JP3856534B2 - Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof - Google Patents

Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof Download PDF

Info

Publication number
JP3856534B2
JP3856534B2 JP20306097A JP20306097A JP3856534B2 JP 3856534 B2 JP3856534 B2 JP 3856534B2 JP 20306097 A JP20306097 A JP 20306097A JP 20306097 A JP20306097 A JP 20306097A JP 3856534 B2 JP3856534 B2 JP 3856534B2
Authority
JP
Japan
Prior art keywords
resin
particulate
strand
particles
foamable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20306097A
Other languages
Japanese (ja)
Other versions
JPH1143554A (en
Inventor
正道 金子
重成 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Life and Living Corp
Original Assignee
Asahi Kasei Life and Living Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Life and Living Corp filed Critical Asahi Kasei Life and Living Corp
Priority to JP20306097A priority Critical patent/JP3856534B2/en
Publication of JPH1143554A publication Critical patent/JPH1143554A/en
Application granted granted Critical
Publication of JP3856534B2 publication Critical patent/JP3856534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は粒子状ゴム変性スチレン系発泡性樹脂、粒子状発泡樹脂、粒子状発泡樹脂成形体及びその製法に関し、更に詳しくは、成形型内充填性、融着強度に優れた粒子状ゴム変性スチレン系発泡性樹脂及びその粒子状発泡樹脂、粒子状発泡樹脂成形体及びその製法に関する。
【0002】
【従来の技術】
粒子状スチレン系発泡性樹脂を用いて、型内成形して得られるスチレン系樹脂発泡体は、家電製品、OA機器等の包装材として広く用いられている。殊に、共役ジエン系重合体成分含有ポリスチレン系樹脂(以下HIPS樹脂と称する)を用いて得られる発泡樹脂成形体は、耐衝撃性や柔軟性に優れたものとして、近年注目されており、パソコン周辺機器等の包装分野等、高い緩衝性能を要求される分野において利用され始めている。
【0003】
かかるHIPS樹脂粒子を得るには、第一段工程でHIPS樹脂重合体を製造し、第二段工程でHIPS樹脂のミニペレットを製造し、第三段工程でミニペレットに発泡剤を水中懸濁含浸させると共に軟化した樹脂の表面張力により樹脂粒子を略球形化させるという製法が採られている。例えば、特開平6−49262号公報、特開平8−53589号公報にはポリブタジエンとスチレン系単量体との重合で得られたHIPS樹脂を押し出し機からストランド状に押し出し、カッターで切断して円柱状の樹脂粒子とし、更にこの粒子に水性媒体中で発泡剤を含浸させて得られる粒子状発泡性樹脂が示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の製法により得られる粒子状スチレン系発泡性樹脂を用いて型内成形した場合には、輸送管中の流動性や成形金型への充填性が悪く、粒子間融着率が低いため、耐割れ性や引張強度が十分でなく、より高い緩衝性能を要求される用途には、十分対応しきれないという問題があった。
本発明は上記従来技術の欠点を克服し、型内成形したときに引張特性や耐割性、更には外観特性に優れた成形体を提供できる粒子状HIPS系発泡性樹脂及びその製法を提供することを目的とする。更に、本発明は、該樹脂を用いた発泡樹脂、その成形体及び成形体の製法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を達成するために鋭意検討した結果、輸送管中の流動性や成形金型への充填性、粒子間融着率を向上するためには、発泡前の粒子状樹脂の球形度や粒径分布を特定の範囲にコントロールすることが非常に重要であることに着目した。すなわち、粒子の球形度合いが低い粒子状発泡樹脂では均一な型内充填が得られなくなり、型内成形を行っても粒子間の融着率が上がらず、成形品耐割れ性、外観も良くない。一方、成形の加熱を強くすると粒子間融着率は向上するが、成形体が収縮し、ひけ、反り等が発生して外観が低下する。また、粒径分布が大きいと粒子状発泡樹脂サイロ内で粒子の分級が起こり、サイロ下部に小粒が溜り、その結果、サイロ上部と下部で粒子の膨張性が異なる状況が起きて、それによって成形体の品質が安定しない事態を招いたりしている。本発明はこれらの点に着目してなされたものである。
【0006】
すなわち、本発明の粒子状ゴム変性スチレン系発泡性樹脂は、平均粒径Xが0.8〜1.5mm、球形度が1.0〜1.2であり、粒径分布の標準偏差σと平均粒径Xとの比σ/Xが0.12以下であることを特徴とする。更に、共役ジエン系重合体成分を3〜20重量%含有し、該成分の膨潤指数が5〜15であること、発泡剤含有量が樹脂成分100重量部に対し4〜12重量部であることが好ましい。
【0007】
本発明の粒子状ゴム変性スチレン系樹脂は、上記粒子状発泡性樹脂を発泡させて得られ、真密度が15〜100kg/m3 であることを特徴とする。
本発明の発泡成形体は、共役ジエン系重合体成分を3〜20重量%含有し、該成分の膨潤指数が5〜15である粒子状ゴム変性スチレン系発泡性樹脂を予備発泡して得られた真密度が15〜100kg/m3 である粒子状ゴム変性スチレン系樹脂を型内成形して得られ、かさ密度が10〜65kg/m3 で、かつ粒子間融着率が85%以上であることを特徴とする。その製法は、上記粒子状発泡性樹脂を予備発泡して、真密度が15〜100kg/m3 である粒子状ゴム変性スチレン系樹脂を得た後、該粒子状ゴム変性スチレン系樹脂を型内成形することを特徴とする。
【0008】
本発明の粒子状ゴム変性スチレン系発泡性樹脂の製造方法は、次の(1)〜(4)の工程を含むことを特徴とする。
(1)ゴム変性スチレン系樹脂を押し出し溶融させ、ダイより溶融ストランドを押し出し直ちに水冷する工程
(2)上記水冷され固化したストランドを、その引き取り方向と平行方向に回転軸を有する回転刃であって、傾き刃角θが40°〜70°である回転刃を有するカッターでストランドを切断して円柱状ペレットを得る工程
(3)得られた上記ペレットに、90〜120℃の温度で、発泡剤を水中懸濁含浸させる工程
(4)得られた上記発泡剤含浸ペレットを脱水、乾燥させる工程
以下、本発明の内容について詳細に説明する。
【0009】
まず、本発明の粒子状ゴム変性スチレン系発泡性樹脂とその製法について説明する。
本発明の粒子状ゴム変性スチレン系発泡性樹脂は、平均粒径Xが0.8〜1.5mmである。平均粒径は以下のように求めた。粒子の投影画像面を作成し、投影面の面積を求める。次に同面積の円の直径を求めその粒子の粒径(円相当直径)とする。任意に選んだ粒子状発泡性樹脂200粒について円相当直径の平均を求め平均粒径とした。平均粒径が0.8mm未満では粒子の加工生産性が上がらず、実用的でない。また、平均粒径が1.5mmを超えると粒子の球形化に時間を要し生産性が低下する上、粒子状発泡樹脂となし型内成形する時に型内細部への充填性が低下する。特に好ましい粒径範囲は0.9〜1.3mmである。
【0010】
本発明の粒子状ゴム変性スチレン系発泡性樹脂の球形度は1.0〜1.2である。球形度は以下のようにして求めた。粒子を平面に置き、粒子に平行光を照射してできる投影面を作成し、その粒子の投影面の外形を平行な2線で挟んだ時の2線間の距離で最大のものをその粒子の長径とし、最小のものを短径とする。得られた長径と短径の比である(長径/短径)値を算出し、200個の粒子についてその平均を求めたものを球形度とした。球形度が1.0のものは真球形状である。球形度が1.2を超えるものは粒子状発泡樹脂型内成形体の粒子間融着率が低下し、成形体の耐割れ性、成形品の外観が良くないものになる。球形度の特に好ましい範囲は1.0〜1.1である。粒子状発泡樹脂の形状は粒子状発泡樹脂を型内成形する際の粒子融着性に影響を及ぼす。真球に近い程、粒子融着性が向上する。これは型内成形時に粒子が等方的に膨張して型内の粒子同士が均一に圧縮しあう点、粒子間の空隙のムラが小さく、成形後の粒子間隙間であるボイドが小さくなるためである。
【0011】
本発明の粒子状発泡性樹脂の粒径分布の標準偏差σ(mm)と、平均粒径X(mm)との比σ/Xは0.12以下である。σ/Xを0.12を超えて大きくすると、粒子状発泡樹脂を型内成形した成形体の物性や外観が低下する。σ/Xの特に好ましい範囲は0.09以下である。
本発明の粒子状ゴム変性スチレン系発泡性樹脂における共役ジエン系重合体成分含有ポリスチレン系樹脂中の共役ジエン成分含有量は3wt%以上、20wt%以下が好ましい。3wt%未満では、粒子状発泡樹脂成形体の耐割れ性が不十分であり、20wt%を越えると粒子状発泡樹脂成形体の強度が低下する。
【0012】
本発明の粒子状ゴム変性スチレン系発泡性樹脂における共役ジエン系重合体成分を含有するゴム変性ポリスチレン系樹脂中の共役ジエン系重合体成分の膨潤指数は5〜15であることが好ましい。膨潤指数が5未満では樹脂を押し出しストランド化した時の分子配向が大きく、懸濁含浸時に発泡剤が含浸され可塑化し更に温度が上昇した後も粒子の球形化には長時間を要する。膨潤指数が15を越えると粒子の球形化には長時間は要しないが、成形体としての引張強度が低下する。
【0013】
本発明の粒子状ゴム変性スチレン系発泡性樹脂において、共役ジエン系重合体成分含有ポリスチレン系樹脂とは、少なくとも次のポリスチレン系樹脂成分(A)と共役ジエン系重合体成分(B)とから成る樹脂である。
(A)成分はポリスチレン樹脂、あるいは、少なくとも50部以上のスチレン成分と他の重合可能な単量体との共重合体樹脂である。共重合可能な単量体としてはメチルスチレン、アクリロニトリル、アクリル酸もしくはメタクリル酸と1〜8個の炭素数を有するアルコールとのエステル、マレイン酸、無水マレイン酸等である。
【0014】
(B)成分は共役ジエン化合物とが重合または共重合して構成されている樹脂である。例えば、ハイシスポリブタジエン、ミドルシスポリブタジエン、ローシスポリブタジエン、スチレン−ブタジエンブロック共重合体、ポリイソプレン、スチレン−イソプレン共重合体、アクリロニトリル−ブタジエン共重合体等がある。これらの重合体成分は分子内二重結合を部分的に、あるいは大部分を水素添加したものでもかまわない。特に好ましい重合体成分はハイシスポリブタジエン、ローシスポリブタジエンあるいはスチレン−ブタジエンブロック共重合体である。
【0015】
(B)を(A)中に含有させる方法は(1)スチレン系モノマーに共役ジエン系重合体を溶解させた溶液を重合させ、ポリスチレン系樹脂の連続相中に共役ジエン系重合体を分散相として存在させる方法と(2)ポリスチレン系樹脂に共役ジエン系重合体成分を機械的に混合する方法があるが、本発明ではいずれの方法も用いることが出来る。(1)においては分散相となるゴム成分はポリスチレン系樹脂成分を粒子内に含有するコアシェル型であってもサラミ型であってもかまわない。
また樹脂には必要に応じて添加剤、滑剤、難燃剤、帯電防止剤、染顔料、発泡核剤、紫外線吸収剤等を添加することができる。例えば、タルク、炭酸カルシウム等の添加剤、ステアリン酸カルシウム、ステアリン酸亜鉛、エチレンビスステアロアミド、ステアリン酸アミド等の滑剤、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート等の難燃剤、カーボンブラック等の顔料などである。
【0016】
本発明の粒子状ゴム変性スチレン系発泡性樹脂は、発泡剤を樹脂100重量部に対し4〜12重量部を含浸していることが好ましい。発泡剤含浸量が4部未満では粒子状発泡性樹脂を高倍率に発泡させることが難しく、また、12重量部を越えると発泡時に倍率の調整が難しくなる。発泡剤含浸量が多い程粒子の発泡倍率を高くできる。発泡剤含浸量の更に好ましい範囲は5〜8重量部である。
