JP7262268B2 - Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion - Google Patents

Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion Download PDF

Info

Publication number
JP7262268B2
JP7262268B2 JP2019060564A JP2019060564A JP7262268B2 JP 7262268 B2 JP7262268 B2 JP 7262268B2 JP 2019060564 A JP2019060564 A JP 2019060564A JP 2019060564 A JP2019060564 A JP 2019060564A JP 7262268 B2 JP7262268 B2 JP 7262268B2
Authority
JP
Japan
Prior art keywords
particles
particle size
mass
thermoplastic resin
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060564A
Other languages
Japanese (ja)
Other versions
JP2020055989A (en
Inventor
直起 道畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Publication of JP2020055989A publication Critical patent/JP2020055989A/en
Application granted granted Critical
Publication of JP7262268B2 publication Critical patent/JP7262268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、クッション用熱可塑性樹脂発泡粒子、クッション体及びクッション用発泡性熱可塑性樹脂粒子に関する。更に詳しくは、本発明は、繰り返し使用しても体積変化が少ないクッション用熱可塑性樹脂発泡粒子、それが充填として封入されたクッション体及びクッション用発泡性熱可塑性樹脂粒子に関する。 TECHNICAL FIELD The present invention relates to foamed thermoplastic resin particles for cushions, cushion bodies, and expandable thermoplastic resin particles for cushions. More particularly, the present invention relates to foamed thermoplastic resin particles for cushioning which show little change in volume even after repeated use, a cushion body in which the expanded thermoplastic resin particles are enclosed as a filler , and expandable thermoplastic resin particles for cushioning.

従来から、充填材として綿、ポリウレタンフォーム及び発泡樹脂粒子などを、布や皮などの袋体に充填したクッション体が知られている。
充填材に綿を使用したクッション体では、綿がスポンジのように圧縮され、その容積が縮小するように変形することでクッション性を発現する。
また、充填材に比較的大きな粒子径の発泡樹脂粒子を使用したクッション体では、発泡樹脂粒子が単に圧縮され、その容積が縮小するように変形することでクッション性を発現し、充填材に比較的小さな粒子径の発泡樹脂粒子を使用したクッション体では、発泡樹脂粒子が袋体内で流動(移動)することでクッション性を発現する。
2. Description of the Related Art Conventionally, there has been known a cushion body in which a bag made of cloth or leather is filled with cotton, polyurethane foam, foamed resin particles, or the like as a filler.
A cushioning body using cotton as a filling material exhibits cushioning properties by compressing the cotton like a sponge and deforming it so that its volume is reduced.
In addition, in a cushion body using foamed resin particles with a relatively large particle size as a filler, the foamed resin particles are simply compressed and deformed to reduce their volume, thereby exhibiting cushioning properties and being comparable to fillers. A cushioning body using foamed resin particles having a relatively small particle diameter develops cushioning properties as the foamed resin particles flow (move) in the bag.

例えば、本願出願人は、400~900μmの平均粒子径と、3Nmm3/g以下の部分圧縮荷重を見掛比重で除した値とを有する、多数の発泡樹脂粒子が袋体の中に充填材として封入されたクッション体を提案している(国際公開第WO2003/032783号:特許文献1)。特許文献1では、比較的小さな粒子径の発泡樹脂粒子を使用しかつ発泡樹脂粒子に流動促進剤を含浸させることにより、発泡樹脂粒子同士が極めて小さな力で流動する、滑り易い粒子を提供し、手触りや感触が向上しかつ異音の発生を抑制したクッション体を提供している。 For example, the applicant of the present application has found that a large number of foamed resin particles having an average particle diameter of 400 to 900 μm and a value obtained by dividing a partial compressive load of 3 Nmm 3 /g or less by the apparent specific gravity are filled in a bag. (International Publication No. WO2003/032783: Patent Document 1). In Patent Document 1, foamed resin particles having a relatively small particle size are used and the foamed resin particles are impregnated with a fluidity accelerator to provide particles that are easy to slide and that the foamed resin particles flow with very little force. To provide a cushion body which has improved touch and feel and suppresses the generation of abnormal noise.

また、本願出願人は、伸縮性を有する袋体の中に、袋体の内容積の1.1~3.5倍の体積の発泡樹脂粒子が充填として封入されたクッション体を提案している(特開2004-223002号公報:特許文献2)。特許文献2では、0.4~1.4mmの平均粒子径を有する発泡樹脂粒子を使用し、かつ発泡樹脂粒子100重量部に対し0.4~1.5重量部の流動促進剤を併用することにより、手触りを向上させ、異音の発生を防止すると共に、底着き感のない座り心地とクッションの変形防止を両立したクッション体を提供している。 In addition, the applicant of the present application has proposed a cushion body in which foamed resin particles having a volume 1.1 to 3.5 times the internal volume of the bag body are enclosed as a filler in a stretchable bag body. (Japanese Unexamined Patent Application Publication No. 2004-223002: Patent Document 2). In Patent Document 2, expanded resin particles having an average particle diameter of 0.4 to 1.4 mm are used, and 0.4 to 1.5 parts by weight of a flow accelerator is used in combination with 100 parts by weight of expanded resin particles. As a result, the cushion body is improved in touch feeling, prevents the occurrence of abnormal noise, and achieves both comfort in sitting without a feeling of bottoming out and prevention of deformation of the cushion.

国際公開第WO2003/032783号International Publication No. WO2003/032783 特開2004-223002号公報Japanese Patent Application Laid-Open No. 2004-223002

しかしながら、上記の先行技術のクッション体は、長期的に特定の方向から荷重を受けるために、徐々に圧縮され、大きな体積変化、所謂「ヘタリ」が生じるという課題があった。
荷重を分散させるために、充填材に比較的小さな粒子径の発泡樹脂粒子を使用し、かつ流動促進剤を併用したクッション体においても、同様に体積変化の課題があった。
このように従来は、クッション体が受ける力(荷重)を分散させために、発泡粒子をクッションの充填材として利用し、更に粒子の範囲を小さくし、流動促進剤が必要であった。
そこで、本発明は、繰り返し使用しても体積変化が少ないクッション用熱可塑性樹脂発泡粒子、それが充填として封入されたクッション体及びクッション用発泡性熱可塑性樹脂粒子を提供することを課題とする。
However, the above prior art cushion body has a problem that it is gradually compressed due to long-term load from a specific direction, causing a large change in volume, that is, so-called "settling".
In order to disperse the load, a cushion body using foamed resin particles with a relatively small particle diameter as a filler and also using a fluidity promoter also has the problem of volume change.
Thus, conventionally, in order to disperse the force (load) applied to the cushion body, it has been necessary to use foamed particles as a filling material for the cushion, further reduce the range of the particles, and add a glidant.
Accordingly, it is an object of the present invention to provide cushioning foamed thermoplastic resin particles whose volume change is small even after repeated use, a cushion body in which the foamed thermoplastic resin particles are enclosed as a filler , and foamable thermoplastic resin particles for cushioning. .

そこで、本発明の発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、発泡樹脂粒子の嵩発泡倍数及び粒度分布を規定することにより、繰り返し使用しても体積変化が少ないクッション用熱可塑性樹脂発泡粒子、それが充填として封入されたクッション体及びクッション用発泡性熱可塑性樹脂粒子を提供できることを意外にも見出し、本発明を完成するに至った。 Therefore, the inventors of the present invention have made intensive studies to solve the above problems. The inventors have unexpectedly found that it is possible to provide expanded thermoplastic resin particles, a cushion body in which the expanded thermoplastic resin particles are enclosed as a filler , and expandable thermoplastic resin particles for cushioning, and have completed the present invention.

かくして本発明によれば、熱可塑性樹脂と発泡剤とを含む発泡性熱可塑性樹脂粒子を発泡させた発泡粒子からなり、
前記発泡粒子が、20倍以上60倍未満の嵩発泡倍数を有し、かつ前記発泡粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a)全発泡粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有することを特徴とするクッション用熱可塑性樹脂発泡粒子が提供される。
Thus, according to the present invention, the expanded particles are formed by expanding expandable thermoplastic resin particles containing a thermoplastic resin and a blowing agent,
The expanded particles have a bulk expansion ratio of 20 times or more and less than 60 times, and the expanded particles are sieved on a JIS standard sieve (JIS Z8801-1: 2000 regulation) in 20 stages with a nominal mesh size of 5.60 to 0.212 mm. When sieved using a sieve of the following conditions:
(a) all expanded particles pass through a 5.60 mm nominal sieve and do not pass through a 0.212 mm nominal sieve;
(b) the coefficient of variation (CV value) of the particle size distribution obtained from the mass fraction of particles in the size range sieved between the sieves of each adjacent stage is 4 or less; and (c) the mass fraction of the particles is Foamed thermoplastic resin particles for cushioning, characterized by having a particle size distribution satisfying a mass ratio of 5 to 45% by mass of particles in a particle size range one step smaller or one step larger than the highest particle size range. is provided.

また、本発明によれば、上記のクッション用熱可塑性樹脂発泡粒子が袋体の中に充填材として封入されたクッション体が提供される。
更に、本発明によれば、熱可塑性樹脂と発泡剤とを含む粒子からなり、かつ上記のクッション用熱可塑性樹脂発泡粒子用であることを特徴とするクッション用発泡性熱可塑性樹脂粒子が提供される。
Further, according to the present invention, there is provided a cushion body in which the foamed thermoplastic resin particles for cushioning are enclosed as a filler in a bag body.
Further, according to the present invention, there is provided expandable thermoplastic resin particles for cushioning, which are composed of particles containing a thermoplastic resin and a foaming agent and are for the above foamed thermoplastic resin particles for cushioning. be.

また、本発明によれば、熱可塑性樹脂と発泡剤とを含む、20倍以上60倍未満の嵩発泡倍数を有する発泡粒子製造用の発泡性粒子からなり、
前記発泡性粒子が、0.23~0.92mmの平均粒子径を有し、かつ前記発泡性粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a’)全発泡性粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b’)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有することを特徴とするクッション用発泡性熱可塑性樹脂粒子が提供される。
Further, according to the present invention, the expandable beads for manufacturing expanded beads having a bulk expansion ratio of 20 times or more and less than 60 times, containing a thermoplastic resin and a blowing agent,
The expandable particles have an average particle diameter of 0.23 to 0.92 mm, and the expandable particles are sieved through a JIS standard sieve (JIS Z8801-1: 2000) with a nominal opening of 5.60 to 0.212 mm. When sieved using a 20-stage sieve, the following conditions:
(a′) all expandable particles pass through a sieve with a nominal opening of 5.60 mm and do not pass through a sieve with a nominal opening of 0.212 mm;
(b') the coefficient of variation (CV value) of the particle size distribution determined from the mass ratio of particles in the particle size range sieved between adjacent stages of sieves is 4 or less; and (c') the mass of the particles. Foaming heat for a cushion, characterized by having a particle size distribution satisfying a mass ratio of 5 to 45% by mass of particles in a particle size range one step smaller or one step larger than the highest particle size range. A plastic resin particle is provided.

本発明によれば、繰り返し使用しても体積変化が少ないクッション用熱可塑性樹脂発泡粒子、それが充填として封入されたクッション体及びクッション用発泡性熱可塑性樹脂粒子を提供することができる。
本発明のクッション用熱可塑性樹脂発泡粒子は、クッション、ソファー、椅子、ベッド、マットレス、枕、ぬいぐるみなどのクッション類に好適に用いることができる。
ADVANTAGE OF THE INVENTION According to this invention, the foamed thermoplastic resin particles for cushioning whose volume change is small even after repeated use, the cushioning body and the foamable thermoplastic resin particles for cushioning in which the foamed thermoplastic resin particles are encapsulated as a filler can be provided.
The foamed thermoplastic resin particles for cushions of the present invention can be suitably used for cushions such as cushions, sofas, chairs, beds, mattresses, pillows and stuffed toys.

