JP5998926B2 - 電流モデル作成方法及びcad装置 - Google Patents

電流モデル作成方法及びcad装置 Download PDF

Info

Publication number
JP5998926B2
JP5998926B2 JP2012288437A JP2012288437A JP5998926B2 JP 5998926 B2 JP5998926 B2 JP 5998926B2 JP 2012288437 A JP2012288437 A JP 2012288437A JP 2012288437 A JP2012288437 A JP 2012288437A JP 5998926 B2 JP5998926 B2 JP 5998926B2
Authority
JP
Japan
Prior art keywords
current
power supply
current waveform
frequency modulation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012288437A
Other languages
English (en)
Other versions
JP2014130513A (ja
Inventor
研二 和田
研二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Priority to JP2012288437A priority Critical patent/JP5998926B2/ja
Publication of JP2014130513A publication Critical patent/JP2014130513A/ja
Application granted granted Critical
Publication of JP5998926B2 publication Critical patent/JP5998926B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、チップ電源の電流モデルを作成することに関する。
近年、LSIの試作後の不具合発生リスクを低減するために、LSI設計途中における電源ノイズ量及び不良輻射量を予測する手段として、シミュレーションが活用されている。設計したLSIの電源ノイズをシミュレーションするためのモデルは、LSIの内部回路用のチップ電源モデル、パッケージ用のPKG電源モデル、プリント基板用のPCB電源モデルで構成されている。電源ノイズ量及び電磁放射量のシミュレーションには、チップ電源モデルが必要とされ、チップ動作による電源電流がノイズ源として構成されている必要がある。
回路の出力電流の周波数及びその波形のシフト量が電磁輻射ノイズを決定する支配的なファクターであることに着目し、出力電流の周波数及びシフト量が同じである複数の回路を1つのスイッチング・セルに束ねてモデリングを行うことによって、モデル化された回路を小規模化でき、シミュレーションにより実測結果に近い結果を得ることできる電磁輻射ノイズの解析方法がある。
また、電子機器の設計において、クロック周波数変調回路を有するクロック信号発生器の候補を抽出し、候補となったクロック信号発生器の仕様から電磁妨害抑制効果を推測して、推定した電磁妨害抑制効果が目標とする効果を満足したクロック信号発生器を選択して使用する等が提案されている。
特開2008−97392号公報 特開2003−150660号公報
前述した複数の回路を束ねて小規模にモデル化する手法では、周波数変調を考慮した電流波形が作成されない。また、不要輻射の対策技術として、クロック周波数を変調させるSSCG(Spread Spectrum Clock Generator)回路等が用いられ、クロック周期を微量にずらすことで、不要輻射のピークを減らす効果を得ることができる。そのような観点から、前述した仕様から推定した電磁妨害抑制効果が目標とする効果を満足するクロック信号発生器を選択して電子機器を設計する手法を用いることが考えられるが、この手法では、設計後の電子機器のシミュレーションにおいて、その電磁妨害抑制効果を確認することができないと言った問題があった。
1つの側面において、本発明の目的は、周波数変調による不要輻射の低減効果をシミュレーションで確認可能な、周波数変調を再現したチップ電源の電流モデルを作成することである。
本実施例の一態様によれば、電流モデル作成方法は、記憶部に格納された周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工し、前記加工することによって得た変調済みの電源電流データを含むチップ内電源電流データを電流モデルとして前記記憶部に出力する手順をコンピュータが実行する。
また、上記課題を解決するための手段として、電流モデルを作成するCAD装置、上記手順をコンピュータに実行させる電流モデル作成プログラム、及び、その電流モデル作成プログラムを記録した記録媒体とすることもできる。
本実施例の一態様によれば、電源ノイズモデルの電流波形が発生するタイミングを、周波数変調データに基づいて各サイクル毎に調整して電流波形モデルを加工することによって、チップ電源の電流モデルの作成時間を短縮することができる。
電源ノイズをシミュレーションするための電源モデルの概念図である。 CAD装置のハードウェア構成を示す図である。 CAD装置の機能構成例を示す図である。 SSCGによって変調周波数を複合した例を示す図である。 Δtn算出部による処理を説明するための図(その1)である。 Δtn算出部による処理を説明するための図(その2)である。 電流波形加工部による処理を説明するための図である。 LSIチップの構成例を示す図である。 SDC定義例を説明するための図である。 SDC定義例を説明するための図である。 グループ化の結果例を示す図である。 周波数変調データと周波数変調割付データの定義例を示す図である。 Δtn算出結果の例を示す図である。 電源波形加工部による処理例を説明するための図である。