本発明で用いられる発泡剤としては、常圧における沸点が−30〜+100℃の範囲にあるもの、例えばプロパン、ブタン、ペンタン、ヘキサン、ヘプタン、石油エーテル等の脂肪族炭化水素及びシクロペンタン、ジクロルヘキサン等の環状脂肪族炭化水素、及び塩化メチル、塩化エチル、臭化メチル、ジクロロジフルオロメタン、1,2−ジクロロテトラフルオロエタン、モノクロロトリフルオロエタン等のハロゲン化炭化水素類等を挙げることができる。特に好ましい発泡剤はペンタン、ブタンである。
【0017】
次に、本発明の粒子状ゴム変性スチレン系発泡性樹脂の製法について説明する。
本発明の粒子状ゴム変性スチレン系発泡性樹脂の製造方法は次の(1)〜(4)の工程からなる。
(1)ゴム変性スチレン系樹脂を押し出し溶融させ、ダイより溶融ストランドを押し出し直ちに水冷する工程
(2)上記水冷され固化したストランドを、その引き取り方向と平行方向に回転軸を有する回転刃であって、傾き刃角θが40°〜70°である回転刃を有するカッターでストランドを切断して円柱状ペレットを得る工程
(3)90〜120℃の温度で、得られた上記ペレットに発泡剤を水中懸濁含浸させる工程
(4)得られた上記発泡剤含浸ペレットを脱水、乾燥させる工程
従来のストランドカットによるペレットの切断には、ロール表面にカッター刃を取り付け回転させる回転刃でストランドを切断する方法が用いられている。かかかる方法では、HIPS樹脂押し出しストランドをカッターで切断する際、ストランドカット面がロールカッターで押しつぶされて変形したり、ストランドが斜めの状態でカットされ、得られる円柱状粒子のサイズ、形状が不均一であり、これらのサイズ、形状が不均一な粒子を水中懸濁含浸させても得られる粒子状発泡性樹脂の球形度は良好なものは得られず、また粒径分布の大きいものになっていた。また、すべての粒子を真球形にするためには含浸工程で長時間がかかるという問題がある。また、含浸時間短縮のため含浸温度を高めると含浸中に粒子のブロッキングが発生する。従って、従来の製法を用いていたのでは、球形度が良好で、粒径分布の少ないHIPS粒子状発泡性樹脂が得ることはできない。篩い分けを行うことにより、球形度が良好で、粒径分布の少ないHIPS粒子状発泡性樹脂が得るという方法も可能であるが、適当な用途のないHIPSの大粒子、小粒子を発生させ、粒子状HIPS発泡性樹脂の製造コストを大幅に増大させるものであった。
【0018】
これに対して、本発明は上記(1)〜(4)の工程、特に(2)の工程を含むことにより、上記粒子状HIPS発泡性樹脂を提供することに成功したものである。まず、(1)、(2)の工程について本発明を図面を用いて説明する。図1は樹脂のペレタイズ装置の模式図である。押し出し機(1)から押し出されたストランド(3)は水冷バス(2)で冷却された後、引き取り機(4)で引き取られながらカッター(5)でペレット化される。図2は本発明に用いるストランドカッターの模式図であり、図3は従来用いられているカッターの模式図である。ストランドはストランド引き取り機(4)で引き取られながら、回転刃(6)と固定刃(7)で挟まれペレット状にカットされる。
【0019】
従来のストランドカッターでは金属ロール表面に刃を加工したロール状刃(9)を使用している。駆動部(11)により刃はロールの径を回転径として回転しており、その回転軸はストランドの引き取り方向と直交している。従って刃の回転面はストランドを巻き込む形になるため、回転刃とストランドとの接触を避けるよう刃先には逃げ角を持たせる必要がある。(逃げ角については日本機械学会の機械工学便覧に記載されている。)また、刃先の研磨はロール表面から行う必要がある等、刃の形状を加工する上での制約がある。従ってロール状刃では、図3に示す傾き刃角θが15〜20°と小さくなっている。θは図2、図3に示されるように、回転刃がストランドを切り込む刃下面と固定刃上面のなす角度である。ロール状刃では、刃がロール径を回転径として回転し、ストランドを叩き割る形、あるいは押しちぎる形になっている。従って、ストランドの切り口は滑らかにはならない。特にHIPS樹脂ストランドの場合には樹脂にゴム成分が含まれ軟化しているので刃先が鋭利でないと滑らかに切断する事は出来ない。また、刃の切れ味が悪いとストランドがたるんだり、踊ったりして、ストランドのカット長が変動し、カット長さのバラついた状態となる。
【0020】
一方、本発明で使用するカッターは回転刃の回転軸がストランド引き取り方向と平行方向のものである。従って刃の回転はストランドと垂直方向となり、回転刃はストランド引き取り方向に対し垂直面内を回転移動し、ギロチン台様にストランド切断するため滑らかな切断が可能となる。ロール状刃のように刃先に逃げ角をつける必要はなく、しかも回転刃は各々別個に回転部に取り付けることができるので、刃先の研磨加工上の刃面の位置の制約はない。従って傾き刃角θはを40〜70°と大きくとることができ、ストランドを鋭利に切断できる。ストランドを鋭利に切断できるので斜め切りやカット長のムラが発生しにくいという利点を有している。更にストランドの引き取り速度を加減してストランド延伸させストランドの直径をコントロールすること、及び回転刃の回転速度を加減してカット長をコントロールすることを独立して行うことができる。本発明で使用する回転刃は回転軸に対し放射状に複数の刃を取り付けることが出来る。刃の取り付け数によってもカット長をコントロールすることができる。
【0021】
また、ストランドの引き取り機、即ち引き取り用回転ロール出口にストランドの暴れ防止板を取り付け、ストランドの振れや蛇行を抑えることもできる。
またストランドの切断において、回転刃と固定刃の隙間間隔をできるだけ短くすること及び、回転刃と固定刃の間隔を一定に保つことはストランドを滑らかに切断するためには有効なことである。これは回転刃の傾き刃角θの大きさの如何によらず有効なことである。本発明のようにストランドを回転刃と固定刃で切断する場合、切断時の摩擦熱により刃の温度が上がり、刃が膨張して回転刃と固定刃の隙間間隔が変動する。従って、固定刃の内部を水冷して固定刃の温度上昇を抑えることは回転刃と固定刃の隙間間隔の変動を抑え、ストランドのカット面を滑らかにするのに有効である。固定刃の水冷はストランド切断処理中、固定刃内部に冷却水を連続的に通水することで行うことが出来る。本発明においてはこのような固定刃の冷却を行うこともできる。
【0022】
以上説明したように本発明においてはカッターの回転刃の回転軸方向をストランド引き取り方向と同方向にした回転刃であって、傾き刃角θを40〜70°とした回転刃でストランドと垂直方向に切断するカッターを用いることにより、ゴム変性スチレン系樹脂を小粒のペレット加工時のサイズ、形状の不均一問題を解決することができる。傾き刃角θが40°未満であるとストランドの切断部が滑らかでなくなり、傾き刃角θが70°以上であると回転刃の刃先が欠け易くなるという問題が発生する。傾き刃角θの更に好ましい範囲は50〜60°であり、更に特に好ましい範囲は52〜57°である。
【0023】
HIPS樹脂ストランドカット粒子には、樹脂を溶融させダイからストランドを押し出した時の分子配向が残っている。HIPS樹脂のストランドカット粒子に水中懸濁法で発泡剤を加熱含浸させると、樹脂が可塑化されるにつれ配向が緩和され、粒子形状がラグビーボール状になり、更に加熱時間の経過とともに偏平状となり、長時間後に形状が球形化するという現象が見られる。従って、分子配向の大きなHIPS樹脂では球形度にムラを生じやすく球形化には長時間を要することがある。
【0024】
(1)の工程で用いるゴム変性スチレン系樹脂としては、前記の通り、共役ジエン系重合体成分を3〜20重量%含有し、該成分の膨潤指数が5〜15であること、発泡剤含有量が樹脂成分100重量部に対し4〜12重量部である樹脂が好ましい。
(3)の工程については(2)の工程で得られたゴム成分含有ポリスチレン系樹脂粒子を撹拌機付きの耐圧容器に入れ、懸濁安定剤、界面活性剤の存在下に水性媒体中で撹拌の下に分散させ、発泡剤を含浸させる方法で、公知の方法を用いることができる。
発泡剤含浸時間を短くし、樹脂粒子を真球状にするためには容器内を90〜120℃に加熱することが好ましい。加熱温度は容器の耐圧、樹脂粒子のブロッキング性、含浸時間等を考慮して選ぶことが好ましい。発泡剤含浸温度が90℃未満では粒子を球形化させるのに要する時間が長くなり、120℃を越えると粒子のブロッキングが多くなる。更に好ましい含浸温度範囲は100〜116℃である。
【0025】
含浸処理後、常温に冷却し、容器に残留している発泡剤を除いて、常温下に取り出して粒子状発泡性樹脂とする。水性媒体中には上記発泡剤の他、ドデシルベンゼンスルホン酸塩類、ラウリルアルコキシスルホン酸塩類等の界面活性剤、炭酸マグネシウム、硫酸マグネシウム、ピロリン酸ナトリウム、炭酸カルシウム、タルク、リン酸三カルシウム等の分散剤等を混合することができる。
また水性媒体中にはポリスチレン粒子状発泡樹脂で公知の処方として知られるように、トルエン、キシレン、エチルベンゼン、シクロヘキサン等の溶剤を予備発泡特性を向上させる可塑剤として添加することもできる。
(4)の工程について本発明では、耐圧容器中で樹脂粒子に発泡剤を含浸させた後、耐圧容器を冷却し温度を40℃以下に冷却し、発泡剤含浸粒子を取り出した後、発泡剤含浸粒子は水または酸性水で洗浄、脱水、乾燥させる。
【0026】
上記した粒子の脱水は粒子の表面付着水を除去するものである。次の乾燥処理において乾燥時間を短くし、粒子の乾燥状態を一定なものとするため、乾燥前の状態を一定にするためのものである。脱水は通常用いられる粒子脱水処理を用いることができる。例えば遠心脱水機を用いるのが好ましい。
上記処理により脱水された樹脂粒子は内部に吸収水分を含有しており、徐徐に水分が揮散する。この状態では発泡させて得られる粒子状発泡樹脂の気泡サイズが不均一になる。本発明では上記脱水粒子を乾燥処理する。乾燥は温風乾燥が一般的である。通常用いられる攪拌式温風粒子乾燥機を用いるのが好ましい。
【0027】
温風乾燥により得られた上記粒子状発泡性樹脂から粒子状発泡樹脂、成形体を得るまでの工程は、粒子状スチレン系発泡性樹脂で行われている公知の方法を用いることができ、特に限定されるわけではない。
得られた粒子状発泡性樹脂の発泡においては、公知のポリスチレン発泡ビーズ用発泡機を用いスチーム加熱によって発泡させる。発泡条件は例えばスチーム加熱温度を95〜104℃とし、この温度での加熱時間を10〜150秒とする。更に発泡機から排出された粒子状発泡樹脂をサイロ等大気中で16時間以上熟成させ、粒子状発泡樹脂内に空気を浸透させる。
【0028】
熟成後の発泡樹脂、すなわち本発明の粒子状発泡性樹脂を発泡して得られる発泡樹脂の真密度は15〜100kg/m3 である。15kg/m3 未満では発泡倍率が高すぎて粒子状発泡樹脂気泡膜が破れ、膨張力のある良好な粒子状発泡樹脂とならない。100kg/m3 を超えると逆に発泡倍率が低すぎて発泡をゆっくり行う必要があり、発泡の加熱コントロールが難しく粒子状発泡樹脂の密度が安定しないという問題がある。
このようにして得た熟成後の粒子状発泡樹脂を、公知のポリスチレン発泡ビーズ用自動成形機に内蔵された、小さな孔やスリットが設けられた成形型内でスチーム加熱して融着一体化させ、発泡成形体とする。
【0029】
成形においては粒子状発泡樹脂を型内に充填する前に型をスチームブローして型内を予熱し、粒子状発泡樹脂を型内に充填後は一方加熱、逆一方加熱により型内の空気を追い出すとともに粒子を充分予熱し、凸型、凹型の両面加熱で粒子を充分加熱し粒子間を充分に融着させる。あるいは、型内に粒子を充填した後、型内を真空引きして型内の空気を除去した後、型内にスチームを導入し粒子を加熱融着させることもできる。一方加熱、逆一方加熱において型内のスチーム圧は0.3〜0.8kgf/cm2 にし、加熱時間は各々5〜15秒とすることが好ましい。両面加熱においては型内のスチーム圧は0.8〜1.2kgf/cm2 にし、加熱時間は3〜15秒とすることが好ましい。加熱時間が長く、型内スチーム圧が高い程、成形体の粒子間融着率は向上するが成形体が収縮し、ひけ、反りが発生して外観が低下する。
【0030】
成形機から取り出された成形体は湿気を含んでおり、かつ収縮しているので40〜50℃の雰囲気で3〜4時間乾燥させる。
このようにして得た熟成後の粒子状発泡樹脂を成形して得た本発明における発泡成形体は、かさ密度が10〜65kg/m3 である。かさ密度が10kg/m3 未満では圧縮強度が低下し、外観上良好なものは得られない。またかさ密度が65kg/m3 を越える重量が大きく経済的に不利である。
また、本発明の発泡成形体の粒子間融着率は85%以上である。粒子間融着率が85%未満では成形体の引張強度が低下し、成形体の耐割れ性が低下する。粒子間融着率の特に好ましい範囲は90%以上である。
【0031】
【発明の実施の形態例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれらに限定されるものではない。
なお、実施例及び比較例中の粒子等の性質は以下のようにして測定及び評価した。
(1)粒子状発泡性樹脂の平均粒径(X)
任意に選んだ粒子状発泡性樹脂200粒の投影画像面を作成する。各粒子の投影面の面積を求め、同面積の円の直径で換算した円相当径を求める。測定を迅速に行うため、日本アビオニクス株式会社製のカラーイメージプロセッサーSPICCA−IIを用いた。200個の円相当径の平均を粒子状発泡性樹脂の平均粒径X(mm)とした。
(2)粒子状発泡性樹脂の球形度