また、少なくとも次のいずれか1つの要件を満たす場合、より優れたクッション用熱可塑性樹脂発泡粒子を提供できる。
(1)発泡粒子が、0.5~2.8mmの平均粒子径を有し、かつ発泡粒子をJIS標準篩によって篩分した際に、次の条件:
(d)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が40~65質量%である
を満たす粒度分布を有する。
(2)発泡粒子が、発泡粒子を前記JIS標準篩によって篩分した際に、次の条件:
(e)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が65質量%以下である;及び
(f)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する。
(3)発泡粒子が、発泡粒子を前記JIS標準篩によって篩分した際に、次の条件:
(g)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が33~45質量%である;及び
(h)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する。
Moreover, when at least one of the following requirements is satisfied, more excellent foamed thermoplastic resin particles for cushioning can be provided.
(1) The expanded particles have an average particle diameter of 0.5 to 2.8 mm, and the following conditions are met when the expanded particles are sieved through a JIS standard sieve:
(d) having a particle size distribution satisfying the condition that the mass ratio of particles in the particle size range with the highest mass ratio is 40 to 65% by mass;
(2) When the expanded particles are sieved through the JIS standard sieve, the following conditions are met:
(e) the mass fraction of particles in the particle size range having the highest mass fraction of particles is 65 mass % or less; It has a particle size distribution that satisfies a mass ratio of 0.1 to 10% by mass.
(3) When the expanded particles are sieved through the JIS standard sieve, the following conditions are met:
(g) the mass fraction of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass fraction of the particles is the highest is 33 to 45% by mass; and (h) the mass fraction of the particles is It has a particle size distribution that satisfies that the mass ratio of particles in a particle size range two steps smaller or two steps larger than the highest particle size range is 0.1 to 10% by mass.

また、少なくとも次のいずれか1つの要件を満たす場合、より優れたクッション用熱可塑性樹脂発泡粒子製造用のクッション用発泡性熱可塑性樹脂粒子を提供できる。
(4)発泡性粒子が、発泡性粒子をJIS標準篩によって篩分した際に、次の条件:
(d’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が35~70質量%である
を満たす粒度分布を有する。
(5)発泡性粒子が、発泡性粒子をJIS標準篩によって篩分した際に、次の条件:
(e’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が70質量%以下である;及び
(f’)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する。
(6)発泡性粒子が、発泡性粒子をJIS標準篩によって篩分した際に、次の条件:
(g’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が28~32質量%である;及び
(h’)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が3質量%以下である
を満たす粒度分布を有する。
Further, when at least one of the following requirements is satisfied, it is possible to provide expandable thermoplastic resin particles for cushioning which are more excellent for producing foamed thermoplastic resin particles for cushioning.
(4) The expandable particles meet the following conditions when the expandable particles are sieved through a JIS standard sieve:
(d') having a particle size distribution satisfying the condition that the mass ratio of particles in the particle size range with the highest mass ratio is 35 to 70% by mass;
(5) When the expandable particles are sieved through a JIS standard sieve, the following conditions:
(e′) the mass fraction of particles in the particle size range with the highest mass fraction of particles is 70% by mass or less; and (f′) the particle size range one step larger than the highest mass fraction of particles It has a particle size distribution that satisfies a mass ratio of particles of 0.1 to 10% by mass.
(6) The expandable particles meet the following conditions when the expandable particles are sieved through a JIS standard sieve:
(g′) the mass ratio of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass ratio of the particles is the highest is 28 to 32% by mass; and (h′) the mass of the particles. It has a particle size distribution that satisfies that the mass ratio of particles in the particle size range two steps smaller or two steps larger than the particle size range with the highest ratio is 3% by mass or less.

実施例1~8及び比較例1~3の発泡粒子の0.2~5.2mmの粒径(mm)と質量割合x(質量%)の関係を示す図(全体図)である。FIG. 2 is a diagram (overall diagram) showing the relationship between the particle size (mm) of 0.2 to 5.2 mm and the mass ratio x (mass %) of expanded beads of Examples 1 to 8 and Comparative Examples 1 to 3. FIG. 実施例1~8及び比較例1~3の発泡粒子の0.45~1.95mmの粒径(mm)と質量割合x(質量%)の関係を示す図(拡大図)である。FIG. 2 is a diagram (enlarged diagram) showing the relationship between the particle size (mm) of 0.45 to 1.95 mm and the mass ratio x (mass %) of expanded beads of Examples 1 to 8 and Comparative Examples 1 to 3. FIG.

(1)発泡粒子
本発明のクッション用熱可塑性樹脂発泡粒子(以下「発泡粒子」ともいう)は、熱可塑性樹脂と発泡剤とを含む発泡性熱可塑性樹脂粒子を発泡させた発泡粒子からなり、
前記発泡粒子が、20倍以上60倍未満の嵩発泡倍数を有し、かつ前記発泡粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a)全発泡粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有することを特徴とする。
まず、本発明の発泡粒子の特徴である粒度分布及び嵩発泡倍数について説明し、次いでその構成材料およびその製造方法について説明する。
(1) Expanded particles The thermoplastic resin expanded particles for cushioning of the present invention (hereinafter also referred to as "expanded particles") are made of expanded particles obtained by expanding expandable thermoplastic resin particles containing a thermoplastic resin and a blowing agent,
The expanded particles have a bulk expansion ratio of 20 times or more and less than 60 times, and the expanded particles are sieved on a JIS standard sieve (JIS Z8801-1: 2000 regulation) in 20 stages with a nominal mesh size of 5.60 to 0.212 mm. When sieved using a sieve of the following conditions:
(a) all expanded particles pass through a 5.60 mm nominal sieve and do not pass through a 0.212 mm nominal sieve;
(b) the coefficient of variation (CV value) of the particle size distribution obtained from the mass fraction of particles in the size range sieved between the sieves of each adjacent stage is 4 or less; and (c) the mass fraction of the particles is It is characterized by having a particle size distribution that satisfies that the mass ratio of particles in a particle size range one step smaller or one step larger than the highest particle size range is 5 to 45% by mass.
First, the particle size distribution and bulk expansion ratio, which are characteristics of the expanded beads of the present invention, will be explained, and then the constituent materials and the production method thereof will be explained.

(1-1)粒度分布
粒度分布の条件(a)~(h)及び平均粒子径は、発泡粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分(分級)した際の値である。
粒度分布の具体的な測定方法については、実施例において詳述する。
(1-1) Particle size distribution Particle size distribution conditions (a) to (h) and the average particle size are the nominal openings of 5.60 to 0.212 mm of a JIS standard sieve (JIS Z8801-1: 2000). It is a value when sieving (classifying) using a 20-step sieve.
A specific method for measuring the particle size distribution will be described in detail in Examples.

[条件(a)]
条件(a)は、全発泡粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しないことであり、これは、全発泡粒子の粒径範囲が5.60mm未満でかつ0.212mmを超えることを意味する。
全発泡粒子が、公称目開き5.60mmの篩を通過しない粒子を含むと、体積変化が大きくなり、また手触りや座り心地が悪化することがある。一方、全発泡粒子が、公称目開き0.212mmの篩を通過する粒子を含むと、体積変化が大きくなり、また充填量が多くなりクッションの質量が増加することがある。
全発泡粒子は、公称目開き4.00mmの篩を通過しかつ公称目開き0.355mmの篩を通過しないことが好ましく、公称目開き2.00mmの篩を通過しかつ公称目開き0.500mmの篩を通過しないことがより好ましい。
但し、本発明の発泡粒子は、本発明の効果を阻害しない範囲で、公称目開き5.60mmの篩を通過しない粒子、公称目開き0.212mmの篩を通過する粒子を含んでいてもよい。
[Condition (a)]
Condition (a) is that all the expanded particles pass through a sieve with a nominal opening of 5.60 mm and do not pass through a sieve with a nominal opening of 0.212 mm. less than 0.60 mm and greater than 0.212 mm.
If all the foamed particles contain particles that do not pass through a sieve with a nominal mesh size of 5.60 mm, the change in volume increases, and the touch and sitting comfort may deteriorate. On the other hand, if all the expanded particles include particles that pass through a sieve with a nominal opening of 0.212 mm, the volume change will increase and the filling amount will increase, which may increase the mass of the cushion.
All expanded particles preferably pass through a sieve with a nominal opening of 4.00 mm and do not pass through a sieve with a nominal opening of 0.355 mm, pass through a sieve with a nominal opening of 2.00 mm and have a nominal opening of 0.500 mm. more preferably does not pass through the sieve of
However, the expanded particles of the present invention may contain particles that do not pass through a sieve with a nominal opening of 5.60 mm and particles that pass through a sieve with a nominal opening of 0.212 mm, as long as the effects of the present invention are not impaired. .

[条件(b)]
条件(b)は、各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合xより求めた粒度分布の変動係数(CV値)が4以下であることであり、粒度分布がシャープ過ぎず、粒子が揃い過ぎていないことを意味する。
CV値は、下式のように、標準偏差(σ)及び平均値(μ)から求めることができる。
偏差σ2=(Σ(質量割合x-平均値μ)2)/篩の数n
標準偏差σ=√σ2
変動係数CV=標準偏差σ/平均値μ
なお、平均値μ=100/19=5.26、篩の数n=19である。
[Condition (b)]
The condition (b) is that the coefficient of variation (CV value) of the particle size distribution obtained from the mass ratio x of the particles in the particle size range sieved between the sieves in each adjacent stage is 4 or less, and the particle size distribution is not too sharp and grains are not too uniform.
A CV value can be obtained from a standard deviation (σ) and an average value (μ) as in the following formula.
Deviation σ 2 = (Σ (mass ratio x - average μ) 2 )/number of sieves n
Standard deviation σ = √σ 2
Coefficient of variation CV = standard deviation σ / average μ
Note that the average value μ=100/19=5.26 and the number of sieves n=19.

CV値が4を超えると、体積変化が大きくなることがある。
本発明の発泡粒子は、条件(c)に示すように、特異なシャープな分布を有し、CV値の下限は1.5であり、その範囲は、2.0~3.9であることが好ましく、2.5~3.5であることがより好ましい。
If the CV value exceeds 4, the volume change may become large.
The expanded beads of the present invention have a peculiar sharp distribution as shown in condition (c), and the lower limit of the CV value is 1.5, and the range is 2.0 to 3.9. is preferred, and 2.5 to 3.5 is more preferred.

[条件(c)]
条件(c)は、粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%であることであり、粒度分布のピークの両隣の分布のいずれか一方の粒径範囲の粒子の質量割合が5~45質量%であることを意味する。
粒子の質量割合が5質量%未満では、体積変化が大きくなることがある。一方、粒子の質量割合が45質量%を超えると、体積変化が大きくなることがある。
粒子の質量割合は、19~45質量%であることが好ましく、33~45質量%であることがより好ましい。
[Condition (c)]
Condition (c) is that the mass ratio of particles in the particle size range one step smaller or one step larger than the particle size range where the mass ratio of the particles is the highest is 5 to 45% by mass, and the particle size distribution It means that the mass ratio of particles in the particle size range of either one of the distributions on both sides of the peak is 5 to 45% by mass.
If the mass ratio of the particles is less than 5% by mass, the volume change may become large. On the other hand, when the mass ratio of the particles exceeds 45% by mass, the volume change may become large.
The mass ratio of the particles is preferably 19-45% by mass, more preferably 33-45% by mass.

[平均粒子径]
本発明の発泡粒子は、0.5~2.8mmの平均粒子径を有するのが好ましい。
平均粒子径は、下式のように、上記の粒度分布測定において得られた各粒径範囲の粒子の質量割合Rn(%)と各中心粒径(mm)から求めることができる。
平均粒子径={Σ(Dn・Rn)}/100
発泡粒子の平均粒子径が、0.5mm未満では、体積変化が大きくなり、また充填量が多くなりクッションの質量が増加することがある。一方、発泡粒子の平均粒子径が2.8mmを超えると、体積変化が大きくなり、また手触りや座り心地が悪化することがある。
発泡粒子の平均粒子径は、0.7~2.1mmであることが好ましく、0.8~1.4mmであることがより好ましい。
[Average particle size]
The expanded particles of the present invention preferably have an average particle size of 0.5-2.8 mm.
The average particle size can be obtained from the mass ratio Rn (%) of particles in each particle size range obtained in the above particle size distribution measurement and each median particle size (mm), as shown in the following formula.
Average particle size = {Σ(D n R n )}/100
When the average particle diameter of the foamed particles is less than 0.5 mm, the volume change becomes large, and the filling amount becomes large, which may increase the mass of the cushion. On the other hand, when the average particle diameter of the expanded particles exceeds 2.8 mm, the volume change becomes large, and the touch and sitting comfort may deteriorate.
The average particle diameter of the expanded particles is preferably 0.7 to 2.1 mm, more preferably 0.8 to 1.4 mm.

