JP6117710B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6117710B2
JP6117710B2 JP2014011239A JP2014011239A JP6117710B2 JP 6117710 B2 JP6117710 B2 JP 6117710B2 JP 2014011239 A JP2014011239 A JP 2014011239A JP 2014011239 A JP2014011239 A JP 2014011239A JP 6117710 B2 JP6117710 B2 JP 6117710B2
Authority
JP
Japan
Prior art keywords
mode
voltage
switching
phase
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014011239A
Other languages
English (en)
Other versions
JP2015139340A (ja
Inventor
芳光 高橋
芳光 高橋
脇本 亨
亨 脇本
野村 由利夫
由利夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2014011239A priority Critical patent/JP6117710B2/ja
Publication of JP2015139340A publication Critical patent/JP2015139340A/ja
Application granted granted Critical
Publication of JP6117710B2 publication Critical patent/JP6117710B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、電力変換装置に関する。
従来、2つのインバータによりモータの電力を変換するインバータ駆動システムが知られている。例えば特許文献1では、高電圧時において、第1のインバータシステムと第2のインバータシステムのパルス幅変調信号(以下、パルス幅変調を「PWM」という。)の基本波成分の位相を180[°]ずらすことで2つの電源が電気的に直列接続され、2つの電源電圧の和によりモータを駆動する。また特許文献1では、低電圧時において、第1のインバータシステムまたは第2のインバータシステムの一方の上アームまたは下アームのいずれかを3相同時オンし、他方をPWM駆動している。
特開2006−238686号公報
特許文献1のように、2つのインバータのスイッチング状態を切り替えることにより、モータに印加される印加電圧が変更されると、スイッチング状態の切り替えに伴い、モータに通電される電流が歪むことによる過電流が発生する虞がある。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、駆動モードの切り替えによる電流の歪みを抑制可能な電力変換装置を提供することにある。
本発明の電力変換装置は、巻線を有するモータジェネレータの電力を変換するものであって、第1インバータ部と、第2インバータ部と、制御部と、を備える。
第1インバータ部は、巻線の各相に対応して設けられる第1スイッチング素子を有し、巻線の一端と第1電圧源との間に接続される。第2インバータ部は、巻線の各相に対応して設けられる第2スイッチング素子を有し、巻線の他端と第2電圧源との間に接続される。
制御部は、第1スイッチング素子および第2スイッチング素子のオンオフ作動を制御する。制御部は、駆動モード選択手段と、歪み低減手段と、を有する。
駆動モード選択手段は、モータジェネレータの回転数およびトルクに応じ、第1電圧源が充放電される第1低電圧モード、第2電圧源が充放電される第2低電圧モード、または、第1電圧源および第2電圧源が共に充放電される高電圧モードのいずれかの駆動モードを選択する。
歪み低減手段は、第1低電圧モード、第2低電圧モード、または、前記高電圧モードのいずれかである切替前モードから、前記切替前モードとは異なる駆動モードである切替後モードに切り替える際、巻線に通電される電流の歪みを低減する歪み低減処理を行う。
歪み低減処理は、第1電圧源または第2電圧源の一方が充電され他方が放電される差電圧モードであって、第2電圧源の電圧値である第2電圧値が第1電圧源の電圧値である第1電圧値の2倍より大きい場合、歪み低減手段は、切替前モードおよび切替後モードの一方が、第1低電圧モードであり、他方が第2低電圧モードまたは高電圧モードである場合、切替前モードと切替後モードとの間に、所定時間の差電圧モードを行う。
本発明では、モータジェネレータの回転数およびトルクに応じて駆動モードを選択することにより、スイッチング損失を抑えている。また、駆動モードの切り替えに際し、歪み低減処理を行うので、駆動モードの切り替えに伴う各相電流の歪みを低減することができる。特に、切替後の駆動モードの方が巻線に印加可能な電圧が高い場合、駆動モードを切り替える際、各相電流が大きくなる側へ電流が歪む。本発明では、歪み低減処理を行うことにより各相電流の歪みが低減されるので過電流が抑制され、サージ電圧のピークを低減することができる。これにより、巻線の絶縁被膜の耐圧を下げることができるので、巻線の薄膜化が可能であり、体格を小型化することができる。
本発明の第1実施形態の電力変換装置の構成を示す概略構成図である。 本発明の第1実施形態の電力変換装置における各相電流の方向および相間電圧を説明する説明図である。 本発明の第1実施形態における駆動モードの切り替えを説明する説明図である。 本発明の第1実施形態における低電圧モードを説明する説明図である。 本発明の第1実施形態の低電圧モードにおける駆動電圧を説明する説明図である。 本発明の第1実施形態における高電圧モードを説明する説明図である。 本発明の第1実施形態の高電圧モードにおける駆動電圧を説明する説明図である。 本発明の第1実施形態における切替許可タイミングを説明する説明図である。 本発明の第1実施形態における過電流低減効果を説明する説明図である。 本発明の第2実施形態における駆動モードの切り替えを説明する説明図である。 本発明の第2実施形態の第1低電圧モードにおける駆動電圧を説明する説明図である。 本発明の第2実施形態の第2低電圧モードにおける駆動電圧を説明する説明図である。 本発明の第2実施形態の高電圧モードにおける駆動電圧を説明する説明図である。 本発明の第2実施形態による切替電圧幅と電流歪みとの関係を説明する説明図である。 本発明の第2実施形態における差電圧モードを説明する説明図である。 本発明の第2実施形態の差電圧モードにおける駆動電圧を説明する説明図である。 本発明の第2実施形態による駆動モード切替処理を説明するフローチャートである。 本発明の第3実施形態による電力変換装置の構成を示すシステム図である。 本発明の第3実施形態による駆動モード切替処理を説明するフローチャートである。 本発明の第4実施形態による駆動モード切替処理を説明するフローチャートである。
以下、本発明による電力変換装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
図1に示すように、本発明の第1実施形態による電力変換装置1は、モータジェネレータ(以下、「MG」という。)10の電力を変換するものである。
MG10は、例えば電気自動車やハイブリッド車両等の電動車両に適用され、図示しない駆動輪を駆動するためのトルクを発生する。MG10は、駆動輪を駆動するための電動機としての機能、および、図示しないエンジンや駆動輪から伝わる運動エネルギによって駆動されて発電する発電機としての機能を有する。
MG10は、3相交流の電動機であって、U相コイル11、V相コイル12およびW相コイル13を有する。U相コイル11、V相コイル12およびW相コイル13が「巻線」に対応する。以下適宜、U相コイル11、V相コイル12およびW相コイル13を「コイル11〜13」という。また、U相コイル11に通電される電流をU相電流Iu、V相コイル12に通電される電流をV相電流Iv、W相コイル13に通電される電流をW相電流Iwといい、U相電流Iu、V相電流IvおよびW相電流Iwを適宜「各相電流Iu、Iv、Iw」という。
電力変換装置1は、第1インバータ部20、第2インバータ部30、および、制御部60等を備える。
第1インバータ部20は、3相インバータであり、コイル11〜13への通電を切り替えるべく、6つのスイッチング素子であるU1上アーム素子21、V1上アーム素子22、W1上アーム素子23、U1下アーム素子24、V1下アーム素子25、および、W1下アーム素子26がブリッジ接続される。
U1上アーム素子21は、U1下アーム素子24の高電位側に接続される。V1上アーム素子22は、V1下アーム素子25の高電位側に接続される。W1上アーム素子23は、W1下アーム素子26の高電位側に接続される。
第1インバータ部20は、コイル11〜13の一端111、121、131と、第1電圧源としての第1バッテリ41との間に接続される。具体的には、U1上アーム素子21とU1下アーム素子24との接続点27が、U相コイル11の一端111に接続される。また、V1上アーム素子22とV1下アーム素子25との接続点28が、V相コイル12の一端121に接続される。さらにまた、W1上アーム素子23とW1下アーム素子26との接続点29が、W相コイル13の一端131に接続される。
第2インバータ部30は、3相インバータであり、コイル11〜13への通電を切り替えるべく、6つのスイッチング素子であるU2上アーム素子31、V2上アーム素子32、W2上アーム素子33、U2下アーム素子34、V2下アーム素子35、および、W2下アーム素子36がブリッジ接続される。
U2上アーム素子31は、U2下アーム素子34の高電位側に接続される。V2上アーム素子32は、V2下アーム素子35の高電位側に接続される。W2上アーム素子33は、W2下アーム素子36の高電位側に接続される。
第2インバータ部30は、コイル11〜13の他端112、122、132と、第2電圧源としての第2バッテリ42との間に接続される。具体的には、U2上アーム素子31とU2下アーム素子34との接続点37が、U相コイル11の他端112に接続される。また、V2上アーム素子32とV2下アーム素子35との接続点38が、V相コイル12の他端122に接続される。さらにまた、W2上アーム素子33とW2下アーム素子36との接続点39が、W相コイル13の他端132に接続される。
このように、本実施形態では、第1インバータ部20および第2インバータ部30は、コイル11〜13の両端に接続される。
本実施形態では、U1上アーム素子21、V1上アーム素子22、W1上アーム素子23、U1下アーム素子24、V1下アーム素子25、および、W1下アーム素子26が「第1スイッチング素子」に対応し、U2上アーム素子31、V2上アーム素子32、W2上アーム素子33、U2下アーム素子34、V2下アーム素子35、および、W2下アーム素子36が「第2スイッチング素子」に対応する。以下適宜、スイッチング素子を「SW素子」という。
本実施形態のSW素子21〜26、31〜36は、IGBT(Insulated Gate Bipolar Transistor)であるが、例えばMOS(Metal Oxide Semiconductor)トランジスタ、バイポーラトランジスタ等を用いてもよい。
第1バッテリ41は、充放電可能な直流電源であって、第1インバータ部20に接続される。
第2バッテリ42は、充放電可能な直流電源であって、第2インバータ部30に接続される。
第1バッテリ41の電圧値を第1電圧値E1、第2バッテリ42の電圧値を第2電圧値E2とすると、本実施形態では、第1電圧値E1と第2電圧値E2とは等しい。すなわち、E1=E2である。
なお、第1実施形態では、第1バッテリ41および第2バッテリ42を1つの直流電源として記載しているが、例えば複数の直流電源を並列或いは直列に接続して構成してもよいし、図示しない昇圧コンバータ等を含んで構成するようにしてもよい。
第1コンデンサ51は、第1バッテリ41と並列に接続され、第1バッテリ41からSW素子21〜26へ供給される電流、或いは、SW素子21〜26から第1バッテリ41へ供給される電流を平滑化する平滑コンデンサである。
第2コンデンサ52は、第2バッテリ42と並列に接続され、第2バッテリ42からSW素子31〜36へ供給される電流、或いは、SW素子31〜36から第2バッテリ42へ供給される電流を平滑化する平滑コンデンサである。
電流検出部55は、コイル11〜13の各相に通電される各相電流Iu、Iv、Iwを検出する。電流検出部55は、必ずしも3相全てに設ける必要はなく、少なくとも2相に設けられていればよい。
ここで、第1インバータ部20および第1バッテリ41の組み合わせを第1系統100とし、第2インバータ部30および第2バッテリ42の組み合わせを第2系統200とすると、MG10の一側に第1系統100が設けられ、他側に第2系統200が設けられている、ということである。
制御部60は、通常のコンピュータとして構成されており、内部にはCPU、ROM、RAM、I/O、および、これらの構成を接続するバスライン等が備えられる。
制御部60は、第1制御信号生成部61、第2制御信号生成部62、および、切替制御部65を有する。
第1制御信号生成部61は、第1インバータ部20のSW素子21〜26のオンオフ作動を制御する第1制御信号を生成し、SW素子21〜26へ出力する。第2制御信号生成部62は、第2インバータ部30のSW素子31〜36のオンオフ作動を制御する第2制御信号を生成し、SW素子31〜36へ出力する。
切替制御部65は、MG10の回転数およびトルクに基づき、駆動モードを選択するとともに、駆動モードの切り替えを制御する。第1制御信号生成部61および第2制御信号生成部62は、切替制御部65にて選択された駆動モードおよび切替タイミングに応じた、第1制御信号および第2制御信号を生成する。
ここで、MG10の駆動モードの切り替えの説明に先立ち、各相電流Iu、Iv、Iwおよび相間電圧について図2に基づいて説明する。図2では、制御部60等の記載を省略している。後述の図4等も同様である。
本実施形態では、第1インバータ部20側からコイル11〜13を経由して第2インバータ部30側へ流れる電流を正、第2インバータ部30側からコイル11〜13を経由して第1インバータ部20側へ流れる電流を負とする。
また、第1インバータ部20側におけるV相基準のU−V間の相間電圧をU1−V1、W相基準のV−W間の相間電圧をV1−W1、U相基準のW−U間の相間電圧をW1−U1とする。また、第2インバータ部30側におけるU相基準のU−V間の相間電圧をU2−V2、V相基準のV−W間の相間電圧をV2−W2、W相基準のW−U間の相間電圧をW2−U2とする。すなわち、U1−V1とU2−V2、V1−W1とV2−W2、W1−U1とW2−U2とは、正負が反対向きとなっている。
続いて、MG10の駆動モードについて説明する。MG10の駆動に際し、駆動電圧により回転数限界およびトルク限界が存在し、駆動電圧が大きければ、高回転、高トルクでの出力が可能となる。一方、駆動電圧が大きいと、第1インバータ部20および第2インバータ部30におけるスイッチング損失が大きくなる。
そこで本実施形態では、MG10の回転数およびトルクに応じ、駆動モードを切り替えている。本実施形態では、図3に示すように、MG10の回転数およびトルクが実線T11より小さい領域Aでは、低電圧モードとし、スイッチング損失を抑えている。また、MG10の回転数およびトルクが実線T11と実線T12との間の領域Bでは、高電圧モードとし、高回転数、高トルクを出力する。
以下、各駆動モードについて説明する。以下の説明では、第1バッテリ41および前記第2バッテリ42の少なくとも一方から電力が供給され、MG10が電動機として機能する場合を中心に説明するが、MG10の回生により発電機として機能し、第1バッテリ41および第2バッテリ42を充電する場合についても同様とする。
まず、低電圧モードについて、図4および図5に基づいて説明する。図4においては、オンされているSW素子を実線、オフされているSW素子を破線にて示している。
図4に示すように、低電圧モードでは、第1インバータ部20または第2インバータ部30の一方を中性点化し、中性点化していない第1インバータ部20または第2インバータ部30の他方による片側電源駆動とする。ここで、第2インバータ部30を中性点化し、第1インバータ部20をスイッチングする駆動モードを「第1低電圧モード」、第1インバータ部20を中性点化し、第2インバータ部30をスイッチングする駆動モードを「第2低電圧モード」とする。
図4(a)は、第1低電圧モードの例である。図4(a)に示す例では、第2インバータ部30の上アーム素子31〜33を3相同時にオンし、下アーム素子34〜36を3相同時にオフしている。これにより、第2インバータ部30側が中性点化される。
また、第1インバータ部20は、電圧指令に基づく基本波と、三角波等であるキャリア波とに基づいてPWM制御される。ここで、PWM制御には、基本波の振幅がキャリア波の振幅以下である「正弦波PWM制御」および基本波の振幅がキャリア波の振幅より大きい「過変調PWM制御」を含む。
図4(a)に示す例では、第2インバータ部30側を中性点とみなすことができるので、MG10は、第1バッテリ41により駆動される。このとき、第1インバータ部20側の相間電圧U1−V1、V1−W1、W1−U1は、パルスの高さが第1バッテリ41の第1電圧値E1となる。また、中性点化される第2インバータ部30側の相間電圧U2−V2、V2−W2、W2−U2はいずれもゼロである。したがって、図5(a)に示すように、MG10に印加される駆動電圧U−Vは、相間電圧U1−V1とU2−V2との和であるので、相間電圧U1−V1と同様、パルスの高さが第1バッテリ41の第1電圧値E1となる。同様に、駆動電圧V−W、W−Uは、相間電圧V1−W1、W1−U1と同様、パルスの高さが第1バッテリ41の第1電圧値E1となる。
図4(b)は、第2低電圧モードの例である。図4(b)に示す例では、第1インバータ部20の20の上アーム素子21〜23を3相同時にオンし、下アーム素子24〜26を3相同時にオフしている。これにより、第1インバータ部20側が中性点化される。
また、第2インバータ部30は、電圧指令に基づく基本波と、三角波等であるキャリア波とに基づいてPWM制御される。
図4(b)に示す例では、第1インバータ部20側を中性点とみなすことができるので、MG10は、第2バッテリ42により駆動される。このとき、第2インバータ部30側の相間電圧U2−V2、V2−W2、W2−U2は、パルス幅の高さが第2バッテリ42の第2電圧値E2となる。また、中性点化される第1インバータ部20側の相間電圧U1−V1、V1−W1、W1−U1はいずれもゼロである。したがって、図5(b)に示すように、MG10に印加される駆動電圧U−V、V−W、W−Uは、相間電圧U2−V2、V2−W2、W2−U2と同様、パルスの高さが第2バッテリ42の第2電圧値E2となる。
本実施形態では、第1バッテリ41の第1電圧値E1と第2バッテリ42の第2電圧値E2とが等しいので、第1低電圧モードにてコイル11〜13に印加可能な最大電圧と、第2低電圧モードにてコイル11〜13に印加可能な最大電圧とが等しい。そのため、低電圧モードでは、第1低電圧モードまたは第2低電圧モードのどちらの駆動モードとしてもよい。また、例えば所定時間やSW素子21〜26、31〜36の損失等に応じ、第1低電圧モードと第2低電圧モードとを適宜切り替えるようにしてもよい。これにより、SW素子21〜26、31〜36の損失の偏りを低減可能である。
また、図4(a)では、第2インバータ部30の上アーム素子31〜33を3相同時にオンし、下アーム素子34〜36を3相同時にオフしているが、上アーム素子31〜33を3相同時にオフし、下アーム素子34〜36を3相同時にオンすることによっても、第2インバータ部30側を中性点化できる。そのため、上アーム素子31〜33がオン、下アーム素子34〜36がオフである状態と、上アーム素子31〜33がオフ、下アーム素子34〜36がオンである状態とを適宜切り替えてもよい。
同様に、図4(b)では、第1インバータ部20の上アーム素子21〜23を3相同時にオンし、下アーム素子24〜26を3相同時にオフしているが、上アーム素子21〜23を3相同時にオフし、下アーム素子24〜26を3相同時にオンすることによっても、第1インバータ部20側を中性点化できる。そのため、上アーム素子21〜23がオン、下アーム素子24〜26がオフである状態と、上アーム素子21〜23がオン、下アーム素子24〜26がオンである状態とを適宜切り替えてもよい。
これにより、特定の素子のオン状態が継続することによる発熱や、素子間の熱損失の偏りを低減可能である。
次に、高電圧モードを図6および図7に基づいて説明する。
高電圧モードでは、第1インバータ部20および第2インバータ部30は、電圧指令に基づく基本波とキャリア波とに基づいてPWM制御される。
高電圧モードでは、第1インバータ部20の駆動に係る基本波と、第2インバータ部30の駆動に係る基本波とは、位相が反転されている。換言すると、第1インバータ部20の駆動に係る基本波と、第2インバータ部30の駆動に係る基本波とは、位相が略180[°]ずれている。なお、第1インバータ部20の駆動に係る基本波と第2インバータ部30の駆動に係る基本波との位相差は、第1バッテリ41と第2バッテリ42とを直列接続した状態に対応する電圧をコイル11〜13に印加可能であれば、180[°]からの多少のずれは許容されるものとし、「基本波の位相が反転されている」の概念に含まれるものとする。基本波位相を反転することにより、各相にてオンされるSW素子を第1インバータ部20と第2インバータ部30とで上下反対にする。
例えば、図6に示すように、第1インバータ部20において、U相の上アーム素子21がオン、V相およびW相の下アーム素子25、26がオンされるとき、第2インバータ部30において、U相の下アーム素子24がオン、V相およびW相の上アーム素子32、33がオンされる。このとき、矢印Y1で示す経路にて電流が流れるので、第1バッテリ41と第2バッテリ42とを直列接続した電圧にてMG10が駆動される。したがって、図7に示すように、MG10に印加される駆動電圧U−V、V−W、W−Uは、パルスの高さが第1電圧値E1と第2電圧値E2との和であるE1+E2となる。
高電圧モードでは、MG10の力行時には、第1バッテリ41および第2バッテリ42は、共に放電する。また、MG10の回生時には、第1バッテリ41および第2バッテリ42は、共に充電される。低電圧モードでは、PWM制御される側の第1バッテリ41または第2バッテリ42が充電または放電される。
上述の通り、低電圧モードでは、第1電圧値E1または第2電圧値E2でMG10が駆動され、高電圧モードでは、第1電圧値E1および第2電圧値E2の和(すなわちE1+E2)でMG10が駆動される。そのため、駆動モードを切り替えると、コイル11〜13に印加される電圧が変化するため、電流の歪みが生じる。電流の歪みが大きくなると、サージ電圧による絶縁破壊等の不具合が生じたり、トルクリップルによる振動等に起因する駆動品質の低下を招いたりする虞がある。
サージ電圧による絶縁破壊を回避するためには、駆動モードの切り替えに伴うサージ電圧に応じ、コイル11〜13の絶縁皮膜を厚くする必要がある。例えば、サージ電圧が3割増えると、絶縁皮膜の厚さを約2割増とする必要があり、体格が大型化する。
そこで本実施形態では、切替制御部65は、サージ電圧の最大値を低減可能なように、駆動モードの切り替えタイミングを制御する。具体的には、切替制御部65は、電流検出部55により検出される各相電流Iu、Iv、Iwに基づき、各相電流Iu、Iv、Iwのピークからずれたタイミングである切替許可タイミングにて駆動モードを切り替える。
より詳細には、各相電流Iu、Iv、Iwが理想的な正弦波であれば、U相、V相、W相のうちのいずれか1相の正側のピークと、当該正側のピークと隣り合うピークであって、他相の負側のピークとは、電気角で60[°]ずれている。そこで本実施形態では、各相電流Iu、Iv、Iwのピークから電気角で30[°]ずれた切替許可タイミングにて、駆動モードを切り替える。なお、各相電流Iu、Iv、Iwのピークから電気角で30[°]ずれたタイミングが、「隣接するピークの中間タイミング」に対応する。
図8には、第1低電圧モードにおいて、各相電流Iu、Iv、Iwのピークから電気角として30°ずれたタイミングを2点鎖線にて示している。すなわち、図8中に2点鎖線で示すタイミングが、切替許可タイミングである。切替許可タイミングは、各相電流Iu、Iv、IWのいずれかがゼロとなるタイミングと捉えてもよい。
本実施形態では、切替制御部65にて、MG10の回転数およびトルクに基づいて駆動モードを選択する。そして、例えば第1低電圧モードから高電圧モードに駆動モードを切り替える際、図8中に2点鎖線にて示される切替許可タイミングにて駆動モードを切り替える。
図9には、U相電流Iuのピークから電気角として30[°]ずれたタイミングにて駆動モードを低電圧モードから高電圧モードへ切り替えたときのU相電流Iuを実線L1、U相電流Iuのピークで切り替えたときのU相電流Iuを破線L2にて示す。図9に示すように、U相電流Iuのピークから電気角として30[°]ずれたタイミングにて駆動モードを切り替えることにより、U相電流Iuのピークにて駆動モードを切り替える場合と比較し、U相電流Iuの最大値がΔIu低減し、U相電流Iuの過電流が低減される。V相電流IvおよびW相電流Iwについても同様である。
これにより、低電圧モードから高電圧モードへの切り替えに伴う電流の歪みが低減可能であるので、サージ電圧の最大値を低減可能である。また、駆動モードの切り替えに伴うトルクリップルを低減可能である。
低電圧モードから高電圧モードに切り替える場合、電流が大きくなる方向に電流が歪むため、駆動モードの切り替えタイミングを各相電流Iu、Iv、Iwのピークからずらすことにより、電流の歪みが低減されることに加え、図9に示す如く、過電流が低減される。一方、高電圧モードから低電圧モードに切り替える場合、電流が小さくなる方向に電流が歪むため、駆動モードの切り替えタイミングを各相電流Iu、Iv、Iwのピークからずらすことによる過電流抑制効果はないものの、電流の歪みを低減可能であり、トルクリップルを低減することができる。
以上詳述したように、本実施形態の電力変換装置1は、コイル11〜13を有するMG10の電力を変換するものであって、第1インバータ部20と、第2インバータ部30と、制御部60と、を備える。
第1インバータ部20は、コイル11〜13の各相に対応して設けられるSW素子21〜26を有し、コイル11〜13の一端111、121、131と第1バッテリ41との間に接続される。
第2インバータ部30は、コイル11〜13の各相に対応して設けられるSW素子31〜36を有し、コイル11〜13の他端112、122、132と第2バッテリ42との間に接続される。
制御部60は、SW素子21〜26、31〜36のオンオフ作動を制御する。制御部60は、切替制御部65を有する。
切替制御部65は、MG10の回転数およびトルクに応じ、第1バッテリ41が充放電される第1低電圧モード、第2バッテリ42が充放電される第2低電圧モード、または、第1バッテリ41および第2バッテリ42が共に充放電される高電圧モードのいずれかの駆動モードを選択する。
また、切替制御部65は、第1低電圧モード、第2低電圧モード、または、高電圧モードのいずれかである切替前モードから、切替前モードとは異なる駆動モードである切替後モードに切り替える際、コイル11〜13に通電される電流の歪みを低減する歪み低減処理を行う。
本実施形態では、MG10の回転数およびトルクに応じて駆動モードを選択することにより、スイッチング損失を抑えている。また、駆動モードの切り替えに際し、歪み低減処理を行うので、駆動モードの切り替えに伴う各相電流Iu、Iv、Iwの歪みを低減可能であり、トルクリップルを低減することができる。
特に、切替後の駆動モードの方がコイル11〜13に印加可能な電圧が高い場合、駆動モードを切り替える際、各相電流Iu、Iv、Iwが大きくなる側へ電流が歪む。本実施形態では、歪み低減処理を行うことにより各相電流の歪みが低減されるので過電流が抑制され、サージ電圧のピークを低減することができる。これにより、コイル11〜13の絶縁皮膜の耐圧を下げることができるので、コイル11〜13の薄膜化が可能であり、体格を小型化することができる。
本実施形態における歪み低減処理は、切替タイミング調整処理であって、切替制御部65は、コイル11〜13の各相に通電される各相電流Iu、Iv、IWのピークからずれたタイミングである切替許可タイミングにて、切替前モードから切替後モードに切り替える。本実施形態では、切替許可タイミングは、隣接するピークの中間タイミングである。
これにより、各相電流Iu、Iv、Iwのピークで駆動モードを切り替えた場合よりも、各相電流Iu、Iv、Iwのピーク値を抑制することができる。
また、切替前モードよりも切替後モードの方がコイル11〜13に印加可能な最大電圧が大きい場合、歪み低減処理を行う。具体的には、第1低電圧モードまたは第2低電圧モードから高電圧モードへ駆動モードを切り替える場合、歪み低減処理を行う。これにより、電流歪みによる各相電流Iu、Iv、Iwのピーク値を抑制することができる。
本実施形態では、切替制御部65が「駆動モード選択手段」および「歪み低減手段」を構成する。
(第2実施形態)
本発明の第2実施形態による電力変換装置を図10〜図17に基づいて説明する。
本実施形態の電力変換装置は、回路構成は第1実施形態と同様であるが、第1バッテリ41の電圧値である第1電圧値E1および第2バッテリ42の電圧値である第2電圧値E2が第1実施形態と異なる。本実施形態では、第2電圧値E2は、第1電圧値E1の2倍より大きい。すなわち、E2>2×E1である。
本実施形態では、図10に示すように、MG10の回転数およびトルクが実線T21より小さい領域Dでは、第2インバータ部30を中性点化する第1低電圧モードとし、MG10の回転数およびトルクが実線T21とT22との間の領域Eでは第1インバータ部20を中性点化する第2低電圧モードとし、MG10の回転数およびトルクが実線T22とT23との間の領域Fでは高電圧モードとする。本実施形態では、電圧の高い側のインバータ部を中性点化し電圧の低い側の電圧源にて駆動するモードが第1低電圧モードであり、電圧の低い側のインバータ部を中性点化し電圧の高い側の電圧源にて駆動するモードが第2低電圧モードである、と捉えることもできる。
本実施形態による第1低電圧モードにおける駆動電圧を図11、第2低電圧モードにおける駆動電圧を図12、高電圧モードにおける駆動電圧を図13に示す。
図11に示すように、第1低電圧モードでは、駆動電圧のパルスの高さは、第1電圧値E1となる。また、図12に示すように、第2低電圧モードでは、駆動電圧のパルスの高さは、第2電圧値E2となる。本実施形態では、第1電圧値E1と第2電圧値E2とが異なるので、コイル11〜13に印加される電圧は、第1低電圧モードと第2低電圧モードとで異なる。また、図13に示すように、高電圧モードでは、駆動電圧のパルスの高さは、第1電圧値E1および第2電圧値E2の和となる。
第1実施形態でも説明した通り、駆動モードの切り替えに伴って、各相電流Iu、Iv、Iwが歪む。また、駆動モードの切り替えに伴う電流の歪みは、電圧の変動幅が大きいほど大きい。
ここで、切替前の駆動モードにおいてコイル11〜13に印加可能な最大電圧と、切替後の駆動モードにおいてコイル11〜13に印加可能な最大電圧との差を切替電圧幅とし、切替電圧幅と各相電流Iu、Iv、Iwの歪みとの関係を図14に示す。図14では、相対的に切替電圧幅が小さい場合を実線で示し、切替電圧幅が大きい場合を破線で示した。
図14に示すように、駆動モードの切り替えに伴うU相電流Iuの歪みは、切替電圧幅が大きい場合と比較し、切替電圧幅が小さい場合に小さい。図14中では、U相電流Iuについて示しているが、V相電流IvおよびW相電流Iwについても同様である。
本実施形態では、第2電圧値E2は、第1電圧値E1の2倍より大きい。そのため、第2電圧値E2と第1電圧値E1との差は、第1電圧値E1より大きく、第2電圧値E2より小さい。すなわち、E1<(E2−E1)<E2である。そのため、第1電圧値E1で駆動する第1低電圧モードと、第2電圧値E2で駆動する第2低電圧モードとを切り替える際、その間に、歪み低減処理として、第2電圧値E2と第1電圧値E1との差(E2−E1)で駆動する差電圧モードを実行することにより、切替電圧幅が小さくなるので、電流の歪みが低減される。
ここで、差電圧モードについて図15および図16に基づいて説明する。
差電圧モードでは、第1インバータ部20および第2インバータ部30は、電圧指令に基づく基本波とキャリア波とに基づいてPWM制御される。
差電圧モードでは、第1インバータ部20の駆動に係る基本波と、第2インバータ部30の駆動に係る基本波とは、位相が等しい。すなわち、差電圧モードは、第1インバータ部20および第2インバータ部30の駆動に係る基本波が同位相である点が高電圧モードと異なっている。なお、MG10を駆動しつつ第2バッテリ42を充電可能な程度の位相のずれは許容されるものとする。
差電圧モードでは、同位相の基本波に基づいてPWM制御されているので、各相にてオンされるSW素子は、第1インバータ部20と第2インバータ部30とで等しい。
例えば、図15に示すように、第1インバータ部20において、U相の上アーム素子21がオン、V相およびW相の下アーム素子25、26がオンされ、第2インバータ部30において、U相の上アーム素子31がオン、V相およびW相の下アーム素子35、36がオンされる。本実施形態では、第2電圧値E2が第1電圧値E1より大きいので、図15中に矢印Y2で示す経路にて電流が流れ、第2電圧値E2と第1電圧値E1との差(すなわち(E2−E1))にてMG10が駆動される。図16に示すように、差電圧モードにおける駆動電圧のパルスの高さは、第2電圧値E2と第1電圧値E1との差である(E2−E1)となる。
差電圧モードでは、MG10の力行時には、第1バッテリ41が充電され、第2バッテリ42が放電する。また、MG10の回生時には、第1バッテリ41が放電し、第2バッテリ42が充電される。すなわち、差電圧モードでは、第1バッテリ41または第2バッテリ42の一方が放電し、他方が充電される。
ここで、切替制御部65における駆動モード切替処理を図17に示すフローチャートに基づいて説明する。この処理は、例えばイグニッション電源がオンされているときに、所定の間隔で実行される。なお、駆動モードの選択は、例えばアクセルペダルの操作量等のドライバ操作情報や車速情報等に基づくMG10の目標回転数および目標トルクに応じ、図10のマップを参照し、別処理にて決定される。
最初のステップS101(以下、「ステップ」を省略し、単に記号「S」で示す。)では、現在の駆動モードが第1低電圧モードか否かを判断する。現在の駆動モードが第1低電圧モードでないと判断された場合(S101:NO)、以下の処理を行わない。現在の駆動モードが第1低電圧モードであると判断された場合(S101:YES)、S102へ移行する。
S102では、駆動モードを第1低電圧モードから第2低電圧モードへ切り替える切替指令信号を取得したか否かを判断する。切替指令信号を取得していないと判断された場合(S102:YES)、S103へ移行し、第1低電圧モードを継続する。切替指令信号を取得したと判断された場合(S102:NO)、S104へ移行する。
S104では、駆動モードを差電圧モードに切り替える。また、駆動モードを差電圧モードに切り替えてからの時間を計時する。
S105では、駆動モードを差電圧モードに切り替えてから所定時間が経過したか否かを判断する。差電圧モードに切り替えてから所定時間が経過していないと判断された場合(S105:NO)、この判断ステップを繰り返す。駆動モードを差電圧モードに切り替えてから所定時間が経過したと判断された場合(S105:YES)、S106へ移行する。
S106では、駆動モードを第2低電圧モードに切り替える。
本実施形態では、歪み低減処理は、第1バッテリ41または第2バッテリ42の一方が充電され他方が放電される差電圧モードである。また、本実施形態では、第2バッテリ42の電圧値である第2電圧値E2が、第1バッテリ41の電圧値である第1電圧値E1の2倍より大きい。
切替制御部65では、第1低電圧モードから第2低電圧モードに切り替える場合、第1低電圧モードと第2低電圧モードとの間に所定時間の差電圧モードを行う(図17中のS104)。これにより、第1低電圧モードから第2低電圧モードへ直接切り替える場合と比較し、切替電圧幅が小さくなるので、電流の歪みを低減することができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、S104の処理が「歪み低減手段」の機能としての処理に相当する。
(第3実施形態)
本発明の第3実施形態による電力変換装置を図18および図19に示す。
図18に示すように、本実施形態の電力変換装置2は、上記実施形態の第1バッテリ41に替えて、第1電圧源としてのキャパシタ43が設けられる。キャパシタ43は、例えば電気二重層キャパシタやリチウムイオンキャパシタ等の電圧源として使用可能な比較的蓄電量の大きいものとする。本実施形態では、一方のバッテリを内部抵抗および経時劣化の比較的小さいキャパシタ43に置き換え、充放電の一部をキャパシタ43にて行うことにより、効率が向上し、第2バッテリ42の長寿命化が可能である。
また、キャパシタ43の電圧は可変であるので、電力変換装置2には、キャパシタ43の電圧を検出する電圧検出部44が設けられる。本実施形態では、キャパシタ43の電圧値であるキャパシタ電圧値Ecが、第2バッテリ42の電圧値である第2電圧値E2よりも小さいものとする。本実施形態では、キャパシタ電圧値Ecが「第1電圧値」に対応する。
切替制御部65は、電圧検出部44にて検出されるキャパシタ電圧値Ecに基づき、駆動モードの切り替えを制御する。
まず、回生時について言及しておく。キャパシタ43は、第2バッテリ42よりも内部抵抗および経時劣化が小さいので、回生時において、電力変換装置2のシステム全体としての耐圧やキャパシタ43の耐圧等に応じて設定される充電限界範囲内であれば、第2インバータ部30側を中性点化し、キャパシタ43側を優先して充電する。キャパシタ43の充電限界範囲を超えた場合、第1インバータ部20側を中性点化し、第2バッテリ42を充電する。
次に、力行時における駆動モードの切り替えについて説明する。本実施形態では、キャパシタ電圧値Ecが第2電圧値E2よりも小さいので、図10に示す領域Dでは、第2インバータ部30側を中性点化する第1低電圧モードとし、領域Eでは第1インバータ部20側を中性点化する第2低電圧モードとし、領域Fでは高電圧モードとする。また、キャパシタ電圧値Ecは可変であるので、キャパシタ電圧値Ecに応じ、領域Dと領域Eとを分ける実線T21が可変となる。
ここで、切替制御部65における駆動モード切替処理を図19に示すフローチャートに基づいて説明する。この処理は、例えばイグニッション電源がオンされているときに、所定の間隔で実行される。なお、図17と同様、駆動モードの選択は、例えばアクセルペダルの操作量等のドライバ操作情報や車速情報等に基づくMG10の目標回転数および目標トルクに応じ、マップ演算等により、別処理にて決定される。
最初のS201では、電圧検出部44からキャパシタ電圧値Ecを取得する。
S202は、図16中のS101と同様であり、現在の駆動モードが第1低電圧モードか否かを判断する。現在の駆動モードが第1低電圧モードではないと判断された場合(S202:NO)、以下の処理を行わない。現在の駆動モードが第1低電圧モードであると判断された場合(S202:YES)、S203へ移行する。
S203は、図16中のS102と同様であり、駆動モードを第1低電圧モードから第2低電圧モードへ切り替える切替指令信号を取得したか否かを判断する。切替指令信号を取得していないと判断された場合(S203:NO)、S204へ移行し、第1低電圧モードを継続する。切替指令信号を取得したと判断された場合(S203:YES)、S205へ移行する。
S205では、第2電圧値E2が、キャパシタ電圧値Ecの2倍より大きいか否かを判断する。第2電圧値E2がキャパシタ電圧値Ecの2倍以下であると判断された場合(S205:NO)、S206およびS207の処理を行わず、S208へ移行する。第2電圧値E2がキャパシタ電圧値Ecの2倍より大きいと判断された場合(S205:YES)、S206へ移行する。
S206では、第1インバータ部20および第2インバータ部30を同位相の基本波に基づいてPWM制御する差電圧モードとする。差電圧モードでは、第2バッテリ42が放電し、キャパシタ43が充電される。
S207およびS208は、図16中のS105およびS106と同様である。
本実施形態では、第1電圧源がキャパシタ43であり、第2電圧源が第2バッテリ42である。換言すると第1電圧源にはバッテリが用いられていない。また、第1電圧源の電圧値が可変であると捉えることもできる。一方の電圧源にバッテリを用いず、バッテリと比較して内部抵抗および充放電による劣化が小さいキャパシタにて構成することにより、第1電圧源および第2電圧源を共にバッテリにて構成する場合と比較し、効率が向上する。また、第2バッテリ42の寿命を長くすることができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、S206の処理が「歪み低減手段」の機能としての処理に相当する。
(第4実施形態)
本発明の第4実施形態による電力変換装置を図20に基づいて説明する。
本実施形態の電力変換装置は、回路構成は第1実施形態と同様としてもよいし、第3実施形態と同様としてもよい。
図9にて説明したように、駆動モードを低電圧モードから高電圧モードに切り替えると、電流の歪みにより過電流が発生する虞がある。そこで本実施形態では、駆動モードの切り替えに伴う過電流を防止すべく、駆動モードを切り替える際、歪み低減処理として、一時的に全てのSW素子21〜26、31〜36をオフする全オフモードを実行する。
本実施形態による切替制御部65における駆動モード切替処理を図20に示すフローチャートに基づいて説明する。この処理は、例えばイグニッション電源がオンされているときに、所定の間隔で実行される。なお、図16および図19と同様、駆動モードの選択は、ドライバ操作情報や車速情報等に基づくMG10の目標回転数および目標トルクに応じ、マップ演算等により、別処理にて決定される。
最初のS301では、駆動モードを切り替える切替指令信号を取得したか否かを判断する。切替指令信号を取得していないと判断された場合(S301:NO)、S302へ移行し、現在の駆動モードを継続する。切替指令信号を取得したと判断された場合(S301:YES)、S303へ移行する。
S303では、全てのSW素子21〜26、31〜36をオフにする停止モードとする。また、停止モードを開始してからの時間を計時する。
S304では、停止モードを開始してからの時間が所定時間を経過したか否かを判断する。ここでの所定時間は、第3実施形態にて差電圧モードを実行する時間と同じであってもよいし、異なっていてもよい。所定時間が経過していないと判断された場合(S304:NO)、この判断ステップを繰り返す。所定時間が経過したと判断された場合(S304:YES)、S305へ移行する。
S305では、駆動モードを切り替える。
本実施形態における歪み低減処理は、全てのSW素子21〜26、31〜36をオフにする全オフモードである。切替制御部65は、切替前モードと切替後モードとの間に、所定時間の全オフモードを行う。これにより、駆動モードの切り替えに伴う過電流を防止することができる。
また、上記実施形態と同様の効果を奏する。
本実施形態では、S303の処理が「歪み低減手段」の機能としての処理に相当する。
駆動モードの切り替えに際し、歪み低減処理として実行される第2実施形態または第3実施形態の「差電圧モード」を行う所定時間と、本実施形態の「全オフモード」を行う所定時間とは、同じ時間であってもよいし、異なる時間であってもよい。
(他の実施形態)
上記第1実施形態および第4実施形態では、切替前モードおよび切替後モードによらず、歪み低減処理を行う。第2実施形態にて説明したように、駆動電圧が小さくなる方向に駆動モードが変更される場合、電流が小さくなる方向に電流が歪むので、駆動モードに切り替えにより、過電流となることはない。そのため、他の実施形態では、切替前モードよりも切替後モードの方が巻線に印加可能な最大電圧が小さい場合、歪み低減処理を省略してもよい。
上記第1実施形態では、各相電流のピークから電気角として30[°]ずれたタイミングを切替許可タイミングとする。他の実施形態では、各相電流のピークからずれていれば、どのタイミングを切替許可タイミングとしてもよい。また、各相電流のピークから所定時間が経過したタイミングを切替許可タイミングとしてもよい。
また、上記第2実施形態および第3実施形態では、第1低電圧モードから第2低電圧モードに切り替えるとき、歪み低減処理として、所定時間の差電圧モードを行う。他の実施形態では、第1低電圧モードから高電圧モードに切り替えるとき、歪み低減処理として、所定時間の差電圧モードを行ってもよい。
また、第2低電圧モードから第1低電圧モードに切り替えるとき、または、高電圧モードから第1低電圧モードに切り替えるとき、歪み低減処理として、所定時間の差電圧モードを行ってもよい。これにより、駆動電圧が小さくなる方向に駆動モードが変更される場合における電流の歪みが低減されるので、トルクリップルを低減することができる。
上記第1実施形態では、第1電圧源の電圧値と第2電圧源の電圧値とは等しい。第2実施形態では、第2電圧源の電圧値は、第1電圧源の電圧値の2倍より大きい。他の実施形態では、第1電圧源および第2電圧源の電圧値は、どのような値としてもよい。
また、第3実施形態では、第1電圧源をキャパシタとし、第2電圧源をバッテリとした。他の実施形態では、第1電圧源をバッテリとし、第2電圧源をキャパシタにより構成してもよい。
また、第3実施形態では、キャパシタの電圧値は、バッテリの電圧値よりも小さいものとした。他の実施形態では、例えばチョッパ制御等により、キャパシタの電圧値がバッテリの電圧値よりも大きくなるように構成、制御してもよい。この場合、バッテリ電圧とキャパシタ電圧の大小を判定した後、バッテリ電圧とキャパシタ電圧のうち大きい方の電圧が小さい方の電圧の2倍以上である場合、歪み制御処理として、差電圧モードを実行してもよい。
上記第1実施形態では、歪み低減処理として、駆動モードの切り替えタイミングを調整する切替タイミング調整処理を行う。第2実施形態および第3実施形態では、切替前モードと切替後モードとの間に、差電圧モードを行う。他の実施形態では、第1実施形態と第2実施形態または第3実施形態を組み合わせ、切替前モードから差電圧モードへ移行するとき、各相電流のピークからずれたタイミングにて切り替えてもよい。同様に、差電圧モードから切替後モードへ移行するとき、各相電流のピークからずれたタイミングにて切り替えてもよい。これにより、電流歪みによる過電流をより抑制することができる。
同様に、第1実施形態と第4実施形態とを組み合わせ、切替前モードから全オフモードへ移行するときや、全オフモードから切替後モードへ移行するとき、各相電流のピークからずれたタイミングにて切り替えてもよい。
上記実施形態では、各相電流を検出する電流検出部が設けられる。他の実施形態では、例えば、歪み低減処理として切替タイミング調整処理を行わない場合、電流検出部を省略してもよい。また、切替タイミング調整処理を行う場合であっても、制御部内にて推定した各相電流に基づいて切替タイミングを制御するように構成すれば、電流検出部を省略してもよい。
上記実施形態では、モータジェネレータは、電動車両の車両主機に適用される。他の実施形態では、モータジェネレータは、車両補機に適用してもよいし、他の装置に適用してもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1、2・・・電力変換装置
10・・・モータジェネレータ
11〜13・・・コイル(巻線)
20・・・第1インバータ部
30・・・第2インバータ部
41・・・第1バッテリ(第1電圧源)
42・・・第2バッテリ(第2電圧源)
43・・・キャパシタ(第1電圧源)
60・・・制御部
65・・・切替制御部(駆動モード選択手段、歪み低減手段)

Claims (5)

  1. 巻線(11〜13)を有するモータジェネレータ(10)の電力を変換する電力変換装置(1)であって、
    前記巻線の各相に対応して設けられる第1スイッチング素子(21〜26)を有し、前記巻線の一端(111、121、131)と第1電圧源(41、43)との間に接続される第1インバータ部(20)と、
    前記巻線の各相に対応して設けられる第2スイッチング素子(31〜36)を有し、前記巻線の他端(112、122、132)と第2電圧源(42)との間に接続される第2インバータ部(30)と、
    前記第1スイッチング素子および前記第2スイッチング素子のオンオフ作動を制御する制御部(60)と、
    を備え、
    前記制御部は、
    前記モータジェネレータの回転数およびトルクに応じ、前記第1電圧源が充放電される第1低電圧モード、前記第2電圧源が充放電される第2低電圧モード、または、前記第1電圧源および前記第2電圧源が共に充放電される高電圧モードのいずれかの駆動モードを選択する駆動モード選択手段(65)と、
    前記第1低電圧モード、前記第2低電圧モード、または、前記高電圧モードのいずれかである切替前モードから、前記切替前モードとは異なる前記駆動モードである切替後モードに切り替える際、前記巻線に通電される電流の歪みを低減する歪み低減処理を行う歪み低減手段(65)と、
    を有し、
    前記歪み低減処理は、前記第1電圧源または前記第2電圧源の一方が充電され他方が放電される差電圧モードであって、
    前記第2電圧源の電圧値である第2電圧値が前記第1電圧源の電圧値である第1電圧値の2倍より大きい場合、
    前記歪み低減手段は、前記切替前モードおよび前記切替後モードの一方が、前記第1低電圧モードであり、他方が前記第2低電圧モードまたは前記高電圧モードである場合、前記切替前モードと前記切替後モードとの間に、所定時間の前記差電圧モードを行うことを特徴とする電力変換装置。
  2. 前記歪み低減処理は、切替タイミング調整処理であって、
    前記歪み低減手段は、前記巻線の各相に通電される各相電流のピークからずれたタイミングである切替許可タイミングにて前記切替前モードから前記切替後モードに切り替えることを特徴とする請求項1に記載の電力変換装置。
  3. 前記切替許可タイミングは、隣接する前記ピークの中間タイミングであることを特徴とする請求項に記載の電力変換装置。
  4. 前記歪み低減手段は、前記切替前モードよりも前記切替後モードの方が前記巻線に印加可能な最大電圧が大きい場合、前記歪み低減処理を行うことを特徴とする請求項1〜のいずれか一項に記載の電力変換装置。
  5. 前記第1電圧源または前記第2電圧源の一方がバッテリ(42)であり、他方がキャパシタ(43)であることを特徴とする請求項1〜のいずれか一項に記載の電力変換装置(2)。
JP2014011239A 2014-01-24 2014-01-24 電力変換装置 Active JP6117710B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011239A JP6117710B2 (ja) 2014-01-24 2014-01-24 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011239A JP6117710B2 (ja) 2014-01-24 2014-01-24 電力変換装置

Publications (2)

Publication Number Publication Date
JP2015139340A JP2015139340A (ja) 2015-07-30
JP6117710B2 true JP6117710B2 (ja) 2017-04-19

Family

ID=53770004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011239A Active JP6117710B2 (ja) 2014-01-24 2014-01-24 電力変換装置

Country Status (1)

Country Link
JP (1) JP6117710B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698648A (zh) * 2017-08-30 2019-04-30 比亚迪股份有限公司 电机驱动电路和电机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669532B2 (ja) * 2016-02-29 2020-03-18 株式会社Soken 電力変換装置
JP6681227B2 (ja) * 2016-03-11 2020-04-15 東芝ライフスタイル株式会社 モータ駆動システム及び洗濯機
JP6958132B2 (ja) 2017-08-31 2021-11-02 株式会社デンソー 回転電機制御装置
JP7031180B2 (ja) * 2017-09-05 2022-03-08 株式会社デンソー 交流電動機の制御装置
JP2020137408A (ja) 2019-02-19 2020-08-31 株式会社デンソー 電動機駆動装置
WO2020170983A1 (ja) * 2019-02-19 2020-08-27 株式会社デンソー 電動機駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352182B2 (ja) * 1993-11-09 2002-12-03 三菱電機株式会社 インバータ装置
JP2000125411A (ja) * 1998-10-13 2000-04-28 Toyota Motor Corp モータ駆動装置
KR20050003732A (ko) * 2003-07-04 2005-01-12 현대자동차주식회사 유도 전동기용 벡터 제어형 듀얼 인버터 시스템
JP2006149145A (ja) * 2004-11-24 2006-06-08 Nsk Ltd 無結線式モータの駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
US7199535B2 (en) * 2005-01-26 2007-04-03 General Motors Corporation Doubled-ended inverter drive system topology for a hybrid vehicle
US7154237B2 (en) * 2005-01-26 2006-12-26 General Motors Corporation Unified power control method of double-ended inverter drive systems for hybrid vehicles
JP4906836B2 (ja) * 2008-04-07 2012-03-28 三菱電機株式会社 電動機駆動装置および冷凍空気調和装置ならびに電動機駆動方法
JP5531238B2 (ja) * 2010-03-29 2014-06-25 本田技研工業株式会社 モータ駆動用電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698648A (zh) * 2017-08-30 2019-04-30 比亚迪股份有限公司 电机驱动电路和电机
CN109698648B (zh) * 2017-08-30 2021-03-26 比亚迪股份有限公司 电机驱动电路和电机

Also Published As

Publication number Publication date
JP2015139340A (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6117710B2 (ja) 電力変換装置
JP6174498B2 (ja) 電力変換装置
JP6087666B2 (ja) 電力変換装置
JP6401090B2 (ja) 電力変換装置
JP6426426B2 (ja) 電動機駆動装置
US8264181B2 (en) Controller for motor drive control system
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
WO2015151811A1 (ja) インバータ制御装置
JP6423264B2 (ja) 電力変換装置
JP2016181949A (ja) 電力変換装置
JP2014192950A (ja) 電力変換装置
JP2004015892A (ja) インバータの制御装置及び電気自動車
WO2013008312A1 (ja) 車両および車両の制御方法
JP6367744B2 (ja) 電力変換装置
JP6666174B2 (ja) 電力変換装置
WO2018117084A1 (ja) 電力変換装置
JP7032249B2 (ja) 電源システム
JP6426465B2 (ja) 電力変換装置
JP6669532B2 (ja) 電力変換装置
JP6755388B2 (ja) 多群多相回転電機の駆動装置
JP6348424B2 (ja) 電力変換装置
JP6056734B2 (ja) 車両制御装置
JP6423323B2 (ja) 電力変換装置
JP6852539B2 (ja) 回転電機制御装置
WO2018116668A1 (ja) モータ制御装置および電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170323

R150 Certificate of patent or registration of utility model

Ref document number: 6117710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150