粒子状発泡性樹脂を平面に置き、粒子に平行光を照射してできる投影面を作成し、その粒子の投影面の外形を平行な2線で挟んだ時の2線間の距離で最大のものをその粒子の長径とし、最小のものを短径とする。得られた長径と短径の比である(長径/短径)値を算出し、200個の粒子についてその平均を求めたものを球形度とした。評価は以下の通りとした。
記 号 (長径/短径)値
◎ 1.00以上 1.10未満
○ 1.10以上 1.20未満
△ 1.20以上 1.30未満
× 1.30以上
【0032】
(3)粒子状発泡性樹脂の粒径分布
任意に選んだ粒子状発泡性樹脂200粒の投影画像面を作成し、各粒子の円相当径を求める。200個の円相当径値を母集団として標準偏差σを求める。測定を迅速に行うため、日本アビオニクス株式会社製のカラーイメージプロセッサーSPICCA−IIを用いた。円相当径の200個の平均値Xとの比σ/Xを粒径分布の指標とする。評価は以下の通りとした。
記 号 σ/X値
◎ 0.09未満
○ 0.09以上 0.12未満
△ 0.12以上 0.18未満
× 0.18以上
【0033】
(4)共役ジエン系重合体成分の膨潤指数
ゴム変性ポリスチレン系樹脂0.5gにトルエン30mlを加え、25℃で24時間浸漬後、5時間振とうし、遠心分離器で不溶分を分離する。上澄み液を除き、新たにトルエン30mlを加え、25℃で1時間振とうし、遠心分離器で不溶分を分離する。上澄み液を除き、重量を測定する(W1)。その後100℃、2時間真空乾燥し残留物の重量を測定する(W2)。膨潤指数は次式により求める。膨潤指数=(W1−W2)/W2。
(5)発泡剤含有量
粒子状発泡性樹脂0.5gを170℃に加熱し、発生する気体をカールフィッシャー液中に送り込んだ。カールフィッシャー液中に吸収された水分量から、粒子状発泡性樹脂中の水分含有量を求めた。次に粒子状発泡性樹脂2gを200℃の熱盤上で加熱処理し、重量減少分を求め、先に求めた水分量を差し引いて、発泡剤含有量を求めた。
【0034】
(6)粒子状発泡樹脂の真密度
下記の式により粒子状発泡樹脂の真密度ρ(g/cm3 )を求めた。
ρ=W/V
ただし、W :粒子状発泡樹脂の重量(g)
V :水没法により求めた粒子状発泡樹脂の体積(cm3
(7)粒子状発泡樹脂成形体のかさ密度
JIS K6767に準拠して以下の式により粒子状発泡樹脂成形体のかさ密度D(g/cm3 )を求めた。
D=G/V
ただし、G :粒子状発泡樹脂成形体の重量(g)
V :粒子状発泡樹脂成形体の体積(cm3
(8)粒子状発泡樹脂成形体の引張破断強度
JIS K6767に準拠して測定した。評価は以下の通りとした。
記 号 引張破断強度値
◎ 3.5kgf/cm2 以上
○ 3.0 以上 3.5kgf/cm2 未満
△ 2.5 以上 3.0 未満
× 2.5 未満
【0035】
(9)粒子状発泡樹脂成形体の落球衝撃強度
JIS K−9511に準じて測定した。即ち、厚み20mm、巾50mm、長さ165mmの試験片を粒子状発泡樹脂成形体から切り出し、125mmの間隔を置いた2つの支点間に試験片両端を固定し、その上から192gの鋼球を落下させた。試験片4つの内半数にクラックが入り破壊される高さを求めた。その高さを落球高さT(cm)とした。評価は以下の通りとした。
記 号 T値
◎ 32cm 以上
○ 28cm 以上 32cm未満
△ 24cm 以上 28cm未満
× 24cm 未満
(10)粒子状発泡樹脂成形体の外観
評価は以下の通りとした。
記 号 外観
◎ 粒子間の空隙が無く、ひけ、反り、溶融部が無く良好な外観でる。
○ 粒子間にわずかな空間があるがほぼ良好な外観である。
△ 部分により粒子間に隙間が目立つ。外観が良くない。
× ひけ、反り、溶融部がある。部分的収縮があり、外観が良くない。
【0036】
(11)成形体の粒子間融着率
成形体の破断面に露出した粒子50個について、粒子内部まで破壊している粒子数(N1)と、粒子内部が破壊されず粒子表面が露出している粒子数(N2)を数え下記の式より成形体の粒子間融着率Y(%)を求めた。
Y=〔(N1)/(N1+N2)〕×100
評価は以下の通りとした。
記 号 Y値
◎ 90%以上 100%以下
○ 80%以上 90%未満
△ 70%以上 80%未満
× 70%未満
【0037】
【実施例1】
ブタジエン成分としてハイシスポリブタジエンゴムを12wt%含有し、ゴム成分の膨潤指数が9.5であるハイインパクトポリスチレン(旭化成工業製)にステアリン酸カルシウム0.1部を混合したものを押し出し機中で240〜250℃で加熱溶融させ溶融混練した。溶融混練した樹脂を直径0.7mmの押出孔を備えたダイヘッドから押し出し、ストランドを直ちに水中で冷却したものを引き取り機で引き取りながらカッターに送った。カッターはストランドの引き取り方向と垂直方向に回転する刃を備えたカッター(星プラスチックス製ファンカッターFC1512)を用いた。カッター回転刃の傾き刃角θは55°であった。得られたペレットは直径1.0mm、長さは1.0mmであった。
【0038】
得られた円柱状粒子400gを2.0Lの撹拌機付き耐圧容器中へ水520g、炭酸マグネシウム粉末20gと共に仕込み、更に発泡剤であるi−ペンタン/n−ペンタン=60/40(wt比)組成の混合ペンタンを48g添加し、容器を密閉した後、600rpmで撹拌しながら、30分で115℃に昇温し、115℃で6時間保持した。容器を冷却し粒子状発泡性樹脂を取り出した。取り出した粒子を脱水し、風乾して粒子状発泡性樹脂を得た。得られた粒子の平均粒径は1.15mmであり、球形度は1.04であった。粒径分布のσは0.081mmであり、σ/Xは0.07であった。得られた粒子中の発泡剤含有量は樹脂100重量部に対し、6.6重量部であった。
【0039】
得られた粒子状発泡性樹脂をスチーム加熱により発泡させ、真密度29kg/m3 の粒子状発泡樹脂とし、この粒子状発泡樹脂をスチーム圧0.8kgf/cm2 で型内成形して300×300×50mmの板状成形体を得た。得られた成形体のかさ密度は20kg/m3 であり、引張破断強度は3.6kgf/cm2 であった。また同じ粒子状発泡樹脂のL型成形体を製作し、成形体の落球高さで耐割れ性を評価した結果はT=34cmであり良好であった。粒子間融着率は92%であった。
【0040】
【実施例2】
押し出しストランドの引き取り条件を変え、得られたペレットは直径0.88mm、長さは0.85mmであった。発泡剤の仕込み量を40gとした他は実施例1と同様に含浸操作を行った。得られた粒子状発泡性樹脂は平均粒径1.00mmであり、球形度は1.06であった。粒径分布の指標であるσ/Xは0.08であった。発泡剤含有量は5.5重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表1に示す。
【0041】
【実施例3】
押し出しストランドの引き取り条件を変え、得られたペレットは直径1.15mm、長さは1.1mmであった。発泡剤の仕込み量を36gとした他は実施例1と同様に粒子状発泡性樹脂を製作した。得られた粒子状発泡性樹脂は平均粒径1.3mmであり、球形度は1.09であった。粒径分布の指標であるσ/Xは0.09であった。発泡剤含有量は4.8重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表1に示す。
【0042】
【実施例4】
ブタジエン成分としてスチレン−ブタジエンブロック共重合体(ブタジエン成分60重量%)を15重量%含有し、ゴム成分の膨潤指数が10であるハイインパクトポリスチレン(旭化成工業製)にステアリン酸カルシウム0.1部を混合したものを押し出し機中で250〜260℃で加熱溶融させ溶融混練した。溶融混練した樹脂を直径0.65mmの押出孔を備えたダイヘッドから押し出した他は実施例1と同様に行った。得られた発泡剤含浸前のペレットは直径0.75mm、長さは0.7mmであった。
【0043】
発泡剤はi−ペンタン/n−ペンタン=50/50(wt比)組成の混合ペンタンを60g添加し、容器を密閉した後、600rpmで撹拌しながら、30分で115℃に昇温し、115℃で6時間保持した。発泡剤含浸後得られた粒子状発泡性樹脂中の発泡剤含有量は樹脂100重量部に対し、9.5重量部であった。得られた粒子状発泡性樹脂の平均粒径は0.85mm、粒子球形度は1.08であった。粒度分布を示すσ/Xは0.10であった。また、実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1に示されると同様の条件で粒子状発泡性樹脂を発泡成形して得られた成形体の性能を表1に示す。
【0044】
【実施例5】
カッター回転刃の傾き刃角θを65°とした他は実施例1と同様に発泡性粒子を製作した。得られた粒子状発泡性樹脂は平均粒径1.17mmであり、球形度は1.11であった。粒径分布の指標であるσ/Xは0.11であった。発泡剤含有量は6.6重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表1に示す。
【0045】
【実施例6】
カッター回転刃の傾き刃角θを45°とした他は実施例1と同様に発泡性粒子を製作した。得られた粒子状発泡性樹脂は平均粒径1.15mmであり、球形度は1.18であった。粒径分布の指標であるσ/Xは0.12であった。発泡剤含有量は6.6重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表1に示す。
【0046】
【実施例7】
実施例1で用いたハイインパクトポリスチレンとポリスチレンを同重量混合し押し出し機で溶融混練させ、ゴム成分量が6重量%の樹脂とした。溶融混練させた樹脂を直径0.7mmの押出孔を備えたダイヘッドから押し出し、ストランドを直ちに水中で冷却したものを引き取り機で引き取りながらカッターに送った。カッターは図3に示すようなストランドの引き取り方向と垂直方向に回転刃の回転軸を有するカッターで固定刃を水冷する装置のついたカッター(勝製作所製水冷ペレタイザー)を用いた。このようにして得られた円柱状樹脂粒子を用い、発泡剤含浸時間を30分で110℃に昇温し、110℃で4時間保持する他は実施例1と同様の含浸操作を行い粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.13mm、粒子球形度は1.16であった。粒度分布を示すσ/Xは0.12であった。発泡剤含有量は6.1重量部であった。また、実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表1に示す。
【0047】
【実施例8】
ブタジエン成分としてローシスポリブタジエンゴムを8wt%含有し、ゴム成分の膨潤指数が14であるハイインパクトポリスチレンにエチレンビスステアロアミド0.15部を混合したものを押し出し機中で240〜250℃で加熱溶融させ溶融混練した。溶融混練した樹脂を直径0.9mmの押出孔を備えたダイヘッドから押し出し円柱状粒子を得た。カッターは実施例5と同様のものを用いた。更に実施例1と同様な含浸操作を行い粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.25mm、粒子球形度は1.18であった。粒度分布を示すσ/Xは0.14であった。発泡剤含有量は6.8重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表1に示す。
【0048】
【実施例9】
実施例1で用いたハイインパクトポリスチレン100重量部に対しスチレン−ブタジエンブロック共重合体(ブタジエン60重量%含有)10重量部を混合し押し出し溶融させ、ゴム成分量が17重量%の樹脂とした。実施例5と同様なカッターを用いて円柱状粒子とし、この樹脂粒子を用い、発泡剤含浸時間を30分で110℃に昇温し、110℃で4時間保持する他は実施例1と同様の含浸操作を行い粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.19mm、粒子球形度は1.18であった。粒度分布を示すσ/Xは0.15であった。発泡剤含有量は7.1重量部であった。また、実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表1に示す。
【0049】
【比較例1】
実施例1と同様の樹脂と添加剤を用い、ペレットカッターは図3に示すようなストランドの引き取り方向と垂直方向に回転刃の回転軸を有するカッターで、固定刃を水冷する装置は付帯していない汎用カッターを使用する他は実施例1と同様な操作を行い、円柱状ペレットを得た。更に実施例1と同様な含浸操作で粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.16mm、粒子球形度は1.33であった。粒度分布を示すσ/Xは0.21であった。発泡剤含有量は6.6重量部であった。また実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表2に示す。成形体性能は実施例1の成形体に比べ劣るものであった。
【0050】
【比較例2】