[条件(d)]
本発明の発泡粒子は、次の条件:
(d)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が40~65質量%であるを満たす粒度分布を有することが好ましい。
これは、粒度分布のピークの粒径範囲の粒子の質量割合が40~65質量%であることを意味する。
発泡粒子が0.5~2.8mmの平均粒子径を有しかつ条件(d)を満たす場合、特に、体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(d)の粒子の質量割合が40質量%未満では、体積変化が大きくなることがある。一方、条件(d)の粒子の質量割合が65質量%を超えると、体積変化が大きくなることがある。
条件(d)の粒子の質量割合は、45~60質量%であることが好ましく、50~60質量%であることがより好ましい。
[Condition (d)]
The expanded beads of the present invention meet the following conditions:
(d) It is preferable to have a particle size distribution that satisfies 40 to 65% by mass of particles in the particle size range where the mass ratio of particles is the highest.
This means that the mass proportion of particles in the particle size range of the peak of the particle size distribution is 40-65% by mass.
When the expanded particles have an average particle diameter of 0.5 to 2.8 mm and satisfy the condition (d), the effect of little change in volume, that is, little settling is obtained.
If the mass ratio of the particles in condition (d) is less than 40% by mass, the volume change may become large. On the other hand, when the mass ratio of the particles of condition (d) exceeds 65 mass %, the volume change may become large.
The mass ratio of the particles in condition (d) is preferably 45-60% by mass, more preferably 50-60% by mass.

[条件(e)及び(f)]
また、本発明の発泡粒子は、次の条件:
(e)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が65質量%以下である;及び
(f)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有することが好ましい。
発泡粒子が条件(e)及び(f)を満たす場合、特に、体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(e)は、粒度分布のピークの粒径範囲の粒子の質量割合が65質量%以下であることを意味し、条件(f)は、粒度分布のピークの粒径が大きい側の粒径範囲の粒子の質量割合が0.1~10質量%であることを意味する。
条件(e)の粒子の質量割合が65質量%を超えると、体積変化が大きくなることがある。
本発明の発泡粒子は、条件(e)に示すように、特異なシャープな分布を有し、条件(d)の粒子の質量割合の下限は40質量%であり、その範囲は、45~60質量%であることが好ましく、50~60質量%であることがより好ましい。
条件(f)の粒子の質量割合が0.1質量%未満では、体積変化が大きくなることがある。一方、条件(f)の粒子の質量割合が10質量%を超えると、体積変化が大きくなることがある。
条件(f)の粒子の質量割合は、0.2~9.5質量%であることが好ましく、0.3~9質量%であることがより好ましい。
[Conditions (e) and (f)]
The expanded beads of the present invention also meet the following conditions:
(e) the mass fraction of particles in the particle size range having the highest mass fraction of particles is 65 mass % or less; It preferably has a particle size distribution that satisfies a mass ratio of 0.1 to 10% by mass.
When the expanded beads satisfy the conditions (e) and (f), an effect of little change in volume, that is, little settling is obtained.
The condition (e) means that the mass ratio of particles in the particle size range of the peak of the particle size distribution is 65% by mass or less, and the condition (f) is the particle size on the side where the particle size of the peak of the particle size distribution is larger. It means that the mass fraction of the particles in the range is 0.1-10% by mass.
If the mass ratio of the particles in condition (e) exceeds 65 mass %, the volume change may become large.
The expanded particles of the present invention have a peculiar sharp distribution as shown in condition (e), and the lower limit of the mass ratio of the particles in condition (d) is 40% by mass, and the range is 45 to 60%. % by mass is preferable, and 50 to 60% by mass is more preferable.
If the mass ratio of the particles in the condition (f) is less than 0.1% by mass, the volume change may become large. On the other hand, when the mass ratio of the particles of condition (f) exceeds 10% by mass, the volume change may become large.
The mass proportion of the particles in condition (f) is preferably 0.2 to 9.5 mass %, more preferably 0.3 to 9 mass %.

[条件(g)及び(h)]
さらに、本発明の発泡粒子は、次の条件:
(g)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が33~45質量%である;及び
(h)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有することが好ましい。
発泡粒子が条件(g)及び(h)を満たす場合、特に、体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(g)の粒子の質量割合が33質量%未満では、体積変化が大きくなることがある。一方、条件(g)の粒子の質量割合が45質量%を超えると、体積変化が大きくなることがある。
条件(g)の粒子の質量割合は、34~44質量%であることが好ましく、35~43質量%であることがより好ましい。
条件(h)の粒子の質量割合が0.1質量%未満では、体積変化が大きくなることがある。一方、条件(h)の粒子の質量割合が10質量%を超えると、体積変化が大きくなることがある。
条件(h)の粒子の質量割合は、0.5~9質量%であることが好ましく、1~8質量%であることがより好ましい。
[Conditions (g) and (h)]
In addition, the expanded particles of the present invention meet the following conditions:
(g) the mass fraction of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass fraction of the particles is the highest is 33 to 45% by mass; and (h) the mass fraction of the particles is It is preferable to have a particle size distribution satisfying the mass ratio of particles in a particle size range two steps smaller or two steps larger than the highest particle size range is 0.1 to 10% by mass.
When the expanded beads satisfy the conditions (g) and (h), an effect of little change in volume, that is, little settling is obtained.
If the mass ratio of the particles in condition (g) is less than 33% by mass, the volume change may become large. On the other hand, when the mass ratio of the particles of condition (g) exceeds 45 mass %, the volume change may become large.
The mass ratio of particles in condition (g) is preferably 34 to 44% by mass, more preferably 35 to 43% by mass.
If the mass ratio of the particles in condition (h) is less than 0.1% by mass, the volume change may become large. On the other hand, when the mass ratio of the particles of condition (h) exceeds 10% by mass, the volume change may become large.
The mass proportion of the particles in condition (h) is preferably 0.5 to 9 mass %, more preferably 1 to 8 mass %.

(1-2)嵩密度及び嵩発泡倍数
[嵩発泡倍数]
本発明の発泡粒子は、20倍以上60倍未満の嵩発泡倍数を有する。
嵩発泡倍数が20倍未満では、発泡粒子のクッション性や弾力性が無くなり、硬くなり、また低倍になるのでクッションの質量が増えて取り扱いが悪くなることがある。一方、嵩発泡倍数が60倍を超えると、発泡粒子が柔らかくなり荷重に耐えられず短い期間で体積変化し易くなることがある。
具体的には、嵩発泡倍数は、クッション体に要求される物性などを勘案して設定すればよく、例えば、25~55倍であることが好ましく、30~50倍であることがより好ましい。
発泡粒子の嵩発泡倍数は、下式のように、嵩密度から求めることができる。
嵩発泡倍数=1/嵩密度(g/cm3
(1-2) Bulk Density and Bulk Expansion Ratio [Bulk Expansion Ratio]
The expanded beads of the present invention have a bulk expansion ratio of 20 times or more and less than 60 times.
If the bulk expansion ratio is less than 20 times, the foamed particles lose cushioning properties and elasticity and become hard, and the volume becomes low, so that the mass of the cushion increases and handling becomes difficult. On the other hand, when the bulk expansion ratio exceeds 60 times, the expanded particles become soft and cannot withstand the load, and the volume tends to change in a short period of time.
Specifically, the bulk expansion ratio may be set in consideration of the physical properties required for the cushion body, and is preferably 25 to 55 times, more preferably 30 to 50 times.
The bulk expansion factor of the expanded beads can be obtained from the bulk density as shown in the following formula.
Bulk expansion ratio = 1/bulk density (g/cm 3 )

[嵩密度]
したがって、本発明の発泡粒子は、1/60(0.017)g/cm3を超え1/20(0.05)g/cm3以下の嵩密度を有する。
嵩密度及び嵩発泡倍数の具体的な測定方法については、実施例において詳述する。
[The bulk density]
Accordingly, the expanded beads of the present invention have a bulk density exceeding 1/60 (0.017) g/cm 3 and not more than 1/20 (0.05) g/cm 3 .
Specific methods for measuring bulk density and bulk expansion ratio will be described in detail in Examples.

(1-3)発泡粒子の構成樹脂
本発明の発泡粒子を構成する熱可塑性樹脂の種類は限定されないが、例えば、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂などを単独もしくは2種類以上混合して使用することができる。
また、樹脂製品として一旦使用されてから回収された熱可塑性樹脂の回収樹脂を使用することもできる。
上記熱可塑性樹脂の中でも、非晶性であるポリスチレン(GPPS)などのポリスチレン系樹脂が特に好適に用いられる。
(1-3) Constituent Resins of Expanded Beads The types of thermoplastic resins constituting the expanded beads of the present invention are not limited, but examples include polystyrene-based resins, polyethylene-based resins, polypropylene-based resins, polyester-based resins, and vinyl chloride-based resins. , ABS resin, AS resin, etc. can be used singly or in combination of two or more.
It is also possible to use a recovered thermoplastic resin that has been recovered after being used as a resin product.
Among the above thermoplastic resins, polystyrene-based resins such as amorphous polystyrene (GPPS) are particularly preferably used.

ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレンなどのスチレン系モノマーの単独重合体又はこれらの共重合体などが挙げられる。ポリスチレン系樹脂の中でも、スチレン単位を50質量%以上含有する樹脂が好ましい。 Polystyrene-based resins are not particularly limited, and examples include homopolymers of styrene-based monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene, or these. and the like. Among polystyrene resins, resins containing 50% by mass or more of styrene units are preferred.

また、前記ポリスチレン系樹脂としては、前記スチレン系モノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートなどの単官能モノマーの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。 Further, the polystyrene-based resin may be a copolymer of the styrene-based monomer and a vinyl monomer copolymerizable with the styrene-based monomer, the main component of which is the styrene-based monomer. Examples of such vinyl monomers include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate and cetyl (meth)acrylate, (meth)acrylonitrile, dimethyl maleate, In addition to monofunctional monomers such as dimethylfumarate, diethylfumarate and ethylfumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate can be used.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を含んでもよい。他の樹脂としては、発泡成形体の耐衝撃性を向上させる樹脂として、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を含むゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンなどの耐衝撃性ポリスチレン系樹脂が好ましい。
あるいは、他の樹脂として、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
Moreover, other resins may be included as long as the polystyrene resin is the main component. As other resins, diene-based rubber-like polymers such as polybutadiene, styrene-butadiene copolymers, and ethylene-propylene-nonconjugated diene three-dimensional copolymers are used as resins that improve the impact resistance of foamed moldings. A rubber-modified polystyrene resin containing a high-impact polystyrene resin such as so-called high-impact polystyrene is preferable.
Alternatively, other resins include polyethylene resins, polypropylene resins, acrylic resins, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and the like.

原料となるスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂など、再生品ではないポリスチレン系樹脂(バージンポリスチレン)などを使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られた再生ポリスチレン系樹脂を使用することもできる。
再生ポリスチレン系樹脂としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電梱包用緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したポリスチレン系樹脂を用いることができる。また、使用することができる再生ポリスチレン系樹脂は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練し、リペレットした再生ポリスチレン系樹脂を用いることができる。
また、樹脂には必要に応じて、樹脂以外に添加剤が含まれていてもよい。添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充填剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料などが挙げられる。
Styrene-based resins used as raw materials include ordinary commercially available polystyrene-based resins, polystyrene-based resins newly prepared by suspension polymerization and other methods, and non-recycled polystyrene-based resins (virgin polystyrene). In addition, a recycled polystyrene resin obtained by recycling a used polystyrene resin foam molded product can also be used.
Recycled polystyrene resins are polystyrene resins that are recycled from used polystyrene resin foam moldings, such as fish boxes, cushioning materials for home appliance packaging, food packaging trays, etc. Resin can be used. In addition, the recycled polystyrene resin that can be used is not only obtained by recycling used polystyrene resin foam moldings, but also home appliances (for example, televisions, refrigerators, washing machines, air conditioners, etc.). and office equipment (for example, copiers, facsimile machines, printers, etc.), pulverize, melt-knead, and re-pelletize non-foamed polystyrene-based resin moldings separately collected to use recycled polystyrene-based resins.
In addition, the resin may contain additives other than the resin, if necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, cell control agents, fillers, coloring agents, weathering agents, anti-aging agents, lubricants, anti-fogging agents, fragrances, etc. mentioned.

