JP6027889B2 - ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム - Google Patents

ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム Download PDF

Info

Publication number
JP6027889B2
JP6027889B2 JP2012288946A JP2012288946A JP6027889B2 JP 6027889 B2 JP6027889 B2 JP 6027889B2 JP 2012288946 A JP2012288946 A JP 2012288946A JP 2012288946 A JP2012288946 A JP 2012288946A JP 6027889 B2 JP6027889 B2 JP 6027889B2
Authority
JP
Japan
Prior art keywords
pulse width
duty
drive duty
pwm drive
determination rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012288946A
Other languages
English (en)
Other versions
JP2014131453A (ja
Inventor
渡邉 健一
健一 渡邉
小林 直樹
小林  直樹
一広 藤原
一広 藤原
崇 土肥
崇 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2012288946A priority Critical patent/JP6027889B2/ja
Priority to CN201380065912.0A priority patent/CN104854787B/zh
Priority to PCT/JP2013/083059 priority patent/WO2014103699A1/ja
Priority to US14/758,337 priority patent/US9590543B2/en
Priority to RU2015128630A priority patent/RU2617685C2/ru
Priority to EP13867804.0A priority patent/EP2940856B1/en
Publication of JP2014131453A publication Critical patent/JP2014131453A/ja
Application granted granted Critical
Publication of JP6027889B2 publication Critical patent/JP6027889B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明はブラシレスDCモータのセンサレス駆動装置および制御方法、並びにプログラムに関する。
ブラシレスDC(Direct Current)モータをセンサレスで駆動するセンサレス制御では、逆起電力の中性点とのゼロクロス信号を検出することで回転同期制御が行われている(例えば、特許文献1参照)。
センサレス制御での起動時において、一定回転で相切り替えが行われ、ゼロクロス信号が検出され、ブラシレスDCモータを追従させてブラシレスDCモータは起動させられる。
オイルポンプ用モータでは油温が低いとき、油の粘度が高いので、キャビテーションなどの要因もあり回転数が制限されてしまう。回転数が低いと逆起電力が小さいのでゼロクロス信号の検出がしにくい。
油温によって、低温では一定回転で回転制御し、高温になった、もしくは一定時間経過後、同期させる発明が提案されている(例えば、特許文献2参照)。
特開2003−111482号公報 特開2005−214216号公報
しかしながら、一定回転でモータを回した(相切り替えを行った)場合、油の粘度による制動トルクより、駆動電流による駆動トルクの方が大きいと、相切り替えの初期にモータが回転しきった後、次の相切り替えまで停止してしまうので、回転変動による騒音が発生する事になる。
また、一定回転でモータを回した場合、油の粘度による制動トルクより、駆動電流による駆動トルクの方が小さいと、相切り替えより遅れて滑りながらモータが回るので、回転変動による騒音が発生する事になる。
一定回転でモータを回した場合、油の粘度による制動トルクと、駆動電流による駆動トルクが同じであれば、あたかも同期している様に回転するので、回転変動による騒音は発生しないが、回転数が低いので同期判定がしにくい。
そこで、本発明は、上記課題を解決すること、すなわち、回転変動による振動を抑制することで騒音を小さくし、モータを回す電流を同期している時の状態に近づけて、回転を維持するのに必要な電流しか消費しないようにすることのできる駆動装置および制御方法、並びにプログラムを提供することを目的とする。
上記課題を解決するために、本発明の駆動装置の一側面は、センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによってセンサレスブラシレスDCモータを駆動する駆動手段と、ロータの相の切り替わりを示すゼロクロス信号を検出する検出手段と、検出されたゼロクロス信号の数の割合を示す同期判定率を算出する算出手段と、算出された同期判定率が目標とする範囲に入るように駆動手段におけるPWM(Pulse Width Modulation)駆動Dutyのパルス幅を制御するPWM駆動Duty制御手段とを有するものとされている。
また、本発明の駆動装置の一側面は、上述の構成に加えて、PWM駆動Duty制御手段が、第1の閾値と同期判定率との比較または第1の閾値より小さい第2の閾値と同期判定率との比較の結果により、PWM駆動Dutyのパルス幅を狭くするか、PWM駆動Dutyのパルス幅を広くするか、またはPWM駆動Dutyのパルス幅を維持するものとされている。
さらに、本発明の駆動装置の一側面は、上述の構成に加えて、PWM駆動Duty制御手段が、前回のPWM駆動Dutyのパルス幅の制御において同期判定率が第1の閾値より小さいかまたは第2の閾値以下である場合、今回のPWM駆動Dutyのパルス幅の制御において同期判定率が第1の閾値より小さいとき、PWM駆動Dutyのパルス幅を狭くし、今回のPWM駆動Dutyのパルス幅の制御において同期判定率が第1の閾値以上であるとき、PWM駆動Dutyのパルス幅を維持し、前回のPWM駆動Dutyのパルス幅の制御において同期判定率が第1の閾値以上であるかまたは第2の閾値より大きい場合、今回のPWM駆動Dutyのパルス幅の制御において同期判定率が第2の閾値より大きいとき、PWM駆動Dutyのパルス幅を広くし、今回のPWM駆動Dutyのパルス幅の制御において同期判定率が第2の閾値以下であるとき、PWM駆動Dutyのパルス幅を維持するものとされている。
さらにまた、本発明の駆動装置の一側面は、上述の構成に加えて、PWM駆動Duty制御手段が、予め定められた開始幅であるPWM駆動Dutyのパルス幅からPWM駆動Dutyのパルス幅の制御を開始するものとされている。
本発明の駆動装置の一側面は、上述の構成に加えて、前記PWM駆動Dutyのパルス幅制御手段が、油温に応じて定められた開始幅である前記PWM駆動Dutyのパルス幅から前記PWM駆動Dutyのパルス幅の制御を開始するものとされている。
また、本発明の制御方法の一側面は、センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによって駆動されるセンサレスブラシレスDCモータの制御方法であって、センサレスブラシレスDCモータのロータの相の切り替わりを示すゼロクロス信号を検出する検出ステップと、検出されたゼロクロス信号の数の割合を示す同期判定率を算出する算出ステップと、算出された同期判定率が目標とする範囲に入るようにPWM駆動Dutyのパルス幅を制御するPWM駆動Dutyパルス幅制御ステップとを含むものとされている。
さらに、本発明のプログラムの一側面は、センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによって駆動されるセンサレスブラシレスDCモータを制御するコンピュータに、センサレスブラシレスDCモータのロータの相の切り替わりを示すゼロクロス信号の数の割合を示す同期判定率を算出する算出ステップと、算出された同期判定率が目標とする範囲に入るようにPWM駆動Dutyのパルス幅を制御するPWM駆動Dutyパルス幅制御ステップとを含む処理を行わせるものとされている。
本発明の一側面によれば、回転変動による振動を抑制することで騒音を小さくし、モータを回す電流を同期している時の状態に近づけて、回転を維持するのに必要な電流しか消費しないようにすることのできる駆動装置および制御方法、並びにプログラムを提供することができる。
冷却システムの構成の例を示すブロック図である。 ブラシレスDCモータの駆動方法およびモータの逆起電力を説明する図である。 マイクロコンピュータ21が制御プログラムを実行することにより実現される機能の構成を示すブロック図である。 同期判定率と駆動Dutyとの関係の例を示す図である。 摂氏−30度の油温における同期判定率特性と油の流量との関係の例を示す図である。 同期判定率に対する駆動Dutyの制御の概念を示す図である。 同期判定率に対する駆動Dutyの制御のステップ値の例を示す図である。 パラメータとその値の例とを示す図である。 ステップ最適値制御処理を説明するフローチャートである。 前回Duty+モードの処理を説明するフローチャートである。 前回Duty-モードの処理を説明するフローチャートである。 Duty最小/最大変化中モードの処理を説明するフローチャートである。
以下、本発明の一実施の形態の冷却システムについて、図1〜図12を参照しながら説明する。
図1は、冷却システムの構成の例を示すブロック図である。冷却システム1は、冷却用の油を循環させることにより、電動モータや発電機などの被冷却機器を冷却する。冷却システム1は、電動オイルポンプコントローラ11、モータ12、ポンプ13、オイルパン14、オイルクーラー15、被冷却機器16、油温センサ17、および上位コントローラ18からなる。
電動オイルポンプコントローラ11は、上位コントローラ18からの指令に応じて、モータ12を駆動し、制御する。モータ12は、センサレスブラシレスDCモータであり、ポンプ13を駆動する。ポンプ13は、例えば回転式容積変化ポンプであり、オイルパン14の油だまりに溜められている冷却用の油を吸い上げ、オイルクーラー15を介して被冷却機器16に冷却用の油を圧送する。オイルクーラー15は、通過する油の熱を放散する。被冷却機器16は、電動モータや発電機などであり、ポンプ13から圧送されてきた油により冷却される。被冷却機器16を冷却した油は、オイルパン14に戻される。
油温センサ17は、オイルパン14に設けられ、オイルパン14の油だまりに溜められている冷却用の油の温度(以下、油温と称する。)を検出して、検出した温度を示す油温信号を上位コントローラ18に供給する。
電動オイルポンプコントローラ11は、マイクロコンピュータ21、駆動回路22、検出回路23、および通信回路24からなる。マイクロコンピュータ21は、汎用のマイクロコンピュータまたはモータ制御専用のマイクロコンピュータなどからなり、制御プログラムを実行し、各種の処理を行う。マイクロコンピュータ21は、検出回路23からの信号または通信回路24で受信した上位コントローラ18からの指令などに応じて、駆動回路22を制御する。
駆動回路22は、駆動手段の一例であり、マイクロコンピュータ21の制御の基に、センサレスブラシレスDCモータであるモータ12のロータの回転位置を決めるための通電パターンを一定周期で切り替えることによってモータ12を駆動する。
マイクロコンピュータ21は、図2の通電パターンに従い、駆動回路22のU、V、W及び、u、v、wの通電パターンを順次切り替えることでモータの回転数を制御する。
更に、マイクロコンピュータ21の制御の基に、駆動回路22のu、v、wのPWM駆動Dutyのパルス幅を制御することで、モータの駆動電流を制御して、モータの駆動トルクを制御する。
検出回路23は、検出手段の一例であり、フィルタや比較回路、論理回路、A/D変換器などからなり、図2にしめすモータ12の逆起電力を検出し、モータ12の状態を示す信号を生成してマイクロコンピュータ21に供給する。検出回路23は、センサレスブラシレスDCモータであるモータ12のロータの相の切り替わりを示すゼロクロス信号を検出する。通信回路24は、上位コントローラ18と通信し、上位コントローラ18からの指令を取得したり、電動オイルポンプコントローラ11またはモータ12の状態を示す信号を上位コントローラ18に供給したりする。
上位コントローラ18は、マイクロコンピュータ31および通信回路32からなる。マイクロコンピュータ31は、汎用のマイクロコンピュータからなり、上位制御プログラムを実行し、油温センサ17から油温信号を取得して、電動オイルポンプコントローラ11に指示するなど各種の処理を行う。通信回路32は、電動オイルポンプコントローラ11と通信し、電動オイルポンプコントローラ11に指令を送信したり、電動オイルポンプコントローラ11またはモータ12の状態を示す信号を電動オイルポンプコントローラ11から取得したりする。
上位コントローラ18は、被冷却機器16の状態や、油温センサ17からの油温信号に基づいて、ポンプ13を回すモータ12を停止させるか、同期動作させるか、当該制御(ステップ最適値制御)で動作させるか判断して、通信回路32を経由して、電動オイルポンプコントローラ11に指示する。更に、場合によっては油温信号を通信回路32を経由して電動オイルポンプコントローラ11に供給する。
図3は、マイクロコンピュータ21が制御プログラムを実行することにより実現される機能の構成を示すブロック図である。マイクロコンピュータ21が制御プログラムを実行すると、モータDuty設定制御処理部51が実現される。
同期動作の場合、モータDuty設定制御処理部51は、検出回路23からのゼロクロス信号を基に、モータ12を駆動する通電パターンをゼロクロス信号に同期させて切り替え、通信で上位コントローラ18から指示されたPWM駆動Dutyのパルス幅を設定し、そのPWM駆動Dutyのパルス幅を駆動回路22に指示することにより、モータ12の駆動を制御する。
当該制御(ステップ最適値制御)で動作の場合、モータDuty設定制御処理部51は、通電パターンを一定周期で切り替え、検出回路23からのゼロクロス信号を基に、モータ12を駆動するPWM駆動Dutyのパルス幅を設定し、そのPWM駆動Dutyのパルス幅を駆動回路22に指示することにより、モータ12の駆動を制御する。
以下は当該制御での動作の場合の説明となる。
モータDuty設定制御処理部51は、同期判定率計算部71、モード設定処理部72、判定部73、およびDuty増減処理部74を含む。同期判定率計算部71は、算出手段の一例であり、検出回路23において検出されたゼロクロス信号の数の割合を示す同期判定率を算出する。例えば、同期判定率計算部71は、センサレスブラシレスDCモータであるモータ12から理論的に電気角60度毎に1つのゼロクロス信号が出力される場合、最大90のゼロクロス信号が取得できるサンプリングにおいて取得した検出回路23からのゼロクロス信号の数をサンプルの最大数(この場合、90)で割り算して百分率としたものを同期判定率として算出する。
モード設定処理部72は、モータDuty設定制御処理部51における制御の状態に応じて、前回Duty+モード、前回Duty-モード、またはDuty最小/最大変化中モードのいずれかに、モータDuty設定制御処理部51のモードを設定する。判定部73は、判定値H、判定値L、または判定値LLと同期判定率とを比較して、同期判定率が目標とする範囲に入っているか否かを判定する。判定値H、判定値L、および判定値LLは、予め設定されている。判定値Hの値は、判定値Lの値より大きく、判定値Lの値は、判定値LLの値より大きい。Duty増減処理部74は、PWM駆動Dutyパルス幅制御手段の一例であり、算出された同期判定率が目標とする範囲に入るように駆動回路22におけるPWM駆動Dutyのパルス幅を制御する。例えば、Duty増減処理部74は、モータDuty設定制御処理部51のモードおよび判定部73の判定の結果により、PWM駆動Dutyのパルス幅を増減させる。
ここで、油温が低い場合の同期判定率とPWM駆動Dutyのパルス幅(以下、駆動Dutyとも称する。)との関係を説明する。図4は、同期判定率と駆動Dutyとの関係(以下、同期判定率特性と称する。)の例を示す図である。図4において、縦軸は、同期判定率を示し、横軸は、駆動Dutyを示す。図4において、太線、実線、点線、一点鎖線、および二点鎖線は、それぞれ、油温が摂氏−35度、摂氏−30度、摂氏−25度、摂氏−20度、摂氏−15度である場合の同期判定率特性を示す。
いずれの油温においても、同期判定率特性は、逆V字状になる。すなわち、同期判定率の所定の最大値に対して、駆動Dutyが大きくなると、同期判定率の値は、小さくなり、また、駆動Dutyが小さくなると、同期判定率の値は、小さくなる。また、同期判定率特性の頂点は、油温が低くなると、駆動Dutyが大きい側になる。
なお油温が高くなれば、駆動Dutyが小さくても駆動できるので、ピークの駆動Dutyも小さくなる(図中、左側にずれる)。また油温が高くなり油の粘度が低くなると、回転がばらつくため、ピークの同期判定率が低くなる。
図5は、摂氏−30度の油温における同期判定率特性と油の流量との関係の例を示す図である。図5において、四角のマーカーは、同期判定率特性を示し、丸のマーカーは、油の流量を示す。図5に示されるように、駆動Dutyが大きくなるにつれて、油の流量が増加し、油の流量は、約0.24L/minで頭打ちになる。油の流量と同期判定率特性との関係を見ると、逆V字状の同期判定率特性の右側の勾配、すなわち、20%程度の駆動Dutyにおいて、油の流量が最高になり頭打ちになる。この同期判定率特性の右側の勾配の範囲において、モータ12は、油の圧送に必要十分な(過不足ない)駆動トルクを発生させている。すなわち、この範囲において、モータ12の駆動トルクが不足せず、また、余らない。従って、回転変動による振動が抑制されて、騒音が小さくなり、モータ12を回す電流が同期している時の状態に近づき、回転を維持するのに必要な電流しか消費されない。ここから、更に、駆動Dutyを大きくしても油の流量は増加せず、無駄な電流を消費することになり、騒音が大きくなる。
そこで、電動オイルポンプコントローラ11は、油温が低い場合、逆V字状の同期判定率特性の右側の勾配に同期判定率が維持されるように、駆動Dutyを制御する。図6は、電動オイルポンプコントローラ11における、同期判定率に対する駆動Dutyの制御の概念を示す図である。図6において、イメージ1およびイメージ2は、所定の油温における逆V字状の同期判定率特性を示し、油温がより低くなると、同期判定率特性は、イメージ2からイメージ1への方向に移動する。電動オイルポンプコントローラ11は、原則として、同期判定率が判定値Hより小さい場合、駆動Dutyを1だけ小さくし、同期判定率が判定値Lより大きい場合、駆動Dutyを1だけ大きくする。このようにすることで、同期判定率が目標とする範囲に入るようにPWM駆動Dutyのパルス幅が制御される。
また、電動オイルポンプコントローラ11は、できるだけ早く制御域に移動させるため、原則として、同期判定率が判定値LLより小さい場合、駆動Dutyを2だけ小さくする。
なお、PWM駆動Dutyのパルス幅が、256分の1を単位として制御される場合、駆動Dutyを1だけ大きくするとは、PWM駆動Dutyのパルス幅の最大値に対して0.39%だけPWM駆動Dutyのパルス幅を広くすることをいい、駆動Dutyを1だけ小さくするとは、PWM駆動Dutyのパルス幅の最大値に対して0.39%だけPWM駆動Dutyのパルス幅を狭くすることをいい、駆動Dutyを2だけ小さくするとは、PWM駆動Dutyのパルス幅の最大値に対して0.78%だけPWM駆動Dutyのパルス幅を狭くすることをいう。
なお、20%である制御開始DutyからPWM駆動Dutyのパルス幅の制御が開始される。すなわち、予め定められた開始幅であるPWM駆動Dutyのパルス幅からPWM駆動Dutyのパルス幅の制御が開始される。
更に、上位コントローラから通信回路を経由して油温情報が供給された場合、油温に応じて制御開始Dutyを設定し、例えば油温が摂氏−30度の場合、制御開始Dutyを20%とし、油温が摂氏−15度の場合、制御開始Dutyを10%として設定されたPWM駆動Dutyのパルス幅の制御が開始される。すなわち、油温に応じて定められた開始幅であるPWM駆動Dutyのパルス幅からPWM駆動Dutyのパルス幅の制御が開始される。
図7は、電動オイルポンプコントローラ11における、同期判定率に対する駆動Dutyの制御のステップ値の例を示す図である。上述のように、モード設定処理部72は、モータDuty設定制御処理部51における制御の状態に応じて、前回Duty+モード、前回Duty-モード、またはDuty最小/最大変化中モードのいずれかに、モータDuty設定制御処理部51のモードを設定する。
モータDuty設定制御処理部51の現在のモードが前回Duty-モードである場合、同期判定率が判定値Hより小さいとき、駆動Dutyは、1だけ小さくされ、モータDuty設定制御処理部51の次回モードは、前回Duty-モードとされる。モータDuty設定制御処理部51の現在のモードが前回Duty-モードである場合、同期判定率が判定値LLより小さいとき、駆動Dutyは、2だけ小さくされ、モータDuty設定制御処理部51の次回モードは、前回Duty-モードとされる。モータDuty設定制御処理部51の現在のモードが前回Duty-モードである場合、同期判定率が判定値H以上であるとき、駆動Dutyは、維持され、モータDuty設定制御処理部51の次回モードは、前回Duty+モードとされる。ここで、駆動Dutyが維持されるとは、駆動Dutyの値が維持され、変更されないことを意味する。
モータDuty設定制御処理部51の現在のモードが前回Duty+モードである場合、同期判定率が判定値Lより大きいとき、駆動Dutyは、1だけ大きくされ、モータDuty設定制御処理部51の次回モードは、前回Duty+モードとされる。モータDuty設定制御処理部51の現在のモードが前回Duty+モードである場合、同期判定率が判定値L以下であるとき、駆動Dutyは、維持され、モータDuty設定制御処理部51の次回モードは、前回Duty-モードとされる。
図8は、電動オイルポンプコントローラ11における、パラメータとその値の例とを示す図である。例えば、電動オイルポンプコントローラ11において、20%である判定値H、10%である判定値L、5%である判定値LL、20%である制御開始Duty、5.9%である制御Duty最小値、35%である制御Duty最大値、90である同期判定率サンプル数、および10である同期判定率休止数が用いられる。
この場合、以下で説明するステップ最適値制御処理は、規定のサンプリング回数である、最大90のゼロクロス信号が取得できるサンプリングが終了した時点で、実行され、その後、最大10のゼロクロス信号が取得できるサンプリングの期間だけサンプリングが休止される。すなわち、同期判定率サンプル数に応じた期間だけゼロクロス信号が取得され、同期判定率休止数に応じた期間だけサンプリングが休止され、これが繰り返される。
また、駆動Dutyが、5.9%である制御Duty最小値に達した場合、同期判定率特性の左側の勾配の低い位置から始まったものと判断し、駆動Dutyは、35%である制御Duty最大値とされる。
次に、ステップ最適値制御処理について説明する。
図9は、ステップ最適値制御処理を説明するフローチャートである。ステップS11において、モータDuty設定制御処理部51のモード設定処理部72は、休止モードであるか否かを判定する。なお、20%である制御開始DutyからPWM駆動Dutyのパルス幅の制御が開始される。ステップS11において、休止モードでないと判定された場合、ステップS12において、モード設定処理部72は、同期判定率が未受信であるか否かを判定する。ステップS12において、同期判定率が未受信であると判定された場合、ステップS13において、モード設定処理部72は、同期判定率計算部71から同期判定率を受信する。
ステップS14において、モード設定処理部72は、同期判定率計算部71へ受信済みであることを通知する。
ステップS15において、モード設定処理部72は、モータDuty設定制御処理部51の現在のモードが前回Duty+モードであるか否かを判定する。ステップS15において、モータDuty設定制御処理部51の現在のモードが前回Duty+モードであると判定された場合、手続はステップS16に進み、前回Duty+モードの処理が実行される。
前回Duty+モードの処理の後、モータDuty設定制御処理部51は、PWM駆動Dutyのパルス幅を駆動回路22に指示して、ステップ最適値制御処理は終了する。
ステップS15において、モータDuty設定制御処理部51の現在のモードが前回Duty+モードでないと判定された場合、手続はステップS17に進み、モード設定処理部72は、モータDuty設定制御処理部51の現在のモードが前回Duty-モードであるか否かを判定する。ステップS17において、モータDuty設定制御処理部51の現在のモードが前回Duty-モードであると判定された場合、手続はステップS18に進み、前回Duty-モードの処理が実行され、その後、モータDuty設定制御処理部51は、PWM駆動Dutyのパルス幅を駆動回路22に指示して、ステップ最適値制御処理は終了する。
ステップS17において、モータDuty設定制御処理部51の現在のモードが前回Duty-モードでないと判定された場合、手続はステップS19に進み、モード設定処理部72は、モータDuty設定制御処理部51の現在のモードがDuty最小/最大変化中モードであるか否かを判定する。ステップS19において、モータDuty設定制御処理部51の現在のモードがDuty最小/最大変化中モードであると判定された場合、手続はステップS20に進み、Duty最小/最大変化中モードの処理が実行され、その後、ステップ最適値制御処理は終了する。
ステップS19において、モータDuty設定制御処理部51の現在のモードがDuty最小/最大変化中モードでないと判定された場合、ステップ最適値制御処理は終了する。ステップS11において、休止モードであると判定された場合、ステップ最適値制御処理は終了する。
図10は、前回Duty+モードの処理を説明するフローチャートである。ステップS41において、判定部73は、10%である判定値Lと同期判定率とを比較して、同期判定率が判定値Lより大きいか否かを判定する。ステップS41において、同期判定率が判定値Lより大きいと判定された場合、手続は、ステップS42に進み、Duty増減処理部74は、駆動Dutyを1だけ大きくする。すなわち、この場合、Duty増減処理部74は、現在のPWM駆動Dutyのパルス幅に対して0.39%だけPWM駆動Dutyのパルス幅を広くする。
ステップS43において、判定部73は、駆動Dutyと35%である制御Duty最大値とを比較し、駆動Dutyが制御Duty最大値以上であるか否かを判定する。ステップS43において、駆動Dutyが制御Duty最大値以上であると判定された場合、手続はステップS44に進み、Duty増減処理部74は、駆動Dutyを制御Duty最大値に設定し、前回Duty+モードの処理は終了する。
ステップS43において、駆動Dutyが制御Duty最大値以上でないと判定された場合、そのまま、前回Duty+モードの処理は終了する。
ステップS41において、同期判定率が判定値Lより大きくないと判定された場合、手続は、ステップS45に進み、モード設定処理部72は、モータDuty設定制御処理部51のモードを前回Duty-モードに設定して、前回Duty+モードの処理は終了する。
図11は、前回Duty-モードの処理を説明するフローチャートである。ステップS61において、判定部73は、20%である判定値Hと同期判定率とを比較して、同期判定率が判定値Hより小さいか否かを判定する。ステップS61において、同期判定率が判定値Hより小さいと判定された場合、手続はステップS62に進み、判定部73は、5%である判定値LLと同期判定率とを比較して、同期判定率が判定値LL以下であるか否かを判定する。
ステップS62において、同期判定率が判定値LL以下であると判定された場合、手続はステップS63に進み、Duty増減処理部74は、駆動Dutyを2だけ小さくする。すなわち、この場合、Duty増減処理部74は、現在のPWM駆動Dutyのパルス幅に対して0.78%だけPWM駆動Dutyのパルス幅を狭くする。
ステップS64において、判定部73は、5.9%である制御Duty最小値と駆動Dutyとを比較して、駆動Dutyが制御Duty最小値以下であるか否かを判定する。ステップS64において、駆動Dutyが制御Duty最小値以下であると判定された場合、手続はステップS65に進む。
ステップS65において、Duty増減処理部74は、駆動Dutyを制御Duty最大値に設定する。ステップS66において、モード設定処理部72は、モータDuty設定制御処理部51のモードをDuty最小/最大変化中モードに設定して、前回Duty-モードの処理は終了する。
ステップS64において、同期判定率が制御Duty最小値以下でないと判定された場合、前回Duty-モードの処理は終了する。
ステップS62において、同期判定率が判定値LL以下でないと判定された場合、手続はステップS67に進み、Duty増減処理部74は、駆動Dutyを1だけ小さくする。すなわち、この場合、Duty増減処理部74は、パルスの幅の最大値に対して0.39%だけPWM駆動Dutyのパルス幅を狭くする。その後、手続はステップS64に進む。
ステップS61において、同期判定率が判定値Hより小さくないと判定された場合、手続はステップS68に進み、モード設定処理部72は、モータDuty設定制御処理部51のモードを前回Duty+モードに設定して、前回Duty-モードの処理は終了する。
図12は、Duty最小/最大変化中モードの処理を説明するフローチャートである。ステップS91において、判定部73は、駆動Dutyが35%である制御Duty最大値以上であるか否かを判定する。ステップS91において、駆動Dutyが35%である制御Duty最大値以上であると判定された場合、手続はステップS92に進み、モード設定処理部72は、モータDuty設定制御処理部51のモードを前回Duty-モードに設定して、Duty最小/最大変化中モードの処理は終了する。
ステップS91において、駆動Dutyが35%である制御Duty最大値以上でないと判定された場合、そのままDuty最小/最大変化中モードの処理は終了する。
このように、駆動回路22が、センサレスブラシレスDCモータであるモータ12のロータの回転位置を決めるための通電相を切り替えるパターンによってモータ12を駆動し、検出回路23が、ロータの相の切り替わりを示すゼロクロス信号を検出し、同期判定率計算部71が、検出されたゼロクロス信号の数の割合を示す同期判定率を算出し、Duty増減処理部74が、算出された同期判定率が目標とする範囲に入るように駆動回路22におけるPWM駆動Dutyのパルス幅を制御するので、モータ12の駆動トルクの過不足がなくなり、回転変動による振動を抑制することで騒音を小さくし、モータ12を回す電流を同期している時の状態に近づけて、回転を維持するのに必要な電流しか消費しないようにすることができる。
具体的には、例えば油温が摂氏−30度の場合(図4、図5)、20%である開始DutyからPWM駆動Dutyのパルス幅の制御が開始されるため、同期判定率が10%以下となるまで(図10のステップS41)、前回Duty+モードが維持され(ステップS11からステップS16の処理が繰り返され)、駆動Dutyが増加する。駆動Dutyの増加に伴い同期判定率が低下し、同期判定率が10%以下になると(駆動Dutyが約24%になると)、前回Duty-モードとなる。今度は、同期判定率が20%以上となるまで(図11のステップS61)、前回Duty-モードが維持され(ステップS11からステップS14、ステップS17,S18の処理が繰り返され)、駆動Dutyが減少する。駆動Dutyの減少に伴い同期判定率が上昇し、同期判定率が20%以上になると(駆動Dutyが約22%になると)、前回Duty+モードとなる。このような処理が繰り返される。すなわちモータ12の駆動トルクの過不足がなくなり制御でき、油の流量が最高となる状態(同期判定率特性の右側の勾配上の位置)を維持することができる(図5)。
またこの処理に伴って油温が上昇し、例えば摂氏−25度になると(図4)、前回Duty-モードにより駆動Dutyがさらに減少し、約17〜18%の間で駆動Dutyが制御される。すなわち−25度においてモータ12の駆動トルクの過不足がなくなり制御でき、油の流量が最高となる状態を維持することができる。
なお以上においては、駆動Dutyを制御する場合を例として説明したが、モータに流す電流の大きさを制御することもできる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
1…冷却システム、11…電動オイルポンプコントローラ、12…モータ、13…ポンプ、14…オイルパン、15…オイルクーラー、16…被冷却機器、17…油温センサ、18…上位コントローラ、21…マイクロコンピュータ、22…駆動回路、23…検出回路、24…通信回路、31…マイクロコンピュータ、32…通信回路、51…モータDuty設定制御処理部、71…同期判定率計算部、72…モード設定処理部、73…判定部、74…Duty増減処理部

Claims (7)

  1. センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによって上記センサレスブラシレスDCモータを駆動する駆動手段と、
    上記ロータの相の切り替わりを示すゼロクロス信号を検出する検出手段と、
    検出された上記ゼロクロス信号の数の割合を示す同期判定率を算出する算出手段と、
    算出された上記同期判定率が目標とする範囲に入るように上記駆動手段におけるPWM駆動Dutyのパルス幅を制御するPWM(Pulse Width Modulation)駆動Dutyのパルス幅制御手段と
    を有することを特徴とする駆動装置。
  2. 請求項1に記載の駆動装置において、
    前記PWM駆動Dutyのパルス幅制御手段は、第1の閾値と前記同期判定率との比較または前記第1の閾値より小さい第2の閾値と前記同期判定率との比較の結果により、前記PWM駆動Dutyのパルス幅を狭くするか、前記PWM駆動Dutyのパルス幅を広くするか、または前記PWM駆動Dutyのパルス幅を維持する
    ことを特徴とする駆動装置。
  3. 請求項2に記載の駆動装置において、
    前記PWM駆動Dutyのパルス幅制御手段は、
    前回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第1の閾値より小さいかまたは前記第2の閾値以下である場合、今回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第1の閾値より小さいとき、前記PWM駆動Dutyのパルス幅を狭くし、今回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第1の閾値以上であるとき、前記PWM駆動Dutyのパルス幅を維持し、
    前回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第1の閾値以上であるかまたは前記第2の閾値より大きい場合、今回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第2の閾値より大きいとき、前記PWM駆動Dutyのパルス幅を広くし、今回の前記PWM駆動Dutyのパルス幅の制御において前記同期判定率が前記第2の閾値以下であるとき、前記PWM駆動Dutyのパルス幅を維持する
    ことを特徴とする駆動装置。
  4. 請求項1に記載の駆動装置において、
    前記PWM駆動Dutyのパルス幅制御手段は、予め定められた開始幅である前記PWM駆動Dutyのパルス幅から前記PWM駆動Dutyのパルス幅の制御を開始する
    ことを特徴とする駆動装置。
  5. 請求項1に記載の駆動装置において、
    前記PWM駆動Dutyのパルス幅制御手段は、油温に応じて定められた開始幅である前記PWM駆動Dutyのパルス幅から前記PWM駆動Dutyのパルス幅の制御を開始する
    ことを特徴とする駆動装置。
  6. センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによって駆動される上記センサレスブラシレスDCモータの制御方法において、
    上記センサレスブラシレスDCモータのロータの相の切り替わりを示すゼロクロス信号を検出する検出ステップと、
    検出された上記ゼロクロス信号の数の割合を示す同期判定率を算出する算出ステップと、
    算出された上記同期判定率が目標とする範囲に入るようにPWM駆動Dutyのパルス幅を制御するPWM駆動Dutyのパルス幅制御ステップと
    を含むことを特徴とする制御方法。
  7. センサレスブラシレスDCモータのロータの回転位置を決めるための通電パターンを一定周期で切り替えることによって駆動される上記センサレスブラシレスDCモータを制御するコンピュータに、
    上記センサレスブラシレスDCモータのロータの相の切り替わりを示すゼロクロス信号の数の割合を示す同期判定率を算出する算出ステップと、
    算出された上記同期判定率が目標とする範囲に入るようにPWM駆動Dutyのパルス幅を制御するPWM駆動Dutyのパルス幅制御ステップと
    を含む処理を行わせるプログラム。

JP2012288946A 2012-12-28 2012-12-28 ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム Active JP6027889B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012288946A JP6027889B2 (ja) 2012-12-28 2012-12-28 ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム
CN201380065912.0A CN104854787B (zh) 2012-12-28 2013-12-10 无传感器无刷直流电动机的驱动装置及其控制方法
PCT/JP2013/083059 WO2014103699A1 (ja) 2012-12-28 2013-12-10 ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム
US14/758,337 US9590543B2 (en) 2012-12-28 2013-12-10 Sensorless drive device and control method thereof
RU2015128630A RU2617685C2 (ru) 2012-12-28 2013-12-10 Приводное устройство без датчиков, способ управления и программа для бесщеточного электродвигателя постоянного тока
EP13867804.0A EP2940856B1 (en) 2012-12-28 2013-12-10 Sensorless drive device, control method and program for brushless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288946A JP6027889B2 (ja) 2012-12-28 2012-12-28 ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2014131453A JP2014131453A (ja) 2014-07-10
JP6027889B2 true JP6027889B2 (ja) 2016-11-16

Family

ID=51020790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288946A Active JP6027889B2 (ja) 2012-12-28 2012-12-28 ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム

Country Status (6)

Country Link
US (1) US9590543B2 (ja)
EP (1) EP2940856B1 (ja)
JP (1) JP6027889B2 (ja)
CN (1) CN104854787B (ja)
RU (1) RU2617685C2 (ja)
WO (1) WO2014103699A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356796B (zh) * 2015-12-02 2018-06-19 国家电网公司 永磁无刷直流电动机无位置传感器控制系统
JP6660240B2 (ja) * 2016-04-25 2020-03-11 株式会社ミクニ 電動オイルポンプの軽負荷異常判定方法
CN106655918B (zh) * 2016-11-09 2018-11-06 北京航空航天大学 一种无位置传感器无刷直流电机换相偏差快速校正控制系统
CN111669083B (zh) * 2020-06-17 2022-03-25 北京经纬恒润科技股份有限公司 一种油泵电机低温启动方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274584A (ja) * 1994-03-30 1995-10-20 Zexel Corp 無整流子直流電動機の駆動装置
US5663618A (en) 1994-03-30 1997-09-02 Zexel Corporation Driving apparatus for a commutatorless DC motor
US5731670A (en) * 1995-03-31 1998-03-24 Sgs-Thomson Microelectronics S.R.L. Method for driving a brushless DC electric motor
JP3787729B2 (ja) * 1996-03-28 2006-06-21 三菱電機株式会社 センサレスブラシレスモータの駆動装置
JP4154635B2 (ja) * 1999-05-31 2008-09-24 株式会社デンソー センサレス・ブラシレスdcモータ制御装置
RU2187195C2 (ru) * 2001-02-19 2002-08-10 Открытое акционерное общество Арзамасское научно-производственное предприятие "Темп-Авиа" Бесконтактный следящий электропривод
JP2003111482A (ja) 2001-09-28 2003-04-11 Toshiba Corp 直流ブラシレスモータの駆動装置
JP4136956B2 (ja) * 2004-01-27 2008-08-20 トヨタ自動車株式会社 センサレスブラシレスモータ式オイルポンプの制御装置
JP4230443B2 (ja) * 2004-11-22 2009-02-25 三菱電機株式会社 同期電動機の駆動装置
JP2007166769A (ja) * 2005-12-13 2007-06-28 Valeo Thermal Systems Japan Corp ブラシレスモータの駆動制御方法及びその装置
DE102006032491A1 (de) * 2006-07-13 2008-01-17 Siemens Ag Verfahren und Vorrichtung zur Bestimmung der Rotorposition bei einem bürstenlosen und sensorlosen Elektromotor
US7489097B2 (en) * 2006-11-02 2009-02-10 Chrysler Llc Sensorless position detection for a brushless direct current motor during inverter standby
JP5002343B2 (ja) * 2007-06-18 2012-08-15 株式会社豊田中央研究所 交流電動機の駆動制御装置
DE102008037543A1 (de) * 2007-12-28 2009-07-02 DENSO CORPORARTION, Kariya-shi Motorsteuervorrichtung, Fahrzeuglüfter-Ansteuervorrichtung und Motorsteuerverfahren
US8710788B2 (en) * 2010-03-23 2014-04-29 Hitachi Automotive Systems, Ltd. Brushless motor drive apparatus and drive method
CN102012454B (zh) * 2010-11-02 2012-04-25 中颖电子股份有限公司 永磁直流无刷无霍尔电机反电动势的过零检测方法及装置
KR101261837B1 (ko) * 2011-05-23 2013-05-07 (주)모토닉 플러그인 하이브리드 차량용 오일펌프 제어장치 및 그의 초기 구동방법
JP5670258B2 (ja) 2011-05-31 2015-02-18 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置

Also Published As

Publication number Publication date
EP2940856A4 (en) 2016-12-28
RU2617685C2 (ru) 2017-04-26
RU2015128630A (ru) 2017-02-03
US9590543B2 (en) 2017-03-07
EP2940856B1 (en) 2018-11-07
CN104854787B (zh) 2017-11-03
EP2940856A1 (en) 2015-11-04
JP2014131453A (ja) 2014-07-10
CN104854787A (zh) 2015-08-19
WO2014103699A1 (ja) 2014-07-03
US20150333673A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6027889B2 (ja) ブラシレスdcモータのセンサレス駆動装置および制御方法、並びにプログラム
CN103684129B (zh) 无刷电动机的无传感器驱动装置及无传感器驱动方法
CN107979307B (zh) 无刷dc电动机的聚合式电动机驱动控制
US9236818B2 (en) Drive device and drive method for brushless motor
US10536103B2 (en) Current sensing based commutation control
US20180254722A1 (en) Drive Device and Method for Three-Phase Brushless Motor
CN109952434A (zh) 电动泵装置
KR101728948B1 (ko) 모터 구동 장치 및 모터 구동 방법
CN104066991B (zh) 电动压缩机的控制方法、控制装置和冷藏库
CN112913136B (zh) 电动机控制装置
CN105453410A (zh) 控制装置和使用该控制装置的交流电动机系统
JP6203784B2 (ja) 同期電動機の制御装置
KR101628559B1 (ko) 엔진의 전동식 워터펌프 진단방법
JP6855435B2 (ja) 電動ポンプ
JP2003111469A (ja) モータの制御方法および制御装置
CN106664042B (zh) 用于启动汽车辅助组件驱动电机的方法和汽车辅助组件驱动电机
JP3776102B2 (ja) ブラシレスモータ制御装置
JP6440355B2 (ja) ロータの回転数をステータの回転磁界と同期させるための方法と装置
WO2011024339A1 (ja) モータ駆動装置およびモータ駆動方法
JP2020202616A (ja) 電動ポンプ制御装置および電動ポンプ制御システム
JP6497307B2 (ja) 空気調和機
JP2013102656A (ja) インバータ制御装置と電動圧縮機および電気機器
JP6634167B2 (ja) 電力変換装置
JP6696188B2 (ja) 空気調和機
KR101918063B1 (ko) 모터 구동 장치 및 모터 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6027889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250