JP6123712B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6123712B2
JP6123712B2 JP2014051949A JP2014051949A JP6123712B2 JP 6123712 B2 JP6123712 B2 JP 6123712B2 JP 2014051949 A JP2014051949 A JP 2014051949A JP 2014051949 A JP2014051949 A JP 2014051949A JP 6123712 B2 JP6123712 B2 JP 6123712B2
Authority
JP
Japan
Prior art keywords
airflow
combustion chamber
control
lift amount
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014051949A
Other languages
English (en)
Other versions
JP2015175283A (ja
Inventor
里志 津田
里志 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014051949A priority Critical patent/JP6123712B2/ja
Publication of JP2015175283A publication Critical patent/JP2015175283A/ja
Application granted granted Critical
Publication of JP6123712B2 publication Critical patent/JP6123712B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の制御装置に関し、特に、吸気バルブ用のリフト量可変機構を備えた内燃機関の制御装置に関する。
従来技術として、例えば特許文献1(特開2008−128105号公報)に開示されているように、1つの気筒に複数の点火プラグを配置した内燃機関の制御装置が知られている。従来技術では、例えば燃焼室内の気流速度に応じて点火プラグを使い分けることにより、燃焼安定性を向上させるようにしている。
特開2008−128105号公報 特開2003−106180号公報 特許第5195811号公報 特開2004−293483号公報 特開2008−303798号公報
上述した従来技術では、複数の点火プラグを使い分ける構成としている。しかしながら、実機において1つの気筒に複数の点火プラグを配置するのは構成的に困難である。また、一方の点火プラグが燃焼室内で気流を妨げる位置に大きく突出していることから、従来技術の構成は、実現性に乏しいという問題がある。
本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、実現性を有する構成により燃焼室内の気流を適切に制御し、燃焼安定性を向上させることが可能な内燃機関の制御装置を提供することにある。
第1の発明は、内燃機関の筒内に軸方向に変位可能に設けられたピストンと、
前記ピストンにより前記筒内に形成され、前記ピストンの頂面と対向する位置に吸気ポート及び排気ポートが開口した燃焼室と、
前記吸気ポートの周縁部のうち前記排気ポートとの間に位置する部位から前記燃焼室内に突出し、前記燃焼室の壁面の一部を構成する気流制御壁部と、
前記ピストンの頂面に設けられた凹湾曲面であって、曲率中心が前記燃焼室の中心軸線よりも前記吸気ポート側に配置された気流制御曲面部と、
前記吸気ポートを開閉する吸気バルブのリフト量を変更する可変バルブリフト機構と、
前記燃焼室内の気流速度を推定する気流速度推定手段と、
前記可変バルブリフト機構により前記吸気バルブのリフト量を制御する手段であって、前記気流速度が予め設定された判定値よりも大きい場合に、前記気流速度が前記判定値よりも小さい場合と比較して前記吸気バルブのリフト量を減少させるリフト量制御手段と、
を備えている。
第1の発明によれば、燃焼室内の気流速度に応じて吸気バルブのリフト量を変更することにより、気流制御壁部と気流制御曲面部とを利用して燃焼室内の気流を適切に制御することができる。従って、実現性を有する構成により、燃焼室内の気流速度に適した気流を発生し、燃焼安定性を向上させることができる。
本発明の実施の形態1のシステム構成を説明するための構成図である。 吸気ポートの周囲を拡大して示す図1中の要部拡大図である。 燃焼室の上面部をピストン側からみた下面図である。 プラグ近傍の気流速度と着火位置との関係を示す説明図である。 プラグ近傍の気流方向とタンブル流との関係を示す説明図である。 タンブル流可変制御により形成される2種類のタンブル流を示す燃焼室の断面図である。 吸気バルブのリフト量を大きくした状態を示す説明図である。 吸気バルブのリフト量を図7と比較して減少させた状態を示す説明図である。 本発明の実施の形態1において、ECUにより実行される制御の一例を示すフローチャートである。 本発明の実施の形態2において、ECUにより実行される制御の一例を示すフローチャートである。
実施の形態1.