(1-4)発泡粒子の製造方法
本発明の発泡粒子は、上記の構成樹脂材料を用いて製造された熱可塑性樹脂粒子(以下「樹脂粒子」ともいう)に、発泡剤を含浸させて発泡性熱可塑性樹脂粒子(以下「発泡性粒子」ともいう)を得、これを発泡させることにより製造することができる。
樹脂粒子は、公知の方法で製造されたものを用いることができ、例えば、(1)水性媒体、単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながら単量体を懸濁重合させて熱可塑性樹脂粒子を製造する懸濁重合法、(2)水性媒体及び熱可塑性樹脂種粒子をオートクレーブ内に供給し、熱可塑性樹脂種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながら単量体を連続的に或いは断続的に供給して、熱可塑性樹脂種粒子に単量体を吸収させつつ重合開始剤の存在下にて重合させて熱可塑性樹脂粒子を製造するシード重合法などが挙げられる。なお、熱可塑性樹脂種粒子は、前記(1)の懸濁重合法により製造した後、分級して得てもよい。
上記の単量体としては、(1-3)発泡粒子の構成樹脂に記載の単量体が挙げられる。
(1-4) Method for Producing Expanded Beads The expanded beads of the present invention are produced by impregnating thermoplastic resin particles (hereinafter also referred to as “resin particles”) produced using the above constituent resin material with a blowing agent. It can be produced by obtaining elastic thermoplastic resin particles (hereinafter also referred to as "expandable particles") and expanding them.
As the resin particles, those produced by known methods can be used. (2) supplying an aqueous medium and thermoplastic resin seed particles into an autoclave to disperse the thermoplastic resin seed particles in the aqueous medium; Thereafter, while heating and stirring the inside of the autoclave, the monomer is continuously or intermittently supplied, and the thermoplastic resin seed particles are allowed to absorb the monomer while being polymerized in the presence of the polymerization initiator. A seed polymerization method for producing plastic resin particles and the like can be mentioned. The thermoplastic resin seed particles may be obtained by classifying the particles after they are produced by the suspension polymerization method (1).
Examples of the above monomers include the monomers described in (1-3) Constituent resin of foamed beads.

前記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t-ブチルパーオキシベンゾエート、ジt-ブチルパーオキサイド、t-ブチルパーオキシピバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレートなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられる。これら重合開始剤は1種を単独で用いてもよいし、2種以上を併用してもよい。 The polymerization initiator used in the suspension polymerization method and seed polymerization method is not particularly limited, and examples thereof include benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxide, t-butyl Peroxypivalate, t-butyl peroxy isopropyl carbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy acetate, 2,2-bis organic peroxides such as (t-butylperoxy)butane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, and azo compounds such as azobisdimethylvaleronitrile. One of these polymerization initiators may be used alone, or two or more of them may be used in combination.

水性媒体は、水を主成分とし、アルコール、ケトン、エーテルなどの水溶性有機溶媒を少量含んでもよい。
また、前記懸濁重合法又はシード重合法においては、単量体の液滴又は熱可塑性樹脂種粒子の分散性を安定させるために懸濁安定剤を水性媒体に予め添加してもよい。
懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩などが挙げられる。難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。
アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β-テトラヒドロキシナフタレンスルホン酸塩などが挙げられ、アルキルベンゼンスルホン酸塩が特に好ましい。
The aqueous medium is mainly composed of water and may contain small amounts of water-soluble organic solvents such as alcohols, ketones and ethers.
In the suspension polymerization method or the seed polymerization method, a suspension stabilizer may be added in advance to the aqueous medium in order to stabilize the dispersibility of the droplets of the monomer or the seed particles of the thermoplastic resin.
Examples of suspension stabilizers include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as tribasic calcium phosphate and magnesium pyrophosphate. When using a sparingly water-soluble inorganic salt, an anionic surfactant is usually used in combination.
Examples of anionic surfactants include alkyl sulfates such as sodium lauryl sulfate, alkylbenzenesulfonates such as sodium dodecylbenzenesulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalenesulfonates. and particularly preferred are alkyl benzene sulfonates.

樹脂粒子に発泡剤を含有させる方法としては、熱可塑性樹脂粒子に発泡剤を含浸させる公知の方法が挙げられる。例えば、熱可塑性樹脂粒子が水系媒体に分散したスラリーを、オートクレーブなどの耐圧容器内に入れた後、発泡剤を耐圧容器内に供給し、一定時間保持すればよい。 As a method for incorporating the foaming agent into the resin particles, there is a known method of impregnating the thermoplastic resin particles with the foaming agent. For example, a slurry in which thermoplastic resin particles are dispersed in an aqueous medium is placed in a pressure-resistant container such as an autoclave, and then the foaming agent is supplied to the pressure-resistant container and held for a certain period of time.

また、発泡性粒子は、熱可塑性樹脂と発泡剤とを含有する溶融樹脂を粒状に成形する溶融押出法によって製造しても構わない。
溶融押出法としては、例えば、以下の方法が挙げられる。
まず、熱可塑性樹脂を含む溶融樹脂に、発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を得る。得られた発泡剤含有の溶融樹脂を小孔から直接に、冷却用液体中に押し出しつつ、得られた冷却用液体中で押出物を切断するとともに、押出物を冷却用液体との接触により冷却固化する。
溶融押出法を用いることで、発泡剤が熱可塑性樹脂中に均一に分散した発泡性粒子を得ることができる。
The expandable particles may also be produced by a melt extrusion method in which a molten resin containing a thermoplastic resin and a foaming agent is molded into granules.
Examples of the melt extrusion method include the following methods.
First, a foaming agent is injected and kneaded into a molten resin containing a thermoplastic resin to obtain a molten resin containing the foaming agent. While extruding the obtained molten resin containing the blowing agent directly from the small holes into the cooling liquid, the extrudate is cut in the obtained cooling liquid, and the extrudate is cooled by contact with the cooling liquid. solidify.
By using the melt extrusion method, expandable particles in which the foaming agent is uniformly dispersed in the thermoplastic resin can be obtained.

発泡剤としては、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタンなどの脂肪族炭化水素、1,1-ジクロロ-1-フルオロエタン(HCFC-141b)、1,1-ジクロロ-2,2,2-トリフルオロエタン(HCFC-123)、クロロジフルオロメタン(HCFC-22)、1-クロロ-1,2,2,2-テトラフルオロエタン(HCFC-124)などのクロロフルオロカーボン、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,1,2-テトラフルオロエタン(HFC-134a)、ジフルオロメタン(HFC-32)などのフルオロカーボン、各種アルコール、二酸化炭素、水、及び窒素などの物理発泡剤が挙げられ、これらの中の1種又は2種以上を併用して使用することができる。これらのうち、好ましい発泡剤としては、n-ブタン、イソブタン、n-ペンタン、イソペンタンが挙げられる。
発泡剤の含有量は、熱可塑性樹脂100質量部に対して1~20質量部の範囲が好ましく、2~15質量部の範囲がより好ましい。
Blowing agents include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane, 1,1-dichloro-1-fluoroethane (HCFC-141b), 1,1-dichloro-2 chlorofluorocarbons such as , 2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124), 1, 1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), 1,1,1,2-tetrafluoroethane (HFC-134a), difluoromethane (HFC-32), etc. Physical blowing agents such as fluorocarbons, various alcohols, carbon dioxide, water, and nitrogen can be mentioned, and one or more of these can be used in combination. Among these, preferred blowing agents include n-butane, isobutane, n-pentane, and isopentane.
The content of the foaming agent is preferably in the range of 1 to 20 parts by mass, more preferably in the range of 2 to 15 parts by mass, based on 100 parts by mass of the thermoplastic resin.

本発明の熱可塑性樹脂発泡粒子は、発泡性粒子同士が発泡過程において互いに合着しないように、または発泡粒子同士の帯電を防止するために、あるいは発泡粒子同士の流動を促進するために、例えば脂肪酸(ステアリン酸、ラウリル酸、パルミチン酸)との金属(マグネシウム、カルシウム、亜鉛、バリウム、アルミニウム)との塩や、炭酸塩(炭酸カルシウム)、ポリエチレンワックス、ポリエチレングリコール、N-ヒドロキシエチル-N-2-ヒドロキシアルキルアミン、ステアリン酸モノグリセライドなどから選択される少なくとも1つ以上を使用してもよい。その使用量は、熱可塑性樹脂100質量部に対し、0.001~5質量部、好ましくは0.01~2質量部である。 The thermoplastic resin foamed particles of the present invention are used in order to prevent coalescence of the foamed particles during the foaming process, to prevent charging between the foamed particles, or to promote the flow of the foamed particles. Salts of fatty acids (stearic acid, lauric acid, palmitic acid) with metals (magnesium, calcium, zinc, barium, aluminum), carbonates (calcium carbonate), polyethylene wax, polyethylene glycol, N-hydroxyethyl-N- At least one or more selected from 2-hydroxyalkylamine, stearic acid monoglyceride and the like may be used. The amount used is 0.001 to 5 parts by mass, preferably 0.01 to 2 parts by mass, per 100 parts by mass of the thermoplastic resin.

懸濁重合法で樹脂粒子を製造する場合、一般に、懸濁重合の際の攪拌力(例えば、攪拌機の攪拌翼の種類やその回転数)を変化させることにより、樹脂粒子の平均粒子径や粒度分布を制御することができる。
シード重合法で樹脂粒子を製造する場合、一般に、シードの粒子径を変化させることにより、またシード重合の際の攪拌力(例えば、攪拌機の攪拌翼の種類やその回転数)を変化させることにより、樹脂粒子の平均粒子径や粒度分布を制御することができる。
発泡性粒子及び発泡粒子は、何れも、所望の粒度分布を有する粒子を得るために、製造工程において、別個に製造した粒子を混合してもよく、単一の製造工程により得られた粒子を篩分け(分級)してもよく、制御された単一の製造工程により得られた粒子をそのまま用いてもよい。
When producing resin particles by a suspension polymerization method, the average particle diameter and particle size of the resin particles are generally adjusted by changing the stirring power (for example, the type of stirring blade of a stirrer and its rotation speed) during suspension polymerization. Distribution can be controlled.
When producing resin particles by the seed polymerization method, generally, by changing the particle diameter of the seed, and by changing the stirring power (for example, the type of stirring blade of the stirrer and its rotation speed) during seed polymerization. , the average particle size and particle size distribution of the resin particles can be controlled.
For both the expandable particles and the expanded particles, in order to obtain particles having a desired particle size distribution, separately produced particles may be mixed in the production process, or particles obtained by a single production process may be mixed. It may be sieved (classified) or the particles obtained from a single controlled manufacturing process may be used as is.

(2)発泡性粒子
上記のように、本発明のクッション用発泡性熱可塑性樹脂粒子(本明細書において「発泡性粒子」ともいう)は、熱可塑性樹脂と発泡剤とを含む粒子からなり、かつ上記のクッション用熱可塑性樹脂発泡粒子用であることを特徴とする。
(2) Expandable particles As described above, the expandable thermoplastic resin particles for cushioning of the present invention (also referred to herein as "expandable particles") are particles containing a thermoplastic resin and a blowing agent, It is characterized by being for the foamed thermoplastic resin particles for cushioning.

本発明の発泡性粒子は、熱可塑性樹脂と発泡剤とを含む、20倍以上60倍未満の嵩発泡倍数を有する発泡粒子製造用の発泡性粒子からなり、
前記発泡性粒子が、0.23~0.92mmの平均粒子径を有し、かつ前記発泡性粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a’)全発泡性粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b’)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有することを特徴とする。
The expandable beads of the present invention comprise expandable beads for manufacturing expanded beads having a bulk expansion ratio of 20 times or more and less than 60 times, containing a thermoplastic resin and a blowing agent,
The expandable particles have an average particle diameter of 0.23 to 0.92 mm, and the expandable particles are sieved through a JIS standard sieve (JIS Z8801-1: 2000) with a nominal opening of 5.60 to 0.212 mm. When sieved using a 20-stage sieve, the following conditions:
(a′) all expandable particles pass through a sieve with a nominal opening of 5.60 mm and do not pass through a sieve with a nominal opening of 0.212 mm;
(b') the coefficient of variation (CV value) of the particle size distribution determined from the mass ratio of particles in the particle size range sieved between adjacent stages of sieves is 4 or less; and (c') the mass of the particles. It is characterized by having a particle size distribution that satisfies a mass ratio of 5 to 45% by mass of particles in a particle size range one step smaller or one step larger than the particle size range in which the ratio is the highest.

粒度分布の条件(a’)~(h’)及び平均粒子径は、発泡性粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分(分級)した際の値である。
粒度分布の具体的な測定方法については、実施例において詳述する。
The particle size distribution conditions (a′) to (h′) and the average particle size were determined by sifting the expandable particles through a JIS standard sieve (JIS Z8801-1: 2000) with a nominal opening of 5.60 to 0.212 mm in 20 steps. It is a value when sieving (classifying) using a sieve.
A specific method for measuring the particle size distribution will be described in detail in Examples.