以下、本発明の実施の形態を図面に基づいて説明する。本実施例は、周波数変調による不要輻射の低減効果をシミュレーションで確認可能な、周波数変調を再現したチップ電源電流モデルを作成するものである。
図1は、電源ノイズをシミュレーションするための電源モデルの概念図である。図1において、電源モデル1は、LSIの内部回路用のチップ電源モデル1aと、パッケージ用のPKG電源モデル1bと、プリント基板用のPCB電源モデル1cとを有する。
チップ電源モデル1aは、SSCG(Spread Spectrum Clock Generator)等により周波数変調され、電源ノイズが抑制されたモデルであり、チップ電源モデル1aのチップ電源電流2は、周波数変調された電流波形を示す。
周波数変調は、一般的に変調対象のクロック周波数に対して、非常に低い変調周波数(例えば、24KHz等)で周期変動させることである。この周波数変調によって、Cycle-to-Cycleジッタの増加を抑制させる。
そのため、周波数変調を再現した電流波形を作成するには、長時間の電流を作り出す必要がある。例えば、変調周波数24KHzの場合、41666nsecの電流波形が必要となる。1000nsecの電流波形を作成するのに、1週間程の工数を要する。従って、周波数変調した電流波形を再現するのは、通常、現実的な作業ではない。
また、周波数変調するためのSSCG(Spread Spectrum Clock Generator)では変調周波数を複合する機能があり、それを再現するには複数の変調周期を含む電流を作り出すために、更に長時間の電流が必要となる。
後述される本実施例に係る処理は、チップ電源モデル1aのチップ電源電流2に関して、周波数変調された電流波形を短時間で再現可能とする。本実施例に係る処理は、CAD(Computer-Aided Design)装置として機能する、LSI(Large Scale Integration)等の電子回路を設計するためのコンピュータ装置によって実行される。
図2は、CAD装置のハードウェア構成を示す図である。図2において、CAD装置100は、コンピュータによって制御される端末であって、CPU(Central Processing Unit)11と、主記憶装置12と、補助記憶装置13と、入力装置14と、表示装置15と、出力装置16と、ドライブ18とを有し、バスBに接続される。
CPU11は、主記憶装置12に格納されたプログラムに従ってCAD装置100を制御する。主記憶装置12には、RAM(Random Access Memory)等が用いられ、CPU11にて実行されるプログラム、CPU11での処理に必要なデータ、CPU11での処理にて得られたデータ等を格納する。また、主記憶装置12の一部の領域が、CPU11での処理に利用されるワークエリアとして割り付けられている。
補助記憶装置13には、ハードディスクドライブが用いられ、各種処理を実行するためのプログラム等のデータを格納する。補助記憶装置13に格納されているプログラムの一部が主記憶装置12にロードされ、CPU11に実行されることによって、各種処理が実現される。記憶部130は、主記憶装置12及び/又は補助記憶装置13を有する。
入力装置14は、マウス、キーボード等を有し、ユーザがCAD装置100による処理に必要な各種情報を入力するために用いられる。表示装置15は、CPU11の制御のもとに必要な各種情報を表示する。出力装置16は、プリンタ等を有し、ユーザからの指示に応じて各種情報を出力するために用いられる。
CAD装置100によって行われる処理を実現するプログラムは、例えば、CD−ROM(Compact Disc Read-Only Memory)等の記憶媒体19によってCAD装置100に提供される。即ち、プログラムが保存された記憶媒体19がドライブ18にセットされると、ドライブ18が記憶媒体19からプログラムを読み出し、その読み出されたプログラムがバスBを介して補助記憶装置13にインストールされる。そして、プログラムが起動されると、補助記憶装置13にインストールされたプログラムに従ってCPU11がその処理を開始する。尚、プログラムを格納する媒体としてCD−ROMに限定するものではなく、コンピュータが読み取り可能な媒体であればよい。コンピュータ読取可能な記憶媒体として、CD−ROMの他に、DVDディスク、USBメモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリであっても良い。
図3は、CAD装置の機能構成例を示す図である。図3において、CAD装置100は、処理部として、電流波形抽出部41と、電源間容量抽出部42と、電源配線抵抗抽出部43と、電圧ドロップ解析部44と、電圧収束判定部45と、Δtn算出部46と、電流波形加工部47と、モデル出力部48とを有する。CPU11が対応するプログラムを実行することによって各処理部41〜48として機能する。
また、記憶部130には、ネットリスト3e、クロック周期3d、インスタンス動作タイミング3c、セル電流波形テーブル3b、チップ内配置配線データ3a、セル電源容量ライブラリ3f、配線シート抵抗3g、PKG電源RL3h、チップ内電源配線抵抗3i、チップ内電源間容量3j、ドロップ電圧3k、チップ内電源電流データ3m、周波数変調データ3n、周波数変調割付データ3p、Δtnデータ3q、チップ内電源電流データ3r、変調済電流モデル3t、チップ電源RCモデル3s等が記憶される。