ブタジエン成分としてローシスポリブタジエンゴムを7wt%含有し、ゴム成分の膨潤指数が4であるハイインパクトポリスチレンにステアリン酸カルシウム0.15部を混合したものを押し出し機中で240〜250℃で加熱溶融させ溶融混練した。溶融混練した樹脂を直径0.9mmの押出孔を備えたダイヘッドから押し出した。カッター、発泡剤含浸操作は比較例1と同様に行い、粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.20mm、粒子球形度は1.31であった。粒度分布を示すσ/Xは0.22であった。発泡剤含有量は5.6重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表2に示す。
【0051】
【比較例3】
ブタジエン成分としてローシスポリブタジエンゴムを9wt%含有し、ゴム成分の膨潤指数が17であるハイインパクトポリスチレンにステアリン酸カルシウム0.15部を混合したものを押し出し機中で240〜250℃で加熱溶融させ溶融混練した。溶融混練した樹脂を直径0.9mmの押出孔を備えたダイヘッドから押し出した。カッター、発泡剤含浸操作は比較例1と同様に行い、粒子状発泡性樹脂を得た。得られた粒子状発泡性樹脂の平均粒径は1.19mm、粒子球形度は1.22であった。粒度分布を示すσ/Xは0.22であった。発泡剤含有量は7.1重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に成形体の性能を評価した結果を表2に示す。
【0052】
【比較例4】
カッター回転刃の傾き刃角θを75°とした他は実施例1と同様に発泡性粒子を製作した。得られた粒子状発泡性樹脂は平均粒径1.16mmであり、球形度は1.11であった。粒径分布の指標であるσ/Xは0.13であった。発泡剤含有量は6.6重量部であった。樹脂の押し出しストランドをカッターで切断後回転刃には刃先が欠ける損傷が見られた。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表2に示す。
【0053】
【比較例5】
カッター回転刃の傾き刃角θを35°とした他は実施例1と同様に発泡性粒子を製作した。得られた粒子状発泡性樹脂は平均粒径1.14mmであり、球形度は1.25であった。粒径分布の指標であるσ/Xは0.18であった。発泡剤含有量は6.6重量部であった。実施例1と同様の真密度の粒子状発泡性樹脂及び同じ嵩密度の成形体とした後、実施例1と同様に粒子状発泡樹脂成形体の性能を評価した結果を表2に示す。
【0054】
【表1】

Figure 0003856534
【0055】
【表2】
Figure 0003856534
【0056】
【発明の効果】
本発明によれば、共役ジエン系重合体成分を含有するゴム変性粒子状ゴム変性スチレン系発泡性樹脂で、粒子の球形度と粒径分布が特定のものを用いることで粒子状発泡樹脂の輸送管中の流動性や成形金型内への充填性が良好であり、成形体の引張特性や耐割れ性及び外観が優れたものが得られる。
【図面の簡単な説明】
【図1】押し出し機でペレタイズする装置の模式図である。
【図2】ストランド引き取り方向と平行方向の回転軸を有する回転刃を備えたカッターの模式図である。(a)はストランド引き取り方向と直交する方向、(b)はストランド引き取り方向の斜め上方向からみた図である。
【図3】ストランド引き取り方向と直交する回転軸を有する回転刃を備えたカッターの模式図である。(a)はストランド引き取り方向と直交する方向、(b)はストランド引き取り方向の斜め上方向からみた図である。
【符号の説明】
1 押し出し機
2 水冷バス
3 ストランド
4 引き取り機
5 カッター
6 回転刃
7 固定刃
8 回転部
9 ロール状刃
10 回転軸
11 駆動部
12 回転刃の移動方向を示す矢印
13 回転刃の移動方向を示す矢印[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a particulate rubber-modified styrene-based foamable resin, a particulate foamed resin, a particulate foamed resin molded article, and a method for producing the same, and more specifically, particulate rubber-modified styrene excellent in mold filling property and fusion strength. The present invention relates to a system foamable resin, a particulate foamed resin, a particulate foamed resin molded product, and a method for producing the same.
[0002]
[Prior art]
Styrenic resin foams obtained by in-mold molding using particulate styrenic foamable resins are widely used as packaging materials for home appliances, OA equipment and the like. In particular, a foamed resin molded article obtained by using a conjugated diene polymer component-containing polystyrene resin (hereinafter referred to as HIPS resin) has attracted attention in recent years as being excellent in impact resistance and flexibility. It has begun to be used in fields that require high shock-absorbing performance, such as packaging of peripheral devices.
[0003]
In order to obtain such HIPS resin particles, the HIPS resin polymer is produced in the first stage, the HIPS resin mini-pellets are produced in the second stage, and the blowing agent is suspended in the mini-pellets in the third stage. A manufacturing method is adopted in which the resin particles are made substantially spherical by the surface tension of the impregnated and softened resin. For example, in JP-A-6-49262 and JP-A-8-53589, a HIPS resin obtained by polymerization of polybutadiene and a styrene monomer is extruded in a strand form from an extruder and cut with a cutter to obtain a circle. A particulate foamable resin obtained by forming columnar resin particles and impregnating the particles with a foaming agent in an aqueous medium is shown.
[0004]
[Problems to be solved by the invention]
However, when in-mold molding is performed using the particulate styrenic foamable resin obtained by the above-mentioned conventional manufacturing method, the fluidity in the transport pipe and the filling property into the molding die are poor, and the interparticle fusion rate is low. Since it is low, cracking resistance and tensile strength are not sufficient, and there is a problem that it cannot be sufficiently used for applications requiring higher buffer performance.
The present invention overcomes the drawbacks of the above prior art, and provides a particulate HIPS-based foamable resin capable of providing a molded article having excellent tensile characteristics, split resistance, and appearance characteristics when molded in-mold, and a process for producing the same. For the purpose. Furthermore, an object of this invention is to provide the foaming resin using this resin, its molded object, and the manufacturing method of a molded object.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the particulate resin before foaming can be improved in order to improve the fluidity in the transport pipe, the filling property in the molding die, and the interparticle fusion rate. It was noticed that it is very important to control the sphericity and particle size distribution of the particles to a specific range. That is, with a particulate foamed resin having a low degree of sphericity of the particles, uniform filling in the mold cannot be obtained, and even if in-mold molding is performed, the fusion rate between the particles does not increase, and the crack resistance and appearance of the molded product are not good. . On the other hand, when the heating of molding is increased, the interparticle fusion rate is improved, but the molded body contracts, sinks, warps, and the like occur, and the appearance deteriorates. In addition, when the particle size distribution is large, classification of particles occurs in the particulate foamed resin silo, and small particles accumulate in the lower part of the silo, resulting in a situation where the expansibility of the particles differs between the upper part and the lower part of the silo. The quality of the body is not stable. The present invention has been made paying attention to these points.