[平均粒子径]
本発明の発泡性粒子は、0.23~0.92mmの平均粒子径を有する。
平均粒子径は、発泡粒子と同様に、上記の粒度分布測定において得られた各粒径範囲の粒子の質量割合Rn(%)と各中心粒径(mm)から求めることができる。
平均粒子径={Σ(Dn・Rn)}/100
発泡性粒子の平均粒子径が、0.23mm未満では、得られる発泡粒子の体積変化が大きくなり、また充填量が多くなりクッションの質量が増加することがある。一方、発泡性粒子の平均粒子径が0.92mmを超えると、得られる発泡粒子の体積変化が大きくなり、また手触りや座り心地が悪化することがある。
発泡性粒子の平均粒子径は、0.25~0.90mmであることが好ましく、0.30~0.85mmであることがより好ましい。
[Average particle size]
The expandable particles of the present invention have an average particle size of 0.23-0.92 mm.
The average particle size can be obtained from the mass ratio Rn (%) of particles in each particle size range obtained in the above particle size distribution measurement and each median particle size (mm), similarly to the expanded particles.
Average particle size = {Σ(D n R n )}/100
If the average particle diameter of the expandable particles is less than 0.23 mm, the resulting expanded particles may have a large change in volume, and the filling amount may increase, resulting in an increase in the mass of the cushion. On the other hand, if the average particle diameter of the expandable particles exceeds 0.92 mm, the volume change of the obtained expanded particles may increase, and the touch and sitting comfort may deteriorate.
The average particle diameter of the expandable particles is preferably 0.25-0.90 mm, more preferably 0.30-0.85 mm.

[条件(a’)]
条件(a’)は、全発泡性粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しないことであり、これは、全発泡性粒子の粒径範囲が5.60mm未満でかつ0.212mmを超えることを意味する。
全発泡性粒子が、公称目開き5.60mmの篩を通過しない粒子を含むと、得られる発泡粒子の体積変化が大きくなり、また手触りや座り心地が悪化することがある。一方、全発泡性粒子が、公称目開き0.212mmの篩を通過する粒子を含むと、得られる発泡粒子の体積変化が大きくなり、また充填量が多くなりクッションの質量が増加することがある。
全発泡性粒子は、公称目開き4.00mmの篩を通過しかつ公称目開き0.212mmの篩を通過しないことが好ましく、公称目開き1.70mmの篩を通過しかつ公称目開き0.212mmの篩を通過しないことがより好ましい。
但し、本発明の発泡性粒子は、本発明の効果を阻害しない範囲で、公称目開き5.60mmの篩を通過しない粒子、公称目開き0.212mmの篩を通過する粒子を含んでいてもよい。
[Condition (a')]
Condition (a′) is that all the expandable particles pass through a sieve with a nominal opening of 5.60 mm and do not pass through a sieve with a nominal opening of 0.212 mm, which means that the diameter of all the expandable particles is It means that the range is less than 5.60 mm and greater than 0.212 mm.
If all the expandable particles contain particles that do not pass through a sieve with a nominal mesh size of 5.60 mm, the resulting expanded particles may have a large volume change, and the texture and sitting comfort may be deteriorated. On the other hand, if all the expandable particles include particles that pass through a sieve with a nominal mesh size of 0.212 mm, the volume change of the obtained expanded particles may be large, and the filling amount may increase, resulting in an increase in the mass of the cushion. .
Preferably, all expandable particles pass through a sieve with a nominal opening of 4.00 mm and not through a sieve with a nominal opening of 0.212 mm, pass through a sieve with a nominal opening of 1.70 mm and pass through a sieve with a nominal opening of 0.21 mm. More preferably it does not pass through a 212 mm sieve.
However, the expandable particles of the present invention may contain particles that do not pass through a sieve with a nominal opening of 5.60 mm and particles that pass through a sieve with a nominal opening of 0.212 mm, as long as the effects of the present invention are not impaired. good.

[条件(b’)]
条件(b’)は、各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合xより求めた粒度分布の変動係数(CV値)が4以下であることであり、粒度分布がシャープ過ぎず、粒子が揃い過ぎていないことを意味する。
CV値は、発泡粒子と同様に、標準偏差(σ)及び平均値(μ)から求めることができる。
偏差σ2=(Σ(質量割合x-平均値μ)2)/篩の数n
標準偏差σ=√σ2
変動係数CV=標準偏差σ/平均値μ
なお、平均値μ=100/19=5.26、篩の数n=19である。
[Condition (b')]
The condition (b') is that the coefficient of variation (CV value) of the particle size distribution obtained from the mass ratio x of the particles in the particle size range sieved between the sieves in each adjacent stage is 4 or less, and the particle size It means that the distribution is not too sharp and the particles are not too uniform.
The CV value can be determined from the standard deviation (σ) and the average value (μ) in the same manner as for the expanded particles.
Deviation σ 2 = (Σ (mass ratio x - average μ) 2 )/number of sieves n
Standard deviation σ = √σ 2
Coefficient of variation CV = standard deviation σ / average μ
Note that the average value μ=100/19=5.26 and the number of sieves n=19.

CV値が4を超えると、得られる発泡粒子の体積変化が大きくなることがある。
本発明の発泡性粒子は、条件(c’)に示すように、特異な分布を有し、CV値の下限は1であり、その範囲は、1.5~3.8であることが好ましく、1.8~3.4であることがより好ましい。
When the CV value exceeds 4, the volume change of the obtained expanded beads may become large.
The expandable particles of the present invention have a peculiar distribution as shown in condition (c′), the lower limit of the CV value is 1, and the range is preferably from 1.5 to 3.8. , 1.8 to 3.4.

[条件(c’)]
条件(c’)は、粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%であることであり、粒度分布のピークの両隣の分布のいずれか一方の粒径範囲の粒子の質量割合が5~45質量%であることを意味する。
粒子の質量割合が5質量%未満では、得られる発泡粒子の体積変化が大きくなることがある。一方、粒子の質量割合が45質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
粒子の質量割合は、6~43質量%であることが好ましく、7~42質量%であることがより好ましい。
[Condition (c')]
Condition (c′) is that the mass ratio of particles in the particle size range one step smaller or one step larger from the particle size range where the mass ratio of particles is the highest is 5 to 45% by mass, and the particle size distribution It means that the mass ratio of particles in the particle size range of either one of the distributions on both sides of the peak of is 5 to 45% by mass.
If the mass ratio of the particles is less than 5% by mass, the volume change of the obtained expanded particles may be large. On the other hand, when the mass ratio of the particles exceeds 45% by mass, the volume change of the obtained expanded beads may become large.
The mass ratio of the particles is preferably 6-43% by mass, more preferably 7-42% by mass.

[条件(d’)]
本発明の発泡性粒子は、次の条件:
(d’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が35~70質量%である
を満たす粒度分布を有することが好ましい。
これは、粒度分布のピークの粒径範囲の粒子の質量割合が35~70質量%であることを意味する。
発泡性粒子が0.23~0.92mmの平均粒子径を有しかつ条件(d’)を満たす場合、特に、得られる発泡粒子の体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(d’)の粒子の質量割合が35質量%未満では、得られる発泡粒子の体積変化が大きくなることがある。一方、条件(d’)の粒子の質量割合が70質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
条件(d’)の粒子の質量割合は、36~69.5質量%であることが好ましく、37~69.0質量%であることがより好ましい。
[Condition (d')]
The expandable particles of the present invention meet the following conditions:
(d') It is preferable to have a particle size distribution that satisfies that the mass ratio of particles in the particle size range where the mass ratio of particles is the highest is 35 to 70% by mass.
This means that the mass proportion of particles in the particle size range of the peak of the particle size distribution is 35-70% by mass.
When the expandable particles have an average particle diameter of 0.23 to 0.92 mm and satisfy the condition (d'), the obtained expanded particles have a particularly small volume change, that is, little settling.
If the mass ratio of the particles in condition (d') is less than 35% by mass, the resulting expanded beads may have a large volume change. On the other hand, when the mass ratio of the particles in the condition (d') exceeds 70% by mass, the resulting expanded beads may have a large volume change.
The mass ratio of the particles of condition (d') is preferably 36 to 69.5% by mass, more preferably 37 to 69.0% by mass.

[条件(e’)及び(f’)]
また、本発明の発泡性粒子は、次の条件:
(e’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が70質量%以下である;及び
(f’)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有することが好ましい。
発泡性粒子が条件(e’)及び(f’)を満たす場合、特に、得られる発泡粒子の体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(e’)は、粒度分布のピークの粒径範囲の粒子の質量割合が70質量%以下であることを意味し、条件(f’)は、粒度分布のピークの粒径が大きい側の粒径範囲の粒子の質量割合が0.1~10質量%であることを意味する。
条件(e)の粒子の質量割合が70質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
本発明の発泡粒子は、条件(e’)に示すように、特異な分布を有し、条件(d)の粒子の質量割合の下限は40.5質量%であり、その範囲は、40.8~64質量%であることが好ましく、41~63質量%であることがより好ましい。
条件(f’)の粒子の質量割合が0.1質量%未満では、得られる発泡粒子の体積変化が大きくなることがある。一方、条件(f’)の粒子の質量割合が10質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
条件(f’)の粒子の質量割合は、0.1~9質量%であることが好ましく、0.2~8質量%であることがより好ましく、0.3~5質量%であることがさらに好ましい。
[Conditions (e') and (f')]
Also, the expandable particles of the present invention meet the following conditions:
(e′) the mass fraction of particles in the particle size range with the highest mass fraction of particles is 70% by mass or less; and (f′) the particle size range one step larger than the highest mass fraction of particles It is preferable to have a particle size distribution that satisfies that the mass ratio of particles is 0.1 to 10% by mass.
When the expandable beads satisfy the conditions (e') and (f'), the obtained expanded beads have an effect of little change in volume, that is, less settling.
The condition (e') means that the mass ratio of particles in the particle size range of the peak of the particle size distribution is 70% by mass or less, and the condition (f') means that the particle size of the peak of the particle size distribution is larger. It means that the mass proportion of particles in the particle size range is 0.1 to 10% by mass.
If the mass ratio of the particles in condition (e) exceeds 70% by mass, the volume change of the obtained expanded beads may become large.
The expanded particles of the present invention have a peculiar distribution as shown in condition (e'), and the lower limit of the mass ratio of the particles in condition (d) is 40.5% by mass, and the range is 40.5% by mass. It is preferably 8 to 64% by mass, more preferably 41 to 63% by mass.
If the mass ratio of the particles in the condition (f') is less than 0.1% by mass, the volume change of the obtained expanded beads may be large. On the other hand, when the mass ratio of the particles in the condition (f') exceeds 10% by mass, the resulting expanded beads may have a large volume change.
The mass ratio of the particles in condition (f′) is preferably 0.1 to 9% by mass, more preferably 0.2 to 8% by mass, and 0.3 to 5% by mass. More preferred.

[条件(g’)及び(h’)]
さらに、本発明の発泡性粒子は、次の条件:
(g’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が28~32質量%である;及び
(h’)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が3質量%以下である
を満たす粒度分布を有することが好ましい。
発泡粒子が条件(g’)及び(h’)を満たす場合、特に、得られる発泡粒子の体積変化が少ない、すなわちヘタリが少ないという効果が得られる。
条件(g’)の粒子の質量割合が28質量%未満では、得られる発泡粒子の体積変化が大きくなることがある。一方、条件(g’)の粒子の質量割合が32質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
条件(g’)の粒子の質量割合は、28.5~31.5質量%であることが好ましく、28.8~31.0質量%であることがより好ましい。
条件(h’)の粒子の質量割合が3質量%を超えると、得られる発泡粒子の体積変化が大きくなることがある。
条件(h’)の粒子の質量割合は、0~2.9質量%であることが好ましく、0~2.8質量%であることがより好ましい。
[Conditions (g') and (h')]
Additionally, the expandable particles of the present invention meet the following conditions:
(g′) the mass ratio of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass ratio of the particles is the highest is 28 to 32% by mass; and (h′) the mass of the particles. It is preferable to have a particle size distribution that satisfies that the mass ratio of particles in the particle size range two steps smaller or two steps larger than the particle size range with the highest ratio is 3% by mass or less.
When the expanded beads satisfy the conditions (g') and (h'), the obtained expanded beads have an effect of little change in volume, that is, little settling.
If the mass ratio of the particles in condition (g') is less than 28% by mass, the resulting expanded beads may have a large volume change. On the other hand, when the mass ratio of the particles in the condition (g') exceeds 32% by mass, the resulting expanded beads may have a large volume change.
The mass ratio of the particles in condition (g') is preferably 28.5 to 31.5% by mass, more preferably 28.8 to 31.0% by mass.
When the mass ratio of the particles in condition (h') exceeds 3% by mass, the volume change of the obtained expanded beads may become large.
The mass ratio of the particles of condition (h') is preferably 0 to 2.9% by mass, more preferably 0 to 2.8% by mass.