[実施の形態1の構成]
以下、図1乃至図9を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための構成図である。本実施の形態のシステムは、多気筒型の内燃機関であるエンジン10を備えている。なお、図1では、エンジン10の1気筒のみを例示している。エンジン10の筒内には、ピストン12が軸方向に変位可能に設けられており、ピストン12はクランク軸14に連結されている。また、ピストン12は、筒内に燃焼室16を形成しており、燃焼室16には、後述の図2及び図3に示すように、吸気ポート18及び排気ポート20が開口している。
また、エンジン10は、吸気ポート18を介して燃焼室16内に空気を吸込む吸気通路22と、吸気通路22を流れる吸入空気量を調整するスロットルバルブ24と、燃焼室16内の排気ガスが排気ポート20を介して排出される排気通路26とを備えている。また、エンジン10の各気筒は、吸気通路22内に燃料を噴射する燃料噴射弁28と、空気と燃料との混合気に点火する点火プラグ30と、吸気ポート18を開閉する吸気バルブ32と、排気ポート20を開閉する排気バルブ34とを備えている。また、エンジン10は、吸気バルブ32のリフト量を変更する可変バルブリフト機構36を備えている。可変バルブリフト機構36は、例えば特開2004−293483号公報に記載された機構により構成してもよい。
また、本実施の形態のシステムは、エンジン10の運転状態を検出するセンサ系統と、センサ系統の出力に基いてエンジン10を制御するECU(Electronic Control Unit)50とを備えている。センサ系統には、エンジン10の回転数(機関回転数)及びクランク角を検出するための信号を出力するクランク角センサ40、吸入空気量を検出するエアフローセンサ42等により構成されている。ECU50は、センサ系統の出力に基いてスロットルバルブ24、燃料噴射弁28、点火プラグ30、可変バルブリフト機構36等のアクチュエータを駆動することにより、エンジン10を制御する。
[実施の形態1の特徴]
次に、図2及び図3を参照して、燃焼室の構成について説明する。まず、図2は、吸気ポートの周囲を拡大して示す図1中の要部拡大図であり、図3は、燃焼室の上面部をピストン側からみた下面図である。これらの図に示すように、燃焼室16の壁面のうちピストン12の頂面と対向する上面部には、例えば吸気ポート18及び排気ポート20が2個ずつ配置されている。吸気ポート18と排気ポート20とは、ピストン12側からみて、燃焼室16の中心を通る特定の直径方向(図3中のX−X方向)で互いに対向する位置に形成されている。また、燃焼室16の上面部には、燃焼室16内の気流を制御する気流制御壁部としての気流制御突起60が設けられている。気流制御突起60は、例えば吸気ポート18の周縁部に沿って延びる略円弧状の凸部として形成され、燃焼室16の壁面の一部を構成している。また、気流制御突起60は、吸気ポート18の周縁部のうち排気ポート20との間に位置する部位から燃焼室16内に突出している。
一方、後述の図6に示すように、ピストン12の頂面には、燃焼室16内にタンブル流を保持する2つの曲面部62,64が設けられている。これらの曲面部62,64は、それぞれ前記特定の直径方向に延びる凹湾曲面として形成されている。第1の曲面部62の曲率中心は、燃焼室16の中心軸線上(即ち、気筒の中心軸線上)に配置されている。第2の曲面部64の曲率中心は、燃焼室16の中心軸線よりも吸気ポート18側に偏って配置されている。なお、曲面部62,64は、前記特定の直径方向と直行する方向において、ピストン12の頂面全体に形成してもよいし、頂面の中央部のみに形成してもよい。また、第2の曲面部64は、本実施の形態において、気流制御曲面部に対応している。
また、ECU50は、燃焼室16内の気流速度、好ましくは、点火プラグ30の近傍の気流速度を推定する機能を備えている。この機能は、本実施の形態において、気流速度推定手段に対応している。気流速度推定手段の具体例を挙げると、ECU50は、燃焼室16内で生じるタンブル流の渦中心から点火プラグ30の電極間ギャップまでの距離と、機関回転数と、点火時期とに基いて気流速度を推定してもよい。また、点火プラグ30の放電時間と気流速度とは相関を有しているので、放電時間に基いて気流速度を推定してもよい。これらの方法は、例えば特開2008−303798号公報に記載されているものである。
また、他の気流速度推定手段としては、例えばエンジン適合時において、機関回転数、機関負荷及び吸気バルブ32のリフト量のうち少なくとも1つのパラメータと気流速度との関係を実測し、この実測結果をデータマップとしてECU50に予め記憶しておく。そして、エンジン運転中には、個々の時点で取得した前記パラメータに基いて、前記データマップから気流速度を算出する構成としてもよい。また、本発明では、例えば点火プラグ30の近傍に気流速度を検出する流速センサを配置し、この流速センサにより気流速度推定手段を構成してもよい。
(タンブル流可変制御)
次に、ECU50により実行されるタンブル流可変制御について説明する。タンブル流可変制御は、燃焼室16内の気流速度に基いて吸気バルブ32のリフト量を制御するものである。まず、点火プラグ30の近傍(プラグ近傍)の気流速度と、当該気流速度に適合するタンブル流について説明する。図4は、プラグ近傍の気流速度と着火位置との関係を示す説明図である。また、図5は、プラグ近傍の気流方向とタンブル流との関係を示す説明図である。図6は、タンブル流可変制御により形成される2種類のタンブル流を示す燃焼室の断面図である。なお、本明細書において、「プラグ近傍」とは、点火プラグ30が設けられた位置を意味し、「プラグ近傍の気流」とは、点火プラグ30の位置を通過する気流を意味している。
図4に示すように、プラグ近傍の気流速度が小さい場合には、点火が行われてから、プラグ近傍の混合気が横向きに出来るだけ離れた位置まで流動したときに着火するのが好ましい。逆に言えば、プラグ近傍の気流速度が小さいのに、プラグ近傍で斜め下向きの気流が形成されていると、点火プラグ30の接地電極の近傍で混合気が燃焼することになり、これによって燃焼性が悪化する可能性がある。なお、上記説明において、「横向き」とは、気流が前記特定の直径方向に沿って離れるときの方向を意味している。
このように、プラグ近傍に横向きの気流を発生させるためには、図5及び図6中に細線で示すように、燃焼室16全体を周回する第1のタンブル流Aを生成するのが好ましい。第1のタンブル流Aの渦中心Oaは、燃焼室16のほぼ中心軸線上に位置しているので、点火プラグ30の近傍では、横向きの気流を発生させることができ、気流速度が小さい場合には、点火プラグ30の接地電極から離れた位置で混合気を着火させることができる。
一方、プラグ近傍の気流速度が大きい場合には、点火が行われてから、プラグ近傍の混合気が斜め下向きに離れた位置まで流動したときに着火し、燃焼室16の上面部(シリンダヘッド)と着火位置との間に十分な距離が確保されるのが好ましい。逆に言えば、プラグ近傍の気流速度が大きいのに、プラグ近傍で横向きの気流が形成されていると、シリンダヘッドの壁面近傍で混合気が燃焼することになり、燃焼性が悪化する可能性がある。
このように、プラグ近傍に斜め下向きの気流を発生させるためには、図5及び図6中に太線で示すように、燃焼室16のうち中心軸線から吸気ポート18側に偏った空間を周回する第2のタンブル流Bを生成するのが好ましい。第2のタンブル流Bの渦中心Obは、燃焼室16の中心軸線よりも吸気ポート18側に偏っているので、点火プラグ30の近傍では、斜め下向きの気流を発生させることができ、気流速度が大きい場合には、シリンダヘッドの壁面から離れた位置で混合気を着火させることができる。
上記要求を踏まえて、タンブル流可変制御では、プラグ近傍の気流速度に基いて吸気バルブ32のリフト量を変更する。具体的に述べると、まず、気流速度が後述の判定値よりも小さい場合には、吸気バルブ32のリフト量を大きくする。図7は、吸気バルブのリフト量を大きくした状態(高バルブリフト時)を示す説明図である。高バルブリフト時には、図7に示すように、吸気バルブ32の傘と吸気ポート18の周縁部との間に大きな隙間が確保される。この結果、前記隙間を通過する気流の一部は、気流制御突起60から受ける影響が相対的に小さくなるので、吸気バルブ32の傘に案内されて水平に流通し、図5中に細線で示すように、点火プラグ30の近傍を横向きに通過する。そして、この気流は、図6中に細線で示すように、排気バルブ34の近傍で燃焼室16の内周面に沿って下降した後に、ピストン12の曲面部62に沿って流れるようになり、燃焼室16の全体を周回する第1のタンブル流Aを形成する。
一方、タンブル流可変制御では、気流速度が前記判定値よりも大きい場合に、吸気バルブ32のリフト量を高バルブリフト時と比較して減少させる。図8は、吸気バルブのリフト量を図7と比較して減少させた状態(低バルブリフト時)を示す説明図である。低バルブリフト時には、図8に示すように、吸気バルブ32の傘と吸気ポート18の周縁部との隙間が高バルブリフト時と比較して小さくなる。この結果、前記隙間を通過する気流の一部は、気流制御突起60に案内されることにより気流の方向が斜め下向きに変化し、図5中に太線で示すように、点火プラグ30の近傍を斜め下向きに通過する。そして、この気流は、図6中に太線で示すように、燃焼室の中央付近で下降した後に、ピストン12の曲面部64に沿って流れるようになり、燃焼室16のうち吸気ポート18側に偏った空間を周回する第2のタンブル流Bを形成する。