[0006]
That is, the particulate rubber-modified styrenic foamable resin of the present invention has an average particle size X of 0.8 to 1.5 mm, a sphericity of 1.0 to 1.2, and a standard deviation σ of the particle size distribution and The ratio σ / X with respect to the average particle diameter X is 0.12 or less. Furthermore, 3-20% by weight of the conjugated diene polymer component is contained, the swelling index of the component is 5-15, and the foaming agent content is 4-12 parts by weight with respect to 100 parts by weight of the resin component. Is preferred.
[0007]
The particulate rubber-modified styrenic resin of the present invention is obtained by foaming the particulate foamable resin and has a true density of 15 to 100 kg / m. Three It is characterized by being.
The foamed molded product of the present invention is obtained by pre-foaming a particulate rubber-modified styrene-based foaming resin containing 3 to 20% by weight of a conjugated diene polymer component and having a swelling index of 5 to 15 of the component. True density is 15-100kg / m Three It is obtained by in-mold molding of a particulate rubber-modified styrene resin that has a bulk density of 10 to 65 kg / m Three And the inter-particle fusion rate is 85% or more. The production method is to pre-foam the above particulate foamable resin so that the true density is 15 to 100 kg / m. Three After the particulate rubber-modified styrene resin is obtained, the particulate rubber-modified styrene resin is molded in a mold.
[0008]
The method for producing a particulate rubber-modified styrenic foamable resin of the present invention includes the following steps (1) to (4).
(1) A process of extruding and melting a rubber-modified styrene resin, extruding a molten strand from a die, and immediately cooling with water.
(2) The strand that has been cooled and solidified by water is cut with a cutter having a rotary blade having a rotation axis in a direction parallel to the take-up direction and having a tilt blade angle θ of 40 ° to 70 °. To obtain cylindrical pellets
(3) A step of impregnating the obtained pellets with a foaming agent in suspension at a temperature of 90 to 120 ° C.
(4) Step of dehydrating and drying the obtained foaming agent impregnated pellets
Hereinafter, the contents of the present invention will be described in detail.
[0009]
First, the particulate rubber-modified styrenic foamable resin of the present invention and its production method will be described.
The particulate rubber-modified styrenic foamable resin of the present invention has an average particle size X of 0.8 to 1.5 mm. The average particle size was determined as follows. A projected image plane of particles is created, and the area of the projected plane is obtained. Next, the diameter of a circle having the same area is obtained and used as the particle size (equivalent circle diameter). The average of equivalent circle diameters was determined for 200 arbitrarily selected particulate foamable resins and used as the average particle diameter. If the average particle size is less than 0.8 mm, the processing productivity of the particles does not increase and is not practical. Further, if the average particle diameter exceeds 1.5 mm, it takes time to make the particles spherical, and the productivity is lowered. Further, the filling property into the details in the mold is lowered when molding with the particulate foamed resin is performed. A particularly preferable particle size range is 0.9 to 1.3 mm.
[0010]
The sphericity of the particulate rubber-modified styrenic foamable resin of the present invention is 1.0 to 1.2. The sphericity was determined as follows. Create a projection plane by placing particles on a flat surface and irradiating the particles with parallel light, and the largest distance between the two lines when the projection surface of the particle is sandwiched between two parallel lines. The minimum diameter is the shortest diameter. The ratio (major axis / minor axis), which is the ratio of the obtained major axis and minor axis, was calculated, and the average of 200 particles was determined as the sphericity. A sphericity of 1.0 is a true sphere. When the sphericity exceeds 1.2, the interparticle fusion rate of the molded product in the particulate foamed resin mold is lowered, and the crack resistance of the molded product and the appearance of the molded product are not good. A particularly preferred range of sphericity is 1.0 to 1.1. The shape of the particulate foamed resin affects the particle fusion property when the particulate foamed resin is molded in the mold. The closer to the true sphere, the better the particle fusion property. This is because the particles are isotropically expanded during molding in the mold, and the particles in the mold are uniformly compressed, the unevenness of the voids between the particles is small, and the void that is the gap between the particles after molding is small. It is.
[0011]
The ratio σ / X between the standard deviation σ (mm) of the particle size distribution of the particulate foamable resin of the present invention and the average particle size X (mm) is 0.12 or less. When σ / X is increased beyond 0.12, the physical properties and appearance of the molded body obtained by molding the particulate foamed resin in the mold are deteriorated. A particularly preferable range of σ / X is 0.09 or less.
The conjugated diene component content in the conjugated diene polymer component-containing polystyrene resin in the particulate rubber-modified styrenic foamable resin of the present invention is preferably 3 wt% or more and 20 wt% or less. If it is less than 3 wt%, the crack resistance of the particulate foamed resin molded product is insufficient, and if it exceeds 20 wt%, the strength of the particulate foamed resin molded product is lowered.
[0012]
The swelling index of the conjugated diene polymer component in the rubber-modified polystyrene resin containing the conjugated diene polymer component in the particulate rubber-modified styrene foamable resin of the present invention is preferably 5-15. When the swelling index is less than 5, the molecular orientation is large when the resin is extruded to form a strand, and it takes a long time to spheroidize the particles even after the suspension is impregnated with a foaming agent to be plasticized and the temperature rises. When the swelling index exceeds 15, it does not take a long time to make the particles spherical, but the tensile strength as a molded article is lowered.
[0013]
In the particulate rubber-modified styrenic foamable resin of the present invention, the conjugated diene polymer component-containing polystyrene resin comprises at least the following polystyrene resin component (A) and conjugated diene polymer component (B). Resin.
The component (A) is a polystyrene resin or a copolymer resin of at least 50 parts of a styrene component and another polymerizable monomer. Examples of the copolymerizable monomer include esters of methylstyrene, acrylonitrile, acrylic acid or methacrylic acid with an alcohol having 1 to 8 carbon atoms, maleic acid, maleic anhydride and the like.
[0014]
Component (B) is a resin formed by polymerization or copolymerization with a conjugated diene compound. For example, high cis polybutadiene, middle cis polybutadiene, low cis polybutadiene, styrene-butadiene block copolymer, polyisoprene, styrene-isoprene copolymer, acrylonitrile-butadiene copolymer, and the like. These polymer components may be partially or partially hydrogenated with intramolecular double bonds. Particularly preferred polymer components are high cis polybutadiene, low cis polybutadiene or styrene-butadiene block copolymers.
[0015]
The method of incorporating (B) in (A) is (1) polymerizing a solution in which a conjugated diene polymer is dissolved in a styrene monomer, and dispersing the conjugated diene polymer in a continuous phase of a polystyrene resin. And (2) a method in which a conjugated diene polymer component is mechanically mixed in a polystyrene resin, and any method can be used in the present invention. In (1), the rubber component serving as the dispersed phase may be a core-shell type or a salami type containing a polystyrene resin component in the particles.
Moreover, an additive, a lubricant, a flame retardant, an antistatic agent, a dye / pigment, a foam nucleating agent, an ultraviolet absorber and the like can be added to the resin as necessary. For example, additives such as talc and calcium carbonate, lubricants such as calcium stearate, zinc stearate, ethylene bisstearamide, stearamide, flame retardants such as hexabromocyclododecane, trisdibromopropyl phosphate, pigments such as carbon black Etc.
[0016]
The particulate rubber-modified styrenic foamable resin of the present invention is preferably impregnated with 4 to 12 parts by weight of a foaming agent with respect to 100 parts by weight of the resin. If the amount of foaming agent impregnation is less than 4 parts, it is difficult to foam the particulate foamable resin at a high magnification, and if it exceeds 12 parts by weight, it is difficult to adjust the magnification during foaming. The larger the amount of foaming agent impregnated, the higher the foaming ratio of the particles. A more preferable range of the amount of foaming agent impregnation is 5 to 8 parts by weight.
Examples of the blowing agent used in the present invention include those having a boiling point in the range of −30 to + 100 ° C. under normal pressure, for example, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, petroleum ether, cyclopentane, diethylene, and the like. And cycloaliphatic hydrocarbons such as chlorohexane, and halogenated hydrocarbons such as methyl chloride, ethyl chloride, methyl bromide, dichlorodifluoromethane, 1,2-dichlorotetrafluoroethane, and monochlorotrifluoroethane. it can. Particularly preferred blowing agents are pentane and butane.
[0017]
Next, a method for producing the particulate rubber-modified styrene-based foamable resin of the present invention will be described.
The method for producing the particulate rubber-modified styrene-based expandable resin of the present invention comprises the following steps (1) to (4).
(1) A process of extruding and melting a rubber-modified styrene resin, extruding a molten strand from a die, and immediately cooling with water.
(2) The strand that has been cooled and solidified by water is cut with a cutter having a rotary blade having a rotation axis in a direction parallel to the take-up direction and having a tilt blade angle θ of 40 ° to 70 °. To obtain cylindrical pellets
(3) A step of impregnating the obtained pellets with a blowing agent in water at a temperature of 90 to 120 ° C.
(4) Step of dehydrating and drying the obtained foaming agent impregnated pellets
For cutting pellets by conventional strand cutting, a method is used in which a strand is cut with a rotary blade that is attached to a roll surface and rotated. In such a method, when the HIPS resin extruded strand is cut with a cutter, the strand cut surface is crushed and deformed with a roll cutter, or the strand is cut in an oblique state. Even if these particles of uniform size and shape are suspended and impregnated in water, the resulting spherical foamed resin does not have a good sphericity and has a large particle size distribution. It was. In addition, there is a problem that it takes a long time in the impregnation step to make all particles spherical. Also, if the impregnation temperature is increased to shorten the impregnation time, particle blocking occurs during the impregnation. Therefore, if the conventional manufacturing method is used, a HIPS particulate foamable resin having a good sphericity and a small particle size distribution cannot be obtained. By sieving, it is possible to obtain a HIPS particulate foamable resin having a good sphericity and a small particle size distribution, but HIPS large particles and small particles having no suitable use are generated, This greatly increased the production cost of the particulate HIPS foamable resin.
[0018]
On the other hand, this invention succeeded in providing the said particulate HIPS foaming resin by including the process of said (1)-(4), especially the process of (2). First, the steps (1) and (2) will be described with reference to the drawings. FIG. 1 is a schematic view of a resin pelletizing apparatus. The strand (3) extruded from the extruder (1) is cooled by a water-cooled bath (2) and then pelletized by a cutter (5) while being pulled by a take-up machine (4). FIG. 2 is a schematic diagram of a strand cutter used in the present invention, and FIG. 3 is a schematic diagram of a conventionally used cutter. The strand is sandwiched between the rotary blade (6) and the fixed blade (7) while being taken up by the strand take-up machine (4) and cut into a pellet.
[0019]
In the conventional strand cutter, the roll-shaped blade (9) which processed the blade on the metal roll surface is used. The blade is rotated by the drive unit (11) with the diameter of the roll as the rotation diameter, and the rotation axis is orthogonal to the strand take-up direction. Therefore, since the rotating surface of the blade is in the form of winding the strand, it is necessary to give the blade edge a clearance angle so as to avoid contact between the rotating blade and the strand. (The clearance angle is described in the Mechanical Engineering Handbook of the Japan Society of Mechanical Engineers.) In addition, there is a restriction in processing the shape of the blade, such as polishing the blade edge from the roll surface. Therefore, in the roll-shaped blade, the inclined blade angle θ shown in FIG. 3 is as small as 15 to 20 °. As shown in FIGS. 2 and 3, θ is an angle formed between the lower surface of the blade and the upper surface of the fixed blade where the rotary blade cuts the strand. In the roll-shaped blade, the blade rotates with the roll diameter as the rotation diameter, and has a shape in which the strand is hit or broken. Therefore, the cut end of the strand does not become smooth. In particular, in the case of HIPS resin strand, since the rubber component is contained in the resin and is softened, it cannot be cut smoothly unless the cutting edge is sharp. Moreover, if the sharpness of the blade is poor, the strands sag or dance, the strand cut length varies, and the cut length varies.
[0020]
On the other hand, the cutter used in the present invention has a rotary blade whose rotation axis is parallel to the strand take-up direction. Therefore, the blade rotates in a direction perpendicular to the strand, and the rotary blade rotates and moves in the vertical plane with respect to the strand take-off direction, and the strand is cut like a guillotine, so that smooth cutting is possible. There is no need to provide a clearance angle to the cutting edge as in the case of a roll-shaped blade, and the rotary blades can be individually attached to the rotating portion, and therefore there is no restriction on the position of the blade surface on the polishing of the blade edge. Therefore, the inclined blade angle θ can be as large as 40 to 70 °, and the strand can be cut sharply. Since the strand can be cut sharply, there is an advantage that uneven cutting and unevenness of the cut length hardly occur. Furthermore, it is possible to independently control the strand diameter by controlling the strand take-up speed to control the diameter of the strand and controlling the cut length by adjusting the rotational speed of the rotary blade. The rotary blade used in the present invention can have a plurality of blades attached radially to the rotation axis. The cut length can also be controlled by the number of blades attached.
[0021]
Further, a strand run-off prevention plate can be attached to the strand take-up machine, that is, the take-out rotary roll outlet to suppress the strand swing and meandering.
Further, in cutting the strand, it is effective for making the strand to be cut smoothly to make the gap between the rotary blade and the fixed blade as short as possible and to keep the interval between the rotary blade and the fixed blade constant. This is effective regardless of the magnitude of the inclined blade angle θ of the rotary blade. When the strand is cut with the rotary blade and the fixed blade as in the present invention, the temperature of the blade rises due to frictional heat at the time of cutting, the blade expands, and the gap between the rotary blade and the fixed blade varies. Therefore, suppressing the temperature rise of the fixed blade by water-cooling the inside of the fixed blade is effective in suppressing fluctuations in the gap between the rotary blade and the fixed blade and smoothing the cut surface of the strand. Water cooling of the fixed blade can be performed by continuously passing cooling water into the fixed blade during the strand cutting process. In the present invention, such a fixed blade can be cooled.
[0022]
As described above, in the present invention, a rotary blade in which the rotation axis direction of the rotary blade of the cutter is the same direction as the strand take-up direction, and the rotary blade having an inclined blade angle θ of 40 to 70 ° is perpendicular to the strand. By using a cutter that cuts into a small size, it is possible to solve the problem of non-uniform size and shape of the rubber-modified styrenic resin when processing small pellets. If the inclined blade angle θ is less than 40 °, the cut portion of the strand becomes unsmooth, and if the inclined blade angle θ is 70 ° or more, the blade tip of the rotary blade tends to be chipped. A more preferable range of the inclined blade angle θ is 50 to 60 °, and a further particularly preferable range is 52 to 57 °.
[0023]
The molecular orientation of the HIPS resin strand cut particles when the resin is melted and the strand is extruded from the die remains. When the HIPS resin strand-cut particles are impregnated with a foaming agent by suspension in water, the orientation is relaxed as the resin is plasticized, the particle shape becomes a rugby ball, and the shape becomes flat as the heating time elapses. There is a phenomenon that the shape becomes spherical after a long time. Therefore, the HIPS resin having a large molecular orientation tends to cause unevenness in the sphericity, and it may take a long time to make the sphere.
[0024]
As described above, the rubber-modified styrenic resin used in the step (1) contains 3 to 20% by weight of a conjugated diene polymer component, and the swelling index of the component is 5 to 15, and contains a foaming agent. A resin whose amount is 4 to 12 parts by weight with respect to 100 parts by weight of the resin component is preferred.
For the step (3), the rubber component-containing polystyrene resin particles obtained in the step (2) are placed in a pressure vessel equipped with a stirrer and stirred in an aqueous medium in the presence of a suspension stabilizer and a surfactant. A well-known method can be used by the method of making it disperse | distribute below and impregnating a foaming agent.
In order to shorten the foaming agent impregnation time and make the resin particles spherical, it is preferable to heat the inside of the container to 90 to 120 ° C. The heating temperature is preferably selected in consideration of the pressure resistance of the container, the blocking property of the resin particles, the impregnation time, and the like. When the foaming agent impregnation temperature is less than 90 ° C., the time required to spheroidize the particles becomes long, and when it exceeds 120 ° C., the blocking of the particles increases. A more preferable impregnation temperature range is 100 to 116 ° C.
[0025]
After the impregnation treatment, the mixture is cooled to room temperature, the foaming agent remaining in the container is removed, and taken out at room temperature to obtain a particulate foamable resin. In the aqueous medium, in addition to the above-mentioned foaming agent, surfactants such as dodecylbenzenesulfonates and laurylalkoxysulfonates, dispersions of magnesium carbonate, magnesium sulfate, sodium pyrophosphate, calcium carbonate, talc, tricalcium phosphate, etc. An agent or the like can be mixed.
Further, in the aqueous medium, a solvent such as toluene, xylene, ethylbenzene, cyclohexane or the like can be added as a plasticizer for improving the pre-foaming property, as known as a known formulation for polystyrene particulate foamed resin.
About the process of (4) In this invention, after making a resin particle impregnate a foaming agent in a pressure vessel, after cooling a pressure vessel and cooling temperature to 40 degrees C or less and taking out a foaming agent impregnated particle, a foaming agent The impregnated particles are washed with water or acidic water, dehydrated and dried.
[0026]
The dehydration of the particles described above removes the water adhering to the surface of the particles. In the next drying process, the drying time is shortened and the dried state of the particles is made constant, so that the state before drying is made constant. For the dehydration, a commonly used particle dehydration treatment can be used. For example, it is preferable to use a centrifugal dehydrator.
The resin particles dehydrated by the above treatment contain absorbed moisture, and the moisture gradually evaporates. In this state, the bubble size of the particulate foamed resin obtained by foaming becomes non-uniform. In the present invention, the dehydrated particles are dried. Drying is generally warm air drying. It is preferable to use a commonly used stirred hot air particle dryer.
[0027]
The steps from obtaining the above-mentioned particulate foamable resin obtained by hot-air drying to the particulate foamed resin and the molded body can be performed by using a known method performed with a particulate styrenic foamable resin. It is not limited.
In foaming of the obtained particulate foamable resin, foaming is performed by steam heating using a known foaming machine for polystyrene foam beads. The foaming conditions are, for example, a steam heating temperature of 95 to 104 ° C. and a heating time at this temperature of 10 to 150 seconds. Further, the particulate foamed resin discharged from the foaming machine is aged in the atmosphere such as a silo for 16 hours or more, and the air is infiltrated into the particulate foamed resin.
[0028]
The true density of the foamed resin after aging, that is, the foamed resin obtained by foaming the particulate foamable resin of the present invention is 15 to 100 kg / m. Three It is. 15kg / m Three If the ratio is less than 1, the foaming ratio is too high, the particulate foamed resin cell membrane is broken, and a good particulate foamed resin having an expansion force cannot be obtained. 100 kg / m Three On the other hand, the expansion ratio is too low, and it is necessary to perform foaming slowly, and it is difficult to control the foaming heat, and the density of the particulate foamed resin is not stable.
The particulate foamed resin after aging thus obtained is fused and integrated by steam heating in a molding die provided with a small hole or slit built in a known automatic molding machine for polystyrene foam beads. A foamed molded product is obtained.
[0029]
In molding, the mold is pre-heated by steam blowing before filling the foamed resin into the mold, and after filling the mold with the foamed resin in the mold, the air in the mold is released by one heating or reverse one heating. The particles are expelled and the particles are sufficiently preheated, and the particles are sufficiently heated by convex and concave double-sided heating to sufficiently fuse the particles. Alternatively, after filling the mold with particles, the mold is evacuated to remove air in the mold, and then steam is introduced into the mold to heat-fuse the particles. In one heating and reverse one heating, the steam pressure in the mold is 0.3 to 0.8 kgf / cm 2 The heating time is preferably 5 to 15 seconds. In double-sided heating, the steam pressure in the mold is 0.8 to 1.2 kgf / cm 2 The heating time is preferably 3 to 15 seconds. The longer the heating time and the higher the in-mold steam pressure, the better the interparticle fusion rate of the molded body, but the molded body contracts, sinks, warps, and the appearance deteriorates.
[0030]
Since the molded body taken out from the molding machine contains moisture and contracts, it is dried in an atmosphere of 40 to 50 ° C. for 3 to 4 hours.
The foamed molded product in the present invention obtained by molding the aging particulate foamed resin thus obtained has a bulk density of 10 to 65 kg / m. Three It is. Bulk density is 10kg / m Three If it is less than the range, the compressive strength is lowered, and a good appearance cannot be obtained. Bulk density is 65kg / m Three The weight exceeding 1 is large and it is economically disadvantageous.
Further, the interparticle fusion rate of the foamed molded product of the present invention is 85% or more. When the interparticle fusion rate is less than 85%, the tensile strength of the molded body is lowered, and the crack resistance of the molded body is lowered. A particularly preferable range of the interparticle fusion rate is 90% or more.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
The properties of the particles and the like in the examples and comparative examples were measured and evaluated as follows.
(1) Average particle diameter of particulate foamable resin (X)
A projection image plane of 200 arbitrarily selected particulate foamable resins is created. The area of the projection surface of each particle is obtained, and the equivalent circle diameter converted with the diameter of the circle of the same area is obtained. In order to perform measurement quickly, a color image processor SPICCA-II manufactured by Nippon Avionics Co., Ltd. was used. The average of 200 equivalent circle diameters was defined as the average particle diameter X (mm) of the particulate foamable resin.
(2) Sphericality of particulate foamable resin
Create a projection surface by placing particulate foamable resin on a flat surface and irradiating the particle with parallel light, and the maximum distance between the two lines when the particle projection surface is sandwiched between two parallel lines. One is the major axis of the particle and the smallest is the minor axis. The ratio (major axis / minor axis), which is the ratio of the obtained major axis and minor axis, was calculated, and the average of 200 particles was determined as the sphericity. Evaluation was as follows.
Symbol (major / minor) value
◎ 1.00 or more and less than 1.10
○ 1.10 or more and less than 1.20
△ 1.20 or more, less than 1.30
× 1.30 or more
[0032]
(3) Particle size distribution of particulate foamable resin
A projected image plane of 200 arbitrarily selected particulate foamable resins is created, and the equivalent circle diameter of each particle is obtained. The standard deviation σ is obtained using 200 circle equivalent diameter values as a population. In order to perform measurement quickly, a color image processor SPICCA-II manufactured by Nippon Avionics Co., Ltd. was used. A ratio σ / X of 200 equivalent values X of equivalent circle diameters is used as an index of particle size distribution. Evaluation was as follows.
Symbol σ / X value
◎ Less than 0.09
○ 0.09 or more and less than 0.12
△ More than 0.12 and less than 0.18
× 0.18 or more
[0033]
(4) Swelling index of conjugated diene polymer component
30 ml of toluene is added to 0.5 g of rubber-modified polystyrene resin, immersed for 24 hours at 25 ° C., shaken for 5 hours, and the insoluble matter is separated using a centrifuge. The supernatant is removed, 30 ml of toluene is newly added, shaken at 25 ° C. for 1 hour, and the insoluble matter is separated by a centrifuge. The supernatant is removed and the weight is measured (W1). Thereafter, vacuum drying is performed at 100 ° C. for 2 hours, and the weight of the residue is measured (W2). The swelling index is obtained by the following formula. Swelling index = (W1-W2) / W2.
(5) Foaming agent content
0.5 g of the particulate foamable resin was heated to 170 ° C., and the generated gas was sent into the Karl Fischer liquid. The water content in the particulate foamable resin was determined from the amount of water absorbed in the Karl Fischer liquid. Next, 2 g of the particulate foamable resin was heat-treated on a 200 ° C. hot platen to determine the weight loss, and the water content obtained previously was subtracted to determine the foaming agent content.
[0034]
(6) True density of particulate foamed resin
The true density ρ (g / cm of the particulate foamed resin by the following formula Three )
ρ = W / V
W: Weight of particulate foamed resin (g)
V: Volume of the particulate foamed resin obtained by the submersion method (cm Three )
(7) Bulk density of particulate foamed resin molding
In accordance with JIS K6767, the bulk density D (g / cm Three )
D = G / V
G: Weight of the particulate foamed resin molding (g)
V: Volume of the particulate foamed resin molding (cm Three )
(8) Tensile breaking strength of particulate foamed resin molding
The measurement was performed according to JIS K6767. Evaluation was as follows.
Symbol Tensile strength at break
◎ 3.5kgf / cm 2 more than
○ 3.0 or more 3.5kgf / cm 2 Less than
△ 2.5 or more and less than 3.0
× Less than 2.5
[0035]
(9) Falling ball impact strength of particulate foamed resin moldings
It measured according to JIS K-9511. That is, a test piece having a thickness of 20 mm, a width of 50 mm, and a length of 165 mm was cut out from the particulate foamed resin molded article, and both ends of the test piece were fixed between two fulcrums spaced at a distance of 125 mm. I dropped it. The height at which cracks occurred in half of the four test pieces was determined. The height was defined as a falling ball height T (cm). Evaluation was as follows.
Symbol T value
◎ More than 32cm
○ 28cm or more and less than 32cm
△ 24cm or more and less than 28cm
× Less than 24cm
(10) Appearance of particulate foamed resin molding
Evaluation was as follows.
Symbol Appearance
◎ No voids between particles, good appearance with no sinks, warping or melting.
○ Although there is a slight space between the particles, the appearance is almost good.
A gap is conspicuous between the particles depending on the portion. Appearance is not good.
× There are sink marks, warpage, and melted parts. There is partial shrinkage and the appearance is not good.
[0036]
(11) Inter-particle fusion rate of the compact
For 50 particles exposed on the fracture surface of the compact, count the number of particles destroyed to the inside of the particles (N1) and the number of particles exposed to the particle surface without breaking the inside of the particles (N2). Further, the interparticle fusion rate Y (%) of the molded product was determined.
Y = [(N1) / (N1 + N2)] × 100
Evaluation was as follows.
Symbol Y value
◎ 90% or more and 100% or less
○ 80% or more and less than 90%
△ 70% or more and less than 80%
× Less than 70%
[0037]
[Example 1]
A high impact polystyrene (manufactured by Asahi Kasei Kogyo Co., Ltd.) containing 12 wt% of high cis polybutadiene rubber as a butadiene component and having a rubber component swelling index of 9.5 mixed with 0.1 part of calcium stearate in an extruder. It was melted by heating at 250 ° C. and melt-kneading. The melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.7 mm, and the strand immediately cooled in water was sent to a cutter while being taken up by a take-up machine. As the cutter, a cutter (fan plastic FC1512 made by Hoshi Plastics) provided with a blade rotating in a direction perpendicular to the strand take-up direction was used. The inclined blade angle θ of the cutter rotary blade was 55 °. The obtained pellets had a diameter of 1.0 mm and a length of 1.0 mm.
[0038]
400 g of the obtained cylindrical particles were charged into a 2.0 L pressure vessel equipped with a stirrer together with 520 g of water and 20 g of magnesium carbonate powder, and further a composition of i-pentane / n-pentane = 60/40 (wt ratio) as a blowing agent. 48 g of the mixed pentane was added and the container was sealed, and then the temperature was raised to 115 ° C. in 30 minutes while being stirred at 600 rpm, and held at 115 ° C. for 6 hours. The container was cooled and the particulate foamable resin was taken out. The taken out particles were dehydrated and air-dried to obtain a particulate foamable resin. The average particle diameter of the obtained particles was 1.15 mm, and the sphericity was 1.04. In the particle size distribution, σ was 0.081 mm, and σ / X was 0.07. The foaming agent content in the obtained particles was 6.6 parts by weight with respect to 100 parts by weight of the resin.
[0039]
The obtained particulate foamable resin was foamed by steam heating, and the true density was 29 kg / m. Three The particulate foamed resin was made into a steam pressure of 0.8 kgf / cm. 2 Was molded in-mold to obtain a plate-like molded body of 300 × 300 × 50 mm. The bulk density of the obtained molded body is 20 kg / m. Three The tensile strength at break is 3.6 kgf / cm 2 Met. Further, an L-shaped molded body of the same particulate foamed resin was manufactured, and the result of evaluating the crack resistance by the falling ball height of the molded body was T = 34 cm, which was good. The interparticle fusion rate was 92%.
[0040]
[Example 2]
The conditions for taking out the extruded strand were changed, and the obtained pellets had a diameter of 0.88 mm and a length of 0.85 mm. The impregnation operation was performed in the same manner as in Example 1 except that the amount of the blowing agent charged was 40 g. The obtained particulate foamable resin had an average particle size of 1.00 mm and a sphericity of 1.06. Σ / X which is an index of the particle size distribution was 0.08. The foaming agent content was 5.5 parts by weight. Table 1 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after preparing a true density particulate foamable resin similar to Example 1 and a molded body having the same bulk density.
[0041]
[Example 3]
The conditions for taking out the extruded strand were changed, and the obtained pellets had a diameter of 1.15 mm and a length of 1.1 mm. A particulate foamable resin was produced in the same manner as in Example 1 except that the amount of foaming agent charged was 36 g. The obtained particulate foamable resin had an average particle size of 1.3 mm and a sphericity of 1.09. Σ / X which is an index of the particle size distribution was 0.09. The foaming agent content was 4.8 parts by weight. Table 1 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after preparing a true density particulate foamable resin similar to Example 1 and a molded body having the same bulk density.
[0042]
[Example 4]
Mixing 15 parts by weight of styrene-butadiene block copolymer (60% by weight of butadiene component) as a butadiene component and mixing 0.1 parts of calcium stearate with high impact polystyrene (manufactured by Asahi Kasei Kogyo Co., Ltd.) having a rubber component swelling index of 10. The melted material was heated and melted at 250 to 260 ° C. in an extruder and melt-kneaded. The same procedure as in Example 1 was performed except that the melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.65 mm. The obtained pellets before impregnation with the blowing agent had a diameter of 0.75 mm and a length of 0.7 mm.
[0043]
As a blowing agent, 60 g of mixed pentane having a composition of i-pentane / n-pentane = 50/50 (wt ratio) was added, and after sealing the container, the temperature was raised to 115 ° C. in 30 minutes while stirring at 600 rpm. Hold at 6 ° C. for 6 hours. The foaming agent content in the particulate foamable resin obtained after impregnation with the foaming agent was 9.5 parts by weight with respect to 100 parts by weight of the resin. The average particle diameter of the obtained particulate foamable resin was 0.85 mm, and the particle sphericity was 1.08. Σ / X indicating the particle size distribution was 0.10. In addition, it is obtained by forming a particulate foamable resin having the same true density as in Example 1 and a molded body having the same bulk density and then foam-molding the particulate foamable resin under the same conditions as shown in Example 1. Table 1 shows the performance of the molded body.
[0044]
[Example 5]
Expandable particles were produced in the same manner as in Example 1 except that the tilt angle θ of the cutter rotary blade was set to 65 °. The obtained particulate foamable resin had an average particle size of 1.17 mm and a sphericity of 1.11. Σ / X, which is an index of particle size distribution, was 0.11. The foaming agent content was 6.6 parts by weight. Table 1 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after preparing a true density particulate foamable resin similar to Example 1 and a molded body having the same bulk density.
[0045]
[Example 6]
Expandable particles were produced in the same manner as in Example 1 except that the inclined blade angle θ of the cutter rotary blade was 45 °. The obtained particulate foamable resin had an average particle size of 1.15 mm and a sphericity of 1.18. Σ / X, which is an index of particle size distribution, was 0.12. The foaming agent content was 6.6 parts by weight. Table 1 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after preparing a true density particulate foamable resin similar to Example 1 and a molded body having the same bulk density.
[0046]
[Example 7]
The same weight of high impact polystyrene and polystyrene used in Example 1 were mixed and melt-kneaded with an extruder to obtain a resin having a rubber component amount of 6% by weight. The melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.7 mm, and the strand immediately cooled in water was sent to a cutter while being taken up by a take-up machine. As the cutter, a cutter (water-cooled pelletizer manufactured by Katsu Seisakusho Co., Ltd.) equipped with a device for water-cooling the fixed blade with a cutter having a rotation axis of the rotary blade in the direction perpendicular to the strand take-up direction as shown in FIG. The cylindrical resin particles thus obtained were used to perform the impregnation operation in the same manner as in Example 1 except that the foaming agent impregnation time was raised to 110 ° C. in 30 minutes and held at 110 ° C. for 4 hours. A foamable resin was obtained. The average particle diameter of the obtained particulate foamable resin was 1.13 mm, and the particle sphericity was 1.16. Σ / X indicating the particle size distribution was 0.12. The foaming agent content was 6.1 parts by weight. Table 1 shows the results of evaluating the performance of the molded article in the same manner as in Example 1 after forming a true density particulate foamable resin similar to Example 1 and a molded article having the same bulk density.
[0047]
[Example 8]
A high-impact polystyrene containing 8 wt% of low-cis polybutadiene rubber as the butadiene component and having a swelling index of 14 for the rubber component and 0.15 parts of ethylene bisstearamide is heated at 240 to 250 ° C. in an extruder. Melted and melt kneaded. The melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.9 mm to obtain cylindrical particles. The same cutter as in Example 5 was used. Further, the same impregnation operation as in Example 1 was performed to obtain a particulate foamable resin. The average particle diameter of the obtained particulate foamable resin was 1.25 mm, and the particle sphericity was 1.18. Σ / X indicating the particle size distribution was 0.14. The foaming agent content was 6.8 parts by weight. Table 1 shows the results of evaluating the performance of the molded body in the same manner as in Example 1 after making the same particle density foamable resin as in Example 1 and the molded body having the same bulk density.
[0048]
[Example 9]
10 parts by weight of a styrene-butadiene block copolymer (containing 60% by weight of butadiene) was mixed with 100 parts by weight of the high impact polystyrene used in Example 1, and the mixture was extruded and melted to obtain a resin having a rubber component amount of 17% by weight. Using the same cutter as in Example 5, cylindrical particles are used, and using this resin particle, the foaming agent impregnation time is raised to 110 ° C. in 30 minutes and held at 110 ° C. for 4 hours, as in Example 1. An impregnation operation was performed to obtain a particulate foamable resin. The average particle diameter of the obtained particulate foamable resin was 1.19 mm, and the particle sphericity was 1.18. Σ / X indicating the particle size distribution was 0.15. The foaming agent content was 7.1 parts by weight. Table 1 shows the results of evaluating the performance of the molded article in the same manner as in Example 1 after forming a true density particulate foamable resin similar to Example 1 and a molded article having the same bulk density.
[0049]
[Comparative Example 1]
Using the same resin and additive as in Example 1, the pellet cutter is a cutter having a rotating blade rotation axis in the direction perpendicular to the strand take-up direction as shown in FIG. 3, and a device for water-cooling the fixed blade is attached. A cylindrical pellet was obtained in the same manner as in Example 1 except that a non-generic cutter was used. Further, a particulate foamable resin was obtained by the same impregnation operation as in Example 1. The average particle diameter of the obtained particulate foamable resin was 1.16 mm, and the particle sphericity was 1.33. Σ / X indicating the particle size distribution was 0.21. The foaming agent content was 6.6 parts by weight. Table 2 shows the results of evaluating the performance of the molded body in the same manner as in Example 1 after making the same particle density foamable resin as in Example 1 and the molded body having the same bulk density. The molded product performance was inferior to the molded product of Example 1.
[0050]
[Comparative Example 2]
A high-impact polystyrene containing 7 wt% of low-cis polybutadiene rubber as a butadiene component and a rubber component swelling index of 4 and 0.15 parts of calcium stearate is melted by heating at 240 to 250 ° C. in an extruder. Kneaded. The melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.9 mm. Cutter and foaming agent impregnation operations were performed in the same manner as in Comparative Example 1 to obtain a particulate foamable resin. The average particle diameter of the obtained particulate foamable resin was 1.20 mm, and the particle sphericity was 1.31. Σ / X indicating the particle size distribution was 0.22. The foaming agent content was 5.6 parts by weight. Table 2 shows the results of evaluating the performance of the molded article in the same manner as in Example 1 after making the same particle density foamable resin as in Example 1 and the molded article having the same bulk density.
[0051]
[Comparative Example 3]
A high-impact polystyrene containing 9 wt% of low-cis polybutadiene rubber as a butadiene component and having a rubber component swelling index of 17 and 0.15 part of calcium stearate is melted by heating at 240 to 250 ° C. in an extruder. Kneaded. The melt-kneaded resin was extruded from a die head having an extrusion hole having a diameter of 0.9 mm. Cutter and foaming agent impregnation operations were performed in the same manner as in Comparative Example 1 to obtain a particulate foamable resin. The average particle diameter of the obtained particulate foamable resin was 1.19 mm, and the particle sphericity was 1.22. Σ / X indicating the particle size distribution was 0.22. The foaming agent content was 7.1 parts by weight. Table 2 shows the results of evaluating the performance of the molded article in the same manner as in Example 1 after making the same particle density foamable resin as in Example 1 and the molded article having the same bulk density.
[0052]
[Comparative Example 4]
Expandable particles were produced in the same manner as in Example 1 except that the tilt angle θ of the cutter rotary blade was set to 75 °. The obtained particulate foamable resin had an average particle size of 1.16 mm and a sphericity of 1.11. Σ / X, which is an index of the particle size distribution, was 0.13. The foaming agent content was 6.6 parts by weight. After the extruded strand of resin was cut with a cutter, damage to the blade was observed on the rotary blade. Table 2 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after the same density of the particulate foamable resin and the same bulk density molded body as in Example 1.
[0053]
[Comparative Example 5]
Expandable particles were produced in the same manner as in Example 1 except that the tilt angle θ of the cutter rotary blade was set to 35 °. The obtained particulate foamable resin had an average particle size of 1.14 mm and a sphericity of 1.25. Σ / X, which is an index of particle size distribution, was 0.18. The foaming agent content was 6.6 parts by weight. Table 2 shows the results of evaluating the performance of the particulate foamed resin molded body in the same manner as in Example 1 after the same density of the particulate foamable resin and the same bulk density molded body as in Example 1.
[0054]
[Table 1]
Figure 0003856534
[0055]
[Table 2]
Figure 0003856534
[0056]
【The invention's effect】
According to the present invention, a rubber-modified particulate rubber-modified styrene-based foaming resin containing a conjugated diene polymer component having a specific particle sphericity and particle size distribution can be used to transport the particulate foamed resin. The fluidity in the tube and the filling property into the molding die are good, and the molded article having excellent tensile properties, crack resistance and appearance can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for pelletizing with an extruder.
FIG. 2 is a schematic diagram of a cutter provided with a rotary blade having a rotation axis parallel to the strand take-up direction. (A) is the direction orthogonal to the strand take-up direction, and (b) is a view as seen from diagonally above the strand take-up direction.
FIG. 3 is a schematic view of a cutter provided with a rotary blade having a rotation axis orthogonal to the strand take-up direction. (A) is the direction orthogonal to the strand take-up direction, and (b) is a view as seen from diagonally above the strand take-up direction.
[Explanation of symbols]
1 Extruder
2 Water-cooled bus
3 Strand
4 Picker
5 Cutter
6 Rotating blade
7 Fixed blade
8 Rotating part
9 Roll blade
10 Rotating shaft
11 Drive unit
12 Arrow indicating the moving direction of the rotary blade
13 Arrow indicating the moving direction of the rotary blade

Claims (6)

粒子状ゴム変性スチレン系発泡性樹脂であって、平均粒径Xが0.8〜1.5mm、球形度が1.0〜1.2であり、粒径分布の標準偏差σと平均粒径Xとの比σ/Xが0.12以下である粒子状ゴム変性スチレン系発泡性樹脂。  A particulate rubber-modified styrene-based foaming resin having an average particle size X of 0.8 to 1.5 mm, a sphericity of 1.0 to 1.2, a standard deviation σ of the particle size distribution and an average particle size A particulate rubber-modified styrene-based foaming resin having a ratio σ / X with X of 0.12 or less. 共役ジエン系重合体成分を3〜20重量%含有し、該成分の膨潤指数が5〜15である請求項1記載の粒子状ゴム変性スチレン系発泡性樹脂。  The particulate rubber-modified styrenic foamable resin according to claim 1, which contains 3 to 20% by weight of a conjugated diene polymer component and the swelling index of the component is 5 to 15. 発泡剤含有量が樹脂成分100重量部に対し4〜12重量部である請求項1又は2記載の粒子状ゴム変性スチレン系発泡性樹脂。  The particulate rubber-modified styrenic foamable resin according to claim 1 or 2, wherein the foaming agent content is 4 to 12 parts by weight per 100 parts by weight of the resin component. 請求項1〜3いずれかに記載の粒子状発泡性樹脂を発泡させて得られる、真密度が15〜100kg/mである粒子状ゴム変性スチレン系樹脂。A particulate rubber-modified styrenic resin having a true density of 15 to 100 kg / m 3 obtained by foaming the particulate foamable resin according to claim 1. 請求項4記載の樹脂を型内成形して得られる、かさ密度が10〜65kg/mで、かつ、粒子間融着率85%以上である発泡成形体。 A foam molded article obtained by in-mold molding of the resin according to claim 4 and having a bulk density of 10 to 65 kg / m 3 and an interparticle fusion rate of 85% or more. 次の(1)〜(4)の工程を含む、請求項1〜3いずれかに記載の粒子状ゴム変性スチレン系発泡性樹脂の製造方法。
(1)ゴム変性スチレン系樹脂を押し出し溶融させ、ダイより溶融ストランドを押し出し直ちに水冷する工程
(2)上記水冷され固化したストランドを、その引き取り方向と平行方向に回転軸を有する回転刃であって、傾き刃角θが40 °〜70 °である回転刃を有するカッターでストランドを切断して円柱状ペレットを得る工程
(3)得られた上記ペレットに、90 〜120 ℃の温度で、発泡剤を水中懸濁含浸させる工程
(4)得られた上記発泡剤含浸ペレットを脱水、乾燥させる工程
The manufacturing method of the particulate rubber modified styrene-type foaming resin in any one of Claims 1-3 including the process of following (1)-(4).
(1) A step of extruding and melting a rubber-modified styrenic resin, extruding a molten strand from a die and immediately water-cooling (2) a rotating blade having a rotating shaft in a direction parallel to the take-up direction of the water-cooled and solidified strand. Step (3) of obtaining a cylindrical pellet by cutting the strand with a cutter having a rotary blade having an inclined blade angle θ of 40 ° to 70 ° (3) A foaming agent is applied to the obtained pellet at a temperature of 90 to 120 ° C. (4) Step of dehydrating and drying the obtained foaming agent impregnated pellets
JP20306097A 1997-07-29 1997-07-29 Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof Expired - Lifetime JP3856534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20306097A JP3856534B2 (en) 1997-07-29 1997-07-29 Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20306097A JP3856534B2 (en) 1997-07-29 1997-07-29 Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JPH1143554A JPH1143554A (en) 1999-02-16
JP3856534B2 true JP3856534B2 (en) 2006-12-13

Family

ID=16467681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20306097A Expired - Lifetime JP3856534B2 (en) 1997-07-29 1997-07-29 Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP3856534B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642480B2 (en) * 2004-01-13 2011-03-02 株式会社ジェイエスピー Method for producing thermoplastic resin particles
BRPI0607430B8 (en) 2005-02-14 2021-06-22 Johnson & Johnson Vision Care comfortable ophthalmic device and methods of its production
JP2007015228A (en) * 2005-07-07 2007-01-25 Jsp Corp Manufacturing process of thermoplastic resin foamed particle, thermoplastic resin particle, thermoplastic resin foamed particle and molded body from thermoplastic resin foamed particle
JP5034216B2 (en) * 2005-11-02 2012-09-26 テクノポリマー株式会社 Styrenic resin particles for modeling by SLS method and manufacturing method thereof
JP5235914B2 (en) * 2010-01-15 2013-07-10 積水化成品工業株式会社 Expandable styrene resin particles
JP6130700B2 (en) * 2013-03-28 2017-05-17 積水化成品工業株式会社 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
CN113459325A (en) * 2021-05-24 2021-10-01 余闯 Preparation system and preparation method of UV-cured polyolefin hot melt adhesive

Also Published As

Publication number Publication date
JPH1143554A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
TWI529205B (en) Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form
JP3856534B2 (en) Particulate styrene-based foamable resin, particulate styrene-based foamed resin, molded product thereof, and production method thereof
JP5796390B2 (en) Method for producing foamable thermoplastic resin particles
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP3683022B2 (en) Method for producing expandable resin particles
JP3311398B2 (en) Expandable styrene resin particles and method for producing the same
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JPH06298983A (en) Production of expandable thermoplastic resin particle
JP5918529B2 (en) Method for producing polystyrene resin particles, method for producing pre-expanded particles, and method for producing bead foam moldings
JPH07316335A (en) Production of expandable thermoplastic resin particle
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2001181434A (en) Expandable styrene-based resin particle and colored expandable styrene-based resin particle
JPH1135730A (en) Expandable styrene resin particle and molded foam obtained therefrom
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2013082865A (en) Expandable polystyrene-based resin particle and production method thereof, polystyrene-based resin pre-expanded particle and polystyrene-based resin expansion-molded article
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JPH10330526A (en) Heat-resistant expanded resin particle
JP2001164028A (en) Expandable styrene-based resin particle and method for producing the same particle
JPH1180412A (en) Heat-resistant foamed resin particle
JP2013227537A (en) Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term