(3)クッション体
本発明のクッション体は、本発明の発泡粒子が袋体の中に充填材として封入されて構成される。
本発明のクッション体の袋体の素材は、特に限定されず、化学繊維や絹、木綿などから出できた布などが挙げられ、特に伸縮性を有する素材が好ましい。具体的には、伸縮性を有する素材の袋体が好ましい。この伸縮性を有する素材としては、弾性を有する例えばスパンデックス(ポリウレタン弾性糸)、ポリエステルなどが最も好ましい。
上記のような伸縮性を有する素材の袋体を使用することで、クッション体の一部が圧縮された際に、充填された粒子が圧縮部位から他の部位に移動し、移動した粒子の容積を他の部位に位置する袋体が伸びて変形することで許容できるので、粒子の移動の許容範囲をより大きくすることができる。そのため、クッション体の手触り、感触を飛躍的に向上させることができる。また、加えて、発泡樹脂粒子と袋体のこれら効果の相乗により、より好感触のクッション体を提供することができる。
また、恒久的なクッション性を充足させるために、袋体からこれらの充填材が漏れ出さないように開閉可能なファスナーを二重に設けた構造とすることがより好ましい態様である。また、袋体自体を二重構造とすることも有効である。
更に、1つの大きな袋体中に、充填材が封入された袋体を複数個入れた構成としてもよい。
(3) Cushion body The cushion body of the present invention is constructed by sealing the foamed particles of the present invention as a filler in a bag body.
The material of the bag of the cushion body of the present invention is not particularly limited, and examples thereof include cloth made from chemical fibers, silk, cotton, etc. Materials having elasticity are particularly preferable. Specifically, a bag made of a stretchable material is preferable. As the stretchable material, elastic materials such as spandex (polyurethane elastic thread) and polyester are most preferable.
By using a bag body made of a material having elasticity as described above, when a part of the cushion body is compressed, the filled particles move from the compressed part to another part, and the volume of the moved particles can be tolerated by the expansion and deformation of the bag located at other sites, the allowable range of movement of the particles can be increased. Therefore, the touch and feel of the cushion body can be dramatically improved. In addition, the synergy of these effects of the foamed resin particles and the bag makes it possible to provide a cushion with a better feel.
Moreover, in order to satisfy the permanent cushioning property, it is more preferable to adopt a structure in which two zippers that can be opened and closed are provided so as to prevent the filler from leaking out of the bag. It is also effective to make the bag itself a double structure.
Furthermore, a configuration may be adopted in which a plurality of bags each containing a filler are placed in one large bag.

本発明の発泡粒子は、手のひらサイズのクッションのみならず、大型のクッション、ソファー、椅子、ベッド、マットレス、枕、ぬいぐるみなどのクッション類に好適に用いることができる。 The foamed particles of the present invention can be suitably used not only for palm-sized cushions but also for cushions such as large cushions, sofas, chairs, beds, mattresses, pillows, and stuffed toys.

以下に実施例を挙げて本発明を更に詳細に説明するが、本実施例に何ら限定されるものでない。まず、実施例及び比較例中の測定方法及び評価方法について説明する。
なお、以下において「%」は「質量%」、「部」は「質量部」を意味する。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples. First, the measurement methods and evaluation methods used in Examples and Comparative Examples will be described.
In addition, "%" means "mass %" and "part" means "mass part" below.

[粒度分布]
発泡粒子の粒度分布を、次のようにして測定した。
表1に示すような公称目開き5.60~0.212mmの20段階のJIS標準篩を公称目開きの小さな篩から大きな篩を下から上に順次重ねて装着したロータップ型篩振とう機(株式会社飯田製作所社製)の最上段の篩に、秤量した約2~50gの発泡粒子を投入し、10分間振とう(分級)処理し、各篩上に残った発泡粒子の質量を測定し、得られたデータを図表化することにより、発泡粒子の粒度分布を得た。
表1に、各篩の公称目開き、各篩間の粒径範囲および中心粒径の関係を示す。
表中、「XパスYオン」は、発泡粒子が公称目開きXmmの篩を通過し、かつ公称目開きYmmの篩を通過せず、その篩上に残ったことを意味する。
「中心粒径」は、粒径範囲を示す各篩の公称目開きの相加平均値であり、例えば、0.850mmパス0.710mmオンの粒径範囲の中心粒径は、下式のように求めた。
(0.850+0.710)/2=0.780mm
[Particle size distribution]
The particle size distribution of expanded particles was measured as follows.
A low-tap sieve shaker equipped with 20 stages of JIS standard sieves with a nominal mesh size of 5.60 to 0.212 mm as shown in Table 1, sequentially stacked from a small sieve to a large sieve from the bottom to the top ( (manufactured by Iida Seisakusho Co., Ltd.), put about 2 to 50 g of weighed expanded particles into the uppermost sieve, shake (classify) for 10 minutes, and measure the mass of the expanded particles remaining on each sieve. , the particle size distribution of the expanded particles was obtained by plotting the obtained data.
Table 1 shows the relationship between the nominal mesh size of each sieve, the particle size range between each sieve, and the center particle size.
In the table, "X pass Y on" means that the foamed particles passed through a sieve with a nominal opening of X mm and remained on the sieve without passing through a sieve with a nominal opening of Y mm.
The "median particle size" is the arithmetic mean value of the nominal mesh size of each sieve that indicates the particle size range. asked to
(0.850+0.710)/2=0.780mm

Figure 0007262268000001
Figure 0007262268000001

CV値は、下式のように、標準偏差(σ)及び平均値(μ)から求めることができる。
偏差σ2=(Σ(質量割合x-平均値μ)2)/篩の数n
標準偏差σ=√σ2
変動係数CV=標準偏差σ/平均値μ
なお、平均値μ=100/19=5.26、篩の数n=19である。
A CV value can be obtained from a standard deviation (σ) and an average value (μ) as in the following formula.
Deviation σ 2 = (Σ (mass ratio x - average μ) 2 )/number of sieves n
Standard deviation σ = √σ 2
Coefficient of variation CV = standard deviation σ / average μ
Note that the average value μ=100/19=5.26 and the number of sieves n=19.

[嵩密度及び嵩発泡倍数]
発泡粒子の嵩密度を、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定した。
発泡粒子の質量W(g)を小数以下2位まで秤量し、その発泡粒子を自然落下によりメスシリンダー内に充填し、充填した発泡粒子の体積V(cm3)を上記JIS規格に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて発泡粒子の嵩密度を求めた。
嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
発泡粒子の嵩発泡倍数を、下式のように、嵩密度から求めた。
嵩発泡倍数=1/嵩密度(g/cm3
[Bulk Density and Bulk Expansion Ratio]
The bulk density of the expanded particles was measured according to JIS K6911: 1995 "General Test Methods for Thermosetting Plastics".
The mass W (g) of the foamed beads is weighed to two decimal places, and the foamed beads are filled into a graduated cylinder by free fall . The density was measured using a density measuring instrument, and the bulk density of the expanded particles was obtained based on the following formula.
Bulk density (g/cm 3 )=mass of measurement sample (W)/volume of measurement sample (V)
The bulk expansion ratio of the expanded beads was obtained from the bulk density as shown in the following formula.
Bulk expansion ratio = 1/bulk density (g/cm 3 )

[ヘタリ評価]
JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下にて24時間放置した発泡粒子を、内径50mm、高さ100mmの円筒形容器に120mLを充填し、圧縮前の体積V1(mL)を測定した。その後、直径49mmの圧縮板で毎分10mmの速度にて下限点1N、上限点267Nで100回繰り返し圧縮し、圧縮後の体積V2(mL)を測定した。体積変化率(%)を次式で算出した。評価は以下の通り。尚、測定には株式会社オリエンテック製「テンシロンUCT-10T」万能試験機、ソフトブレーン株式会社製「UTPS-458C」万能試験機データ処理を用いた。
<体積変化率>
体積変化率(%)=V2/V1×100
<ヘタリ評価>
A:体積変化率が95%を超え、100%以下
B:体積変化率が90%を超え、95%以下
C:体積変化率が85%を超え、90%以下
D:体積変化率が85%以下
[Slowness evaluation]
JIS K 7100: 1999 symbol "23/50" (temperature 23 ° C., relative humidity 50%), expanded particles left for 24 hours in a standard atmosphere of class 2, placed in a cylindrical container with an inner diameter of 50 mm and a height of 100 mm. 120 mL was filled and the volume V1 (mL) before compression was measured. After that, it was repeatedly compressed 100 times with a compression plate having a diameter of 49 mm at a speed of 10 mm per minute with a lower limit of 1 N and an upper limit of 267 N, and the volume V2 (mL) after compression was measured. A volume change rate (%) was calculated by the following formula. Evaluation is as follows. For the measurement, "Tensilon UCT-10T" universal testing machine manufactured by Orientec Co., Ltd. and "UTPS-458C" universal testing machine manufactured by Softbrain Co., Ltd. were used for data processing.
<Volume change rate>
Volume change rate (%) = V2/V1 x 100
<Slow evaluation>
A: Volume change rate is over 95% and 100% or less B: Volume change rate is over 90% and 95% or less C: Volume change rate is over 85% and 90% or less D: Volume change rate is 85% the following

[手のひらサイズのクッションの圧縮試験]
JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下にて24時間放置した、伸縮性を有する素材の布生地を用いて作製した袋体に、発泡粒子18g充填した直径15cmのクッションを、内径158mm、高さ150mmの円筒形容器に入れ、5N荷重時の高さH1(mm)を測定した。その後、径106mmの圧縮板を毎分20mmの速度で、下限点2N、上限点637N(65kgf)で100回繰り返し圧縮し、再度5Nの荷重をかけて高さH2(mm)を測定した。寸法変化率を次式で算出した。評価は以下の通り。尚、測定には株式会社オリエンテック製「テンシロンUCT-10T」万能試験機、ソフトブレーン株式会社製「UTPS-458C」万能試験機データ処理を用いた。
<寸法変化率>
寸法変化率(%)=(H1-H2)/H1×100
<圧縮試験の評価>
A:寸法変化率が0%以上、10.0%未満
B:寸法変化率が10.0%以上、12.0%未満
C:寸法変化率が12.0%以上、14.0未満
D:寸法変化率が14.0%以上
[Compression test of palm-sized cushion]
JIS K 7100: 1999 symbol "23/50" (temperature 23°C, relative humidity 50%), bag made from stretchable fabric left for 24 hours in a class 2 standard atmosphere A cushion with a diameter of 15 cm filled with 18 g of foamed particles was put into a cylindrical container with an inner diameter of 158 mm and a height of 150 mm, and the height H1 (mm) under a load of 5 N was measured. After that, a compression plate with a diameter of 106 mm was repeatedly compressed 100 times at a speed of 20 mm/min with a lower limit of 2 N and an upper limit of 637 N (65 kgf), and a load of 5 N was applied again to measure the height H2 (mm). The dimensional change rate was calculated by the following formula. Evaluation is as follows. For the measurement, "Tensilon UCT-10T" universal testing machine manufactured by Orientec Co., Ltd. and "UTPS-458C" universal testing machine manufactured by Softbrain Co., Ltd. were used for data processing.
<Dimensional change rate>
Dimensional change rate (%) = (H1-H2)/H1 x 100
<Evaluation of compression test>
A: Dimensional change rate is 0% or more and less than 10.0% B: Dimensional change rate is 10.0% or more and less than 12.0% C: Dimensional change rate is 12.0% or more and less than 14.0% D: Dimensional change rate is 14.0% or more

[ソファーサイズのクッションの圧縮試験]
伸縮性を有する素材の布生地を用いて作製した袋体に(縦65cm、横65cm、高さ45cm)、布生地を合わせた全体質量が6kgになるように発泡粒子を充填しソファーサイズのクッションを作製した。
このクッションを縦65cm、横65cm、高さ65cmの木製ケースに入れ、ケース底面からクッション上面までの高さH3(mm)を測定した。クッション上面に65kgの重りを、座面用当て板を介して、クッションの中心に10cmの高さから4000回自然落下させ、再度、ケース底面からクッション上面までの高さH4(mm)を測定した。高さH3と高さH4の各高さは、ケース四隅での高さの平均値とした。寸法変化率を次式で算出した。評価は以下の通り。
<寸法変化率>
寸法変化率(%)=(H3-H4)/H3×100
<圧縮試験の評価>
A:寸法変化率が0%以上、18.5%未満
B:寸法変化率が18.5%以上、20.0%未満
C:寸法変化率が20.0%以上、21.5%未満
D:寸法変化率が21.5%以上
[Compression test of sofa-sized cushion]
A sofa-sized cushion filled with foam particles in a bag (65 cm long, 65 cm wide, 45 cm high) made of stretchable fabric, and filled with foam particles so that the total weight of the fabric is 6 kg. was made.
This cushion was placed in a wooden case having a length of 65 cm, a width of 65 cm and a height of 65 cm, and the height H3 (mm) from the bottom of the case to the top of the cushion was measured. A weight of 65 kg was placed on the upper surface of the cushion, and was dropped from a height of 10 cm into the center of the cushion 4,000 times through the backing plate for the seat surface. . The heights H3 and H4 are the average heights at the four corners of the case. The dimensional change rate was calculated by the following formula. Evaluation is as follows.
<Dimensional change rate>
Dimensional change rate (%) = (H3-H4)/H3 x 100
<Evaluation of compression test>
A: The dimensional change rate is 0% or more and less than 18.5% B: The dimensional change rate is 18.5% or more and less than 20.0% C: The dimensional change rate is 20.0% or more and less than 21.5% D : Dimensional change rate is 21.5% or more

