A (en) * | 2016-04-04 | 2017-10-12 | 株式会社カネカ | Foamable styrene resin particle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01178537A (en) * | 1988-01-11 | 1989-07-14 | Showa Highpolymer Co Ltd | Reinforcing of foam |
JPH07188454A (en) * | 1993-12-27 | 1995-07-25 | Sekisui Plastics Co Ltd | Expandable styrene polymer particle |
JPH1149822A (en) * | 1997-08-01 | 1999-02-23 | Denki Kagaku Kogyo Kk | Styrene-based resin and its foam |
JP2002284915A (en) * | 2001-03-23 | 2002-10-03 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle, styrene-based resin expanded molded product and method for producing these |
JP2002284917A (en) * | 2001-03-26 | 2002-10-03 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle |
JP2004168790A (en) * | 2002-11-15 | 2004-06-17 | Sekisui Chem Co Ltd | Thermally expandable microcapsule |
JP2008150410A (en) * | 2006-12-14 | 2008-07-03 | Sekisui Plastics Co Ltd | Expandable polystyrene resin particle and manufacturing method of polystyrene resin foam-molded item |
-
2007
- 2007-02-22 JP JP2007042334A patent/JP5144088B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01178537A (en) * | 1988-01-11 | 1989-07-14 | Showa Highpolymer Co Ltd | Reinforcing of foam |
JPH07188454A (en) * | 1993-12-27 | 1995-07-25 | Sekisui Plastics Co Ltd | Expandable styrene polymer particle |
JPH1149822A (en) * | 1997-08-01 | 1999-02-23 | Denki Kagaku Kogyo Kk | Styrene-based resin and its foam |
JP2002284915A (en) * | 2001-03-23 | 2002-10-03 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle, styrene-based resin expanded molded product and method for producing these |
JP2002284917A (en) * | 2001-03-26 | 2002-10-03 | Sekisui Plastics Co Ltd | Expandable styrene-based resin particle |
JP2004168790A (en) * | 2002-11-15 | 2004-06-17 | Sekisui Chem Co Ltd | Thermally expandable microcapsule |
JP2008150410A (en) * | 2006-12-14 | 2008-07-03 | Sekisui Plastics Co Ltd | Expandable polystyrene resin particle and manufacturing method of polystyrene resin foam-molded item |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101297878B1 (en) * | 2008-01-30 | 2013-08-19 | 세키스이가세이힝코교가부시키가이샤 | Expandable polystyrene resin, pre-expanded resin and expanded compact |
JP5284987B2 (en) * | 2008-01-30 | 2013-09-11 | 積水化成品工業株式会社 | Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body |
TWI507455B (en) * | 2010-06-09 | 2015-11-11 | Fina Technology | Expandable polystyrene and methods of forming the same |
JP2012193242A (en) * | 2011-03-15 | 2012-10-11 | Sekisui Plastics Co Ltd | Resin particle, method for producing the same, foamable resin particle, foamed particle and foamed molded article |
JP2012201827A (en) * | 2011-03-25 | 2012-10-22 | Sekisui Plastics Co Ltd | Polystyrene resin particle, method for producing the same, foamable particle, foam particle and foam molded body |
JP2012214569A (en) * | 2011-03-31 | 2012-11-08 | Sekisui Plastics Co Ltd | Resin particle, production method therefor, foamable resin particle, foamed particle and foamed molding |
JP2013060497A (en) * | 2011-09-12 | 2013-04-04 | Sekisui Plastics Co Ltd | Polystyrenic resin particle, foamable resin particle, foam molding, and method for manufacturing these |
JP2013060500A (en) * | 2011-09-12 | 2013-04-04 | Sekisui Plastics Co Ltd | Polystyrenic resin particle, foamable resin particle, foamed particle, foam molding, and method for manufacturing these |
JP2013159683A (en) * | 2012-02-03 | 2013-08-19 | Sekisui Plastics Co Ltd | Polystyrene-based resin particle, foamable resin particle, methods for producing them, foam particle and molded foam |
JP2013224410A (en) * | 2012-03-23 | 2013-10-31 | Sekisui Plastics Co Ltd | Foamable styrene resin particle, method for producing the same, prefoamed particle, molded foam, and processed product |
JP2015214641A (en) * | 2014-05-09 | 2015-12-03 | 積水化成品工業株式会社 | Polystyrene foamed molding and production method thereof |
JP2017186422A (en) * | 2016-04-04 | 2017-10-12 | 株式会社カネカ | Foamable styrene resin particle |
Also Published As
Publication number | Publication date |
---|---|
JP5144088B2 (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144088B2 (en) | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article | |
WO2009096327A1 (en) | Expandable polystyrene resin beads, process for production thereof, pre-expanded beads and expanded moldings | |
CN107266701B (en) | Composite resin expanded particle and composite resin expanded particle molded body | |
JP5815934B2 (en) | Method for producing composite resin expanded particles, and composite resin expanded particles | |
US9505898B2 (en) | Expandable composite resin bead | |
JP4732822B2 (en) | Black styrene-modified polyethylene resin particles and expandable resin particles thereof, methods for producing them, pre-expanded particles, and expanded molded article | |
JP5016906B2 (en) | Expandable polystyrene resin particles and method for producing polystyrene resin foam molding | |
JP4226421B2 (en) | Expandable styrene resin particles and styrene resin foam molded article | |
JP2010248341A (en) | Polypropylene-based resin prefoamed particle | |
JP2014189769A (en) | Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding | |
JP2009263639A (en) | Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body | |
WO2009157374A1 (en) | Pre-foamed particles of styrene modified polyethylene resin and foaming molded product formed of the pre-foamed particles of styrene modified polyethylene resin | |
JP2011068776A (en) | Foam-molded article | |
JP5338364B2 (en) | Styrene resin particle foam molding | |
JP3805209B2 (en) | Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them | |
JP2009102632A (en) | Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle | |
JP5731368B2 (en) | Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article | |
JP5101358B2 (en) | Method for producing pre-expanded styrene-modified polyethylene resin particles, styrene-modified polyethylene resin pre-expanded particles obtained from the production method, and styrene-modified polyethylene resin foam molded article | |
JP2010111827A (en) | Method for producing pre-expanded particle of styrene-modified polyethylene-based resin | |
JP2013023565A (en) | Foamable polystyrene resin particle for middle-low ratio expansion molding, foamed particle, expansion molded product and manufacturing method for expansion molded product | |
JP2014062191A (en) | Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product | |
JP2013194220A (en) | Polyethylene-based resin particle, composite resin particle, foamable composite resin partcle, prefoamable particle and foamable molded product | |
JP5732299B2 (en) | Composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded body | |
JP6076463B2 (en) | Modified polystyrene-based cross-linked resin particles and production method thereof, expandable particles and production method thereof, pre-expanded particles and expanded molded article | |
JP2014196423A (en) | Foam molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5144088 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |