JP6101533B2 - 酸化アルミニウムの成膜方法 - Google Patents

酸化アルミニウムの成膜方法 Download PDF

Info

Publication number
JP6101533B2
JP6101533B2 JP2013065384A JP2013065384A JP6101533B2 JP 6101533 B2 JP6101533 B2 JP 6101533B2 JP 2013065384 A JP2013065384 A JP 2013065384A JP 2013065384 A JP2013065384 A JP 2013065384A JP 6101533 B2 JP6101533 B2 JP 6101533B2
Authority
JP
Japan
Prior art keywords
sputtering
aluminum oxide
voltage
target
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013065384A
Other languages
English (en)
Other versions
JP2014189827A (ja
Inventor
一人 尾▲崎▼
一人 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2013065384A priority Critical patent/JP6101533B2/ja
Priority to TW102145671A priority patent/TWI504773B/zh
Priority to KR1020140001181A priority patent/KR20140118695A/ko
Priority to CN201410014269.5A priority patent/CN104073773B/zh
Publication of JP2014189827A publication Critical patent/JP2014189827A/ja
Application granted granted Critical
Publication of JP6101533B2 publication Critical patent/JP6101533B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池シリコン基板のパッシべーション膜に用いられる酸化アルミニウムの反応性スパッタリングによる成膜技術に関する。
近年、太陽電池の高効率化が求められていることにともない、p型シリコン表面の効果的なパッシベーション膜が求められている。そして、シリコンウェハp型面に関しては正電荷を擁しているSiNxは電界効果的には適当とは言えず、理想的には負電荷を擁する膜が求められる。
この負電荷を擁するパッシベーション膜としは酸化アルミニウム(Al)が好適であることが知られている。そして、従来、酸化アルミニウムをパッシベーション膜として利用するためにALD法やPE−CVD法が用いられてきた。しかしながら、ALD法は、成膜速度が極端に遅く、生産性が悪いために量産に向かないという問題がある。また、PE−CVD法には、TMD(トリメチルアルミニウム)液という引火性の液体を使用するため、装置設計と原料の取扱に細心の注意を要するという問題がある。
一方、マグネトロンスパッタ法による酸化アルミニウム膜の成膜も研究されている。マグネトロンスパッタ法は、薄膜形成手法の一つとして半導体、液晶表示装置、磁気記録装置、光学薄膜等の製造分野において広く実用化されている。マグネトロンスパッタ法には、酸化物、窒化物、フッ化物等の化合物ターゲットを用い、スパッタ電源として高周波電源を用いることで化合物の薄膜を形成する高周波マグネトロンスパッタ法(特許文献1)や、金属ターゲットを用い、スパッタ電源として直流電源を用いるとともに、反応性ガスを導入して金属の酸化物、窒化物、フッ化物等の薄膜を形成する反応性DCマグネトロンスパッタ法(特許文献2)などがあり、どちらの手法も用途に合わせて広く使用されている。
特開2004−31493号公報 特開平8−232064号公報
しかしながら、酸化アルミニウムの硬度が非常に高いことや、ターゲット表面がアルミニウムの酸化物に覆われることに起因して、特許文献1、2の手法によっても、成膜速度を上げることが困難であるといった問題がある。また、スパッタ法においてp型Si表面にパッシベーション効果の高い酸化アルミニウム膜を形成するためには,成膜される酸化アルミニウムの酸化度を高い精度で一定に制御する必要がある。しかしながら、特許文献1、2の手法により酸化アルミニウム膜を成膜する場合には、一般的に、スパッタ電源を電力一定モードで駆動させる制御(スパッタ電圧の定電力制御)が行われるので、酸化アルミニウムの酸化度は遷移モードにおける成膜のために不安定となる。このため、アルミニウムが酸化しすぎたり、酸化が不十分になったりすることを交互に繰り返して、成膜される酸化アルミニウムの酸化度が安定しないといった問題もある。
本発明は、こうした問題を解決するためになされたもので、反応性スパッタリングにおいて、酸化アルミニウムを、酸化度を安定させつつ高い成膜速度で成膜できる技術を提供することを目的とする。
上記の課題を解決するために、第1の態様に係る酸化アルミニウムの成膜方法は、静磁場を形成するマグネトロンカソードが設けられた真空容器に、スパッタガスと、酸素の反応性ガスとを当該真空容器内の圧力が目標圧力になるように制御しつつ導入して当該カソードに設けられたアルミニウムターゲットをスパッタし、当該アルミニウムターゲットに対向するシリコン基板上に酸化膜を形成する酸化アルミニウムの成膜方法であって、前記スパッタガスと前記反応性ガスとが導入された真空容器内にプラズマを発生させる第1のプラズマ発生ステップと、前記アルミニウムターゲットに負電圧、負電圧と正電圧とからなる直流パルス、および交流の何れか1つのスパッタ電圧を印加して、前記静磁場によりマグネトロンプラズマを発生させる第2のプラズマ発生ステップと、前記真空容器内への前記反応性ガスの導入量を制御する制御ステップと、を備え、前記第2のプラズマ発生ステップは、前記スパッタ電圧を定電圧に維持する定電圧制御を行うステップであり、前記制御ステップは、前記マグネトロンカソードに流れるスパッタ電流値が目標電流値と異なる場合には、前記第2のプラズマ発生ステップにおいて前記スパッタ電圧が前記定電圧制御によって前記定電圧に維持されている間に、前記スパッタ電流値が前記目標電流値になるように前記反応性ガスの導入量を変更する第1ステップと、前記第1ステップによって前記スパッタ電流値が前記目標電流値に達した後には、前記第2のプラズマ発生ステップにおいて前記スパッタ電圧が前記定電圧制御によって前記定電圧に維持されている間に、前記反応性ガスのプラズマ発光強度が、前記スパッタ電流値の変化に応じて、前記スパッタ電流値よりも時間的に早く変化することに基づいて前記反応性ガスのプラズマの発光強度の変化から前記スパッタ電流値の変化を予測して、前記スパッタ電流値が前記目標電流値に維持されるように前記反応性ガスの導入量を制御する第2ステップと、を含み、前記第1のプラズマ発生ステップは、前記真空容器内に設けられ巻数が一周未満の導体からなる高周波アンテナを用いて、少なくとも前記第2のプラズマ発生ステップ中に高周波誘導結合プラズマを発生させるステップである。
第2の態様に係る酸化アルミニウムの成膜方法は、第1の態様に係る酸化アルミニウムの成膜方法において、前記目標電流値は、成膜される酸化アルミニウムの酸化度が、ストイキオメトリな酸化アルミニウムと、ストイキオメトリな酸化アルミニウムより低い酸化度の酸化アルミニウムとのそれぞれの酸化度の境界付近の酸化度となるときの前記スパッタ電流値である。
の態様に係る酸化アルミニウムの成膜方法は、第1またはの態様に係る酸化アルミニウムの成膜方法において、前記スパッタ電圧は負電圧である。
の態様に係る酸化アルミニウムの成膜方法は、第1から第の何れか1つの態様に係る酸化アルミニウムの成膜方法において、前記目標圧力が0.2Pa以上であり、かつ、7Pa以下である。
の態様に係る酸化アルミニウムの成膜方法は、第の態様に係る酸化アルミニウムの成膜方法において、前記目標圧力が0.4Pa以上であり、かつ、2Pa以下である。
の態様に係る酸化アルミニウムの成膜方法は、第1から第の何れか1つの態様に係る酸化アルミニウムの成膜方法において、前記スパッタ電圧の負電圧の絶対値が100V以上であり、かつ、300V以下である。
の態様に係る酸化アルミニウムの成膜方法は、第の態様に係る酸化アルミニウムの成膜方法において、前記スパッタ電圧の負電圧の絶対値が150V以上であり、かつ、250V以下である。
本発明によれば、第1のプラズマ発生ステップは、スパッタガスと酸素の反応性ガスとが導入された真空容器内に設けられ巻数が一周未満の導体からなる高周波アンテナを用いて、少なくとも第2のプラズマ発生ステップ中に真空容器内に高周波誘導結合プラズマを発生させる。そして、第2のプラズマ発生ステップは、スパッタ電圧をターゲットに印加してマグネトロンプラズマを発生させる。従って、酸素ラジカルの増加と、成膜対象基板上の酸化反応の促進、そして、それらに伴う酸化したターゲット表面の軟化の総合的な効果により、成膜速度が高速化される。また、本発明によれば、第2のプラズマ発生ステップにおいてスパッタ電圧が定電圧制御されるとともに、マグネトロンカソードに流れるスパッタ電流値が目標電流値になるように第2のプラズマ発生ステップ中に反応性ガスの導入量が制御される。スパッタ電圧が定電圧制御される場合、すなわちスパッタ電源が電圧一定モードで駆動される場合には、基板上に形成される酸化アルミニウム膜の酸化度は、真空容器内の酸素量、すなわち反応性ガス量に応じた安定した平衡点に落ち着こうとする。また、スパッタ電圧が定電圧制御される場合には、アルミニウムターゲット表面の酸化度が高い程、すなわち真空容器内の反応性ガス量が多いほど、スパッタ電流値は大きくなるとともに、基板上に成膜される酸化アルミニウムの酸化度も高くなる。従って、本発明によれば、スパッタ電流値が目標電流値になるように反応性ガスを真空容器内に導入することによって、例えば、基板に吸着していた水分などに起因して発生した反応性ガスなどの外乱因子に拘わらず、基板上に形成される酸化アルミニウム膜の酸化度を安定させることができる。すなわち、酸化アルミニウムを、酸化度を安定させつつ高い成膜速度で成膜できる。
実施形態に係る酸化アルミニウムの成膜方法を実現するスパッタリング装置の要部の概略構成を例示する図である。 高周波アンテナの例を示す側面図である。 実施形態に係る酸化アルミニウムの成膜方法による成膜の過程を説明するための模式図である。 実施形態に係る酸化アルミニウムの成膜方法の効果を模式的に示す図である。 実施形態に係る酸化アルミニウムの成膜方法を実験したときの時間ダイアグラムの一例である。 実施形態に係る酸化アルミニウムの成膜方法の手順を例示するフローチャートである。 実施形態に係る酸化アルミニウムの成膜方法の手順を例示するフローチャートである。 スパッタ電流値と反応性ガスのプラズマ発光強度との関係を模式的に示す図である。 スパッタ電流値の変化の予測を用いた反応性ガスの導入量の制御例を模式的に示す図である。
以下、本発明の一実施形態を図面に基づいて説明する。図面では同様な構成および機能を有する部分に同じ符号が付され、下記説明では重複説明が省略される。また、各図面は模式的に示されたものであり、例えば、各図面における表示物のサイズおよび位置関係等は必ずしも正確に図示されたものではない。また、一部の図面には、方向を説明するためにXYZ直交座標軸が附されている。該座標軸におけるZ軸の方向は、鉛直線の方向を示し、XY平面は水平面である。
<実施形態について:>
<1.スパッタリング装置の構成>
図1は、実施形態に係る酸化アルミニウムの成膜方法を実現するスパッタリング装置10の要部の概略構成を例示する図である。図2は、高周波アンテナ80の例を示す側面図である。以下に、図1、図2を参照しつつ、スパッタリング装置10の構成について説明する。
スパッタリング装置10は、板状の単金属のアルミニウムのターゲット(単に、「ターゲット」とも称する)60をイオンによりスパッタし、基板74の表面に所定の薄膜を形成するためのものである。アルミニウムは導電性である。
スパッタリング装置10は、真空ポンプ(図示せず)により内部を真空にすることが可能なチャンバー(「真空容器」)11と、真空排気されたチャンバー11内にプラズマ生成ガスを導入するプラズマ生成ガス導入部19と、チャンバー11内に設けられ、ターゲット60を保持するターゲット保持部24と、成膜対象の基板74を保持する基板ステージ15と、スパッタ用電源162とを備える。また、スパッタリング装置10は、コンピュータ等を備えてスパッタリング装置10の各部の動作を統括制御する制御部200と、酸素の反応性ガスをチャンバー11内に供給する反応性ガス供給部191と、反応性ガス供給部191の配管経路中に設けられた流量コントローラ192と、光ファイバーのプローブに入射する光の分光強度を測定可能な分光器111とをさらに備える。制御部200は、スパッタリング装置10の各部と電気的に接続されており、後述する目標電流値などのスパッタリング装置10の制御に必要な各種の情報は、制御部200内の記憶部に予め記憶されている。
基板ステージ15は、ターゲット保持部24に保持されたターゲット60の表面(+Z側の面)と、基板74の表面(−Z側の面)とが所定の距離を隔てて対向するように、基板74を保持する。基板74の直下(−Z側の直ぐ近傍)には、開閉可能な図示省略の成膜シャッターが少なくとも基板74の全域に亙って設けられている。また、スパッタ用電源162は、ベース板(「カソード」)14に、負電圧の直流のスパッタ電圧(「カソード印加電圧」、「バイアス電圧」)または、負電圧と正電圧とからなるパルス状のスパッタ電圧(「パルス直流電圧」)、若しくは交流のスパッタ電圧を印加することにより、ターゲット60と、基板ステージ15に保持された基板74との間にマグネトロンプラズマ用の電界を生成する。スパッタ用電源162は、電圧一定モードで駆動されて、スパッタ用電源162からの電圧出力は、定電圧になるように制御される。すなわち、スパッタ用電源162は、スパッタ電圧を定電圧制御する。後述するマグネトロンカソードに流れるスパッタ電流値(「バイアス電流値」)は、スパッタ用電源162に設けられた電流計164に検出されて制御部200に供給される。酸化アルミニウムの成膜過程におけるアルミニウムのターゲット60の表面の酸化度(「酸化率」、「酸化状態」)を安定させることにより高品質なパッシべーション膜が成膜できる。定電圧制御を行えば、定電力制御を行う場合に比べて容易に成膜される酸化アルミニウムの酸化度を安定させることができる。また、基板ステージ15は、図示省略のヒーターもしくは冷却機構を備え、基板74の温度を制御する。
また、スパッタリング装置10は、チャンバー11内に導入されたプラズマ生成ガスの高周波誘導結合プラズマを発生させるプラズマ発生部90をさらに備える。基板ステージ15は、チャンバー11の上部の内壁に、取り付け部材を介して設けられている。
また、プラズマ発生部90は、ターゲット60の側面に接触することなく当該側面に沿って配置された線状の高周波アンテナ(「プラズマ源」)80を備える。高周波アンテナ80は、金属製パイプ状導体から構成される。そして、プラズマ発生部90は、高周波アンテナ80によって、スパッタガスと反応性ガスとのそれぞれの高周波誘導結合プラズマを発生させる。
そして、スパッタリング装置10は、後述するマグネトロンスパッタ用磁石12が形成する静磁場によってターゲット60の表面部分に発生するプラズマ生成ガスのマグネトロンプラズマと、プラズマ発生部90が発生させたプラズマ生成ガスの高周波誘導結合プラズマとの混合プラズマによるターゲット60のスパッタリングによって基板74上の二次元領域に成膜を行う。
チャンバー11の側面には、開閉可能なゲート351が設けられている。成膜対象の基板74は、ゲート351からチャンバー11内に搬入されて、不図示の固定部材により基板ステージ15に取り付けられた後、スパッタリングによる成膜を施されて、ゲート351からチャンバー11の外部に搬出される。基板74への成膜が行われるときには、成膜に先立って、基板74がチャンバー11内に搬入されて、ゲート351が閉鎖された状態で、不図示の真空ポンプによってチャンバー11の内部空間である処理室113が真空排気される。
そして、ゲート351が閉じられた状態でプラズマ生成ガス導入部19のガス導入口20からプラズマ生成ガスがチャンバー11内に導入されることにより、処理室113は、一定圧力下、一定のガス分圧下に維持される。ガス導入口20は、例えば、高周波アンテナ80とターゲット60との間の部分などに形成される。プラズマ発生部90が複数の高周波アンテナ80を備える場合には、ガス導入口20は、例えば、各高周波アンテナ80に対応する位置にそれぞれ設けられる。
スパッタリング装置10は、反応性スパッタリングによりアルミニウムの酸化物である酸化アルミニウムを成膜するため、プラズマ生成ガスとしては、不活性ガスであるArガスまたはKrガスなどのスパッタガスと、酸素(O)の反応性ガスとが用いられる。スパッタガスは、図示省略のスパッタガス供給部からプラズマ生成ガス導入部19を介して供給される。また、プラズマ生成ガス導入部19は、配管を介して流量コントローラ192と接続され、流量コントローラ192は、貯留した反応性ガスを供給する反応性ガス供給部191と配管を介して接続されている。そして、制御部200が、スパッタ用電源162から供給されるスパッタ電流値をモニタして、制御部200が流量コントローラ192を制御することで、反応性ガス供給部191からチャンバー11内に供給される反応性ガスの導入量が制御される。また、チャンバー11の側壁には、チャンバー11内を密閉するとともにチャンバー11内のプラズマ発光を透過可能な窓部17が設けられており、窓部の近傍にはプラズマ発光が入射可能なように分光器111のプローブ112が設けられている。分光器111は、少なくとも酸素の反応性ガスのプラズマ発光の輝線の波長である波長777nmの光を分光して、その強度を検出可能に構成されている。窓部17を介して分光器111が検出する分光されたプラズマの発光強度は、制御部200に供給される。制御部200は、供給される発光強度のうち、酸素の反応性ガスのプラズマ発光の強度に基づいて、後述するように反応性ガスの導入量を制御することが出来る。
チャンバー11の底部には、開口が設けられると共に、その開口を下側から塞ぐように、後述のベース板14及びマグネトロンスパッタ用磁石(永久磁石)12(併せてマグネトロンカソードという)、並びに高周波アンテナ80を収容するためのターゲット・アンテナ配置部18が取り付けられている。ターゲット・アンテナ配置部18とチャンバー11の底部との接続部はシール材により気密性が確保されている。従って、ターゲット・アンテナ配置部18の壁はチャンバー11の壁の一部としての役割を有する。ターゲット・アンテナ配置部18には、基板ステージ15の直下の位置にターゲット配置ブロック(ターゲット配置部)181が設けられている。それと共に、ターゲット・アンテナ配置部18の壁内(即ちチャンバー11の壁内)であってターゲット配置ブロック181の側方に、ターゲット配置ブロック181を挟むように1対のアンテナ固定ブロック182が設けられている。マグネトロンカソードは、ターゲット60の表面近傍に静磁場を形成する。
ターゲット配置ブロック181の上部にはチャンバー11の処理室113がある。ターゲット配置ブロック181内にはマグネトロンスパッタ用磁石12が載置されている。マグネトロンスパッタ用磁石12の上面にはベース板14が設けられるとともに、ベース板14に対向する基板ステージ15がチャンバー11の上側内壁に設けられる。基板ステージ15は、アースされている。なお、基板ステージ15は、アースされていないフローティング状態でも良い。マグネトロンスパッタ用磁石12の上下方向の位置は、その上面に設けられたベース板14に載置されるターゲット60の上面がターゲット・アンテナ配置部18の上端付近(上端と同じ位置である必要はない)に配置されるように調整されている。また、ターゲット60は、ベース板14と、ターゲット保持部24とによってベース板14の上面(+Z側の面)に保持されている。このようにマグネトロンスパッタ用磁石12及びベース板14(併せて、マグネトロンカソード)が設けられることにより、ターゲット60はチャンバー11の処理室113と面した空間内に配置される。
マグネトロンスパッタ用磁石12は、ターゲット保持部24に保持されたターゲット60の表面を含む領域に静磁場(マグネトロン磁場)を形成して、ターゲット60の表面部分のプラズマを形成できるようにする。ターゲット60の表面部分におけるプラズマの広がり方は、チャンバー11に導入されたプラズマ生成ガスの分圧や、マグネトロンスパッタ用磁石12が発生させるマグネトロン磁場やターゲットに与える電圧の強度などによって変動する。
また、ターゲット配置ブロック181上端とチャンバー11の処理室113との境界には、ターゲット配置ブロック181の側壁から内側に向かって延び、ターゲット60の縁付近(縁を含む部分)に対して一定の距離を保つようにアノード189が設けられている。
アンテナ固定ブロック182内には高周波アンテナ80が挿入されている。また、スパッタリング装置10は、高周波アンテナ80に高周波電力を供給する高周波電源161を備えている。高周波電源161は整合回路163を介して高周波アンテナ80に接続されている。
高周波アンテナ80は、マグネトロンカソードスパッタによるプラズマ発生を支援するためのもので、例えば、図2に示されるように、金属製のパイプ状導体をU字形に曲げたものであり、2つのアンテナ固定ブロック182内に1個ずつ、「U」の字を上下逆向きにした状態で立設されている。なお、高周波アンテナ80の配置態様は、種々に変更可能である。高周波アンテナ80の形状として、例えば、円弧状の形状が採用されても良い。また、高周波アンテナ80の巻数は、一周未満である。定在波の発生を防止するために、高周波アンテナ80の長さは、好ましくは、高周波電源161が供給する電力の波長の1/4以下の長さに設定される。高周波アンテナの一端から高周波電力が供給され、他端は接地される。これにより誘導結合プラズマが生成される。このような高周波アンテナ80が採用されれば、コイル状(渦巻き状)のアンテナを用いて誘導結合プラズマを発生させる手法に比べて、アンテナのインダクタンスが低いためにアンテナの電圧を下げられるので、プラズマダメージを抑制できる。また、アンテナ長を、高周波の波長の1/4以下に短くすることで、定在波の影響によるプラズマのむらに起因したスパッタむら(不均一さ)を抑制することが出来る。また、アンテナをチャンバー内に収容できるのでスパッタ効率を向上できる。さらに、成膜対象の基板サイズに応じて、高周波アンテナ80の個数を増加させるとともに、ターゲットのサイズを大きくすることにより基板サイズが大きい場合でも、スパッタリング速度の向上を図ることが出来る。
U字形の高周波アンテナは巻数が1周未満の誘導結合アンテナに相当し、巻数が1周以上の誘導結合アンテナよりもインダクタンスが低いため、高周波アンテナの両端に発生する高周波電圧が低減され、生成するプラズマへの容量結合に伴うプラズマ電位の高周波揺動が抑制される。このため、対地電位へのプラズマ電位揺動に伴う過剰な電子損失が低減され、プラズマ電位が低減される。これにより、基板上での低イオンダメージの薄膜形成プロセスが可能となる。高周波アンテナ80を構成する金属製パイプ状導体は、スパッタリング装置10の使用時に水などの冷媒151をその内部に通過させることにより高周波アンテナ80を冷却する機能を有する。高周波アンテナ80の高さ方向の位置は、ターゲット60の表面近傍のプラズマ密度がより高くなるように、「U」の字の底部がターゲット60の上面が同程度の高さよりも数センチ程度高くなるように調整されている。なお、ターゲット60およびベース板14なども非常に高温になるため、好ましくは、高周波アンテナ80と同様に、冷媒151によって冷却される。
高周波アンテナ80の上端側の一部は、アンテナ固定ブロック182を貫通して、チャンバー11の内部側に突設されている。高周波アンテナ80の該突設部分は、石英などからなる誘電体の保護パイプ411により覆われている。
なお、マグネトロンスパッタ用磁石12によるターゲット60表面の水平磁束密度の最大値は、20乃至50mT(ミリテスラ)で、高周波誘導結合アンテナの支援がない場合の磁束密度(60乃至100mT)よりも低い磁束密度でも十分なプラズマを生成するこができる。
基板ステージ15は、基板ステージ15の下面に設けられた図示省略の爪状部材などによって基板74を保持することが出来る。基板74は、例えば、シリコンウエハなどにより構成される。
上記のように構成されたスパッタリング装置10は、ベース板14が設けられたチャンバー11に、スパッタガスと、酸素の反応性ガスとを導入して当該カソードに設けられたアルミニウムのターゲット60をスパッタし、当該ターゲット60に対向する基板74上に酸化アルミニウムを成膜する。
<2.酸化アルミニウムの成膜過程について>
図3は、実施形態に係る酸化アルミニウムの成膜方法による成膜過程でより多く発生していると予測される現象を説明するための模式図である。図4は、実施形態に係る酸化アルミニウムの成膜方法の効果を模式的に示す図である。図4のグラフG1は、通常(高周波誘導結合プラズマによるプラズマ発生の支援がなされていない場合)の反応性マグネトロンスパッタリングによる酸化アルミニウム(Al)の成膜速度と酸素量との関係を示す。グラフG2、G3は、高周波誘導結合プラズマによるプラズマ発生の支援がなされている本実施形態に係る酸化アルミニウムの成膜方法による成膜速度と酸素量との関係を示す。グラフG2は、スパッタ電圧として負電圧の直流電圧が印加される場合に対応し、グラフG3は、スパッタ電圧としてパルス直流電圧、若しくは交流電圧が印加される場合に対応している。
<2−1.成膜速度の高速化について>
通常(高周波誘導結合プラズマによるプラズマ発生の支援がなされていない場合)の反応性マグネトロンスパッタリングによる酸化アルミニウム(Al)の成膜過程においては、チャンバー11内の酸素分圧が増加すると、ターゲット60の表面上での酸化反応が促進される。さらに酸素分圧を増加すると、その表面は、ほぼ、ストイキオメトリな酸化アルミニウム(Al)に覆われる。ストイキオメトリな酸化アルミニウムは硬度が高いためスパッタイールドが低下し、結果として成膜速度が低下する(図4のグラフG1の破線L1よりも紙面右側の点S1を含む領域)。
破線枠601〜603(図3)で囲まれた模式図は、実施形態に係る酸化アルミニウムの成膜方法、すなわち、高周波アンテナ80によって発生した高周波誘導結合プラズマによるプラズマ発生の支援がなされる反応性マグネトロンスパッタリングの際に発生していると予測される、酸化アルミニウム(Al)の成膜過程の一部をそれぞれ示している。なお、この場合も、通常の反応性マグネトロンスパッタリングにおける上述の生成過程も発生していると予測される。
高周波誘導結合プラズマによるプラズマ発生の支援がなされている本実施形態に係る酸化アルミニウムの成膜方法によれば、スパッタ電圧として負電圧の直流電圧、負電圧と正電圧とからなるパルス直流電圧、若しくは交流電圧の何れが印加されたとしても、高周波誘導結合プラズマの密度を十分に高めることができる。そして、処理室113内には、イオンに比べてラジカルが非常に多くなる。そして、酸素ラジカルが成膜対象の基板74表面に積極的に作用し、これにより、基板74表面におけるストイキオメトリな酸化アルミニウム(Al)の生成が促進される。このように、酸素ラジカルによる基板74表面の酸化が促進される結果(破線枠602内の模式図)、ターゲット表面では低い酸素の添加量でのスパッタ条件を選択できるためストイキオメトリな酸化度よりも低い酸化度の酸化アルミニウム、すなわち非ストイキオメトリな酸化アルミニウム(AlO)の状態でのスパッタが促進されターゲット表面は軟化される(破線枠601内の模式図)。つまり、ターゲット表面は、低い酸化度の軟化状態の酸化アルミニウムとなり、スパッタイールドが上がる一方、ターゲットからスパッタされたAlO粒子は、増加した酸素ラジカルにより成膜対象基板の表面上または基板―ターゲット間の真空空間においてストイキオメトリな酸化アルミニウム(Al)に変化し、基板上に成膜される(破線枠602内の模式図)。従って、成膜対象の基板表面における酸化アルミニウムの成膜速度が、高周波誘導結合プラズマによるプラズマ発生の支援が無い通常の反応性マグネトロンスパッタリングに比べて高速化する(図4のグラフG2の点S2を含む破線L2と破線L3との間の領域、およびグラフG3の点S3を含む破線L3と破線L4との間の領域)。
なお、スパッタ電圧としてパルス直流電圧、若しくは交流電圧が印加される本実施形態に係る酸化アルミニウムの成膜方法によれば、負電圧と正電圧とからなる電圧がターゲットに印加される。負の直流電圧を印加した場合の効果に加えて、ターゲット表面への電子の引き込み効果に伴って、ターゲット表面における酸素ラジカルによってターゲット表面の化学反応による軟化がさらに促進され(破線枠603内の模式図)、ターゲット表面からの非ストイキオメトリなAlOのスパッタがさらに促進される。これにより、ターゲットのスパッタイールドがさらに上がるとともに、ターゲット上で酸化膜の形成を抑制することができる。従って、スパッタ電圧としてパルス直流電圧、若しくは交流電圧が印加される本実施形態に係る酸化アルミニウムの成膜方法によれば、高周波誘導結合プラズマによるプラズマ発生の支援があり、かつスパッタ電圧として負の直流電圧が印加される本実施形態に係る酸化アルミニウムの成膜方法よりも成膜速度をさらに高速化することができる(図4のグラフG3の最速の成膜速度に対応した点S3を含む破線L3と破線L4との間の領域)。
<2−2.酸化度の安定化について>
スパッタリング装置10においては、マグネトロンプラズマの発生処理においてスパッタ電圧が定電圧制御されるとともに、マグネトロンカソードに流れるスパッタ電流値が目標電流値になるようにマグネトロンプラズマの発生処理中に反応性ガスのチャンバー11内への導入量が制御部200により制御される。具体的には、検出されたスパッタ電流値から目標電流値を引いた差の値に基づいて、差の符号が正であれば、差の値に応じて反応性ガスの導入量を減らし、差の符号が負であれば、差の値に応じて、反応性ガスの導入量を増やす処理が行われる。加減する導入量の値は、例えば、制御部200の記憶部に予め記憶された演算式や、対応関係を表すテーブルなどを参照することにより制御部200が求める。
スパッタ電圧が定電圧制御される場合、すなわちスパッタ用電源162が電圧一定モードで駆動される場合には、基板74上に形成される酸化アルミニウム膜の酸化度は、チャンバー11内の酸素量、すなわち反応性ガス量に応じた安定した平衡点に落ち着こうとする。
また、ターゲット60の表面の酸化度が高い程、ターゲット60は、スパッタリングされる際に二次電子を多く放出する。これにより、スパッタ電圧が定電圧制御される場合には、ターゲット60表面の酸化度が高い程、すなわちチャンバー11内の反応性ガス量が多いほど、スパッタ電流値は大きくなるとともに、基板74上に成膜される酸化アルミニウムの酸化度も高くなる。
従って、スパッタ電流値が目標電流値になるように反応性ガスをチャンバー11内に導入することによって、例えば、基板74に吸着していた水分などに起因して発生した反応性ガスなどの外乱因子に拘わらず、基板74上に形成される酸化アルミニウム膜の酸化度を安定させることができる。すなわち、酸化アルミニウムを、酸化度を安定させつつ高い成膜速度で基板74の表面に成膜できる。
また、反応性ガスの導入量の制御において参照される目標電流値は、好ましくは、成膜される酸化アルミニウムの酸化度が、ストイキオメトリな酸化アルミニウムと、ストイキオメトリな酸化アルミニウムより低い酸化度の酸化アルミニウムとのそれぞれの酸化度の境界付近の酸化度となるときのスパッタ電流値に設定される。
ここで、図4において、破線L3よりも紙面右側領域の酸素量では、基板74表面においてストイキオメトリな酸化アルミニウム(Al)の生成がなされ、破線L3よりも紙面左側領域の酸素量では、非ストイキオメトリな酸化アルミニウム(AlO)が生成される。そして、基板74の表面に成膜される酸化アルミニウムの酸化度が、例えば、図4の破線L3付近における点S2の成膜条件のように、ストイキオメトリな酸化アルミニウムと、ストイキオメトリな酸化アルミニウムより低い酸化度の酸化アルミニウムとのそれぞれの酸化度の境界付近の酸化度となるときに、高いパッシべーション効果を発揮する酸化アルミニウムが成膜されることが判っている。
従って、スパッタリング装置10における目標電流値に対応した酸化アルミニウムの酸化度は、酸化アルミニウムのパッシべーション効果が高くなる酸化度であるとともに、成膜速度の速い酸化度でもある。従って、p型シリコン基板のパッシべーション膜に好適な高いパッシべーション効果を発揮する酸化アルミニウムを、高い成膜速度で安定して成膜できる。
<3.スパッタリング装置の動作>
図6、図7は、実施形態に係る酸化アルミニウムの成膜方法の手順を例示するフローチャートである。スパッタリング装置10は、マグネトロンスパッタ用磁石(永久磁石)12により、ターゲット60の近傍に静磁場が形成されている。また、図5は、実施形態に係る酸化アルミニウムの成膜方法を実験により実現したときの時間ダイアグラムの一例である。
先ず、図示省略の成膜シャッターを閉じた後、ターゲット60と基板74がゲート351からチャンバー11の処理室113に搬入される。そして、基板74が基板ステージ15に、ターゲット60がベース板14に、それぞれ取り付けられて、ゲート351が閉鎖される(ステップS110、図5の時間t0)。なお、ゲート351の閉鎖後に処理室113内の温度が所定の温度に調整される。
次に、真空ポンプによりチャンバー11内を真空にした後、チャンバー11の処理室113が目標圧力になるように、Ar等の不活性ガスからなるスパッタガスのチャンバー11内への導入がプラズマ生成ガス導入部19を介して開始される(ステップS120、図5の時間t1)。目標圧力としては、好ましくは、0.2Pa以上であり、かつ、7Pa以下の圧力が採用される。さらにより好ましくは、0.4Pa以上であり、かつ、2Pa以下の圧力が採用される。しかしながら、目標圧力は、これらの圧力に限定されず、より広範な圧力が採用されてもよい。また、目標圧力が3Pa以下の場合には、この後、以降の高周波誘導結合プラズマを点火させるために、一時的に成膜室の圧力を3Pa以上に高めるステップ追加する場合がある。これは当該アンテナをもちいた高周波誘導結合プラズマは、3Pa以下の圧力では点火しづらい特性があるためである。なお、一度プラズマが点火してしまえば、その後、低い圧力(目標圧力)に戻してもプラズマは発生し続けることができる。
続いて、高周波電源161から高周波アンテナ80に高周波電力を投入(ステップS130、図5の時間t2)することにより、高周波アンテナ80の周囲に高周波誘導磁界を形成し、スパッタガスの高周波誘導結合プラズマを発生させるプラズマ発生処理(「第1のプラズマ発生処理」)が行われる。後の処理ステップにおいて、酸素の反応性ガスがチャンバー11内に供給されると、第1のプラズマ発生ステップは、反応性ガスの高周波誘導結合プラズマも発生させる。高周波電力の供給は、酸化アルミニウムの成膜処理が終了するまで継続される。
続いて、ベース板14とスパッタ用電源162によって、負電圧の直流電圧からなるスパッタ電圧、負電圧と正電圧とからなるパルス状のスパッタ電圧、若しくは交流のスパッタ電圧を印加(バイアスの印加)することで、スパッタ電圧印加処理が行われる(ステップS140、図5の時間t3)。これにより、マグネトロンプラズマ発生処理(「第2のプラズマ発生処理」)が行われる。なお、スパッタ電圧として負電圧の直流電圧が採用される場合には、界面におけるダメージをより抑制しつつ基板74上に酸化アルミニウムを成膜できる。また、パルス直流電圧と交流電圧の周波数としては、例えば、20〜100KHzが採用されるが、他の周波数が採用されてもよい。スパッタ電圧は、好ましくは、その負電圧の絶対値が100V以上であり、かつ、300V以下(負電圧が−100V以下であり、かつ、−300V以上)に制御され、さらにより好ましくは、150V以上であり、かつ、250V以下(負電圧が−150V以下であり、かつ、−250V以上)に制御される。しかしながら、スパッタ電圧の範囲は、これらの範囲内に限定されず、より広い範囲における電圧が採用されてもよい。後の処理ステップにおいて、反応性ガスがチャンバー11内に供給されると、第2のプラズマ発生ステップは、反応性ガスのマグネトロンプラズマも発生させる。また、スパッタ電圧の印加処理は、酸化アルミニウムの成膜処理が終了するまで継続される。
次に、制御部200がモニタしているスパッタ電流値が所定の電流値よりも低い値になるまでスパッタガスのみによるプレスパッタを行い、ターゲット60の表面についた初期酸化被膜を十分にスパッタ除去する(ステップS150)。
ターゲット60の表面の初期酸化被膜が十分に除去されると、スパッタ電流値が低い値で略一定値になるので、この時点で反応性ガス供給部191からの酸素の反応性ガス(より正確には、5%の酸素ガスとAr等の不活性ガスとの希釈混合ガスが望ましい)の供給が流量コントローラ192、プラズマ生成ガス導入部19を介して開始される(ステップS160、図5の時間t4)。なお、反応性ガスの供給が開始された後も、処理室113の圧力は目標圧力に維持される。また、スパッタの性質上、反応性ガスの供給が開始された後も、しばらくの間、スパッタ電流値が下がる。
そして、供給を開始した反応性ガスの導入量を徐々に増やし、スパッタ電流値を一旦、目標電流値以上に上げる。その後に今度は反応性ガスの導入量を徐々に減じてスパッタ電流値を下げ、スパッタ電流値が目標電流値になった時点で、成膜シャッターを開いて基板74の表面への酸化アルミニウムの成膜処理を開始するとともに、スパッタ電流値が目標電流値に維持されるように反応性ガスの導入量の制御が開始される(ステップS170、図5の時間t5)。なお、図5の実験結果では、時間t3から時間t5までの経過時間は5分である。
成膜処理が開始された後も、反応性ガスの導入量の制御は継続されて、スパッタ電流値が目標電流値に維持される。なお、図5に示される実験結果では、反応性ガスの導入量は、曲線L11を挟んで増減を繰り返しつつ時間の経過とともに徐々に増加している。これは、例えば、基板74に付着して残留していた水分などがプラズマ発生時に一気に分解されて酸素(反応性ガス)が急激に増加し、成膜処理の進行とともに残留した水分から生じた反応性ガスが減少するという外乱因子によるものである。スパッタ電流値が目標電流値になるように反応性ガス供給部191から供給される反応性ガスの導入量が制御された結果、当該導入量は、徐々に増加している。当該導入量の制御において、反応性ガスのプラズマ発光強度の変化からスパッタ電流値の変化を予測して、スパッタ電流値が目標電流値になるように反応性ガスの導入量を制御してもよい。これにより、スパッタ電流値を目標電流値に保つ精度がより高められる。
図8は、スパッタ電流値と反応性ガスのプラズマ発光強度との関係を模式的に示す図である。図9は、スパッタ電流値の変化の予測を用いた反応性ガスの導入量(酸素供給量)の制御例を模式的に示す図である。
スパッタ電流値は、既述したように、ターゲット60表面のアルミニウムの酸化度に応じた電流値であるが、酸化反応の性質による時間遅れのために、処理室113内の酸素の反応性ガスのプラズマ発光強度の変化に対してスパッタ電流値が遅れて変化する。具体的には、目標電流値Iaに対して、例えば、スパッタ電流がグラフ51のように変化する場合には、反応性ガスのプラズマ発光強度は、例えば、グラフ52に示されるように変化する。このように、反応性ガスのプラズマ発光強度は、スパッタ電流値の変化に応じて、スパッタ電流値よりも時間的に早く変化する。
図9では、時間T21に至る酸素の反応性ガスの処理室113への導入量(酸素供給量)がグラフ55に示されるように、一定値に制御された場合において、目標電流値Iaに対してスパッタ電流値がグラフ53で表され、反応性ガスのプラズマ発光強度がグラフ54で表されている。時間T21は、実験において最新のデータが得られた時間である。この場合には、時間T21に至る直前の期間において、反応性ガスのプラズマ発光強度が小さくなっていることから、時間T21以降は、時間の経過とともにスパッタ電流値も、例えば、図9に破線で示されるように小さくなることが予測される。この場合には、時間T21以降に実際にスパッタ電流値が変化する前に、反応性ガスの導入量を、例えば、グラフ55の破線で示された部分のように増加させることによって、スパッタ電流値の目標電流値Iaからのずれをより小さくすることが出来る。従って、成膜される酸化アルミニウムの酸化度をより安定させつつ酸化アルミニウムを基板74に成膜することができる。なお、分光器111によって検出される反応性ガスのプラズマ発光強度は、窓部17を透過した光であるため、窓部17の汚れに起因して、分光器111が検出するプラズマ発光強度の絶対値に狂いが生ずる場合があるが、プラズマ発光強度の変化の方向は、正しくなるため、当該変化の方向に基づいて反応性ガスの導入量が制御されることが好ましい。
図7に戻って、成膜された酸化アルミニウムの膜厚が所定厚まで達する(または、所定時間経過する)と、成膜シャッタを閉じて成膜処理が終了される(ステップS180、図5の時間t6)。なお、図5の実験結果では、時間t5から時間t6までの経過時間は20分である。そして、スパッタ用電源162によるベース板14へのスパッタ電圧(バイアス)の印加が停止され(ステップS190、図5の時間t7)、当該停止後(または停止と同時)に高周波電源161から高周波アンテナ80への高周波電力の供給が停止される(ステップS200、図5の時間t8)。次に、ガスの供給が停止され(ステップS210、図5の時間t9)、ゲート351が解放されて、基板74がチャンバー11の処理室113から搬出される(ステップS220)。
以上のような本実施形態に係る酸化アルミニウムの成膜方法によれば、第1のプラズマ発生ステップは、スパッタガスと酸素の反応性ガスとが導入されたチャンバー11内に設けられ巻数が一周未満の導体からなる高周波アンテナ80を用いて、少なくとも第2のプラズマ発生ステップ中にチャンバー11内に高周波誘導結合プラズマを発生させる。そして、第2のプラズマ発生ステップは、スパッタ電圧をターゲット60に印加してマグネトロンプラズマを発生させる。従って、酸素ラジカルの増加と、成膜対象の基板74上の酸化反応の促進、そして、それらに伴う酸化したターゲット60表面の軟化の総合的な効果により、成膜速度が高速化される。また、本発明によれば、第2のプラズマ発生ステップにおいてスパッタ電圧が定電圧制御されるとともに、マグネトロンカソードに流れるスパッタ電流値が目標電流値になるように第2のプラズマ発生ステップ中に反応性ガスの導入量が制御される。スパッタ電圧が定電圧制御される場合、すなわちスパッタ電源が電圧一定モードで駆動される場合には、基板74上に形成される酸化アルミニウム膜の酸化度は、チャンバー11内の酸素量、すなわち反応性ガス量に応じた安定した平衡点に落ち着こうとする。また、スパッタ電圧が定電圧制御される場合には、アルミニウムのターゲット60表面の酸化度が高い程、すなわちチャンバー11内の反応性ガス量が多いほど、スパッタ電流値は大きくなるとともに、基板74上に成膜される酸化アルミニウムの酸化度も高くなる。従って、本発明によれば、スパッタ電流値が目標電流値になるように反応性ガスをチャンバー11内に導入することによって、例えば、基板74に吸着していた水分などに起因して発生した反応性ガスなどの外乱因子に拘わらず、基板74上に形成される酸化アルミニウム膜の酸化度を安定させることができる。すなわち、酸化アルミニウムを、酸化度を安定させつつ高い成膜速度で成膜できる。
また、以上のような本実施形態に係る酸化アルミニウムの成膜方法によれば、目標電流値は、成膜される酸化アルミニウムの酸化度が、ストイキオメトリな酸化アルミニウムと、ストイキオメトリな酸化アルミニウムより低い酸化度の酸化アルミニウムとのそれぞれの酸化度の境界付近の酸化度となるときのスパッタ電流値である。この酸化度は、成膜される酸化アルミニウムのパッシべーション効果が高くなる酸化度であるとともに、成膜速度の速い酸化度でもある。従って、p型シリコン基板のパッシべーション膜に好適な高いパッシべーション効果を発揮する酸化アルミニウムを、高い成膜速度で安定して成膜できる。
また、以上のような本実施形態に係る酸化アルミニウムの成膜方法によれば、制御ステップにおいて、実際のスパッタ電流値の変化に先立って当該変化に対応して変化する反応性ガスのプラズマの発光強度の変化からスパッタ電流値の変化を予測して、スパッタ電流値が目標電流値になるように反応性ガスの導入量が制御される。従って、酸化度をより安定させつつ酸化アルミニウムを成膜することができる。
また、以上のような本実施形態に係る酸化アルミニウムの成膜方法によれば、スパッタ電圧は負電圧である。従って、界面におけるダメージをより抑制しつつ基板74上に酸化アルミニウムを成膜できるので、太陽電池シリコン基板のパッシベーション膜により好適な酸化アルミニウムを成膜できる。
本発明は詳細に示され記述されたが、上記の記述は全ての態様において例示であって限定的ではない。したがって、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。例えば、高周波アンテナは、メンテナンス性能を向上させるため、そのU形状の中央部分の直線部分をアンテナ固定ブロック182から突設させることなく配置してもよいし、また、メンテナンス性とプラズマの生成能力のバランスから判断して、その直線部分の上側半分だけが、突設するように配置してもよい。また、複数の基板74への成膜を連続して行う場合には、チャンバー11の上部壁面を取り除いて、基板74がそれぞれ取り付けられた複数の基板ステージ15を、チャンバー11の上部に隙間が出来ないように、隣り合う基板ステージ15同士の前端と後端とを突き合わせて搬送方向に沿って並べた状態で、各基板ステージ15を搬送しつつ、各基板74に対する成膜処理を行っても良い。この場合において、プレスパッタによるターゲット60の初期酸化被膜の除去を行う場合には、例えば、複数の基板ステージ15のうち先頭の基板ステージ15を基板74が取り付けられていないダミー基板とすることにより成膜シャッターを用いることなく初期酸化被膜を除去できる。
10 スパッタリング装置
11 チャンバー
12 マグネトロンスパッタ用磁石
14 ベース板(カソード)
15 基板ステージ
161 高周波電源
162 スパッタ用電源
19 プラズマ生成ガス導入部
24 ターゲット保持部
60 ターゲット(アルミニウムターゲット)
74 基板
80 高周波アンテナ
90 プラズマ発生部
111 分光器
164 電流計
191 反応性ガス供給部
192 流量コントローラ
200 制御部

Claims (7)

  1. 静磁場を形成するマグネトロンカソードが設けられた真空容器に、スパッタガスと、酸素の反応性ガスとを当該真空容器内の圧力が目標圧力になるように制御しつつ導入して当該カソードに設けられたアルミニウムターゲットをスパッタし、当該アルミニウムターゲットに対向するシリコン基板上に酸化膜を形成する酸化アルミニウムの成膜方法であって、
    前記スパッタガスと前記反応性ガスとが導入された真空容器内にプラズマを発生させる第1のプラズマ発生ステップと、
    前記アルミニウムターゲットに負電圧、負電圧と正電圧とからなる直流パルス、および交流の何れか1つのスパッタ電圧を印加して、前記静磁場によりマグネトロンプラズマを発生させる第2のプラズマ発生ステップと、
    前記真空容器内への前記反応性ガスの導入量を制御する制御ステップと、
    を備え、
    前記第2のプラズマ発生ステップは、前記スパッタ電圧を定電圧に維持する定電圧制御を行うステップであり、
    前記制御ステップは、
    前記マグネトロンカソードに流れるスパッタ電流値が目標電流値と異なる場合には、前記第2のプラズマ発生ステップにおいて前記スパッタ電圧が前記定電圧制御によって前記定電圧に維持されている間に、前記スパッタ電流値が前記目標電流値になるように前記反応性ガスの導入量を変更する第1ステップと、
    前記第1ステップによって前記スパッタ電流値が前記目標電流値に達した後には、前記第2のプラズマ発生ステップにおいて前記スパッタ電圧が前記定電圧制御によって前記定電圧に維持されている間に、前記反応性ガスのプラズマ発光強度が、前記スパッタ電流値の変化に応じて、前記スパッタ電流値よりも時間的に早く変化することに基づいて前記反応性ガスのプラズマの発光強度の変化から前記スパッタ電流値の変化を予測して、前記スパッタ電流値が前記目標電流値に維持されるように前記反応性ガスの導入量を制御する第2ステップと、
    を含み
    前記第1のプラズマ発生ステップは、前記真空容器内に設けられ巻数が一周未満の導体からなる高周波アンテナを用いて、少なくとも前記第2のプラズマ発生ステップ中に高周波誘導結合プラズマを発生させるステップである酸化アルミニウムの成膜方法。
  2. 請求項1に記載の酸化アルミニウムの成膜方法において、
    前記目標電流値は、成膜される酸化アルミニウムの酸化度が、ストイキオメトリな酸化アルミニウムと、ストイキオメトリな酸化アルミニウムより低い酸化度の酸化アルミニウムとのそれぞれの酸化度の境界付近の酸化度となるときの前記スパッタ電流値である酸化アルミニウムの成膜方法。
  3. 請求項1または請求項に記載の酸化アルミニウムの成膜方法において、前記スパッタ電圧は負電圧である酸化アルミニウムの成膜方法。
  4. 請求項1から請求項の何れか1つの請求項に記載の酸化アルミニウムの成膜方法において、前記目標圧力が0.2Pa以上であり、かつ、7Pa以下である酸化アルミニウムの成膜方法。
  5. 請求項に記載の酸化アルミニウムの成膜方法において、前記目標圧力が0.4Pa以上であり、かつ、2Pa以下である酸化アルミニウムの成膜方法。
  6. 請求項1から請求項の何れか1つの請求項に記載の酸化アルミニウムの成膜方法において、前記スパッタ電圧の負電圧の絶対値が100V以上であり、かつ、300V以下である酸化アルミニウムの成膜方法。
  7. 請求項に記載の酸化アルミニウムの成膜方法において、前記スパッタ電圧の負電圧の絶対値が150V以上であり、かつ、250V以下である酸化アルミニウムの成膜方法。
JP2013065384A 2013-03-27 2013-03-27 酸化アルミニウムの成膜方法 Expired - Fee Related JP6101533B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013065384A JP6101533B2 (ja) 2013-03-27 2013-03-27 酸化アルミニウムの成膜方法
TW102145671A TWI504773B (zh) 2013-03-27 2013-12-11 氧化鋁之成膜方法及濺鍍裝置
KR1020140001181A KR20140118695A (ko) 2013-03-27 2014-01-06 산화 알루미늄의 성막 방법 및 스퍼터링 장치
CN201410014269.5A CN104073773B (zh) 2013-03-27 2014-01-13 氧化铝的成膜方法及溅射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065384A JP6101533B2 (ja) 2013-03-27 2013-03-27 酸化アルミニウムの成膜方法

Publications (2)

Publication Number Publication Date
JP2014189827A JP2014189827A (ja) 2014-10-06
JP6101533B2 true JP6101533B2 (ja) 2017-03-22

Family

ID=51595368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065384A Expired - Fee Related JP6101533B2 (ja) 2013-03-27 2013-03-27 酸化アルミニウムの成膜方法

Country Status (4)

Country Link
JP (1) JP6101533B2 (ja)
KR (1) KR20140118695A (ja)
CN (1) CN104073773B (ja)
TW (1) TWI504773B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264248B2 (ja) * 2014-09-26 2018-01-24 日新電機株式会社 成膜方法およびスパッタリング装置
JP6670546B2 (ja) * 2015-02-17 2020-03-25 日東電工株式会社 薄膜の成膜方法
CN107406967B (zh) * 2015-03-10 2019-03-05 株式会社爱发科 氧化铝膜的成膜方法和形成方法以及溅射装置
JP6775972B2 (ja) * 2016-03-17 2020-10-28 芝浦メカトロニクス株式会社 成膜装置及び成膜方法
US11306392B2 (en) 2016-06-07 2022-04-19 Nitto Denko Corporation Method for producing optical film
JP6964435B2 (ja) * 2016-06-07 2021-11-10 日東電工株式会社 光学フィルムの製造方法
JP6916699B2 (ja) * 2017-09-14 2021-08-11 株式会社Screenホールディングス 成膜方法および成膜装置
JP6942015B2 (ja) * 2017-09-27 2021-09-29 株式会社Screenホールディングス 成膜装置および成膜方法
JP7034737B2 (ja) * 2018-01-25 2022-03-14 株式会社Screenホールディングス 成膜装置および成膜方法
JP2021066895A (ja) * 2018-02-26 2021-04-30 株式会社アルバック 成膜方法
US11384421B2 (en) 2018-03-16 2022-07-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy High temperature sputtered stoichiometric amorphous aluminum oxide

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106770C2 (de) * 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
JP3689524B2 (ja) * 1996-03-22 2005-08-31 キヤノン株式会社 酸化アルミニウム膜及びその形成方法
JP4531145B2 (ja) * 1997-05-27 2010-08-25 株式会社アルバック 極薄絶縁膜形成方法
WO1999014393A1 (de) * 1997-09-16 1999-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. VERFAHREN ZUR BESCHICHTUNG VON SUBSTRATEN MIT ALUMINIUMOXID (Al2O3) UND DAMIT BESCHICHTETES WERKSTÜCK
JP3866615B2 (ja) * 2002-05-29 2007-01-10 株式会社神戸製鋼所 反応性スパッタリング方法及び装置
EP1729330A1 (en) * 2004-03-26 2006-12-06 Nissin Electric Co., Ltd. Method and equipment for forming crystalline silicon thin film
JP4720298B2 (ja) * 2005-06-07 2011-07-13 株式会社ブリヂストン 導電性化合物薄膜の成膜方法
JP2007031815A (ja) * 2005-07-29 2007-02-08 Shimadzu Corp プレーナマグネトロンスパッタ装置およびプレーナマグネトロンスパッタ成膜方法
JP2009287088A (ja) * 2008-05-29 2009-12-10 Fujifilm Corp 成膜装置、成膜方法およびバリアフィルム
US8916034B2 (en) * 2008-08-28 2014-12-23 Emd Corporation Thin-film forming sputtering system
JP5475506B2 (ja) * 2010-02-26 2014-04-16 株式会社イー・エム・ディー スパッタリング薄膜形成装置
KR20140068962A (ko) * 2011-08-30 2014-06-09 가부시키가이샤 이엠디 스퍼터링 박막 형성 장치

Also Published As

Publication number Publication date
TW201437407A (zh) 2014-10-01
TWI504773B (zh) 2015-10-21
CN104073773B (zh) 2017-04-12
KR20140118695A (ko) 2014-10-08
JP2014189827A (ja) 2014-10-06
CN104073773A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP6101533B2 (ja) 酸化アルミニウムの成膜方法
US11764082B2 (en) Control method and plasma processing apparatus
US7728251B2 (en) Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing
JP5698652B2 (ja) 同軸マイクロ波支援堆積及びエッチングシステム
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
CN107039229A (zh) 蚀刻方法
TWI541893B (zh) Process apparatus and method for plasma etching process
TW201635373A (zh) 電漿處理方法
US8911602B2 (en) Dual hexagonal shaped plasma source
US9966238B2 (en) Method for manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
CN106952798B (zh) 蚀刻方法
KR20160026701A (ko) 에칭 방법
Okumura Inductively coupled plasma sources and applications
TWI613306B (zh) 電漿處理裝置及電漿處理方法
JP2010010214A (ja) 半導体装置の製造方法、半導体製造装置、及び記憶媒体
US9793136B2 (en) Plasma etching method
JP2014141698A (ja) 酸化アルミニウムの成膜方法
JP2015056529A (ja) 膜形成方法および膜形成装置
JP2014057034A (ja) 酸化アルミニウムの成膜方法
JP2015157993A (ja) スパッタリング装置
CN114346767B (zh) 一种高效率低损伤缺陷表面离子束抛光设备和抛光方法
US20090151637A1 (en) Microwave-excited plasma source using ridged wave-guide line-type microwave plasma reactor
JP5097074B2 (ja) プラズマ処理装置及びプラズマ処理方法
US20090283502A1 (en) Plasma processing apparatus and control method for plasma processing apparatus
US20220285129A1 (en) Pulsed DC Power For Deposition Of Film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6101533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees