JP6070478B2 - 電流測定装置及びその製造方法 - Google Patents

電流測定装置及びその製造方法 Download PDF

Info

Publication number
JP6070478B2
JP6070478B2 JP2013172203A JP2013172203A JP6070478B2 JP 6070478 B2 JP6070478 B2 JP 6070478B2 JP 2013172203 A JP2013172203 A JP 2013172203A JP 2013172203 A JP2013172203 A JP 2013172203A JP 6070478 B2 JP6070478 B2 JP 6070478B2
Authority
JP
Japan
Prior art keywords
current
pair
conductive
cell
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013172203A
Other languages
English (en)
Other versions
JP2015041521A (ja
Inventor
山田 貴史
貴史 山田
祐一 坂上
祐一 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013172203A priority Critical patent/JP6070478B2/ja
Publication of JP2015041521A publication Critical patent/JP2015041521A/ja
Application granted granted Critical
Publication of JP6070478B2 publication Critical patent/JP6070478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池を構成するセルの局所を流れる電流を測定する電流測定装置及びその製造方法に関する。
従来、電気エネルギーを出力する複数のセルを積層配置して構成された燃料電池に適用されて、この燃料電池を構成するセルの局所を流れる電流を測定する電流測定装置がある。この電流測定装置は、隣接する一対のセルの間に配置され、板状部材と、この板状部材の一方の面に設けられた第1電極部と他方の面に設けられた第2電極部とからなる複数の電極部と、第1電極部と第2電極部とを電気的に接続するとともに所定の抵抗値をもつ抵抗体を有する導通部とを備えて構成される。
この構成のものでは、隣接する一対のセルの一方に第1電極部を電気的に接触させるとともに、他方に第2電極部を電気的に接触させて、前記抵抗体の抵抗値と、前記抵抗体の2点間の電位差を検出することに基づいて、前記セル間を流れる電流値を測定する。
特開2010−80164号公報
上記構成のものでは、抵抗体を有する導通部と電極部とにより構成される電流測定部の熱容量により、燃料電池による発電や冷却に伴って、温度変化・温度維持をする制御において、当該セルの温度に影響を及ぼすことで、当該セルの電流・電圧特性が変化するおそれがある。この場合、電流測定装置によるセル間を流れる電流値の測定精度が低下するという問題がある。
本発明は、上述した問題点に鑑みてなされたものであり、電流測定装置によるセルへの温度影響を抑制し、電流測定精度を向上させた電流測定装置を提供することを目的とする。
上記目的を達成するためになされた請求項1に記載の電流測定装置(1)は、酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル(10)と前記電気エネルギーを集めるための集電板(20)とを積層配置して構成された燃料電池(100)の電流を測定するものであって、板状部材(2)と、前記板状部材の一方の面に設けられた第1電極部(3a)と前記板状部材の他方の面に設けられた第2電極部(3b)とからなる電極部(3)と、前記第1電極部と前記第2電極部とを電気的に接続するとともに所定の抵抗値をもつ少なくとも1つの抵抗体(4)を有する導通部(5)と、前記抵抗体の前記抵抗値と前記抵抗体の2点間の電位差に基づいて前記電極部間を流れる電流値を測定する測定手段(30)とを備える。この電流測定装置は、前記燃料電池における一対の前記セル間または前記セルと前記集電板との間に前記板状部材を配置し、前記第1電極部を前記一対のセルの一方または前記セルに電気的に接触させるとともに前記第2電極部を前記一対のセルの他方または前記集電板に電気的に接触させることにより、前記セルの局所を流れる電流値を測定する。そして、抵抗体は、前記セルの積層方向から見て前記電極部とは重なり合わない部分を有して構成される。板状部材は、前記抵抗体の近傍に少なくとも1つの中空部(9)を有することを特徴とする。
この構成によれば、熱伝導率を小さく、すなわち、熱抵抗値を大きくさせることで、電流測定装置への伝熱量を抑制し、燃料電池による発電や冷却に伴うセルの温度変化・温度制御において、セルの温度変化の影響を小さくできる。また、抵抗体を有する導通部においてジュール熱が発生した際に、抵抗体の近傍に設けられた中空部により、導通部の温度上昇に伴う当該電流測定装置に隣接するセルの温度上昇を低減させることができる。従って、セルどうしの温度差を低減させることができ、電流測定精度を向上させることができる。また、内部が空気で満たされている中空部においては、例えば樹脂や絶縁部材を充填する場合に比べ、熱容量を小さくすることができ、隣接するセルの温度変化に与える影響を小さくすることができる。
また、請求項9に記載の電流測定装置の製造方法は、酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル(10)と前記電気エネルギーを集めるための集電板(20)とを積層配置して構成された燃料電池(100)の前記セルの局所を流れる電流値を測定する電流測定装置(1)の製造方法であって、非導電性の板状片からなる複数の第1部材(7)を前記セルの積層方向に対して垂直な方向に間隔をあけて並列に配置する第1工程(S1)と、複数の前記第1部材の両面にまたがるように所定の電気抵抗値を有する少なくとも1つの抵抗体(4)を備えて構成される導電性部材からなる複数の分割された一対の第1導通部(5a,5b)を配設することにより複数の前記第1部材の間に中空部(9)を形成する第2工程(S2)と、前記第1部材及び前記一対の第1導通部を貫通する貫通孔を形成してメッキ処理を施すことにより第2導通部(5c)を配設する第3工程(S3)と、前記一対の第1導通部の両面に、非導電性の板状片からなる一対の第2部材(8a,8b)を配設する第4工程(S4)と、前記一対の第2部材の両面に、前記燃料電池における隣接する一対の前記セル間または前記セルと前記集電板との間に配置され、前記一対のセルの一方または前記セルに電気的に接触する第1電極部(3a)と、前記一対のセルの他方または前記集電板に電気的に接触する第2電極部(3b)とからなり前記一対の第1導通部に対応する電極部(3)を配設する第5工程(S5)と、前記電極部と前記一対の第2部材と前記一対の第1導通部とを接続する接続孔を形成してメッキ処理を施すことにより、前記電極部と前記一対の第1導通部とを導通させる第6工程(S6)と、からなることを特徴とする。
この製造方法によれば、複数の第1部材を並列に間隔をあけて配置した後、複数の分割された一対の第1導通部を配設することで、中空部を形成することができる。従って、簡易な方法で、電流測定装置に中空部を設けて電流測定装置の熱抵抗値を大きくさせることができ、電流測定装置によるセルへの温度影響を抑制できる。これにより、電流測定装置に隣接するセルの温度変化に及ぼす影響を低減させて、電流測定精度を向上させた電流測定装置を製造することができる。尚、この欄及び特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の第1の実施形態における電流測定装置の配置構成を示す図である。 電流測定装置が配置される燃料電池のセルの概略構成を示す図である。 電流測定装置の内部の断面を示す模式図である。 電流測定装置の電極部を示す正面図である。 電流測定装置の製造方法における第1工程を示す図である。 第2工程を示す図である。 第3工程を示す図である。 第4工程を示す図である。 第5工程を示す図である。 第6工程を示す図である。 電流測定装置の製造方法の流れを示す図である。 第2の実施形態における電流測定装置の内部の断面を示す模式図である。
[第1の実施形態]
以下、本発明の電流測定装置の第1の実施形態について図1〜図11を参照して説明する。図1に示すように、本実施形態の電流測定装置1は、燃料電池100を構成する複数の積層されたセル10のうち一対のセル10間に配置される。燃料電池100は、例えば電気自動車の電力供給源として用いられるものである。本実施形態では、燃料電池100として固体高分子形燃料電池(PEFC)を使用する場合について説明する。
この燃料電池100は、複数のセル10、集電板20などを備えて構成される。複数のセル10は、電気的に直列に接続され積層配置される。集電板20は、複数の積層されたセル10の両端部にそれぞれ1つずつ配置される。セル10は、図2に示すように、アノードセパレータ11、アノード12(燃料極)、電解質膜13(固体高分子膜)、カソード14(空気極)、カソードセパレータ15などを備えて構成される。
アノードセパレータ11には、燃料ガスである水素が通過するための水素流路11aが形成されている。アノード12は、多孔質支持層12aとアノード触媒層12bとから構成されている。図2の矢印Aに示すように、水素流路11aを水素が通過することにより、多孔質支持層12aを介してアノード12に水素が供給される。
電解質膜13は、例えばフッ素系高分子電解質膜からなる。カソード14は、多孔質支持層14aとカソード触媒層14bとから構成されている。カソードセパレータ15には、酸化剤ガスである空気(酸素)が通過するための空気流路15aが形成されている。図2の矢印Bに示すように、空気流路15を空気が通過することにより、多孔質支持層14aを介してカソード14に空気が供給される。なお、アノード触媒層12b及びカソード触媒層14bは、例えば白金などの触媒金属を導電性担持体(例えばカーボンブラック)に担持させたものが用いられる。
各セル10では、次式に示すように、アノード12に供給された水素と、カソード14に供給された空気(酸素)とが電気化学反応することにより、電気エネルギー(電力)が発生する。なお、発生した電気エネルギーは、集電板20により集められ、外部に出力される。
(負極側)H2→2H++2e-
(正極側)2H++1/2O2+2e-→H2
ここで、アノード12(負極)では、水素から水素イオンと電子が酸化反応により生成される。アノード12で生成された水素イオンは、電解質膜13を通過してカソード14まで移動する。カソード14(正極)では、カソード触媒層14bにおいて、水素イオン、酸素、電子が結合して還元反応が行われ水が生成される。電解質膜13は、水素と酸素とが直接接触しないようにしているとともに、アノード12とカソード14とが電気的に短絡しないように絶縁している。
なお、セル10のアノード12側(負極側)には、図示しないが、水素をセル10に供給するための水素供給管と、アノード12側に溜まった生成水を微量な水素とともに燃料電池100から外部へ排出するための水素排出管が接続されている。更に、水素供給管と水素排出管は、水素循環管を介して接続されている。この水素循環管により、燃料電池100から流出した未反応の水素を、燃料電池100に循環させて再供給している。この水素循環管には、水素を循環させるための水素ポンプが配置されている。
また、水素供給管の最上流部には、高圧水素が充填された高圧水素タンクが設けられ、水素供給管における高圧水素タンクと燃料電池100との間には、セル10に供給される水素の圧力を調整する水素調圧弁が設けられている。
一方、セル10のカソード14側(正極側)には、図示しないが、空気(酸素)をセル10に供給するための空気供給管、並びに、セル10において電気化学反応を終えた余剰空気及びカソード14で生成された生成水をセル10から外部へ排出するための空気排出管が接続されている。
また、空気供給管の最上流部には、大気中から吸入した空気を燃料電池100に圧送するための空気ポンプが設けられている。空気排出管には、燃料電池100内の空気の圧力を調整するための空気調圧弁が設けられている。更に、空気供給管及び空気排出管には、空気調圧弁から流出した空気の有する湿度(水蒸気)を空気ポンプから圧送された空気へ移動させるための加湿器が設けられている。
また、各セル10では、上記した水の生成を伴う電気化学反応により反応熱が発生するため、各セル10の温度が上昇する。そこで、燃料電池100には、冷却水を流して各セル10を冷却するための冷却水循環経路(図示しない)が設けられている。この冷却水循環経路には、図示しないが、燃料電池100に冷却水を循環させるための冷却水ポンプ、電動ファンを備えた放熱器(ラジエータ)などが配設されている。これにより、燃料電池100は、運転中において上記電気化学反応に適した一定温度(例えば80℃程度)に維持され、発電効率が確保される。
更に、冷却水循環経路には、図示しないが、放熱器を迂回するように冷却水を流すためのバイパス流路が設けられている。冷却水循環経路とバイパス流路との合流点には、バイパス流路に流れる冷却水流量を調整するための切替弁が設けられている。この切替弁の弁開度が調整されることによって、冷却水循環経路の冷却能力が調整される。
また、冷却水循環経路の燃料電池100の出口側近傍には、燃料電池100から流出した冷却水の温度を検出する温度センサが設けられている。この温度センサにより冷却水の温度を検出することで、燃料電池100の温度を間接的に検出することができる。
また、燃料電池100から出力される上記電気エネルギーは、燃料電池100の各セル10から出力される電圧を検出するセルモニタ(図示しない)、及び燃料電池100全体として出力される電流を検出する電流センサ(図示しない)によって測定される。
制御部30は、CPUを主体として構成され、ROM、RAMなどを備え、各種の入力信号に基づいて、燃料電池100の動作一般を制御するものである。具体的には、制御部30には、セルモニタ、温度センサ、後述の電圧センサ6からの検出信号、及び電流測定装置1から出力される電流信号が入力される。制御部30は、これらの入力信号に基づいて、上述した空気ポンプ、空気調圧弁、水素ポンプ、水素調圧弁などへ制御信号を出力する。また、制御部30は、電流検出回路(図示しない)を有している。この電流検出回路は、電流測定装置1の後述する各電流測定部からの電流値信号を演算処理し、セル10の局所における各電極部3に対応する部位に流れる電流を測定する。
次に、本実施形態の電流測定装置1及びその製造方法について詳細に説明する。電流測定装置1は、各セル10の局所を流れる電流値を測定するものであり、図1に示すように、複数の積層配置されたセル10のうち一対のセル10間に配置される。
この電流測定装置1は、図3及び図4に示すように、板状部材2と、複数の分割された電極部3と、抵抗体4を有する導通部5と、制御部30(図1参照)と、電圧センサ6などを備えて構成される。本実施形態では、電流測定装置1は、図11に示すように、第1工程〜第6工程により製造される。まず、第1工程(ステップS1、以下ステップを省略)では、図5に示すように、非導電性の板状片からなる複数の第1部材7をセル10の積層方向に対して垂直な方向(図5では左右方向)に間隔をあけて並列に配置する。第1部材7は、例えばプリント基板からなる。
続いて、第2工程S2では、図6に示すように、複数の第1部材7の両面にまたがるように、導電性部材からなる複数の分割された一対の第1導通部5a,5bを配設する。第1導通部5aと第2導通部5bとは、例えば銅箔からなる。この第1導通部5a,5bは、図4に示すように、それぞれ所定の電気抵抗値を有する1つの抵抗体4を備えて構成されている。抵抗体4は、例えば銅箔からなる。他に、抵抗体4として、銅よりも抵抗値が大きいニッケル箔を用いてもよい。この第2工程S2においては、第1導通部5a,5bを配設することによって、複数の第1部材7の間に中空部9が形成される。この中空部9は、空気で満たされた状態となっており、熱伝導率が小さく、すなわち、熱抵抗値が大きくなっており、電流測定装置1の伝熱量を抑制する。これにより、中空部9は、セル10における発電や冷却に伴う温度変化への影響を抑制する機能を果たす。なお、中空部9に絶縁油などを充填してもよい。
次に、第3工程S3では、図7に示すように、第1部材7及び一対の第1導通部5a,5bを貫通する貫通孔(スルーホール)を形成してメッキ処理を施すことにより、第2導通部5cを配設する。この第2導通部5cと前記一対の第1導通部5a,5bとにより断面コ字状に形成されたコ字状部が構成される。また、上記中空部9は、コ字状部5a,5b,5cに囲まれた部分に形成される。
続いて、第4工程S4では、図8に示すように、一対の第1導通部5a,5bの両面に、非導電性の板状片からなる一対の第2部材8a,8bを配設する。第2部材8a,8bは、例えばプリント基板からなる。上記した第1部材7、第2部材8a,8bにより板状部材2が構成されている。
次に、第5工程S5では、図9に示すように、一対の第2部材8a,8bの両面に電極部3を配設する。具体的には、第2部材8aの上面(板状部材2の一方の面)に第1電極部3aを設け、第2部材8bの下面(板状部材2の他方の面)に第2電極部3bを設ける。第1電極部3a及び第2電極部は、金属箔から形成され、例えば銅箔からなる。また、この電極部3a,3bは、上述の一対の第1導通部5a,5bに対応して複数に分割されている。第1電極部3aは、前記隣接する一対のセル10の一方に電気的に接触し、第2電極部3bは、前記一対のセル10の他方に電気的に接触するものである。
これら一対の第1電極部3aと第2電極部3bとから電極部3が構成される。電極部3a,3bは、図3に示すように、セル10の積層方向から見て抵抗体4と当該電極部3a,3bとが重なり合わないように配設される。また、複数の電極部3は、図4に示すように、矩形板状の形状をなしており、板状部材2上に等間隔に配置されている。具体的には、図4の上下方向に4個、左右方向に7個、合計28個の電極部3が等間隔に配置される。
第1電極部3aは、板状部材2に隣接する一対のセル10の一方に電気的に接触し、第2電極部3bは、当該一対のセル10の他方に電気的に接触する。具体的には、第1電極部3aは、カソードセパレータ15に電気的に接触し、第2電極部3bは、アノードセパレータ11に電気的に接触するものとする。なお、第2電極部3bは、板状部材2の一面にわたって配置されていてもよい。
続いて、第6工程S6において、図10に示すように、電極部3a,3bと一対の第2部材8a,8bと一対の第1導通部5a,5bとを接続する接続孔(層間のみを接続するビア)を形成してメッキ処理を施すことで、第1接続部5dと第2接続部5eを形成する。これにより、電極部3a,3bと一対の第1導通部5a,5bとを導通させる。以上により、電流測定装置1の製造が完了する。
なお、上記した第1導通部5a,5b、第2導通部5c、第1接続部5dと、第2接続部5eとから導通部5が構成される。この導通部5は、第1電極部3aと第2電極部3bとを電気的に接続している。
また、この抵抗体4を有する導通部5と上述の電極部3とにより電流測定部が構成される。この電流測定部が、一対のセル10間に複数配置される。すなわち、複数個、この場合28個の電流測定部が板状部材2の面全体に渡って配置されることになる。これによって、電流測定装置1では、各セル10の複数の局所部分における電流値を測定可能であり、電流密度分布を測定することができる。なお、各セル10の面において、1箇所以上の電流を測定することができればよく、板状部材2に少なくとも1個の電流測定部が設けられていればよい。
電圧センサ6は、抵抗体4の2点間(両端部間)の電位差を測定する。本実施形態では、図3に示すように、2つの抵抗体4のうち第1導通部5a側の抵抗体4の電流流れ方向の上流側端部と第1導通部5b側の抵抗体4の電流流れ方向の下流側端部との間の電位差を測定するものとする。そして、制御部30は、この電圧センサ6により測定された抵抗体4の2点間の電位差と、抵抗体4の抵抗値に基づいて電流値を測定する。このように、制御部30は、セル10の局所における電流分布を測定する測定手段としての機能を果たす。なお、抵抗体4としては、第2導通部5cを含めてもよい。
次に、電流測定装置1による電流測定方法について説明する。燃料電池100に水素と空気が供給開始されると、燃料電池100における発電が開始される。電流測定装置1の各電流測定部では、電流流れ方向の上流側のセル10から第1電極部3a、第1接続部5d、第1導通部5a、第2導通部5c、第1導通部5b、第2接続部5e、第2電極部3bの順に電流が流れ、第2電極部3bから電流流れ方向下流側のセル10に電流が流れる。
このとき、電圧センサ6で第1導通部5a側の抵抗体4の電流流れ方向の上流側端部と第1導通部5b側の抵抗体4の電流流れ方向の下流側端部との間の電位差を検出する。制御部30は、電圧センサ6により検出された電位差と抵抗体4の抵抗値を用いて、電流測定部に流れた電流の大きさを算出する。これにより、制御部30は、セル10の面内における電流測定装置1の各電流測定部に対応する部位の電流値を測定するこができ、セル10の面内における電流分布を測定することができる。
以上説明したように、第1の実施形態の電流測定装置1は、酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル10と、前記電気エネルギーを集めるための集電板20とを積層配置して構成された燃料電池100の電流を測定するものである。この電流測定装置1は、板状部材2と、板状部材2の一方の面に設けられた第1電極部3aと板状部材2の他方の面に設けられた第2電極部3bとからなる電極部3と、第1電極部3aと第2電極部3bとを電気的に接続するとともに所定の抵抗値をもつ少なくとも1つの抵抗体4を有する導通部5と、抵抗体4の抵抗値と抵抗体4の2点間の電位差に基づいて電極部3を流れる電流値を測定する測定手段としての制御部30を備える。
この電流測定装置1は、燃料電池100における隣接する一対のセル10間に板状部材2を配置し、第1電極部3aを一対のセル10の一方に電気的に接触させるとともに第2電極部3bを一対のセル10の他方に電気的に接触させることにより、セル10の局所を流れる電流値を測定する。そして、板状部材2は、抵抗体4の近傍に少なくとも1つの中空部9を有することを特徴とする。
この構成によれば、電流測定装置1の板状部材2を、燃料電池100における隣接する一対のセル10間に配置し、第1電極部3aを一対のセル10の一方に接触させるとともに、第2電極部3bを一対のセル10の他方に接触させることで、燃料電池100を構成するセル10の局所を流れる電流を測定することができる。
このとき、燃料電池100の発電に伴って抵抗体4を有する導通部5においてジュール熱が発生するが、本実施形態では、板状部材2内の抵抗体4の近傍に中空部9を設けることによって、板状部材2全体における熱抵抗値を大きくさせているので、抵抗体4の温度上昇に伴うセル10への伝熱によるセル10の温度上昇を抑制することができる。また、電流測定装置1の熱伝導率が小さく、すなわち、熱抵抗値が大きくなっており、伝熱量を抑制することで、電流測定装置1は、セル10における発電や冷却に伴う温度変化への影響を抑制する機能を果たす。また、中空部9は空気で内部が満たされた状態になっているので、樹脂や絶縁部材を充填する場合に比べ、熱容量を小さくすることができ、隣接するセル10の温度変化に与える影響を小さくできる。
従って、電流測定装置1に隣接する一対のセル10の温度上昇を抑制することができ、セル10どうしの温度差を低減させることができる。また、隣接するセル10の温度が上昇し、当該セル10の電流・電圧特性が変化して電流測定装置1による電流値の測定精度が低下することを防ぐことができる。このようにして、電流測定装置1による電流測定精度を向上させることができる。
また、抵抗体4は、中空部9に対して露出していることを特徴とする。この構成によれば、抵抗体4が中空部9に対して露出しているので、抵抗体4で発生した熱の積層方向への伝熱をより抑制し、熱が隣接するセル10へ伝わるのを抑制することができる。
更に、抵抗体4は、電極部3との接続部分(第1接続部5d、第2接続部5e)以外の大部分が、セル10の積層方向から見て電極部3とは重なり合わないように構成されていることを特徴とする(図3参照)。この構成によれば、電極部3に対して抵抗体4をセル10の積層方向から見てずらして配置することで、抵抗体4の電流経路及び伝熱経路を増加させて、抵抗体4によるセル10の温度上昇を低減させることができる。
また、導通部5は、断面コ字状に形成されたコ字状部(一対の第1導通部5a,5b及び第2導通部5c)を有していることを特徴とする。この構成によれば、導通部5をセル10の積層方向に直線状に形成した場合に比べ、導通部5の熱抵抗値を大きくさせることができ、抵抗体4を有する導通部5における熱の発生に伴うセル10の温度上昇を低減させることができる。
また、中空部9は、コ字状部5a,5b,5cに囲まれた部分に形成されていることを特徴とする。この構成によれば、中空部9とコ字状部5a,5b,5cとを一箇所に形成することができ、省スペース化を図りながら、電流測定装置1の熱抵抗値を大きくさせて導通部5における熱の発生に伴う温度上昇を効果的に低減させることができる。
また、抵抗体4は、セル10の積層方向から見て垂直方向に形成され、中空部9は、抵抗体4におけるセル10の積層方向の一方側に形成されていることを特徴とする。この構成によれば、抵抗体4をセル10の積層方向から見て垂直方向に形成することで電流及び伝熱の経路を増加させることができる。更に、抵抗体4におけるセル10の積層方向の一方側に中空部9を形成することで、電流測定装置1の熱抵抗値を増加させることができる。
これにより、抵抗体4でジュール熱が発生した際に、隣接するセル10に徐々に熱が伝わるようにすることができ、隣接するセル10が急激に温度変化することに伴って電流測定精度が低下することを防ぐことができる。
また、中空部9は、非導電性の板状片からなる複数の第1部材7をセル10の積層方向から見て垂直方向に間隔をあけて並列に配置して、第1部材7の両面に導電性の板状片からなる第1導通部5a,5bを配設することにより形成され、板状部材2は、第1導通部5a,5bの面に更に非導電性の板状片からなる第2部材8a,8bを積層配置して構成されることを特徴とする。
この構成によれば、第1部材7をセル10の積層方向から見て垂直方向に間隔をあけて並列に配置し、第1部材7の両面に第1導通部5a,5bを配設することにより中空部9を形成させることができ、空気を流すための流路や溝を配設する必要がなく、簡易な構成で、電流測定装置1の温度上昇を抑制させることができる。
また、本実施形態の電流測定装置の製造方法は、酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル10と前記電気エネルギーを集めるための集電板20とを積層配置して構成された燃料電池100の前記セル10の局所を流れる電流値を測定する電流測定装置1の製造方法であり、第1工程S1と、第2工程S2と、第3工程S3と、第4工程S4と、第5工程S5と、第6工程S6とからなる。
第1工程S1において、非導電性の板状片からなる複数の第1部材7を前記セル10の積層方向に対して垂直な方向に間隔をあけて並列に配置する。第2工程S2において、複数の前記第1部材7の両面にまたがるように所定の電気抵抗値を有する少なくとも1つの抵抗体4を備えて構成される導電性部材からなる複数の分割された一対の第1導通部5a,5bを配設することにより複数の前記第1部材7の間に中空部9を形成する。第3工程S3において、第1部材7及び前記一対の第1導通部5a,5bを貫通する貫通孔を形成してメッキ処理を施すことにより第2導通部5cを配設する。
そして、第4工程S4において、一対の第1導通部5a,5bの両面に、非導電性の板状片からなる一対の第2部材8a,8bを配設する。第5工程S5において、一対の第2部材8a,8bの両面に、前記燃料電池100における隣接する一対の前記セル10間に配置され、前記一対のセル10の一方に電気的に接触する第1電極部3aと、前記一対のセル10の他方に電気的に接触する第2電極部3bとからなり前記一対の第1導通部5a,5bに対応する複数の分割された電極部3を配設する。第6工程S6において、電極部3と一対の第2部材8a,8bと一対の第1導通部5a,5bとを接続する接続孔を形成してメッキ処理を施すことにより、前記電極部3と前記一対の第1導通部5a,5bとを導通させるとからなることを特徴とする。
この製造方法によれば、複数の第1部材7を並列に間隔をあけて配置した後、複数の分割された一対の第1導通部5a,5bを配設することで、中空部9を形成することができる。従って、簡易な方法で、中空部9を設けて電流測定装置1の熱抵抗値を大きくさせ、電流測定装置1によるセル10への温度上昇を抑制することができるとともに、電流測定装置1がセル10の発電・冷却による温度変化に与える影響を抑制できる。これにより、 電流測定装置1に隣接するセル10の温度上昇を低減でき、電流測定精度を向上させた電流測定装置1を製造することができる。
また、第5工程S5において、電極部3は、セル10の積層方向から見て抵抗体4と当該電極部3とが重なり合わない部分を有するように配設されることを特徴とする。この製造方法によれば、電極部3をセル10の積層方向から見て抵抗体4に対してずらして配置することで、抵抗体4の電流経路及び伝熱経路を増加させて、抵抗体4における温度上昇を低減させることを可能としている。
また、第3工程S3において、一対の第1導通部5a,5bと第2導通部5cとが断面コ字状に形成されるように第2導通部5cを配設することを特徴とする。この製造方法によれば、平行に積層配置された一対の第1導通部5a,5bを第2導通部5cにより接続することで容易にコ字状部を形成させて、導通部5の熱抵抗値を大きくできる。従って、容易な方法で抵抗体4を有する導通部5における熱の発生に伴う温度上昇を低減させることを可能としている。
[第2の実施形態]
次に、本発明の第2の実施形態について、図12を参照して説明する。なお、図12には上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。
第2の実施形態においては、電流測定装置1の板状部材2において、一対の第1導通部5a,5b及び第2導通部5cにより構成されたコ字状部に囲まれた部分に、中空部9に加えて板状の放熱部材40が設けられている。この放熱部材40は、上記第2工程S2において、一対の第1導通部5a,5bの間に間隔をあけて平行に2つ配置され、各中空部9に2つの放熱部材40が対向して設けられる。なお、2つの放熱部材40のうち一方に、放熱部材40に代えて各種の信号を送信するための信号部材を設けてもよい。
この構成によれば、中空部9に放熱部材40が設けられていることによって、電流測定装置1の温度上昇を効果的に低減させることができ、電流測定装置1による電流測定精度を更に向上させることができる。
この他、本発明は上記し且つ図面に示した実施形態にのみ限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変形または拡張を施すことができる。例えば、上記実施形態では、複数のセル10を積層配置して構成された燃料電池100において、隣接する一対のセル10間に電流測定装置1を配置する場合について説明したが、1つのセル10と集電板20とを積層配置して構成された燃料電池100に適用してもよく、この場合、セル10と集電板20との間に電流測定装置1を配置する。この場合も、上記実施形態と同様の効果を得ることができる。
また、抵抗体4は、セル10の積層方向から見て電極部3a,3bとは重なり合わないように構成されるものとしたが、これに限られない。すなわち、抵抗体4の一部分がセル10の積層方向から見て電極部3a,3bと重なり合っていてもよく、抵抗体4は、電極部3a,3bとは重なり合わない部分を有して構成されていればよい。
また、上記実施形態では、複数の第1部材7と第1導通部5a,5bとにより、中空部9を形成するものとしたが、これに限らず、板状部材2として、予め内部に中空孔が複数形成されたポーラス状の部材を用いてもよい。
1 電流測定装置
2 板状部材
3 電極部
3a 第1電極部
3b 第2電極部
4 抵抗体
5 導通部
5a,5b 第1導通部(コ字状部)
5c 第2導通部(コ字状部)
5d 第1接続部
5e 第2接続部
6 電圧センサ
7 第1部材
8a,8b 第2部材
9 中空部
10 セル
20 集電板
30 制御部(測定手段)
40 放熱部材
100 燃料電池

Claims (11)

  1. 酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル(10)と前記電気エネルギーを集めるための集電板(20)とを積層配置して構成された燃料電池(100)の電流を測定する電流測定装置(1)であって、
    板状部材(2)と、
    前記板状部材の一方の面に設けられた第1電極部(3a)と前記板状部材の他方の面に設けられた第2電極部(3b)とからなる電極部(3)と、
    前記第1電極部と前記第2電極部とを電気的に接続するとともに所定の抵抗値をもつ少なくとも1つの抵抗体(4)を有する導通部(5)と、
    前記抵抗体の前記抵抗値と前記抵抗体の2点間の電位差に基づいて前記電極部を流れる電流値を測定する測定手段(30)と、を備え、
    前記燃料電池における隣接する一対の前記セル間または前記セルと前記集電板との間に前記板状部材を配置し、前記第1電極部を前記一対のセルの一方または前記セルに電気的に接触させるとともに前記第2電極部を前記一対のセルの他方または前記集電板に電気的に接触させることにより、前記セルの局所を流れる電流値を測定する電流測定装置において、
    前記抵抗体は、前記セルの積層方向から見て前記電極部とは重なり合わない部分を有して構成され、
    前記板状部材は、前記抵抗体の近傍に少なくとも1つの中空部(9)を有することを特徴とする電流測定装置。
  2. 前記抵抗体は、前記中空部に対して露出していることを特徴とする請求項1に記載の電流測定装置。
  3. 前記抵抗体は、前記電極部との接続部分(5d,5e)以外の大部分が、前記セルの積層方向から見て前記電極部とは重なり合わないように構成されていることを特徴とする請求項1または2に記載の電流測定装置。
  4. 前記導通部は、断面コ字状に形成されたコ字状部(5a,5b,5c)を有していることを特徴とする請求項1から3のいずれか一項に記載の電流測定装置。
  5. 前記中空部は、前記コ字状部に囲まれた部分に形成されていることを特徴とする請求項4に記載の電流測定装置。
  6. 前記抵抗体は、前記セルの積層方向から見て垂直方向に形成され、
    前記中空部は、前記抵抗体における前記セルの積層方向の少なくとも一方側に形成されていることを特徴とする請求項1から5のいずれか一項に記載の電流測定装置。
  7. 前記中空部は、非導電性の板状片からなる複数の第1部材(7)を前記セルの積層方向から見て垂直方向に間隔をあけて並列に配置して、前記第1部材の少なくとも一方の面に導電性の板状片からなる第1導通部(5a,5b)を積層配置することにより形成され、 前記板状部材は、前記第1導通部が積層配置された前記第1部材に更に非導電性の板状片からなる第2部材(8a,8b)を積層配置して構成されることを特徴とする請求項1から6のいずれか一項に記載の電流測定装置。
  8. 前記中空部には、放熱部材(40)が設けられていることを特徴とする請求項1から7のいずれか一項に記載の電流測定装置。
  9. 酸化剤ガスと燃料ガスとを電気化学反応させて電気エネルギーを出力する少なくとも1つのセル(10)と前記電気エネルギーを集めるための集電板(20)とを積層配置して構成された燃料電池(100)の前記セルの局所を流れる電流値を測定する電流測定装置(1)の製造方法であって、
    非導電性の板状片からなる複数の第1部材(7)を前記セルの積層方向に対して垂直な方向に間隔をあけて並列に配置する第1工程(S1)と、
    前記複数の第1部材の両面にまたがるように所定の電気抵抗値を有する少なくとも1つの抵抗体(4)を備えて構成される導電性部材からなる複数の分割された一対の第1導通部(5a,5b)を配設することにより複数の前記第1部材の間に中空部(9)を形成する第2工程(S2)と、
    前記第1部材及び前記一対の第1導通部を貫通する貫通孔を形成してメッキ処理を施すことにより第2導通部(5c)を配設する第3工程(S3)と、
    前記一対の第1導通部の両面に、非導電性の板状片からなる一対の第2部材(8a,8b)を配設する第4工程(S4)と、
    前記一対の第2部材の両面に、前記燃料電池における隣接する一対の前記セル間または前記セルと前記集電板との間に配置され、前記一対のセルの一方または前記セルに電気的に接触する第1電極部(3a)と、前記一対のセルの他方または前記集電板に電気的に接触する第2電極部(3b)とからなり前記一対の第1導通部に対応する電極部(3)を配設する第5工程(S5)と、
    前記電極部と前記一対の第2部材と前記一対の第1導通部とを接続する接続孔を形成してメッキ処理を施すことにより、前記電極部と一対の前記第1導通部とを導通させる第6工程(S6)と、
    からなることを特徴とする電流測定装置の製造方法。
  10. 前記第5工程において、前記電極部は、前記セルの積層方向から見て前記抵抗体と当該電極部とが重なり合わない部分を有するように配設されることを特徴とする請求項9に記載の電流測定装置の製造方法。
  11. 前記第3工程において、前記一対の第1導通部と前記第2導通部とが断面コ字状に形成されるように前記第2導通部を配設することを特徴とする請求項9または10に記載の電流測定装置の製造方法。
JP2013172203A 2013-08-22 2013-08-22 電流測定装置及びその製造方法 Active JP6070478B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172203A JP6070478B2 (ja) 2013-08-22 2013-08-22 電流測定装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172203A JP6070478B2 (ja) 2013-08-22 2013-08-22 電流測定装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015041521A JP2015041521A (ja) 2015-03-02
JP6070478B2 true JP6070478B2 (ja) 2017-02-01

Family

ID=52695564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172203A Active JP6070478B2 (ja) 2013-08-22 2013-08-22 電流測定装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP6070478B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828053B2 (en) * 2002-07-26 2004-12-07 General Motors Corporation In-situ resistive current and temperature distribution circuit for a fuel cell
US8288046B2 (en) * 2004-09-29 2012-10-16 GM Global Technology Operations LLC Integrated current sensors for a fuel cell stack
EP1691438A1 (en) * 2005-02-15 2006-08-16 Paul Scherer Institut Fast locally resolved electrochemical impedance spectroscopy in polymer electrolyte fuel cells
JP2009014387A (ja) * 2007-07-02 2009-01-22 Nippon Soken Inc 電流検出装置、および、燃料電池
JP2009081117A (ja) * 2007-09-27 2009-04-16 Nissan Motor Co Ltd 電流密度分布センサ及びその製造方法並びに燃料電池システム
JP5146225B2 (ja) * 2008-09-25 2013-02-20 株式会社デンソー 電流測定装置
JP5396823B2 (ja) * 2008-09-26 2014-01-22 株式会社デンソー 電流測定装置
JP5488162B2 (ja) * 2010-04-23 2014-05-14 株式会社デンソー 電流分布測定装置、その異常時対応方法、および燃料電池システム
JP5474839B2 (ja) * 2011-01-12 2014-04-16 本田技研工業株式会社 燃料電池の電流密度分布計測装置

Also Published As

Publication number Publication date
JP2015041521A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
JP5146225B2 (ja) 電流測定装置
KR101016572B1 (ko) 연료전지 스택에 대한 일체화된 집전장치 및 전기적구성요소 플레이트
JP4887708B2 (ja) 燃料電池システム
JP2009252706A (ja) 燃料電池のインピーダンス測定装置
JP2010103071A (ja) 電流測定装置
US9373854B2 (en) Solid polymer fuel cell
JP5891379B2 (ja) 燃料電池及びそれを備える燃料電池スタック
JP5474839B2 (ja) 燃料電池の電流密度分布計測装置
JP6167800B2 (ja) 電流測定装置
JP2012113884A (ja) 電流測定装置
US9190691B2 (en) Fuel cell stack
JP4447272B2 (ja) 燃料電池の評価装置
JP5987639B2 (ja) 電流計測装置
JP5206258B2 (ja) 電流測定装置
JP5309902B2 (ja) 燃料電池
JP6070478B2 (ja) 電流測定装置及びその製造方法
JP6120078B2 (ja) 電流測定装置
JP5708219B2 (ja) 電流測定装置
JP6421717B2 (ja) 電流測定装置
JP5555976B2 (ja) 電流測定装置
JP6459873B2 (ja) 電流測定装置
JP5245232B2 (ja) 固体高分子型燃料電池
JP5488163B2 (ja) 電流測定装置
JP6565784B2 (ja) 燃料電池
JP2009016157A (ja) 電流測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250