<布生地>
手のひらサイズのクッションの圧縮試験、ソファーサイズのクッションの圧縮試験で使用した布生地は、以下のものである。
1)布生地の素材は、ポリエステル100%のものを使用した。
2)JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で24時間養生した後、布生地の任意の方向に幅25mm、長さ200mmの試料をN=10個サンプリングした。
3)株式会社オリエンテック製「テンシロンUCT-10T」万能試験機、ソフトブレーン株式会社製「UTPS-458X」万能試験機データ処理を用いて、毎分速度300mmの速度で試験片を長さ方向に引張試験を行った。引張試験方法は、JIS L1096:2010(織物及び編物の生地試験方法引張強さ-JIS法のA法のカットストリップ法)に準拠した。変位原点は初荷重0.4Nを試験開始点とした。試料10個の最大点荷重の平均値は、131(N/2.5cm幅)であった。
<Cloth fabric>
The fabrics used in the palm-sized cushion compression test and the sofa-sized cushion compression test are as follows.
1) The fabric material used was 100% polyester.
2) JIS K 7100: 1999 symbol "23/50" (temperature 23 ° C, relative humidity 50%), after curing for 24 hours in a standard atmosphere of class 2, width 25 mm in any direction of the fabric, length N=10 samples of 200 mm were sampled.
3) "Tensilon UCT-10T" universal testing machine manufactured by Orientec Co., Ltd., "UTPS-458X" universal testing machine manufactured by Softbrain Co., Ltd. Data processing is performed at a speed of 300 mm per minute. A tensile test was performed. The tensile test method complied with JIS L1096:2010 (Tensile strength test method for woven and knitted fabrics-A cut strip method of JIS method). The initial load of 0.4 N was used as the test starting point for the displacement origin. The average maximum point load of 10 samples was 131 (N/2.5 cm width).

[総合評価]
ヘタリ評価、手のひらサイズのクッションの圧縮評価、ソファーサイズのクッションの圧縮評価の各評価結果から、次の基準に基づいて、総合評価した。
A:3つの評価結果は全てA評価である。
B:3つの評価結果はA評価又はB評価からなり、B評価が1つ以上ある。
C:3つの評価結果はD評価がなく、C評価が1つ以上ある。
D:3つの評価結果の内、D評価が1つ以上ある。
[comprehensive evaluation]
Based on the evaluation results of the settling evaluation, the compression evaluation of the palm-sized cushion, and the compression evaluation of the sofa-sized cushion, a comprehensive evaluation was made based on the following criteria.
A: All three evaluation results are A evaluation.
B: Three evaluation results consist of A evaluation or B evaluation, and there is one or more B evaluations.
C: Three evaluation results have no D evaluation and one or more C evaluations.
D: Among the three evaluation results, there is one or more D evaluations.

(実施例1)
<スチレン系樹脂粒子の製造>
100リットルの攪拌機付オートクレーブ内にピロリン酸マグネシウム82g、ドデシルベンゼンスルホン酸ナトリウム2.4g、ベンゾイルパーオキサイド(純度:75%)106g、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート24g、イオン交換水40kg及びスチレン単量体40kgを供給し、攪拌翼を230rpmの回転数で回転させ攪拌する事により懸濁液を調製した。
次に、攪拌翼の回転数を230rpmに維持し、前記懸濁液を攪拌しながら、オートクレーブの温度を90℃まで昇温し、90℃にて6時間50分に亘って保持し、さらに、オートクレーブ内の温度を125℃まで昇温し、125℃で2時間に亘って保持した。これによりスチレン単量体を懸濁重合した。
その後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブ内から重合物を取り出した。その重合物の洗浄、脱水を複数回に亘って繰り返し、次いで、乾燥させた後、篩分けして、質量平均分子量が30万のスチレン系樹脂粒子を得た。
(Example 1)
<Production of styrene-based resin particles>
82 g of magnesium pyrophosphate, 2.4 g of sodium dodecylbenzenesulfonate, 106 g of benzoyl peroxide (purity: 75%), 24 g of t-butylperoxy-2-ethylhexyl monocarbonate, and 40 kg of deionized water were placed in a 100-liter autoclave equipped with a stirrer. and 40 kg of a styrene monomer were supplied, and a suspension was prepared by stirring by rotating a stirring blade at a rotational speed of 230 rpm.
Next, while maintaining the rotation speed of the stirring blade at 230 rpm and stirring the suspension, the temperature of the autoclave is raised to 90° C. and maintained at 90° C. for 6 hours and 50 minutes. The temperature in the autoclave was raised to 125°C and maintained at 125°C for 2 hours. Thus, the styrene monomer was subjected to suspension polymerization.
After that, the temperature inside the autoclave was cooled to 25° C., and the polymer was taken out from inside the autoclave. The polymer was washed and dehydrated several times, dried and sieved to obtain styrene resin particles having a mass average molecular weight of 300,000.

<発泡性スチレン系樹脂粒子の製造>
次に、5リットルのオートクレーブにイオン交換水2kg、ピロリン酸マグネシウム12g及びドデシルベンゼンスルホン酸ナトリウム0.3g、ジラウリル-3,3’-チオジプロピオネート0.6g、エチレンビスステアリン酸アマイド0.8gを仕込み、水性媒体とした。この水性媒体に、上記スチレン系樹脂粒子2kgを加えて300rpmで攪拌した。
次いで、水性媒体の温度を110℃に上げ、この温度を維持しながらブタン55g及びペンタン151gを圧入し、1時間30分間含浸させ、その後冷却することで発泡性スチレン系樹脂粒子を得た。
その後、篩分けし、表2及び表3に示す粒度分布の発泡性スチレン系樹脂粒子を得た。
<Production of expandable styrene resin particles>
Next, 2 kg of ion-exchanged water, 12 g of magnesium pyrophosphate, 0.3 g of sodium dodecylbenzenesulfonate, 0.6 g of dilauryl-3,3'-thiodipropionate, and 0.8 g of ethylenebisstearic acid amide were placed in a 5-liter autoclave. was charged as an aqueous medium. 2 kg of the styrene-based resin particles were added to the aqueous medium and stirred at 300 rpm.
Next, the temperature of the aqueous medium was raised to 110° C., and while maintaining this temperature, 55 g of butane and 151 g of pentane were pressurized and impregnated for 1 hour and 30 minutes, followed by cooling to obtain expandable styrene resin particles.
Thereafter, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Tables 2 and 3.

Figure 0007262268000002
Figure 0007262268000002

<スチレン系樹脂発泡粒子の製造>
得られた目的の粒度分布を示す発泡性スチレン系樹脂粒子を円筒型バッチ式発泡機に供給し、水蒸気により均一に加熱することにより、スチレン系樹脂発泡粒子を得た。得られたスチレン系樹脂発泡粒子は、嵩密度0.0263g/cm3(嵩発泡倍数38倍)であった。
得られたスチレン系樹脂発泡粒子の粒度分布を測定し、前述の評価方法に基づいてクッション体としての特性を評価した。得られた結果を表6に示す。
<Production of expanded styrene resin particles>
The obtained expandable styrene resin particles exhibiting the desired particle size distribution were supplied to a cylindrical batch-type foaming machine and uniformly heated with steam to obtain expanded styrene resin particles. The obtained expanded styrene resin particles had a bulk density of 0.0263 g/cm 3 (bulk expansion ratio of 38 times).
The particle size distribution of the obtained expanded styrene resin particles was measured, and the properties as a cushion body were evaluated based on the evaluation method described above. Table 6 shows the results obtained.

(実施例2)
攪拌翼の回転数を200rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表3に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数38倍のスチレン系樹脂発泡粒子を実施例1と同様にして得た。得られた発泡粒子を評価した結果を表6に示す。
(Example 2)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 200 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 3. Next, expanded styrene resin particles having a bulk expansion ratio of 38 were obtained in the same manner as in Example 1. Table 6 shows the evaluation results of the obtained expanded beads.

(実施例3)
攪拌翼の回転数を235rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表3に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数38倍のスチレン系樹脂発泡粒子を実施例1と同様にして得た。得られた発泡粒子を評価した結果を表6に示す。
(Example 3)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 235 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 3. Next, expanded styrene resin particles having a bulk expansion ratio of 38 were obtained in the same manner as in Example 1. Table 6 shows the evaluation results of the obtained expanded beads.

(実施例4)
攪拌翼の回転数を250rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表3に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数38倍のスチレン系樹脂発泡粒子を実施例1と同様にして得た。得られた発泡粒子を評価した結果を表6に示す。
(Example 4)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 250 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 3. Next, expanded styrene resin particles having a bulk expansion ratio of 38 were obtained in the same manner as in Example 1. Table 6 shows the evaluation results of the obtained expanded beads.

(実施例5)
攪拌翼の回転数を65rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表4に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数58倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表7に示す。
(Example 5)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 65 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 4. Next, expanded styrene resin particles were obtained in the same manner as in Example 1 except that the bulk expansion ratio was 58 times. Table 7 shows the evaluation results of the obtained expanded beads.

(実施例6)
攪拌翼の回転数を220rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表4に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数31倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表7に示す。
(Example 6)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 220 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 4. Next, expanded styrene resin particles were obtained in the same manner as in Example 1, except that the bulk expansion ratio was 31 times. Table 7 shows the evaluation results of the obtained expanded beads.

(実施例7)
攪拌翼の回転数を180rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表4に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数35倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表7に示す。
(Example 7)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 180 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 4. Next, expanded styrene resin particles were obtained in the same manner as in Example 1, except that the bulk expansion ratio was 35 times. Table 7 shows the evaluation results of the obtained expanded beads.

(実施例8)
攪拌翼の回転数を190rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表4に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数36倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表7に示す。
(Example 8)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 190 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 4. Next, expanded styrene resin particles were obtained in the same manner as in Example 1 except that the bulk expansion ratio was 36 times. Table 7 shows the evaluation results of the obtained expanded beads.

(比較例1)
攪拌翼の回転数を225rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表5に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数38倍のスチレン系樹脂発泡粒子を実施例1と同様にして得た。得られた発泡粒子を評価した結果を表8に示す。
(Comparative example 1)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 225 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 5. Next, expanded styrene resin particles having a bulk expansion ratio of 38 were obtained in the same manner as in Example 1. Table 8 shows the evaluation results of the obtained expanded beads.

(比較例2)
攪拌翼の回転数を70rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表5に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数60倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表8に示す。
(Comparative example 2)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 70 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 5. Next, expanded styrene resin particles were obtained in the same manner as in Example 1 except that the bulk expansion ratio was 60 times. Table 8 shows the evaluation results of the obtained expanded beads.

(比較例3)
攪拌翼の回転数を50rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表5に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数18倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表8に示す。
(Comparative Example 3)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 50 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 5. Next, expanded styrene resin particles were obtained in the same manner as in Example 1 except that the bulk expansion ratio was 18 times. Table 8 shows the evaluation results of the obtained expanded beads.

(比較例4)
攪拌翼の回転数を60rpmに維持してスチレン系樹脂粒子を得たこと以外は実施例1と同様にして、発泡性スチレン系樹脂粒子を得た。その後、篩分けし、表5に示す粒度分布の発泡性スチレン系樹脂粒子を得た。次に、嵩発泡倍数60倍とした以外は実施例1と同様にしてスチレン系樹脂発泡粒子を得た。得られた発泡粒子を評価した結果を表8に示す。
(Comparative Example 4)
Expandable styrene resin particles were obtained in the same manner as in Example 1, except that the rotation speed of the stirring blade was maintained at 60 rpm to obtain the styrene resin particles. Then, the mixture was sieved to obtain expandable styrene resin particles having a particle size distribution shown in Table 5. Next, expanded styrene resin particles were obtained in the same manner as in Example 1 except that the bulk expansion ratio was 60 times. Table 8 shows the evaluation results of the obtained expanded beads.

Figure 0007262268000003
Figure 0007262268000003

Figure 0007262268000004
Figure 0007262268000004

Figure 0007262268000005
Figure 0007262268000005

Figure 0007262268000006
Figure 0007262268000006

Figure 0007262268000007
Figure 0007262268000007

Figure 0007262268000008
Figure 0007262268000008

表6~8の結果から、実施例1および2の発泡粒子がクッション用熱可塑性樹脂発泡粒子として最も優れた物性(特性)を有し、実施例3および4の発泡粒子、実施例5~8の発泡粒子の順に続くことがわかる。一方、比較例1~4の発泡粒子は、クッション用熱可塑性樹脂発泡粒子として劣ることがわかる。 From the results in Tables 6 to 8, the expanded beads of Examples 1 and 2 have the most excellent physical properties (characteristics) as thermoplastic resin expanded beads for cushions, and the expanded beads of Examples 3 and 4 and Examples 5 to 8 It can be seen that the order of the foamed particles follows. On the other hand, it can be seen that the expanded particles of Comparative Examples 1 to 4 are inferior as thermoplastic resin expanded particles for cushions.

Claims (9)

熱可塑性樹脂と発泡剤とを含む発泡性熱可塑性樹脂粒子を発泡させた発泡粒子からなり、
前記発泡粒子が、20倍以上60倍未満の嵩発泡倍数及び0.5~2.8mmの平均粒子径を有し、かつ前記発泡粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a)全発泡粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有し、
前記熱可塑性樹脂が、ポリスチレン系樹脂であり、
前記発泡粒子が、袋体の中に充填材を封入して構成されるクッション体の充填材である
ことを特徴とするクッション用熱可塑性樹脂発泡粒子。
Consists of expanded particles obtained by expanding expandable thermoplastic resin particles containing a thermoplastic resin and a blowing agent,
The expanded particles have a bulk expansion ratio of 20 times or more and less than 60 times and an average particle diameter of 0.5 to 2.8 mm, and When sieving using a 20-stage sieve with an opening of 5.60 to 0.212 mm, the following conditions:
(a) all expanded particles pass through a 5.60 mm nominal sieve and do not pass through a 0.212 mm nominal sieve;
(b) the coefficient of variation (CV value) of the particle size distribution obtained from the mass fraction of particles in the size range sieved between the sieves of each adjacent stage is 4 or less; and (c) the mass fraction of the particles is Having a particle size distribution that satisfies that the mass ratio of particles in a particle size range one step smaller or one step larger than the highest particle size range is 5 to 45% by mass,
The thermoplastic resin is a polystyrene resin,
The foamed thermoplastic resin particles for a cushion, wherein the foamed particles are a filling material for a cushioning body which is formed by enclosing a filling material in a bag body.
前記発泡粒子が、前記発泡粒子を前記JIS標準篩によって篩分した際に、次の条件:
(d)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が40~65質量%である
を満たす粒度分布を有する請求項1に記載のクッション用熱可塑性樹脂発泡粒子。
When the expanded particles are sieved through the JIS standard sieve, the following conditions are met:
2. The foamed thermoplastic resin particles for cushioning according to claim 1, having a particle size distribution that satisfies (d) the mass ratio of particles in the range of particle diameters in which the mass ratio of particles is the highest is 40 to 65% by mass.
前記発泡粒子が、前記発泡粒子を前記JIS標準篩によって篩分した際に、次の条件:
(e)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が65質量%以下である;及び
(f)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する請求項1又は2に記載のクッション用熱可塑性樹脂発泡粒子。
When the expanded particles are sieved through the JIS standard sieve, the following conditions are met:
(e) the mass fraction of particles in the particle size range having the highest mass fraction of particles is 65 mass % or less; The foamed thermoplastic resin particles for cushioning according to claim 1 or 2, having a particle size distribution satisfying a mass ratio of 0.1 to 10% by mass.
前記発泡粒子が、前記発泡粒子を前記JIS標準篩によって篩分した際に、次の条件:
(g)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が33~45質量%である;及び
(h)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する請求項1~3のいずれか1つに記載のクッション用熱可塑性樹脂発泡粒子。
When the expanded particles are sieved through the JIS standard sieve, the following conditions are met:
(g) the mass fraction of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass fraction of the particles is the highest is 33 to 45% by mass; and (h) the mass fraction of the particles is Any one of claims 1 to 3, having a particle size distribution satisfying the mass ratio of particles in a particle size range two steps smaller or two steps larger than the highest particle size range is 0.1 to 10% by mass. The foamed thermoplastic resin particles for the cushion according to 1.
請求項1~4のいずれか1つに記載のクッション用熱可塑性樹脂発泡粒子が袋体の中に充填材として封入されたクッション体。 A cushion body in which the foamed thermoplastic resin particles for cushioning according to any one of claims 1 to 4 are enclosed as a filler in a bag body. 熱可塑性樹脂と発泡剤とを含む、20倍以上60倍未満の嵩発泡倍数及び0.5~2.8mmの平均粒子径を有する発泡粒子製造用の発泡性粒子からなり、
前記発泡性粒子が、0.23~0.92mmの平均粒子径を有し、かつ前記発泡性粒子をJIS標準篩(JIS Z8801-1:2000規定)の公称目開き5.60~0.212mmの20段階の篩を用いて篩分した際に、次の条件:
(a’)全発泡性粒子が、公称目開き5.60mmの篩を通過しかつ公称目開き0.212mmの篩を通過しない;
(b’)各隣接する段階の篩間に篩分された粒径範囲の粒子の質量割合より求めた粒度分布の変動係数(CV値)が4以下である;及び
(c’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が5~45質量%である
を満たす粒度分布を有し、
前記熱可塑性樹脂が、ポリスチレン系樹脂であり、
前記発泡粒子が、袋体の中に充填材を封入して構成されるクッション体の充填材である
ことを特徴とするクッション用発泡性熱可塑性樹脂粒子。
Composed of expandable particles for producing expanded beads containing a thermoplastic resin and a blowing agent and having a bulk expansion ratio of 20 times or more and less than 60 times and an average particle diameter of 0.5 to 2.8 mm,
The expandable particles have an average particle diameter of 0.23 to 0.92 mm, and the expandable particles are sieved through a JIS standard sieve (JIS Z8801-1: 2000) with a nominal opening of 5.60 to 0.212 mm. When sieved using a 20-stage sieve, the following conditions:
(a′) all expandable particles pass through a sieve with a nominal opening of 5.60 mm and do not pass through a sieve with a nominal opening of 0.212 mm;
(b') the coefficient of variation (CV value) of the particle size distribution determined from the mass ratio of particles in the particle size range sieved between adjacent stages of sieves is 4 or less; and (c') the mass of the particles. It has a particle size distribution that satisfies that the mass ratio of particles in a particle size range one step smaller or one step larger than the particle size range with the highest proportion is 5 to 45% by mass,
The thermoplastic resin is a polystyrene resin,
The expandable thermoplastic resin particles for a cushion, wherein the foamed particles are a filling material for a cushion body which is formed by enclosing a filling material in a bag body.
前記発泡性粒子が、前記発泡性粒子を前記JIS標準篩によって篩分した際に、次の条件:
(d’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が35~70質量%である
を満たす粒度分布を有する請求項に記載のクッション用発泡性熱可塑性樹脂粒子。
When the expandable particles are sieved through the JIS standard sieve, the expandable particles meet the following conditions:
7. The expandable thermoplastic resin particles for cushioning according to claim 6 , having a particle size distribution satisfying (d') the mass ratio of particles in the range of particle diameters having the highest mass ratio of particles of 35 to 70% by mass.
前記発泡性粒子が、前記発泡性粒子を前記JIS標準篩によって篩分した際に、次の条件:
(e’)粒子の質量割合が最も高い粒径範囲の粒子の質量割合が70質量%以下である;及び
(f’)粒子の質量割合が最も高い粒径範囲から1段階大きい粒径範囲の粒子の質量割合が0.1~10質量%である
を満たす粒度分布を有する請求項6又は7に記載のクッション用発泡性熱可塑性樹脂粒子。
When the expandable particles are sieved through the JIS standard sieve, the expandable particles meet the following conditions:
(e′) the mass fraction of particles in the particle size range with the highest mass fraction of particles is 70% by mass or less; and (f′) the particle size range one step larger than the highest mass fraction of particles 8. The expandable thermoplastic resin particles for cushioning according to claim 6 or 7, having a particle size distribution satisfying a mass ratio of the particles of 0.1 to 10% by mass.
前記発泡性粒子が、前記発泡性粒子を前記JIS標準篩によって篩分した際に、次の条件:
(g’)粒子の質量割合が最も高い粒径範囲から1段階小さい粒径範囲又は1段階大きい粒径範囲の粒子の質量割合が28~32質量%である;及び
(h’)粒子の質量割合が最も高い粒径範囲から2段階小さい粒径範囲又は2段階大きい粒径範囲の粒子の質量割合が3質量%以下である
を満たす粒度分布を有する請求項6~8のいずれか1つに記載のクッション用発泡性熱可塑性樹脂粒子。
When the expandable particles are sieved through the JIS standard sieve, the expandable particles meet the following conditions:
(g′) the mass ratio of particles in the particle size range that is one step smaller or one step larger than the particle size range in which the mass ratio of the particles is the highest is 28 to 32% by mass; and (h′) the mass of the particles. In any one of claims 6 to 8, having a particle size distribution satisfying that the mass ratio of particles in a particle size range two steps smaller or two steps larger than the particle size range with the highest proportion is 3% by mass or less. The foamable thermoplastic resin particles for cushioning described.
JP2019060564A 2018-09-27 2019-03-27 Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion Active JP7262268B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182422 2018-09-27
JP2018182422 2018-09-27

Publications (2)

Publication Number Publication Date
JP2020055989A JP2020055989A (en) 2020-04-09
JP7262268B2 true JP7262268B2 (en) 2023-04-21

Family

ID=70106504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060564A Active JP7262268B2 (en) 2018-09-27 2019-03-27 Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion

Country Status (1)

Country Link
JP (1) JP7262268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022186281A1 (en) * 2021-03-04 2022-09-09
JP2024049167A (en) * 2022-09-28 2024-04-09 積水化成品工業株式会社 Method for producing recycled expandable styrene resin particles, recycled expandable styrene resin particles, recycled pre-expanded styrene resin particles, and recycled styrene resin foamed molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100860A (en) 2010-01-15 2010-05-06 Sekisui Plastics Co Ltd Expandable styrenic resin particle
JP2014189743A (en) 2013-03-28 2014-10-06 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, thermoplastic resin foamed particle, and foamed molding
JP2019014770A (en) 2017-07-03 2019-01-31 株式会社ジェイエスピー Olefinic thermoplastic elastomer foam particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100860A (en) 2010-01-15 2010-05-06 Sekisui Plastics Co Ltd Expandable styrenic resin particle
JP2014189743A (en) 2013-03-28 2014-10-06 Sekisui Plastics Co Ltd Foamable thermoplastic resin particle, thermoplastic resin foamed particle, and foamed molding
JP2019014770A (en) 2017-07-03 2019-01-31 株式会社ジェイエスピー Olefinic thermoplastic elastomer foam particles

Also Published As

Publication number Publication date
JP2020055989A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7262268B2 (en) Foamed thermoplastic resin particles for cushion, cushion body and expandable thermoplastic resin particles for cushion
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JP7455934B2 (en) Expandable polystyrene resin particles and their use
JP5216388B2 (en) Antistatic styrenic resin foam molding and method for producing the same
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JPH0790105A (en) Expandable styrene resin particle and molded styrene resin foam produced therefrom
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP5338364B2 (en) Styrene resin particle foam molding
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP7422581B2 (en) Expandable polystyrene resin particles, expanded polystyrene particles, and bead cushioning materials
JP2017179138A (en) Foamable particle of rubber modified polystyrene-based resin, foaming particle and foaming molded body and manufacturing method and application thereof
CA1043950A (en) Process for preparing expandible particles of styrene-based polymers
JP2011074239A (en) Foamable polystyrene resin particle for cushioning material
JP7250768B2 (en) Expandable thermoplastic resin particles, thermoplastic resin pre-expanded particles and thermoplastic resin foam
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5883703B2 (en) Cushioning material
JP5599154B2 (en) Expandable polystyrene resin particles and method for producing the same, pre-expanded particles, and expanded molded body
JP4494113B2 (en) Method for producing expandable styrene resin particles
JP6619713B2 (en) Expandable styrene resin particles, expanded styrene resin particles and filler
JP5809508B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP5885792B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP5219300B2 (en) Expandable styrene resin particles
JP4801801B2 (en) Expandable polyethylene resin particles and method for producing the same
JP5089919B2 (en) Expandable polyethylene resin particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150