電流波形抽出部41は、任意チップ領域内の電流波形を抽出する処理部である。任意チップ領域内の電流波形を抽出する際に、クロック系統毎にわけて電流波形が生成される。電流波形抽出部41では、クロック周波数の数サイクル分などの短い時間の電流波形を作成する。本実施例では、後述されるように、クロック周波数の所定サイクル分の電流波形で周波数変調を考慮した電流波形を作成することができるため、処理時間を大幅に短縮できる。
具体的には、電流波形抽出部41によって、以下のステップが実行される。
1)各インスタンスの負荷容量をチップ内配置配線データ3aから取得する。
2)セル電源波形テーブル3bから各インスタンスの上り(rise)/下り(fall)電流波形を取得する。セル電源波形テーブル3bには、セル、電源電圧、外部負荷、上り/下りの各組み合せにおける電流波形データが記憶されている。
3)クロック周波数及びインスタンス動作タイミング3cから各インスタンスの立ち上り/立ち下り変化時刻を求め、動作条件を反映した各インスタンスの電流波形を生成する。
4)クロック周期3dと、ネットリスト3eとを用いて、各インスタンスの電流波形を、クロック系統毎に、チップ内を任意単位で分割した各領域グループの電流波形に合成する。後述されるように、電流波形加工部47では、クロック系統毎に電流波形に対して処理を行うため、クロック系統毎に電流波形がグループ分けされる。
電源間容量抽出部42は、チップ内配置配線データ3aと、セル電源容量ライブラリ3fとを参照して、任意のチップ領域内の電源間容量を抽出する処理部である。抽出されたチップ内電源間容量3jは、記憶部130に記憶される。
電源配線抵抗抽出部43は、チップ内配置配線データ3aと、配線シート抵抗3gとを参照して、任意のチップ領域間の電源配線抵抗を抽出する処理部である。抽出されたチップ内電源配線抵抗3iは、記憶部130に記憶される。
電圧ドロップ解析部44は、電流波形抽出部41によって抽出されたチップ内電源電流データ3mと、電源間容量抽出部42によって抽出されたチップ内電源間容量3jと、電源配線抵抗抽出部43によって抽出されたチップ内電源配線抵抗3iと、PKG電源RL3hとを参照することによって、各チップ領域内の電源電圧を動的に解析する処理部である。
電圧収束判定部45は、電圧ドロップ解析部44の解析結果に基づいて、電圧が収束したか否かを判断する処理部である。各インスタンスの電源電圧値の前値差分が規定値未満か否かが判定される。電圧収束判定部45が、電圧が収束していないと判断した場合、電流波形抽出部41によって、ドロップ電圧3kに基づいて、電流波形が再度抽出される。電圧収束判定部45が、電圧が収束したと判断した場合、電流波形加工部47による処理が行われる。つまり、初回解析時、又は、電圧値差分が規定値以上の場合には、電流波形抽出及び電源ドロップ解析が再度実行される。セル電源波形テーブル3bの参照値の電圧条件を変更して再処理される。
Δtn算出部46は、周波数変調データ3nと、周波数変調割付データ3pと、SDC(Synopsys Design Constraints)等のクロック周期3dとに基づいて、各クロック系統毎の各サイクルの周期ズレ量Δtnを算出する処理部である。
電流波形加工部47は、周波数変調データ3nに基づいて、各クロック系統毎の電流波形を加工する処理部である。電流波形加工部47は、電流波形の周期を微量にずらすことによって周波数変調を考慮して、電流波形を加工する。周波数変調を表現するために必要な時間まで、電流波形を繰り返して加工する。
具体的には、電流波形加工部47によって、以下のステップが実行される。
1)SSCGによる周波数変調が行われるクロック系統の電流波形かを認識する。
2)周波数変調が行われるクロック系統の場合、
2−1)電流波形抽出部41によって得られた、周波数変調がかかっていない電流波形を用いて、各サイクルの周期をΔtn算出部46によって得られたΔtnだけ補正することで、周波数変調を考慮した電流波形を生成する。
2−2)周波数変調を表現するために必要な時間まで、電流波形を繰り返して複写しながら、サイクル数に応じたΔtnで補正する。複数のSSCGがチップに搭載される場合には、最大の必要時間まで複写を繰り返す。
3)周波数変調が行われないクロック系統の場合、
3−1)周期補正を行わずに、電流波形を繰り返す。周波数変調が行われないクロック系統に対しても、電流波形の時間長を全体で合わせるために、電流波形を繰り返して複写する。
上述した電流波形加工部47による処理によって、クロック系統毎のチップ内電源電流データ3rが記憶部130に記憶される。チップ内電源電流データ3rには、周波数変調されたクロック系統に対して変調済みの電流波形を示すデータと、周波数変調されないクロック系統に対して周期補正のない電流波形を示すデータとを含む。
モデル出力部48は、最終的な電流波形、電源間容量、電源配線抵抗を、電子回路のアナログ動作をシミュレーションするソフトウェアで使用可能なデータ形式で、記憶部130にファイル出力する処理部である。ソフトウェアは、例えば、SPICE(Simulation Program with Integrated Circuit Emphasis)等である。
モデル出力部48によって、変調済電流モデル3tと、チップ電源RCモデル3sとが記憶部130に記憶される。変調済電流モデル3tは、クロック系統毎のチップ内電源電流データ3rに基づくモデルであり、チップ電源RCモデル3sは、チップ内電源間容量3jと、チップ内電源配線抵抗3iとに基づく、従来のモデルである。
ネットリスト3eは、LSIを構成するセル間の接続、機能単位のブロック間の接続を定義したデータファイルである。クロック周期3dは、クロック毎にクロック周期を定義した、例えば、SDC等のデータファイルである。インスタンス動作タイミング3cは、セル毎のタイミングを定義したデータファイルである。
セル電流波形テーブル3bは、セル毎の電流波形を定義したデータファイルである。チップ内配置配線データ3aは、LSI設計において配置配線処理後のチップ内の配置配線に係るデータを格納したデータファイルである。
セル電源容量ライブラリ3fは、セル毎に電源容量を定義したライブラリデータファイルである。配線シート抵抗3gは、配線層毎にシート抵抗を定義したデータファイルである。PKG電源RL3hは、パッケージ電源の抵抗RLを定義したデータファイルである。
チップ内電源配線抵抗3iは、電源配線抵抗抽出部43によって抽出された任意のチップ領域間の電源配線抵抗を示すデータファイルである。チップ内電源間容量3jは、電源間容量抽出部42によって抽出された任意のチップ領域内の電源間容量を示すデータファイルである。
ドロップ電圧3kは、電圧ドロップ解析部44によって解析された各チップ領域内のドロップ電圧を示すデータファイルである。チップ内電源電流データ3mは、クロック系統毎の電源電流を示す電源ノイズモデルのためのデータファイルである。
周波数変調データ3nは、図4に示すような、時刻(又はクロックサイクル)に応じたクロック周波数(又は周期、又は周期変動比率)を示したテーブルを含む。図4では、SSCGによって変調周波数を複合した例を示し、複数の変調周期4m−1、4m−2、4m−3、・・・を含んでいる。周波数変調データ3nによって、複数の周波数変調を表すテーブルが管理される。
周波数変調割付データ3pは、クロック系統毎にグルーピングされたブロック毎に、周波数変調データ3nで管理される周波数変調テーブルの割り付けを記憶したデータファイルである。
Δtnデータ3qは、Δtn算出部46によって算出された、クロック系統毎の各サイクルの周期ズレ量Δtnを示すデータファイルである。チップ内電源電流データ3rは、電流波形加工部47によって加工された周波数変調を考慮した電流波形を含み、クロック系統毎の電流波形を示すデータファイルである。
変調済電流モデル3tは、クロック系統に基づくグループ(ブロック)毎に合成した電流波形を示すデータファイルであり、変調済みの電流波形を含むモデルである。チップ電源RCモデル3sは、チップ内の電源間容量及び電源配線抵抗を表すモデルである。
上述した記憶部130に格納される種々のデータのうち、ネットリスト3e、クロック周期3d、インスタンス動作タイミング3c、セル電流波形テーブル3b、チップ内配置配線データ3a、セル電源容量ライブラリ3f、配線シート抵抗3g、PKG電源RL3h、周波数変調データ3n、周波数変調割付データ3pは、予め用意され記憶部130に格納される。
以下に、周波数変調を考慮した電流波形の作成に係るΔtn算出部46及び電流波形加工部47による処理について説明する。
図5及び図6は、Δtn算出部による処理を説明するための図である。図5において、周波数変調データ3nは、サイクル毎に周波数の周期を対応付けたテーブルであり、例えば、1サイクル目は周期100ns、2サイクル目は周期101ns、・・・、7サイクル目は周期98ns、8サイクル目は周期99ns、・・・のように示される。
このような周波数変調データ3nによって、縦軸にクロック周期、横軸に時間を示すグラフ5で表されるような変調波形5aが表現される。100nsの周期のクロックサイクル5bの場合、Δtn算出部46による算出結果は、Δtn算出結果3n−2のように示される。
Δtn算出結果3n−2では、100nsの周期のクロックサイクル5bに対する周波数変調データ3nとの差分Δtnが、1サイクル目では0ns、2サイクル目では1ns、・・・、7サイクル目では−2ns、8サイクル目では−1ns、・・・のように示される。
図6は、周波数変調データの例を示す図である。図6(A)では、各クロック系統が異なるSSCGを使用するケースの周波数変調データ3nの例を示している。この例では、SSCG−1の変調波形5a−1と、SSCG−2の変調波形5a−2に関して、サイクル毎にクロック周期を対応付けた周波数変調データ3nがそれぞれ予め記憶部130に記憶される。セルがSSCG−1のクロック系統である場合、Δtn算出部46によって、サイクル毎に、割り付けた変調波形5a−1に基づく変調周波数と、セルに入力されるクロック周波数との差分Δtnが計算される。
Δtn=変調周波数−クロック周波数
図6(B)では、各クロック系統が同じSSCGを使用するが、周波数が異なるケースの周波数変調データ3nの例を示している。同じSSCGからのクロック信号が分周又は逓倍される場合等である。この例では、SSCG−3の変調波形5a−3は、周期毎の変動比(以下、周期変動比と言う。)で示され、予め記憶部130に格納される。Δtn算出部46によって、同じSSCG−3の各クロック系統におけるセルに対して、各クロック系統毎の基準クロック周期を使用して、SSCG−3の変調波形5a−3で示される周期変動比に基準クロック周期を乗算することによって、Δtnが算出される。
Δtn=周期変動比×基準クロック周期
次に、電流波形加工部47による処理について説明する。図7は、電流波形加工部による処理を説明するための図である。図7(A)では、電流波形加工部47による加工前の電流波形、即ち、周波数変調前の電流波形を示している。電流波形加工部47は、チップ内電源電流データ3mを参照して、クロック系統毎にセル電源電流7bを取得して合成波形7cを作成する。
例えば、電流波形加工部47は、SSCG7mのクロック系統のチップ内電源電流データ3mを記憶部130から取得して、セル電源電流7bを合成する。一定周期T0の基準クロック7aに同期した電源電流の合成波形7cが作成される。
そして、電流波形加工部47は、合成波形7cを用いて、SSCG7mのΔtnデータ3qを参照して、T0/2周期毎にΔtn/2を加算して周波数変調後の電流波形7pを作成する。チップ内電源電流データ3mは所定周期分の電流波形のみを示すため、電流波形7pを作成する際には、周波数変調を再現するのに十分な時間長となるまで、合成波形7cを繰り返して複製し、T0/2周期毎にΔtn/2を加算する。比較的単純な処理を繰り返すのみで、長時間の電流波形を短時間で作り出すことができるので、周波数変調後の電流波形7pを作成するための処理負担を軽減することができる。
上記より、本実施例におけるΔtn算出部46及び電流波形加工部47による処理が行われない関連技術の場合、電流波形抽出において、クロック周波数は一定としており、周波数変調を考慮できないのに対して、本実施例では、周波数変調を考慮したチップ電流波形を生成することができる。
また、関連技術では、電流波形抽出において、仮に、周波数変調を考慮した電流波形を作り出した場合、長時間な電流波形となるため、電圧ドロップ解析の計算時間が膨大となるため、限られた時間内にモデルを作成することができない。一方、本実施例では、電源ドロップ解析処理の後に、電流波形の加工処理を行うため、電源ドロップ解析の計算時間を増加させることなく、周波数変調を考慮したチップ電流波形を生成できる。
次に、本実施例に係るCAD装置100によるチップ電源モデルの作成処理の例について説明する。
図8は、LSIチップの構成例を示す図である。図8に示すLSIチップ8の構成例では、ネットリスト3e等で定義されるセル/モジュール、インスタンス名、セル端子名、外部端子名の一例が対応付けられている。SSCG1A、CPU1A、MC1A、SSCG1B、CODEC1Aが、セル/モジュール名である。inbuf1、inbuf2、sscg1、sscg2、buf1、buf2、buf3、buf4、buf5、cpu1、memcon1、codec1、outbuf1、outbuf2、outbuf3が、インスタンス名である。CLK1、CLK2、DAT1、DAT2、DAT3が、外部端子名である。また、セル端子名は、入力側をA、出力側をX等で示している。
また、CLK1に入力される周波数は20MHz、SSCG1Aから出力される周波数は200MHz、1/2分周回路から出力される周波数は100MHzであり、CLK2に入力される周波数は10MHz、SSCG1Bから出力される周波数は50MHzである。
LSIチップ8において、CLK1から入力された周波数20MHzの信号は、inbuf1を介してsscg1で10逓倍され200MHzで出力される。sscg1から出力された周波数200MHzの信号は、buf1を介して分岐する。分岐後、周波数200MHzの信号は、buf2を介してcpu1に供給された後、outbuf1を介してDAT1から外部へ出力される。
また、分岐後buf3を介した周波数200MHzの信号は、1/2分周回路のdff1によって100MHzに分周され、memcon1に供給される。その後、outbuf2を介してDAT2から外部へ出力される。
一方、CLK2から入力された周波数10MHzの信号は、inbuf2を介してsscg2で5逓倍され50MHzで出力される。sscg2から出力された周波数50MHzの信号は、buf4及びbuf5を介して、codec1に供給される。その後、outbuf3を介してDAT3から外部へ出力される。
次に、LSIチップ8の例を用いて、クロック系統毎のグループ分けについて図9、図10、図11で説明する。
図9及び図10は、SDC定義例を説明するための図である。図9では、図10のSDCで定義されるクロック系統との対応付けを、(C1)、(C2)、(C3)、(C4)、及び(C5)で示している。クロック系統定義(C1)から(C5)によって、所定の周波数を最初に出力する端子が特定される。
図10より、クロック系統定義(C1)から(C4)の各々では、クロック系統名、クロック周期、信号の立ち上り/立ち下り時刻、クロックの出力インスタンス/ピン名等が定義される。クロック系統定義(C5)は、dff1の1/2分周回路によって周波数が変化するポイントを定義し、新たなクロック系統名、分周元のクロック系統のインスタンス/ピン名、分周元のクロックの何番目のエッジで変化するかの指定と、分周クロックの出力インスタンス/ピン名等が定義される。
上述のように定義されたクロック系統に基づいてグループ化すると、例えば、図11に示すような結果が得られる。図11は、グループ化の結果例を示す図である。図11において、inbuf1、sscg1が(C1)clkin1のクロック系統でグループ化され、inbuf2、sscg2が(C2)clkin2のクロック系統でグループ化される。また、buf1、buf2、buf3、cpu1、outbuf1、dff1が(C3)sscgout1のクロック系統でグループ化され、buf4、buf5、codec1、outbuf3が(C4)sscgout2のクロック系統でグループ化される。更に、memcon1、outbuf2が(C5)memclkのクロック系統でグループ化される。
図12は、周波数変調データと周波数変調割付データの定義例を示す図である。図12において、SSCGマクロ(SSCG1A、SSCG1B)毎に、基準サイクルA、Bに対して周期変動比を対応付けた周波数変調データ3nを予め用意し記憶部130に格納する。
この例では、SSCG1A用に、基準サイクルAにおいて、1サイクル目では0%、2サイクル目では0.1%、・・・、9999サイクル目では−0.1%、10000サイクル目では0%の周期変動比を示す周波数変調データ3nが用意される。
また、SSCG1B用に、基準サイクルBにおいて、1サイクル目では0%、2サイクル目では1%、・・・、4999サイクル目では−1%、5000サイクル目では0%の周期変動比を示す周波数変調データ3nが用意される。
そして、クロック系統に基づいて、(C3)sscgout1には、SSCG1Aの周波数変調データ3nが割付けされ、(C4)sscgout2には、SSCG1Bの周波数変調データ3nが割付けされ、(C5)memclkには、SSCG1Aの周波数変調データ3nが割付けされた周波数変調割付データ3pが用意される。
このように、周波数変調データ3nと周波数変調割付データ3pとによって、SDCで定義された各クロック系統名と周波数変調データとが関連付けられる。
次に、Δtn算出部46によるΔtn算出結果の例を図13で説明する。図13は、Δtn算出結果の例を示す図である。図13において、Δtn算出部46によって、サイクル毎の基準サイクルの周波数に対する変調後の周波数との差分Δtnが計算される。
(C3)sscgout1の計算結果では、1サイクル目の差分Δtnは0ps、2サイクル目の差分Δtnは+5ps、・・・、9999サイクル目の差分Δtnは−5ps、10000サイクル目の差分Δtnは0psであることを示している。(C4)sscgout2の計算結果では、1サイクル目の差分Δtnは0ps、2サイクル目の差分Δtnは+200ps、・・・、4999サイクル目の差分Δtnは−200ps、5000サイクル目の差分Δtnは0psであることを示している。(C5)memclkの計算結果では、1サイクル目の差分Δtnは0ps、2サイクル目の差分Δtnは+10ps、・・・、9999サイクル目の差分Δtnは−10ps、10000サイクル目の差分Δtnは0psであることを示している。
次に、上記LSIチップ8を例とした場合の、電源波形加工部47による処理について説明する。図14は、電源波形加工部による処理例を説明するための図である。図14において、チップ内電源電流データ3mは、電流波形抽出部41によって抽出されたデータであり、クロック系統名を用いてチップ内電源電流データ3mをクロック系統毎に分類可能である。
各クロック系統のチップ内電源電流データ3mに対して、クロック周期3d(SDC定義)とΔtnデータとを用いて、図7で説明した方法で周波数変調後のチップ内電源電流データ3rを作成する。この際、処理時間の観点から、メインクロックの数十サイクル程度分の電源電流が生成されている。この例では、50MHzで動作するcodec1の10サイクルに当たる200ns分の電流波形を作成したとする。
電源波形加工部47による電流波形加工処理では、Δtnデータのサイクル数、及び、基準クロック周期T0を参照して、周波数変調後の電流波形時間を各クロック系統毎に算出し、最大時間を得る。
周波数変調後の電流波形時間、及び最大電流波形時間は、下記のように求められる。
周波数変調後の電流波形時間
={initial_delay}+{Δtnデータのサイクル数}×{T0}
最大電流波形時間=各クロック系統の周波数変調後の電流波形時間の最大値
ここで、{initial_delay}は、時刻0から1回目のクロック遷移までの任意の初期時間である。この例では、{initial_delay}=0とする。
図11の例では、周波数変調後の電流波形時間は、以下のようになる。
sscgout1の周波数変調後の電流波形時間
=0+10000×5000ps
=50μsec
sscgout2の周波数変調後の電流波形時間
=0+5000×2000ps
=10μsec
memclkの周波数変調後の電流波形時間
=0+10000×10000ps
=100μsec
従って、最大電流波形時間は、100μsecとなる。
各クロック系統について、周波数変調前の電流波形(200ns分)を、最大電流波形時間分を繰り返して複製する。200ns分の電流波形を500回繰り返して複製して、変調後の電流波形が作成される。
この際に、Δtnデータが存在するクロック系統については、図7で説明した方法で周波数変調の加工が施される。
本実施例の適用の無い場合に、500倍の長さの電流波形を作成するには、例えば、200ns分の電流波形を作成する処理時間が10時間であった場合、500倍の5000時間の処理時間が必要となる。
一方、上述したように本実施例における電流波形の加工では例えば、1時間程度と、非常に単時間で処理が行えるため、10時間+1時間=11時間の処理時間で周波数変調後の電流波形を作成することができる。
本実施例によれば、電源ノイズモデルの電流波形が発生するタイミングを、周波数変調データに基づいて各サイクル毎に調整して電流波形モデルを加工することによって、チップ電源の電流モデルの作成時間を短縮することができる。
本発明は、具体的に開示された実施例に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
以上の実施例を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
記憶部に格納された周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工し、
前記チップ内電源電流データを加工することによって得られた変調済みの電流波形を含む電流モデルを前記記憶部に出力する
手順をコンピュータが実行する電流モデル作成方法。
(付記2)
クロック系統毎に供給される基準クロックのクロック周期に基づくサイクル毎に、前記周波数変調データを用いて、前記電流波形が発生するタイミングを調整することを特徴とする付記1記載の電流モデル作成方法。
(付記3)
前記周波数変調データは、前記クロック系統毎の周波数変調を表すことを特徴とする付記2記載の電流モデル作成方法。
(付記4)
前記周波数変調データは、前記クロック系統毎に前記基準クロックに対する周期変動比を表すことを特徴とする付記2記載の電流モデル作成方法。
(付記5)
前記周波数変調データと前記クロック周期とから、前記基準クロックとの周期の差分を求め、該差分で前記タイミングの調整を行うことを特徴とする付記3又は4記載の電流モデル作成方法。
(付記6)
前記記憶部は、クロック系統毎の周波数変調データを前記クロック周期の定義に基づくクロック系統名と対応付けた周波数変調割付データを記憶し、
前記各クロック系統毎の前記クロック周期と該クロック系統名に対応づけられた前記周波数変調データとによって、前記差分を求めることを特徴とする付記5記載の電流モデル作成方法。
(付記7)
前記チップ内電源電流データに基づく所定周期分の電流波形を繰り返し複製しながら、前記電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整することを特徴とする付記1乃至6のいずれか一項記載の電流モデル作成方法。
(付記8)
電源ノイズを低減させる周波数変調データを記憶する記憶部と、
前記記憶部に格納された前記周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工する電流波形加工部と、
前記電流波形加工部によって得られた変調済みの電流波形を含む電流モデルを前記記憶部に出力するモデル出力部と、
を有することを特徴とするCAD装置。
(付記9)
クロック系統毎に供給される基準クロックのクロック周期に基づくサイクル毎に、前記周波数変調データを用いて、前記電流波形が発生するタイミングを調整することを特徴とする付記8記載のCAD装置。
(付記10)
記憶部に格納された周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工し、
前記加工することによって得た変調済みの電流波形を含む電流モデルを前記記憶部に出力する
処理をコンピュータに実行させる電流モデル作成プログラム。
(付記11)
クロック系統毎に供給される基準クロックのクロック周期に基づくサイクル毎に、前記周波数変調データを用いて、前記電流波形が発生するタイミングを調整することを特徴とする付記10記載の電流モデル作成プログラム。
1 電源モデル
1a チップ電源モデル
1b PKG電源モデル
1c PCB電源モデル
3a チップ内配置配線データ
3b セル電流波形テーブル
3c インスタンス動作タイミング
3d クロック周期
3e ネットリスト
3f セル電源容量ライブラリ
3g 配線シート抵抗
3h PKG電源RL
3i チップ内電源配線抵抗
3j チップ内電源間容量
3m チップ内電源電流データ
3n 周波数変調データ
3p 周波数変調割付データ
3q Δtnデータ
3r チップ内電源電流データ
3t 変調済電流モデル
3s チップ電源RCモデル
11 CPU
12 主記憶装置
13 補助記憶装置
14 入力装置
15 表示装置
16 出力装置
B バス
18 ドライブ
19 記憶媒体
41 電流波形抽出部
42 電源間容量抽出部
43 電源配線抵抗抽出部
44 電圧ドロップ解析部
45 電圧収束判定部
46 Δtn算出部
47 電流波形加工部
48 モデル出力部
100 CAD装置

Claims (6)

  1. 記憶部に格納された周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工し、
    前記チップ内電源電流データを加工することによって得られた変調済みの電流波形を含む電流モデルを前記記憶部に出力する
    手順をコンピュータが実行する電流モデル作成方法。
  2. クロック系統毎に供給される基準クロックのクロック周期に基づくサイクル毎に、前記周波数変調データを用いて、前記電流波形が発生するタイミングを調整することを特徴とする請求項1記載の電流モデル作成方法。
  3. 前記周波数変調データは、前記クロック系統毎の周波数変調を表すことを特徴とする請求項2記載の電流モデル作成方法。
  4. 前記周波数変調データは、前記クロック系統毎に前記基準クロックに対する周期変動比を表すことを特徴とする請求項2記載の電流モデル作成方法。
  5. 前記周波数変調データと前記クロック周期とから、前記基準クロックとの周期の差分を求め、該差分で前記タイミングの調整を行うことを特徴とする請求項3又は4記載の電流モデル作成方法。
  6. 電源ノイズを低減させる周波数変調データを記憶する記憶部と、
    前記記憶部に格納された前記周波数変調データを用いて、電源ノイズモデルの電流波形が発生するタイミングを各サイクル毎に調整して、チップ内電源電流データを加工する電流波形加工部と、
    前記電流波形加工部によって得られた変調済みの電流波形を含む電流モデルを前記記憶部に出力するモデル出力部と、
    を有することを特徴とするCAD装置。
JP2012288437A 2012-12-28 2012-12-28 電流モデル作成方法及びcad装置 Expired - Fee Related JP5998926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288437A JP5998926B2 (ja) 2012-12-28 2012-12-28 電流モデル作成方法及びcad装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288437A JP5998926B2 (ja) 2012-12-28 2012-12-28 電流モデル作成方法及びcad装置

Publications (2)

Publication Number Publication Date
JP2014130513A JP2014130513A (ja) 2014-07-10
JP5998926B2 true JP5998926B2 (ja) 2016-09-28

Family

ID=51408840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288437A Expired - Fee Related JP5998926B2 (ja) 2012-12-28 2012-12-28 電流モデル作成方法及びcad装置

Country Status (1)

Country Link
JP (1) JP5998926B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335567B (zh) * 2015-11-05 2018-08-03 清华大学 适应非曼哈顿形体的随机行走电容参数提取方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943326B2 (ja) * 2000-11-27 2007-07-11 松下電器産業株式会社 不要輻射解析方法および不要輻射解析装置
JP5029096B2 (ja) * 2007-03-30 2012-09-19 富士通株式会社 電源ノイズモデル生成方法及び電源ノイズモデル生成装置
JP2009042905A (ja) * 2007-08-07 2009-02-26 Seiko Epson Corp 集積回路装置のノイズ解析方法、集積回路装置のノイズ解析システム、集積回路装置、電子機器、集積回路装置のノイズ解析プログラム及び情報記憶媒体

Also Published As

Publication number Publication date
JP2014130513A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
JP4946573B2 (ja) デカップリングセル配置方法及びデカップリングセル配置装置
JP2002222230A (ja) 不要輻射最適化方法および不要輻射解析方法
JP2003076740A (ja) 集積回路チップにおける電力分配を分析する方法とシステム
JP4554509B2 (ja) タイミング解析装置及びタイミング解析手法
CN110941934A (zh) 一种fpga原型验证开发板分割仿真系统、方法、介质及终端
CN109902318B (zh) 生成标准延时格式文件的方法和装置
US20180260508A1 (en) Method And Apparatus For Modeling Delays In Emulation
US20140306746A1 (en) Dynamic clock skew control
US7865795B2 (en) Methods and apparatuses for generating a random sequence of commands for a semiconductor device
JP5998926B2 (ja) 電流モデル作成方法及びcad装置
US8713500B2 (en) Computer program and apparatus for evaluating signal propagation delays
US20030074642A1 (en) Clock skew verification methodology for grid-based design
JP5119506B2 (ja) 半導体集積回路の設計装置、そのデータ処理方法、およびその制御プログラム
US8407642B2 (en) Leak current calculation apparatus and method for calculating leak current
JP2008287666A (ja) 回路動作検証装置、半導体集積回路の製造方法、回路動作検証方法、制御プログラムおよび可読記録媒体
JP2006209432A (ja) セルインスタンス生成方法
JP2006318121A (ja) 遅延付加rtl論理シミュレーション方法および装置
JP2013190937A (ja) 半導体集積回路の電源ノイズ解析装置及び電源ノイズ解析方法
JP2011237989A (ja) 半導体集積回路の設計装置、その設計方法、及びその設計プログラム
WO2011121796A1 (en) Method and apparatus for precision tunable macro-model power analysis
JP4855283B2 (ja) 半導体集積回路の設計装置
JP2009140216A (ja) 回路解析方法、回路解析プログラム、及び回路解析装置
JP5390464B2 (ja) シミュレーション装置、シミュレーション装置の制御方法およびプログラム
JP2006039614A (ja) タイミング制約情報の作成方法及び作成システム
CN112580280B (zh) 逻辑电路的优化方法、优化装置以及存储介质

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees