JP6003438B2 - 手ブレ補正装置 - Google Patents

手ブレ補正装置 Download PDF

Info

Publication number
JP6003438B2
JP6003438B2 JP2012203664A JP2012203664A JP6003438B2 JP 6003438 B2 JP6003438 B2 JP 6003438B2 JP 2012203664 A JP2012203664 A JP 2012203664A JP 2012203664 A JP2012203664 A JP 2012203664A JP 6003438 B2 JP6003438 B2 JP 6003438B2
Authority
JP
Japan
Prior art keywords
camera shake
lock
lens
shake correction
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012203664A
Other languages
English (en)
Other versions
JP2014059412A (ja
Inventor
上中 行夫
行夫 上中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2012203664A priority Critical patent/JP6003438B2/ja
Priority to US14/025,165 priority patent/US20140078330A1/en
Priority to EP13184281.7A priority patent/EP2708945B1/en
Publication of JP2014059412A publication Critical patent/JP2014059412A/ja
Application granted granted Critical
Publication of JP6003438B2 publication Critical patent/JP6003438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、手ブレによる光軸のずれに対応してレンズまたはイメージセンサを揺動して像ブレの発生を防止する光学式の手ブレ補正機構に関する。
光学式の手ブレ補正機構の1つとして、レンズシフト方式が知られている。レンズシフト方式では、鏡筒内にジャイロセンサと補正レンズを設け、ジャイロセンサの出力に基づき像ブレを打ち消すように補正レンズを駆動して手ブレによる像ブレの発生を防止する。補正レンズを搭載する可動部は、例えば弾性体により鏡筒本体に弱く支持され、コイル、マグネット、ヨーク等で構成される電磁的なアクチュエータによりその位置が光軸に垂直な面内の一定範囲(可動範囲)で制御される。可動部は可動範囲内であれば実質的に自由に動くことができるため、手ブレ補正制御がオフ状態のとき、可動部は重力により可動範囲内で下向きに落ちた状態になり、補正レンズの中心は光軸からずれた状態になる。
このため、例えば可動部に設けられたロック穴にロックピン(ロック部材)を嵌め込み、可動部の位置を適正な位置に固定するメカニカルなロック機構を設ける構成が知られている。すなわち、手ブレ補正制御がオフ状態では、このロック機構により補正レンズの中心が光軸に固定される。しかしメカニカルなロック機構には遊びが設けられるため、ロック時、手ブレ補正制御を停止すると補正レンズは依然この遊びの範囲で重力方向に偏倚し、ファインダ像やモニタ表示に不自然な揺れが発生する。このような問題に対して、ロック時に重力方向を検知し、補正レンズをこの偏倚位置まで移動し、その後手ブレ補正制御をオフにする構成が提案されている(特許文献1参照)。
特開2003−241247号公報
上述のようにロック機構には遊びがあるため、メカニカルロック時においてもこの範囲で可動部が移動し得る。そのため手ブレ補正をオフにし、ロックした状態で撮影を行うときにも、レリーズ動作などに起因する振動により可動部が上記遊びの範囲で動くと、解像度の劣化を起こすなどの問題が発生する。
本発明は、メカニカルロック時の可動部の振動を防止するとともに、電力消費を抑えることを課題としている。
本発明の手ブレ補正装置は、補正レンズまたは撮像素子を保持する可動部を駆動して手ブレを相殺する手ブレ補正手段と、可動部の運動をロック時可動範囲内に規制するロック部材とを備え、ロック部材により可動部の運動がロックされた状態でレリーズ操作がなされたとき、手ブレ補正手段により可動部の位置を現位置に保持することを特徴としている。
例えば可動部は環状フレーム部を備え、ロック部材は、環状フレーム部の周囲を取り囲むロック環である。環状フレーム部の外周部には複数の突起部が設けられ、ロック環の円形内周部には複数の突起に対応する複数の凹部が設けられる。ロック環は、ロック位置、ロック解除位置の間で可動可能であり、ロック位置では突起が円形内周部に当接してその動きが規制され、ロック解除位置では突起が凹部内にそれぞれ配置され手ブレ補正のための動きが可能となる。
可動部の中心位置ヘ向けた移動は、例えば可動部の制御目標位置を漸次前記中心位置に近づけることにより行われ、目標位置と中心位置の距離は単調減少する。
本発明の手ブレ補正機構を備える鏡筒は、補正レンズを保持する可動部を駆動して手ブレを相殺する手ブレ補正手段と、可動部の運動をロック時可動範囲内に規制するロック部材とを備え、ロック部材により可動部の運動がロックされた状態でレリーズ操作がなされたとき、手ブレ補正手段により可動部の位置を現位置に保持することを特徴としている。
本発明によれば、メカニカルロック時の可動部の振動を防止するとともに、電力消費を抑えることができる。
本実施形態のカメラの構成を模式的に示すブロック図である。 本実施形態の手ブレ補正機構の正面斜視図、ロック解除時の正面図、ロック時の正面図である。 ロック解除時およびロック時の補正レンズの可動範囲を模式的に示す図である。 手ブレによるカメラの動きとX、Y軸の関係を模式的に示す斜視図である。 カメラ本体、補正レンズ、およびX、Y軸の関係を示す正面図である。 レンズCPUにおいて実行される手ブレ補正制御のブロック図である。 カメラCPUで実行されるメインプログラムのフローチャートである。 レンズCPUで実行されるメインプログラムのフローチャートである。 レンズCPUで実行されるロック初期化動作のフローチャートである。 第1実施形態においてレンズCPUで実行される1mSタイマ割り込み処理のフローチャートである。 レンズCPUで実行される中心駆動処理のフローチャートである。 レンズCPUで実行される微小駆動処理のフローチャートである。 補正レンズがロック時可動範囲内で、重力により偏倚した4つの状態を示す模式図である。 レンズCPUで実行される現在位置保持駆動処理のフローチャートである。 手ブレ補正駆動処理のフローチャートである。 第2実施形態においてレンズCPUで実行される1mSタイマ割り込み処理のフローチャートである。 第2実施形態のcos駆動ロック解除処理(漸次駆動ロック解除処理)における補正レンズの位置移動とロック解除のタイミングを示すグラフである。 cos駆動ロック解除処理(漸次駆動ロック解除処理)のフローチャートである。
以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明の第1実施形態である手ブレ補正機構が搭載されたカメラの構成を示すブロック図である。なお、本図においては、発明に係る構成のみが模式的に描かれる。
本実施形態においてカメラ10は、例えばカメラ本体11に鏡筒12を着脱可能なデジタル一眼レフカメラである。また本実施形態では、鏡筒12内に手ブレ補正機構13が設けられる。すなわち、ブレ補正用の補正レンズ14を備えた手ブレ補正機構13は、撮像レンズ15A、15Bの間に配置される。撮像レンズ15Aから入射した光は、光軸Lに沿って補正レンズ14、撮像レンズ15Bを介してカメラ本体11内の撮像素子16へと導かれ結像する。
カメラ本体11および鏡筒12内にはそれぞれカメラCPU17、レンズCPU18が設けられる。カメラCPU17には、メインスイッチ19、測光スイッチ20、レリーズスイッチ21が接続されており、電源ラインおよびグランドとともに、レンズマウント(図示せず)の複数の電極を通して、レンズCPU18に接続される。なお、カメラCPU17は、カメラ全体の様々な制御を行うもので、この他にも様々なデバイスに接続されている。
鏡筒12には、手ブレ補正制御のオン/オフを設定する手ブレ補正スイッチ22が設けられ、レンズCPU18に接続される。また、鏡筒12内に、光軸Lに垂直なカメラの横軸、縦軸に沿ったY、X軸周りの回転角速度を検出する角速度センサ23X、23Yが設けられ、各角速度センサ23X、23Yで検出された信号は、レンズCPU18へ入力される。手ブレ補正制御がオンのとき、レンズCPU18は角速度センサ23X、23Yで検出された各軸周りの角速度、および焦点距離などのレンズ情報に基づき、手ブレを相殺するために補正レンズ14が移動すべきX、Y軸方向の目標位置を算出する。
補正レンズ14は、例えば補正レンズ14を保持する可動部に設けられるコイル(図示せず)と鏡筒12に固定された固定部に設けられるヨークとの間の電磁相互作用により駆動され、コイルへの電流供給はX方向駆動制御部24XおよびY方向駆動制御部24Yによって制御される。補正レンズ14を保持する可動部には、例えばホール素子などを用いた位置センサ25X、25Yが設けられ、補正レンズ14の位置が検出され、レンズCPU18へとフィードバックされる。すなわち、レンズCPU18は、角速度センサ23X、23Yの信号に基づき算出された補正レンズ14の目標位置と位置センサ25X、25Yから得られた現補正レンズ14の位置とからコイルへの電流供給量を算出し、X方向駆動制御部24XおよびY方向駆動制御部24Yへと出力する。
手ブレ補正機構13には、後述するメカニカルなロック機構26が併設されるとともに、ロック状態を検出するためのロック検知センサ26Sが設けられる。ロック機構26は補正レンズ14の中心を光軸L上に維持するための機構であり、レンズCPU18からの指令に基づきロック環制御部27によって制御され、現ロック状態はロック検知センサ26Sによりその状態がレンズCPU18に通知される。
なお、レンズCPU18の通信ポートと、カメラCPU17の通信ポートは、前述したようにレンズマウントの電極を通して接続され、両者の間では後述するようにデータ通信が行われる。
図2(a)〜図2(c)は、本実施形態の手ブレ補正機構13の外観図であり、図2(a)が正面斜視図、図2(b)がロック解除時の正面図、図2(c)がロック時の正面図である。
図示されるように、補正レンズ14は円環フレームを備える可動部28によってその略中央に保持される。可動部28の円環フレームの外周部には、径方向外側に延出する例えば4つの突起28Pが外周に沿って略等間隔で設けられる。可動部28の円環フレームの周囲には、それを取り囲むように環状のロック環30が配置され、ロック環30と円環フレームの間には環状クリアランス29が設けられる。
ロック環30の内径は、可動部28の各突起28Pが公差を除きロック環30の内周に当接する寸法であり、その内周縁には、突起28Pに対応する数の凹部30Pが内周に沿って略等間隔で形成される。後述するように、凹部30Pは、突起28Pと協働して手ブレ補正における補正レンズ14の可動範囲を規定する。
ロック環30は、概ね円筒外観を呈するケーシング31内に収容され、ケーシング(固定部)31内において光軸周りに回動可能である。ロック環30の回動は、例えばロック環30の外周部に設けられたラック・アンド・ピニオン機構により行われる。すなわちロック環30の外周部にはラック部30Rが設けられるとともにケーシング31側に設けられたピニオン32に噛合され、ピニオン32は、ケーシング31内に固定されたステッピングモータ(図示せず)により駆動される。
またロック環30の外周部には、ロック環30の回動位置からロック状態を検知するための切り欠き30A、30Bが設けられ、ケーシング31には、切り欠き30A、30Bと協働するフォトインタラプタ(ロック検知センサ)26Sが設けられる。すなわち、ロック解除時には図2(b)に示されるように切り欠き30Aを通してフォトインタラプタ26Sにおいて光が検知され、ロック時には図2(c)に示されるように切り欠き30Bを通して光が検知される。
また、可動部28には、環状フレームから径方向外側に延出する平板部28Aが複数設けられ、可動部28を駆動するためのコイル等が搭載される。平板部28Aは、ケーシング31内において、その前後をベアリング(図示せず)を介して支持され、光軸方向への移動が規制される。
次に図2および図3を参照して、本実施形態における補正レンズ14の可動範囲について説明する。なお図3(a)、図3(b)は、ロック解除時およびロック時の補正レンズ14の可動範囲を模式的に示す図である。
図2(b)のロック解除時、ロック環30は、可動部28の各突起28Pが各々凹部30Pに位置するように配置される。このとき可動部28の動きは、突起28Pが凹部30Pの側壁に当接することで規制され、補正レンズ14の可動範囲は、図3(a)において網掛けされる矩形領域(ロック解除時可動範囲)33となる。一方、図2(c)のロック時には、ロック環30が図2(b)の位置から右回りに回動され、各突起28Pは、ロック環30の円弧状の内周面に当接される。これにより、可動部28の上下左右への運動は規制され、補正レンズ14の中心が光軸Lに一致するように固定される。
しかし、突起28Pとロック環30の円弧状内周面との間には公差が存在するため、ロック時においても、補正レンズ14は実際には図3(b)に示されるように、光軸Lを中心とする円形網掛け領域(ロック時可動範囲)34内において移動可能である。
図4〜図6を参照して、本実施形態の手ブレ補正処理についてより詳細に説明する。図4は、手ブレによるカメラの動きとX、Y軸の関係を模式的に示す斜視図であり、図5は、カメラ本体11、補正レンズ14、X、Y軸の関係を示す正面図である。
図4に示されるように、カメラでの撮影においては、垂直軸(Y軸)周りの回転(ヨー)により横方向(X軸方向)へ移動する像ブレが発生し、水平軸周りの回転(ピッチ)により縦方向(Y軸方向)へ移動する像ブレが発生する。したがって、Y軸周りの回転運動を検出することでX軸方向の像ブレを相殺するための補正レンズ14のX軸方向へのシフト量が決定し、X軸周りの回転運動を検出することでY軸方向の像ブレを相殺するための補正レンズ14のY軸方向へのシフト量が決定する。
図6は、レンズCPU18において実行される手ブレ補正制御のブロック図であり、補正処理は例えば所定時間(例えば1mS)間隔の割り込み処理として実行される。
角速度センサ23X、23Yの各ジャイロで得られたY軸周り、X軸周りのアナログ角速度信号は、レンズCPU18のA/Dポート(A/D1、A/D2)に入力され、A/D演算部35X、35Yにおいてデジタル信号に変換される。Y軸、X軸周りの角速度は、角度演算部36X、36Yにおいて積分され、Y軸、X軸周りの回転角度(ヨー角θ、ピッチ角θ)が算出される。レンズ駆動位置計算部37X、37Yでは、ヨー角、ピッチ角、およびメモリに保存された焦点距離fなどのレンズ情報38に基づいて、像ブレを相殺するためのX方向、Y方向における補正レンズ14の駆動位置が算出される。
ポート4から入力される手ブレ補正スイッチ22がオン状態の時には、制御部39はレンズ駆動位置計算部37X、37Yにおいて算出されたX軸方向への駆動位置X、Y軸方向への駆動位置Yを補正レンズ14の目標位置とし、駆動位置X、駆動位置Yと補正レンズ14の現在位置X、現在位置Yの偏差を算出し、これらに対して例えばPID演算などの処理を自動制御演算部40X、40Yにおいて施す。自動制御演算部40X、40Yからの出力は、ポート1、ポート2を通してX方向駆動制御部24X、Y方向駆動制御部24Yへ出力され、手ブレ補正機構13に設けられたX方向コイル41X、Y方向コイル41Yへ供給される電流が制御される。
可動部28の位置、すなわち補正レンズ14の現在のX軸、Y軸方向の位置は、ホールセンサ(位置センサ)25X、25Yからの信号に基づきX方向駆動制御部24X、Y方向駆動制御部24Yにおいて算出され、現在のX位置信号、Y位置信号としてA/Dポート(A/D3、A/D4)を通してレンズCPU18に入力され、A/D演算部43X、43Yにおいてデジタル信号としての現在位置X、現在位置Yへ変換され、前述したようにフィードバックされる。これにより、手ブレ補正スイッチ22がオンされているときには、角速度センサ23X、23Yの出力に基づいて補正レンズ14の目標とする駆動位置が算出され、この目標値に基づき補正レンズ14がX軸、Y軸方向に駆動される。
なお、レンズCPU18は、手ブレ補正スイッチ22のオン/オフ状態に基づいて、ポート3に接続されたロック環制御部(ドライバ)27を通してステッピングモータなどのロックモータ44を駆動しロック環30を回動させる。すなわち、その位置をロック解除位置(図2(b))とロック位置(図2(c))の間で切り替える。ロック環30がロック解除位置、ロック位置に達したかは、フォトインタラプタ(ロック検知センサ)26Sによって検出される。
次に図1、図6、図7、図8を参照して、カメラCPU17およびレンズCPU18で実行されるメインフローについて説明する。図7、図8のフローは、カメラ本体11に設けられたメインスイッチ19がオンされると開始される。なお、ここでは鏡筒12がカメラ本体11に装着されていることを前提としている。
図7は、カメラCPU17側のフローチャートであり、ステップS100ではレリーズスイッチ21がオンされているか否かが判定される。レリーズスイッチ21がオンされている場合には、処理はステップS120へジャンプし、オンされていない場合には、ステップS102においてレンズCPU18との通信を開始し、レンズCPU18に対してロック初期化処理を要求する。
ステップS104では、測光スイッチ20がオンされているか否か判定され、この処理は測光スイッチ20がオンされるまで繰り返される。測光スイッチ20がオンされていると判定されると、ステップS106において、レンズCPU18との通信を開始し、スルー画像の表示が行われることをレンズCPU18に通知する。
ステップS108〜S116では、スルー画像の撮影および表示が行われる。すなわち、ステップS108ではAE処理、ステップS110ではAF処理が行われ、ステップS112ではステップS110で設定されたフォーカス位置、ステップS108で決定された露出の下、撮像素子(CCD)16における電荷蓄積が開始される。そしてステップS114では撮像素子(CCD)16に蓄積された画素信号の例えばフィールド読出しが行われ、画像信号として出力される。ステップS116では、出力された画像信号がモニタ(図示せず)は出力されスルー画像が表示される。
次にステップS118では、レリーズスイッチ21がオンされているか否かが判定される。レリーズスイッチ21がオンされていない場合、処理はステップS130へジャンプし、レリーズスイッチ21がオンされている場合には、ステップS120においてレンズCPU18との通信を開始し、レリーズ処理を実行することをレンズCPU18に通知する。そしてステップS122〜S128において、静止画の撮影が実行される。すなわち、ステップS122ではステップS110で設定されたフォーカス位置、ステップS108で決定された露出の下、撮像素子(CCD)16における電荷蓄積が開始され、ステップS124において撮像素子(CCD)16に蓄積された電荷の例えば全画素読出しが行われる。ステップS126では、出力された画像信号がステップS126において不揮発性の映像メモリ(図示せず)に保存され、ステップS128においてその画像がモニタ(図示せず)に表示される。
次にステップS130では、測光スイッチ20がオンされているか否かが判定される。測光スイッチ20がオンされていると判定されれば処理はステップS106へ戻り、オンされていないと判定されるとステップS102に戻り同様の処理が繰り返される。なお以上の処理はカメラ本体11のメインスイッチ19がオフされるまで、あるいはカメラがスリープモードへ移行するまで繰り返される。
図8は、レンズCPU18側のフローチャートである。ステップS200、S202ではステータスレジスタの初期化が行われる。ここでは、ステップS200において手ブレ補正制御の状態(手ブレ補正ステータス)を示すフラグSRが初期化され、ステップS202においてレリーズの状態(レリーズステータス)を示すフラグRLSが初期化される。すなわち、SR=RLS=0に設定される。フラグSRは3つの状態を取り、SR=0はロック環30によりロックするための処理(初期動作)が実行されたことを示し、SR=1は手ブレ補正がオフ状態であること、SR=2は手ブレ補正がオン状態であることを示す。また、フラグRLSは2つの状態を取り、RLS=0はスルー画像が表示されている状態を示し、RLS=1はレリーズ動作中であることを示す。
フラグSR、RLSの初期化が完了すると、ステップS204では、カメラCPU17から通信要求があったか否かが判定され、この判定はカメラCPU17から通信要求があるまで繰り返される。レンズCPU18においてカメラCPU17から通信要求が検出されると、ステップS206、S208、S210において、カメラCPU17からの通信がロック初期化要求(ロック環30によるロック作動要求)か、カメラ本体11においてスルー画像の表示を行うことを通知するものなのか、カメラ本体11においてレリーズ動作を行うことを通知するものなのかがそれぞれ判定される。
ロック初期化要求の場合には、ステップS212において図9のフローチャートで示されるロック初期化動作が実行される。図9に示されるように、ロック初期化動作では、まずステップS300において補正レンズ14を光軸に一致させる中心駆動処理が実行される。すなわち、図11のフローチャートに示されるように、中心駆動処理では、ステップS500において、ホールセンサ25X、25Y(図6)の出力に基づき補正レンズ14の現在の位置情報を検出し、ステップS502において制御部39における補正レンズ14の目標位置である駆動位置(X,Y)を光軸および可動範囲33、34(図3参照)の中心に対応する(0,0)に設定する。その後ステップS504、S506において、自動制御のための演算を、現在位置および目標位置に基づき行い、その演算結果に基づき手ブレ補正機構13を駆動して、補正レンズ14を中心位置(0,0)へと移動する。
次にステップS302において、ロックモータ44を駆動し、ロック環30をロック位置にまで回動する。そしてステップS304では、電磁アクチュエータを構成するコイル41X、41Yへの電力供給を停止し、補正レンズ14の駆動を停止する。その後ステップS306において手ブレ補正ステータスを示すフラグSRが、ロック初期動作が実行されたことを示す「0」に設定され(SR=0)、本ロック初期化動作は終了する。
一方ステップS208において、カメラCPU17からの通信がスルー画像の表示を通知するものであると判定された場合には、ステップS214において、レリーズステータスを示すフラグRLSが、スルー画像表示中であることを示す「0」に設定される(RLS=0)。またステップS210において、カメラCPU17からの通信が、レリーズ動作を行うことを通知するものであると判定された場合には、ステップS216においてレリーズステータスを示すフラグRLSが、レリーズ動作中であることを示す「1」に設定される(RLS=1)。なおレンズCPU18の電源がオンである間、ステップS204〜S210の処理が繰り返される。
またレンズCPU18では、1msの周期で図10のフローチャートに示されるタイマ割り込みが発生する。以下図2、図6、図10、図11を参照して、本実施形態の1msタイマ割り込み処理について説明する。
1msタイマ割り込み処理では、まずステップS400において、フラグRLS=1であるか否か、すなわち現ステータスがレリーズ動作中であるか否かが判定される。RLS≠1、すなわちレリーズ動作中でなければ、ステップS402において、手ブレ補正スイッチ22のオン/オフ状態が検知され、同スイッチがオン状態であるか否かが判定される。
手ブレ補正スイッチ22がオフ状態であれば、ステップS404において、フラグSR=1、あるいはSR=0であるか否か、すなわち現ステータスが、手ブレ補正オフの状態、あるいはロック初期化動作済みの状態であるか否かが判定される。SR≠1かつSR≠0のとき、すなわち現ステータスが手ブレ補正オフ状態を示さず、かつロックの初期化処理もされていないときには、ステップS406において、図11のフローチャートに示される中心駆動処理を実行し、ステップS408においてロックモータ44を駆動してロック環30(図2)をロック位置まで回動し確実にロック状態とする。これは、例えば前回カメラを使用した際に、手ブレ補正スイッチ22をオンのまま電源をオフにし、ステータスがSR=2に維持されている場合に対応する。すなわち、現在手ブレ補正がオフされているにも係らず補正レンズ14はロックされていないので、本処理において補正レンズ14をロックする。
ステップS410では、手ブレ補正ステータスを示すフラグSRを手ブレ補正がオフであることを示す「1」に設定する(SR=1)。そして、ステップS412において、手ブレ補正機構13(図6)のコイルへの電力供給を停止して手ブレ補正の駆動をオフし、現在のタイマ割り込み処理を終了する。一方、ステップS404においてSR=1またはSR=0であるとき、本タイマ割り込み処理は直ちに終了する。
一方、ステップS402において、手ブレ補正スイッチ22がオン状態であると判定されると、ステップS414において、手ブレ補正ステータスを示すフラグSR=2であるか否かが判定される。SR=2の場合、手ブレ補正が既に実行されていることを示すので、処理はステップS422へとジャンプし、手ブレ補正駆動処理を継続して本タイマ割り込み処理を終了する。またSR≠2のときには、手ブレ補正処理がオフ状態にありロック環30がロック状態にあるので、ステップS416において補正レンズ14の微小駆動処理(後述)を行いステップS418でロック環30を回動してロック解除状態とする。そしてステップS420において手ブレ補正ステータスのフラグSRを「2」(手ブレ補正オン)に設定した後、ステップS422において手ブレ補正処理を開始して本タイマ割り込み処理を終了する。
また、ステップS400においてレリーズステータスのフラグRLS=1のとき、すなわちレリーズ動作中と判定された場合には、ステップS424において手ブレ補正ステータスのフラグSR=1であるか否かが判定される。SR=1、すなわち手ブレ補正がオフ状態であると判定された場合には、ステップS426へ進み、後述する現在位置保持駆動処理を行い本タイマ割り込み処理は終了する。一方、SR≠1、すなわち手ブレ補正ステータスがオン状態であると判定されると、ステップS422において手ブレ補正駆動処理が継続され、本タイマ割り込み処理は終了する。
次に図2、図3、図6、図12を参照してステップS416(図10)の微小駆動処理について説明する。なお図12は、ステップS416の微小駆動処理のフローチャートである。
ロック環30がロック位置にあるとき(図3(a))、可動部28の環状フレームに設けられた4つの突起28Pは、ロック環30の弧状内周面に当接するが、両者の間には公差があるため、補正レンズ14は、図3に示されるロック時可動範囲34内で移動可能である。したがって、手ブレ補正がオフされている状態では、補正レンズ14が重力方向に落ち、突起28Pがロック環30に接触している。そのためロックを解除する際、突起28Pの接触による摩擦抵抗を無くすには、ロック初期化動作と同様に可動部28の突起28Pをロック環30から離接させる必要がある。しかしロック初期化動作処理のときと同様に中心駆動処理(図11)を行い、補正レンズ14を可動領域33、34の中央にまで移動すると移動時間が長くなり、ロック解除に掛かる時間が長くなる。
そのため本実施形態では、図11の中心駆動処理に代え、ステップS416において補正レンズ14(可動部28)の微小駆動処理を行う。微小駆動処理では、まずステップS600において、ホールセンサ25X、25Yの出力に基づき補正レンズ14の現在位置X、Yが取得される。ステップS602では、制御部39において補正レンズ14の駆動位置X、Yが次式で算出され目標位置として設定される。
駆動位置X=現在位置X×(1−α)
駆動位置Y=現在位置Y×(1―β)
なお、α、βは、1未満の値であればよいが、例えば0.5以下の値であり、0.05〜0.2程度あることが好ましい。すなわち、現在位置X、YからのX軸、Y軸方向への微小駆動量ΔX、ΔYは、それぞれΔX=−(現在位置X×α)、ΔY=−(現在位置Y×β)である。本実施形態では例えばα=β=0.1である。すなわち、本実施形態の微小駆動処理では、可動領域33、34の中心(すなわち光軸)を座標原点とし、補正レンズ14の位置をそのレンズ中心として、補正レンズ14を現在の位置座標X、Yの10%の距離、−X、−Y軸方向に移動する。これは重力方向に落ちた補正レンズ14を中心に向けて、偏倚量の10%ほど微小移動することに対応する。
ステップS604では、設定された駆動位置X、Yに基づいて自動制御計算が行われ、ステップS606において可動部28が駆動されて補正レンズ14が駆動位置X、Yへと移動され、本微小駆動処理は終了する。
なお、図13(a)〜(d)に示すように、補正レンズ14が重力により偏倚する方向は、カメラの傾けられた方向に応じて様々に変化する。しかし、上述した駆動位置X、Yを求める式を用いれば、重力の方向に係わりなく何れの場合にも同一の簡略な式で対応ができる。なお図13において点Pは偏倚された補正レンズ14の中心位置を示し、各場合における現在位置X、Yに対応する。
次に図14を参照して図10のステップS426で実行される現在位置保持駆動処理について説明する。現在位置保持駆動処理は、手ブレ補正がオフ状態でレリーズ動作が開始されたときに実行される処理である。手ブレ補正をオフにした状態でのレリーズは、通常三脚を用いた撮影など、安定した状態での撮影が前提となり、補正レンズ14もロックされた状態にある。しかし、前述したようにロック状態においても補正レンズ14はロック時可動領域34内で移動できるので、例えばレリーズ動作による振動により補正レンズ14が動き、解像度の低い画像が撮影されることがある。
このため本実施形態では、手ブレ補正がオフ状態でレリーズ動作が行われるとき、補正レンズ14の位置を、手ブレ補正機構を用いて現在の位置に電磁的にロックして撮影を行う。すなわちステップS700では、ホールセンサ25X、25Yの信号に基づき補正レンズ14の現在位置X、Yを取得し、ステップS702において制御部39で設定される駆動位置X、Yを現在位置X、Yに設定する。ステップS704では、設定された駆動位置X、Yに基づき自動制御計算がなされ、ステップS706ではそれに基づき手ブレ補正機構13が駆動される。すなわち、補正レンズ14が現在の位置に電磁的にロックされる。
次に、図1、図6、図15を参照して図10のステップS422において実行される手ブレ補正駆動処理について説明する。
手ブレ補正駆動処理では、まずステップS800において、角速度センサ(ジャイロ)23X、23YからY軸、X軸周りの角速度信号を取得し、ステップS802においてY軸、X軸周りの回転角を計算する(角度演算部36X、36Y)。ステップS804では、ステップS802において計算された回転角とレンズの焦点距離fなどから駆動位置X、Yを計算する(レンズ駆動位置計算部37X、37Y;制御部39)。ステップS806では、ホールセンサ25X、25Yの信号に基づき補正レンズ14の現在位置を取得し(X、Y方向駆動制御部24X、24Y)、ステップS808の自動制御計算において、駆動位置X、Yとフィードバックされる現在位置の偏差から操作量を計算する(自動制御演算部40X、40Y)。操作量に基づきX、Y方向コイル41X、41Yに電力を供給し手ブレ補正機構13を駆動する(X、Y方向駆動制御部24X、24Y)。
以上のように、第1実施形態の構成では、可動部が弾性体のような弾性支持部材によって固定部に支持されていないので、手ブレ補正がより効率的に駆動できる。一方、このような構成では、可動部が弾性支持部材によって全く支持されていないため手ブレ補正がオフ状態では、補正レンズを含む可動部の自重が全て接触部(突起)を介してロック機構(ロック環)に接触し、ロック解除時の障害となる。しかし、第1実施形態では、メカニカルロック機構の解除時にも、微小駆動処理により可動部がロック機構(ロック環)から離接されるのでロック解除時に余分な摩擦力が掛かることがなく容易にロックの解除を行うことができる。また、本実施形態では、微小駆動処理により補正レンズを僅かにしか動かさないので、ロック機構(ロック環)の回動を開始するまでの時間を短縮でき、迅速なロック解除が可能となる。
また本実施形態では、簡略な1つの式により、微小移動量が算出でき、場合分けや重力センサを用いることなく、従来の手ブレ補正機構の構成のみを用いて、補正レンズの微小駆動を行うことができる。また、本実施形態は、特に可動部の自重によるロック環(ロック部材)との間の摩擦が大きい場合に有効である。
また、本実施形態では、手ブレ補正がオフされ、可動部がメカニカルにロックされた状態においてレリーズ操作される場合に、手ブレ補正機構を用いて可動部をその位置に電磁的にロックするため、補正レンズがメカニカルなロック機構の公差に起因する可動範囲内でレリーズ動作などの振動で動いてしまうことを防止でき、撮影画像の解像度の劣化を防止できる。また、この電磁的なロックはレリーズ動作時のみ行われるので、不要な電力消費を抑えることができる。
次に、本発明の第2実施形態について、図16〜図18を参照して説明する。第2実施形態が第1実施形態から異なる点は、図10のステップS416、S418における微小駆動処理に係わる処理を、cos駆動ロック解除処理に置き換えた点であり、その他の構成は第1実施形態と同様である。したがって、以下の説明では同様の構成については同じ参照番号を用い、その説明を省略する。
図16は、第1実施形態の図10に対応するもので、レンズCPU18において実行される第2実施形態の1mSタイマ割り込み処理のフローチャートである。
図16のフローチャートにおいて、ステップS900〜S914、ステップS920〜S926は、図10のステップS400〜S414、ステップS420〜S426に対応しその処理内容も同様である。一方、第2実施形態のステップS916は、図10のステップS416、S418の処理を、cos駆動ロック解除処理(漸次駆動ロック解除処理)に置き換えたものである。すなわち、第1実施形態では、ロック解除処理において、重力方向に落ちた補正レンズ14を中心に向けて、偏倚量の10%ほど微小移動した。しかし第2実施形態では、ステップS406の中心駆動と同様に、補正レンズ14の中心を可動領域33、34の中心(光軸)まで後述するcos駆動にしたがって移動する。
図17を参照して第2実施形態のcos駆動ロック解除処理における補正レンズ14の中心位置への移動方法を説明する。
図17は、ステップS406やステップS906の中心駆動処理を行うときの補正レンズ14(可動部28)の位置変化と、ロック環30のロック位置/ロック解除位置の間の切替えのタイミングを示すグラフである。曲線L1は、中心駆動処理における補正レンズ14(可動部28)の位置の時間変化を示し、曲線L2はcos駆動ロック解除処理における補正レンズ14(可動部28)の位置の時間変化を示す。また曲線R1は中心駆動処理を実行したときに、ロック環30がロック位置からロック解除位置へ移動される様子を示し、曲線R2はcos駆動ロック解除処理においてロック環30がロック位置からロック解除位置へと移動される様子を示す。
中心駆動処理では、補正レンズ14の移動制御の目標値である駆動位置X、Yに可動範囲の中心位置(光軸)である原点(0,0)を設定し、PIDなどの自動制御演算を通して補正レンズ14を中心位置まで移動している。このとき、補正レンズ14は、曲線L1に示されるように、振動しながら中心位置へ収束する。また、ロック環30のロック解除動作は、補正レンズ14を中心位置へ移動してから行われ、ロック解除に掛かる時間はT1となる。
一方、cos駆動ロック解除処理では、目標値である駆動位置X、Yを漸次中心位置へと近づけ、補正レンズ14の位置も駆動位置X、Yに追随して中心位置へと移動される。本実施形態では、正弦波形の半周期である山から谷、または谷から山の区間(ピークピーク区間)に沿って補正レンズ14が中心位置へと移動するように制御される。このとき、ロック環30のロック解除動作は例えば、cos駆動における0°〜90°の位相で(当初位置から中心までの距離の半分に達する前に)開始され、補正レンズ14の中心位置への移動が完了する以前にロック解除位置へと移動される。すなわち、ロック解除に掛かる時間T2は、補正レンズ14が中心位置まで移動されるまでの時間に等しくなる。なお、中心駆動処理、cos駆動ロック解除処理において、補正レンズ14が中心位置まで移動するのに掛かる時間は略等しい。
すなわち、中心駆動処理では、補正レンズ14の位置が中心位置に達するまでの間に振動するため、可動部28の突起28Pがロック環30に接触する可能性があり、ロック解除動作は、中心駆動が終了してから行われるが、cos駆動ロック解除処理(漸次駆動ロック解除処理)では、補正レンズ14の位置が漸次中心位置へと近づくので、補正レンズ14が一定距離まで中心に近づけば可動部28の突起28Pがロック環30に接触することはない。そのため、補正レンズ14の移動中にロック解除動作を開始することができ、ロック解除に掛かる時間を短縮できる。
図18は、本実施形態におけるcos駆動ロック解除処理(図16、ステップS916)のフローチャートである。cos駆動ロック解除処理では、まずステップS1000において位相θが0に初期設定される。ステップS1002では、ホールセンサ25X、25Yを用いて補正レンズ14の現在位置X、Yが取得される。ステップS1004では、現在位置(当初位置)X、Yおよび位相θに基づいて駆動位置X、Yの値が求められる。すなわち、駆動位置X、Yの値は、次式で算出される。
駆動位置X=現在位置X×(cosθ+1)/2
駆動位置Y=現在位置Y×(cosθ+1)/2
ステップS1006では現駆動位置X、Yに基づき自動制御計算が行われ、ステップS1008において補正レンズ14が算出された駆動位置X、Yへと移動される。ステップS1010では位相θの値をθ+Δθに更新する。なお、ここでθはロック解除時間T2を半周期とする位相角であり、増分Δθは例えば1であるが、Δθの値は1以上の値でも、1以下の正の値であってもよい。
次にステップS1012において、θの値が所定値に達したか、例えばθ=90°であるか否かが判定される。所定値(90°)は、ロック環30のロック解除動作を開始するタイミングを指定するもので、θ=所定値(90°)のときにはステップS1016においてロック解除動作を開始し、それ以外の場合にはステップS1014においてθ>180°であるか否か、すなわち移動が終了したか否かが判定される。
θが180°以下、すなわち中央位置への移動が終了していない場合には、ステップS1004に戻り、ステップS1010で更新されたθの値と当初位置X、Yに基づき新たな駆動位置X、Yの値が計算され、同様の処理が繰り返される。一方、ステップS1014においてθ>180°であると判定されると本処理は終了する。
なお本実施形態では、正弦波形に沿って駆動位置X、Yを移動したが、当初位置(現在位置)から中心位置に向けて距離が時間の単調減少関数になるように、すなわち中心までの距離が常に前の距離よりも短くなるように移動されればよい。特に後半において緩やかに減速して中心位置に達することが好ましく、また前半に緩やかに加速されることが好ましい。例えば後半において移動速度は時間とともに低減される。
以上のように、第2実施形態によれば、第1実施形態と同様の効果を得ることができる。なお第2実施形態では第1実施形態よりもロック解除期間が僅かに長くなるが、補正レンズが中央位置まで滑らかに移動するため、ロック解除時にスルー画像に発生する不快な像ブレを防止できる。
本実施形態では、レンズシフト方式の手ブレ補正機構への適用を例に説明を行ったが、本発明はイメージ・センサ・シフト方式を採用する手ブレ補正機構にも適用できる。また本発明は、ミラーレスカメラやレンズ交換式ではないカメラ、また画像表示用モニタを備えずファインダのみを有するカメラにも適用できる。例えばファインダのみの構成では、ステップS108〜ステップS116の処理が行われず、ステップS106では例えば測光スイッチがオンされたことを通知する。また本実施形態では、デジタルカメラを例に説明を行ったが、本発明は銀塩カメラにも適用できる。
本実施形態では、ロック部材としてロック環を用いたが、可動部に設けた孔にロック部材としてのピンを挿入する構成など、他のロック機構にも適用できる。
10 カメラ
13 手ブレ補正機構
14 補正レンズ
16 撮像素子
17 カメラCPU
18 レンズCPU
19 メインスイッチ
21 レリーズスイッチ
22 手ブレ補正スイッチ
23X、23Y 角速度センサ
24X、24Y 駆動制御部
25X、25Y 位置センサ
26 ロック機構
26S ロック検知センサ
28 可動部
28P 突起
30 ロック環
30A、30B 切り欠き
30P 凹部
30R ラック部
32 ピニオン

Claims (4)

  1. 補正レンズまたは撮像素子を保持する可動部を駆動して手ブレを相殺する手ブレ補正手段と、
    前記可動部の運動をロック時可動範囲内に規制するロック部材とを備え、
    前記ロック部材により前記可動部の運動がロックされた状態でレリーズ操作がなされたとき、前記手ブレ補正手段により前記可動部の位置を現位置に保持する
    ことを特徴とする手ブレ補正装置。
  2. 前記可動部は環状フレーム部を備え、前記ロック部材は、前記環状フレーム部の周囲を取り囲むロック環であり、前記環状フレーム部の外周部には複数の突起部が設けられ、前記ロック環の円形内周部には前記複数の突起に対応する複数の凹部が設けられ、前記ロック環は、ロック位置、ロック解除位置の間で可動可能であり、前記ロック位置では前記突起が前記円形内周部に当接してその動きが規制され、前記ロック解除位置では前記突起が前記凹部内にそれぞれ配置され手ブレ補正のための動きが可能となることを特徴とする請求項1に記載の手ブレ補正装置。
  3. 前記可動部の中心位置ヘ向けた移動が、前記可動部の制御目標位置を漸次前記中心位置に近づけることにより行われ、前記制御目標位置と前記中心位置の距離が単調減少することを特徴とする請求項1または請求項2に記載の手ブレ補正装置。
  4. 補正レンズを保持する可動部を駆動して手ブレを相殺する手ブレ補正手段と、
    前記可動部の運動をロック時可動範囲内に規制するロック部材とを備え、
    前記ロック部材により前記可動部の運動がロックされた状態でレリーズ操作がなされたとき、前記手ブレ補正手段により前記可動部の位置を現位置に保持する
    ことを特徴とする手ブレ補正機構を備える鏡筒。
JP2012203664A 2012-09-14 2012-09-14 手ブレ補正装置 Active JP6003438B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012203664A JP6003438B2 (ja) 2012-09-14 2012-09-14 手ブレ補正装置
US14/025,165 US20140078330A1 (en) 2012-09-14 2013-09-12 Blur correction apparatus
EP13184281.7A EP2708945B1 (en) 2012-09-14 2013-09-13 Blur correction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203664A JP6003438B2 (ja) 2012-09-14 2012-09-14 手ブレ補正装置

Publications (2)

Publication Number Publication Date
JP2014059412A JP2014059412A (ja) 2014-04-03
JP6003438B2 true JP6003438B2 (ja) 2016-10-05

Family

ID=49165593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203664A Active JP6003438B2 (ja) 2012-09-14 2012-09-14 手ブレ補正装置

Country Status (3)

Country Link
US (1) US20140078330A1 (ja)
EP (1) EP2708945B1 (ja)
JP (1) JP6003438B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3160125B1 (en) * 2015-10-22 2017-11-29 Axis AB Locking device, camera, and method
JP7346081B2 (ja) * 2019-05-27 2023-09-19 キヤノン株式会社 撮像装置
JP7484173B2 (ja) * 2020-01-14 2024-05-16 日本精工株式会社 軸受装置及び信号処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950059A (ja) * 1995-08-04 1997-02-18 Nikon Corp ブレ補正装置
US5881325A (en) * 1995-09-13 1999-03-09 Nikon Corporation Apparatus having an image vibration reduction optical system which is guided to, and locked at, an origin position by a driving member
JPH103103A (ja) * 1996-06-18 1998-01-06 Nikon Corp ブレ補正装置及びカメラ
JPH1026786A (ja) * 1996-07-11 1998-01-27 Canon Inc レンズ鏡筒及びそれを用いた光学機器
JP4403609B2 (ja) * 1998-12-11 2010-01-27 株式会社ニコン ブレ補正装置及び光学装置
JP3928435B2 (ja) * 2002-02-08 2007-06-13 株式会社ニコン ブレ補正装置
JP3940807B2 (ja) 2002-02-19 2007-07-04 株式会社ニコン 振れ補正光学系のロック装置
JP2004145188A (ja) * 2002-10-28 2004-05-20 Nikon Corp レンズ鏡筒
JP4011576B2 (ja) * 2004-10-20 2007-11-21 株式会社タムロン アクチュエータ及びそれを備えたレンズユニット及びカメラ

Also Published As

Publication number Publication date
EP2708945A2 (en) 2014-03-19
EP2708945B1 (en) 2018-11-21
JP2014059412A (ja) 2014-04-03
EP2708945A3 (en) 2014-05-28
US20140078330A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
EP2141539B1 (en) Blurring correction device and optical apparatus
JP3044106B2 (ja) 像ぶれ防止機能付カメラ
JP3952049B2 (ja) 振れ補正機構及びこれを用いた撮像装置
TWI448812B (zh) 防震設備及包含防震設備之照相裝置
US8139291B2 (en) Image blur prevention actuator and lens unit and camera equipped therewith
CN101782710B (zh) 抖动校正单元和摄像设备
JP5963596B2 (ja) 移動体を保持するための保持機構、およびこの保持機構を備えた撮像装置
JP2009025481A (ja) 像ぶれ補正装置および撮像装置
JP5495860B2 (ja) 光学防振装置および光学機器
JP2023126838A (ja) 天体追尾装置および天体追尾方法
JP6003438B2 (ja) 手ブレ補正装置
JP6089522B2 (ja) 手ブレ補正装置
JP4893953B2 (ja) 像振れ防止用アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2010185893A (ja) 光学補正ユニット、レンズ鏡筒及び撮像装置
JP5998782B2 (ja) 手ブレ補正装置
JP2014059409A (ja) 手ブレ補正装置
JPH11109435A (ja) 補正光学装置及び防振装置
JP6149366B2 (ja) 角速度角度位置信号算出装置およびブレ補正装置
JP6303741B2 (ja) センサ出力の温度補正装置
JP4893954B2 (ja) 像振れ防止用アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP6808370B2 (ja) レンズ鏡筒およびそれを有する光学機器
JPH06153064A (ja) 防振装置
JP5593963B2 (ja) 振れ補正装置及び光学機器
JP4618004B2 (ja) 撮像装置
JP3576197B2 (ja) カメラの防振装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250