なお、上述した気流速度の大小判定に用いる判定値は、例えばプラグ近傍に横向きの気流が流通しても燃焼安定性を確保することが可能な気流速度のうち、最大の気流速度に対応して予め設定されている。また、本発明では、第2のタンブル流Bを生成しない通常のバルブ制御において、吸気バルブ32のリフト量を高バルブリフト時と等しい大きさに設定し、低バルブリフト時には、通常のバルブ制御時と比較してリフト量を減少させる構成としてもよい。
以上詳述した通り、本実施の形態では、吸気ポート18から燃焼室16内に空気が流入するときに、この気流に対する気流制御突起60の影響度が吸気バルブ32のリフト量に応じて相対的に変化する。従って、この影響度の変化を利用して気流を制御し、気流速度に応じて2種類のタンブル流A,Bを適切に使い分けることができる。即ち、気流速度が前記判定値よりも小さい場合には、吸気バルブ32のリフト量を相対的に大きくし、高バルブリフトと曲面部62の相乗効果により第1のタンブル流Aを生成することができる。これにより、点火プラグ30の近傍には、低速気流に適した横向きの気流を発生させることができる。
一方、気流速度が前記判定値よりも大きい場合には、吸気バルブ32のリフト量を低速気流時と比較して減少させ、気流に対する気流制御突起60の影響度を増大させることができる。この結果、低バルブリフト、気流制御突起60及び曲面部64の相乗効果により第2のタンブル流Bを生成し、点火プラグ30の近傍には、高速気流に適した斜め下向きの気流を発生させることができる。このように、本実施の形態によれば、気流速度に応じて燃焼室16内のタンブル流及びプラグ近傍の気流方向を適切に制御し、混合気の着火位置を燃焼室16の壁面から離すことができる。従って、実現が容易な構成により、燃焼安定性を向上させることができる。
しかも、本実施の形態によれば、特にリーン燃焼制御を行う場合に、上記効果を顕著に発揮することができる。即ち、リーン燃焼制御を行うエンジンでは、理論空燃比の近傍で燃焼を行う通常のエンジンと比較して、リーン化した混合気を効率よく燃焼させる必要があるので、プラグ近傍の気流速度が大きくなる傾向がある。また、混合気をリーン化することにより、理論空燃比での燃焼と比較して着火遅れが増大するので、着火位置がプラグ近傍から下流側に離れる傾向がある。このとき、着火及び初期火炎の位置が燃焼室の壁面に近過ぎると、火炎の伝播遅れ、消炎等が発生し、その結果として燃焼安定性及びリーン燃焼性能が低下し易い。このため、リーン燃焼制御では、プラグ近傍の気流速度が大きい場合に、当該気流の方向を斜め下向きに保持し、着火位置及び火炎の進行方向を燃焼室の壁面から離間させるのが好ましい。また、プラグ近傍の気流速度が小さい場合には、当該気流の方向を横向きに保持し、着火位置を点火プラグから離間させるのが好ましい。
これに対し、本実施の形態では、図5に示すように、気流速度に応じて2種類のタンブル流A,Bを使い分けることができるので、リーン燃焼制御の要求を満たすことができる。これにより、リーン燃焼制御では、点火プラグ30の放電が高速気流により大きく流される運転領域でも、着火位置及び火炎の進行方向と燃焼室16の壁面との間に適切な距離を確保することができる。これにより、リーン燃焼制御での燃焼性を改善し、燃費を向上させることができる。
[実施の形態1を実現するための具体的な処理]
次に、図9を参照して、上述した制御を実現するための具体的な処理について説明する。図9は、本発明の実施の形態1において、ECUにより実行される制御の一例を示すフローチャートである。この図に示すルーチンは、エンジン10の運転中に繰り返し実行されるものとする。図9に示すルーチンでは、まず、ステップ100において、プラグ近傍の気流速度を推定し、推定された気流速度が前述の判定値よりも大きいか否かを判定する。この判定が成立した場合には、ステップ102に移行する。
ステップ102では、可変バルブリフト機構36により吸気バルブ32のリフト量を小リフト量に設定する。これにより、燃焼室16内には、第2のタンブル流Bが生成され、プラグ近傍には斜め下向きの気流が発生する。一方、ステップ100の判定が不成立の場合には、ステップ104に移行する。ステップ104では、吸気バルブ32のリフト量を小リフト量よりも大きな大リフト量に設定する。これにより、燃焼室16内には、第1のタンブル流Aが生成され、プラグ近傍には横向きの気流が発生する。
このように、図9に示すルーチンによれば、タンブル流可変制御を実現することができる。なお、上記ステップ100〜104の処理は、リフト量制御手段の具体例を示すものである。また、本実施の形態では、判定値が予め設定された一定値である場合を例示したが、本発明はこれに限らず、機関回転数、機関負荷等に基いて判定値を可変に設定する構成としてもよい。
実施の形態2.
次に、図10を参照して、本発明の実施の形態2について説明する。実施の形態2では、前記実施の形態1と同様の構成において、理論空燃比の近傍で燃焼を行う通常のストイキ燃焼制御と、リーン燃焼制御との間で燃焼制御を切換える。そして、リーン燃焼制御が行われる場合にのみ、タンブル流可変制御を実行することを特徴としている。
図10は、本発明の実施の形態2において、ECUにより実行される制御の一例を示すフローチャートである。この図に示すルーチンは、エンジン10の運転中に繰り返し実行されるものとする。図10に示すルーチンでは、まず、ステップ200において、ストイキ燃焼制御の実行中であるか否かを判定する。この判定が成立した場合には、ステップ202に移行する。
ステップ202では、吸気バルブ32のリフト量を通常のリフト量に設定する。ここで、通常のリフト量とは、タンブル可変制御における大リフト量に相当するもので、燃焼室16内に第1のタンブル流Aを生成するものである。一方、ステップ200の判定が不成立の場合には、リーン燃焼制御の実行中であるから、ステップ204に移行し、タンブル可変制御を実行する。ステップ204は、図9中のステップ100〜104と同様の処理を実行するものである。
このように、実施の形態2によれば、ストイキ燃焼制御とリーン燃焼制御とを併用するエンジンにおいて、リーン燃焼制御を行う場合にのみタンブル可変制御を実行し、前記実施の形態1と同様の効果を得ることができる。また、ストイキ燃焼制御では、大きな負荷を要求されることが多い上に、着火性が良いので着火位置が下流側にずれ難く、しかも着火後の燃焼耐性が高いのでタンブル可変制御が不要となる。これに対し、本実施の形態では、ストイキ燃焼制御の実行時にタンブル可変制御を禁止することができる。そして、タンブル可変制御により吸気バルブ32のリフト量が減少して筒内への吸気量が絞られるのを回避し、大きな負荷に対応して吸気量を十分に確保することができる。
10 エンジン(内燃機関)
12 ピストン
16 燃焼室
18 吸気ポート
20 排気ポート
22 吸気通路
26 排気通路
28 燃料噴射弁
30 点火プラグ
32 吸気バルブ
34 排気バルブ
36 可変バルブリフト機構
40 クランク角センサ
50 ECU
60 気流制御突起(気流制御壁部)
62,64 第1,第2の曲面部(気流制御曲面部)
A,B タンブル流

Claims (1)

  1. 内燃機関の筒内に軸方向に変位可能に設けられたピストンと、
    前記ピストンにより前記筒内に形成され、前記ピストンの頂面と対向する位置に吸気ポート及び排気ポートが開口した燃焼室と、
    前記吸気ポートの周縁部のうち前記排気ポートとの間に位置する部位から前記燃焼室内に突出し、前記燃焼室の壁面の一部を構成する気流制御壁部と、
    前記ピストンの頂面に設けられた凹湾曲面であって、曲率中心が前記燃焼室の中心軸線よりも前記吸気ポート側に配置された気流制御曲面部と、
    前記吸気ポートを開閉する吸気バルブのリフト量を変更する可変バルブリフト機構と、
    前記燃焼室内の気流速度を推定する気流速度推定手段と、
    前記可変バルブリフト機構により前記吸気バルブのリフト量を制御する手段であって、前記気流速度が予め設定された判定値よりも大きい場合に、前記気流速度が前記判定値よりも小さい場合と比較して前記吸気バルブのリフト量を減少させるリフト量制御手段と、
    を備えた内燃機関の制御装置。
JP2014051949A 2014-03-14 2014-03-14 内燃機関の制御装置 Expired - Fee Related JP6123712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051949A JP6123712B2 (ja) 2014-03-14 2014-03-14 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051949A JP6123712B2 (ja) 2014-03-14 2014-03-14 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2015175283A JP2015175283A (ja) 2015-10-05
JP6123712B2 true JP6123712B2 (ja) 2017-05-10

Family

ID=54254706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051949A Expired - Fee Related JP6123712B2 (ja) 2014-03-14 2014-03-14 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6123712B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519598B2 (ja) 2017-01-11 2019-05-29 トヨタ自動車株式会社 内燃機関の制御装置
DE112022001358T5 (de) * 2021-06-21 2024-02-15 Hitachi Astemo, Ltd. Brennkraftmaschinensteuerungsvorrichtung
JP2023183629A (ja) * 2022-06-16 2023-12-28 日立Astemo株式会社 内燃機関制御装置及び内燃機関制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252477A (ja) * 1997-03-13 1998-09-22 Nissan Motor Co Ltd 直接筒内噴射式火花点火機関
JP3903657B2 (ja) * 1998-12-02 2007-04-11 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
JP3849422B2 (ja) * 2000-11-20 2006-11-22 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
JP2005127272A (ja) * 2003-10-27 2005-05-19 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2015175283A (ja) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6079814B2 (ja) 内燃機関
JP6176005B2 (ja) 内燃機関の制御装置
JP2006322335A (ja) 内燃機関の制御システム
US10100717B2 (en) Intake port for generating high tumble and swirl
JP6123712B2 (ja) 内燃機関の制御装置
JP2008303798A (ja) 内燃機関及び内燃機関の制御装置
JP6332345B2 (ja) 内燃機関の制御装置
JP6206158B2 (ja) 火花点火式内燃機関の制御システム
JP6098477B2 (ja) 火花点火式内燃機関の制御システム
JP6156485B2 (ja) 内燃機関の制御装置
JP5299177B2 (ja) 内燃機関の燃焼制御装置
JP5696568B2 (ja) 内燃機関の制御装置
JP6217670B2 (ja) 内燃機関
JP5239720B2 (ja) 火花点火内燃機関
JP2006299992A (ja) 内燃機関の制御システム
JP2007278131A (ja) 点火時期制御装置
JP2015121164A (ja) 火花点火式内燃機関の制御システム
JP4730146B2 (ja) 内燃機関の吸気通路構造
JP2007239627A (ja) 火花点火式内燃機関
JP2013072390A (ja) 内燃機関
JP2010144624A (ja) 火花点火式内燃機関
JP2006328981A (ja) 水素利用内燃機関の点火制御装置
JP4378191B2 (ja) エンジン及びその点火時期制御方法
KR102113032B1 (ko) 이종 연료 연소 엔진의 연소실 가스 유동 제어 시스템 및 그 방법
JP6249281B2 (ja) 圧縮着火式内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R151 Written notification of patent or utility model registration

Ref document number: 6123712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees