JP5987903B2 - 送電網インピーダンス検出のための方法及び装置 - Google Patents

送電網インピーダンス検出のための方法及び装置 Download PDF

Info

Publication number
JP5987903B2
JP5987903B2 JP2014513699A JP2014513699A JP5987903B2 JP 5987903 B2 JP5987903 B2 JP 5987903B2 JP 2014513699 A JP2014513699 A JP 2014513699A JP 2014513699 A JP2014513699 A JP 2014513699A JP 5987903 B2 JP5987903 B2 JP 5987903B2
Authority
JP
Japan
Prior art keywords
voltage waveform
tone signal
signal
correlation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014513699A
Other languages
English (en)
Other versions
JP2014523520A (ja
Inventor
アンドリュー バーンズ,
アンドリュー バーンズ,
ブライアン アッカー,
ブライアン アッカー,
Original Assignee
エンフェイズ エナジー インコーポレイテッド
エンフェイズ エナジー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エンフェイズ エナジー インコーポレイテッド, エンフェイズ エナジー インコーポレイテッド filed Critical エンフェイズ エナジー インコーポレイテッド
Publication of JP2014523520A publication Critical patent/JP2014523520A/ja
Application granted granted Critical
Publication of JP5987903B2 publication Critical patent/JP5987903B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

[0001]本開示の実施形態は、一般には分散型発電システムの単独運転防止に関し、詳細には単独運転防止のための送電網インピーダンス変化の検出に関する。
[0002]太陽電池パネル、又は光起電力(PV)モジュールは、受け取った日光からのエネルギーを直流(DC)に変換する。PVモジュールは、それらが生産する電気エネルギーを貯蔵することができないため、エネルギーは、電池又は揚水電力蓄電などのエネルギー貯蔵システムに分散されるか、又は負荷によって分散されるかのいずれかがなされなければならない。生産されたエネルギーを使用する1つの選択肢は、インバータを用いて、DC電流を交流(AC)に変換し、このAC電流を商用AC電力網に結合させるないしは流すことである。その場合、かかる分散型発電(DG)システムによって生産された電力を商用電力会社に販売することができる。
[0003]ある条件下で、送電網に接続されたDGシステムは、電力送電網から切り離され、「単独運転」として知られている潜在的に危険な状態に陥ることがある。単独運転をしている間、電力会社は、DGシステム単独運転部の電圧及び周波数を制御することができず、単独運転部に結合された需要家の機器に対して損傷を与える可能性を引き起こす。さらに、単独運転部は、電力線に電圧がかかったままの状態にする一方で電力線がすべてのエネルギー源から切り離されたと見なされることによって、送電線の作業者又は一般大衆に対して危険を引き起こす可能性がある。単独運転の潜在的危険性を軽減するために、関連する規格は、DGシステムにおけるインバータが電力送電網の喪失を検出し、インバータを運転停止することを要求する。単独運転状態を検出する一環として、一部の規格は、インバータがある一定の期間内に送電網上の瞬間的なインピーダンス変化、例えば5秒以内に送電網上の瞬間的な1オームのインピーダンス変化を検出することができることを要求する場合がある。そのため、市販のインバータはすべて、そうしたインバータに基づく単独運転防止能力を装備していなければならない。
[0004]したがって、当技術分野において、送電網に接続されたインバータによって送電網インピーダンスの変化を効率的に検出するための方法及び装置が必要とされている。
[0005]本発明の実施形態は、一般にはインピーダンス変化に対してAC電力線を監視するための方法及び装置に関する。一実施形態において、本方法は、AC電力線に結合される(couple)AC電流にトーンを重畳するステップであって、このトーンが、AC電力線上のAC電圧波形よりも高い周波数であるステップと、AC電圧波形をサンプリングすることによって得られるサンプリングされたAC電圧波形に対して相関処理を施して相関信号を生成するステップと、相関信号の特性に少なくとも1つの変化が生じるかどうかを判定するステップとを含む。
[0006]本発明の上記の特徴が詳細に理解されるように、上で簡潔に要約した本発明のより具体的な説明が、実施形態を参照することによって得られ、その一部が添付図面において示される。しかし、添付図面は本発明の典型的な実施形態のみを示し、したがって、その範囲を限定していると考えられるべきではなく、その理由は本発明が他の等しく効果的な実施形態を認めうるからであることに留意されたい。
本発明の1つ又は複数の実施形態による分散型発電(DG)のためのシステムのブロック図である。 本発明の1つ又は複数の実施形態によるインバータのブロック図である。 本発明の1つ又は複数の実施形態による単独運転状態を示す送電網インピーダンスの変化を検出するため方法の流れ図である。 本発明の1つ又は複数の実施形態による複数の結合されたインバータのうちのあるインバータを動作させるための方法の流れ図である。 本発明の1つ又は複数の実施形態による変調された電流波形のグラフである。 本発明の1つ又は複数の実施形態による注入された変調された電流波形によって生じる、誇張された送電網電圧波形歪のグラフである。
[0013]図1は、本発明の1つ又は複数の実施形態による分散型発電(DG)用のシステム100のブロック図である。この図は、単に、無数の可能なシステム構成の一変形形態を表すに過ぎない。本発明は、様々な分散型発電環境及びシステムにおいて機能することができる。
[0014]システム100は、一括してインバータ102と呼ばれる複数のインバータ(すなわち、電力変換装置)102−1、102−2...102−N、一括してPVモジュール104と呼ばれる複数のPVモジュール104−1、104−2...104−N、ACバス、及び負荷センター108を備える。
[0015]各インバータ102−1、102−2...102Nは、それぞれ、一対一対応で、PVモジュール104−1、104−2...104−Nに接続される。インバータ102は、ACバス106にさらに接続され、このACバス106が負荷センター108に接続される。負荷センター108は、AC商用電力送電網分配システム(「送電網」と呼ばれる)からの引込み電力線とACバス106間の接続部を収容する。インバータ102は、PVモジュール104によって生成されたDC電力をAC電力に変換し、AC商用電力送電網電圧と同相のAC電流を計量しながら出力する。システム100は、生成されたAC電力を、負荷センター108を介して送電網に結合(授受)させる。さらに、生成されたAC電力は、負荷センター108を介して商用及び/若しくは居住システムに直接供給されてもよく、並びに/又は後で使用するために貯蔵されてもよい(例えば、生成されたエネルギーは、電池、加熱水、水力発電の揚水、HOから水素への変換などを利用して貯蔵されてもよい)。一部の代替の実施形態において、複数のPVモジュール104は、単一のインバータ102に接続されてもよく、例えば、各PVモジュール104は、単一の集中化されたインバータ102に接続されてもよい。他の実施形態において、PVモジュール104に加えて、又はPVモジュール104の代わりに、1つ又は複数の他の適切なDC電源がインバータ102に接続されてもよく、例えば、任意のタイプの再生可能エネルギー源(例えば、風力タービン、水力発電システム、又は同様の再生可能エネルギー源)、電池などが、DC入力を供給するためにインバータ102に接続されてもよい。
[0016]本発明の1つ又は複数の実施形態によると、インバータ102−1、102−2...102−Nのそれぞれは、単独運転状態を示す送電網インピーダンス変化を検出し、それに応じてインバータ102を制御する送電網インピーダンス検出モジュール110−1、110−2...110−Nをそれぞれ備える。そうした送電網インピーダンス変化を検出するために、送電網インピーダンス検出モジュール110は、以下に述べるように、インバータの電流出力に高周波のトーンを重畳し、サンプリングされたAC電圧波形に対して特定周波数において相関処理を施し、相関結果における変化、例えば相関信号の振幅、位相、実部、虚部、又はそれらの組み合わせのうちの少なくとも1つにおける変化に対して監視を行なう。
[0017]1つ又は複数の代替の実施形態において、インバータ102は、追加的に又は代替的に、他の適切なDC源、例えば他の再生可能エネルギー源(例えば風力発電所、水力発電システムなど)、電池などから電力を受け取ることができる。
[0018]図2は、本発明の1つ又は複数の実施形態によるインバータ102のブロック図である。インバータ102は、電力変換モジュール202、コントローラ204、及びAC電圧サンプリング回路206を備える。
[0019]電力変換モジュール202は、2つの入力端子を介してPVモジュール104に、2つの出力端子を介して商用電力送電網に接続される。さらに、電力変換モジュール202は、コントローラ204に接続され、コントローラ204からの制御及び切り替え信号に従ってPVモジュール104からのDC電力をAC電力に変換する。生成されたAC電力は、AC送電網電圧と同相となるように商用電力送電網に結合される。
[0020]AC電圧サンプリング回路206は、2つの入力端子を介して商用電力送電網に(すなわち、電力変換モジュール202の出力において)、そして出力端子を介してコントローラ204に接続され、このコントローラ204がさらに電力変換モジュール202に接続される。
[0021]コントローラ204は、少なくとも1つの中央処理装置(CPU)208を備え、この中央処理装置(CPU)208がサポート回路210及びメモリ212に接続される。CPU208は、1つ又は複数の従来から入手可能なマイクロプロセッサを備えることができる。代替えとしては、CPU208は、1つ又は複数の特定用途向け集積回路(ASIC)を含んでもよい。ある実施形態において、CPU208は、例えば図3及び4に関して以下に説明するように、実行されたときに、コントローラの機能性を提供するコントローラファームウェアを格納するための内部メモリを備えるマイクロコントローラであってもよい。
[0022]サポート回路210は、中央処理装置の機能性を増進するために使用される周知の回路である。かかる回路は、キャッシュ、電源、クロック回路、バス、ネットワークカード、入出力(I/O)回路などを含むが、それらには限定されない。コントローラ204は、特有のソフトウェアを実行したときに、本発明の様々な実施形態を行なうための特定目的のコンピューターになる汎用コンピューターを使用して実施されてもよい。
[0023]メモリ212は、ランダムアクセスメモリ、読み取り専用メモリ、取り外し可能ディスクメモリ、フラッシュメモリ、及びこれらのタイプのメモリの様々な組み合わせを備えることができる。メモリ212は、メインメモリと呼ばれることがあり、一部はキャッシュメモリ又はバッファメモリとして使用される場合がある。メモリ212は、一般にコントローラ204のオペレーティングシステム216を格納する。オペレーティングシステム216は、数多くの市販のオペレーティングシステムのうちの1つ、例えばリナックス、リアルタイムオペレーティングシステム(RTOS)などであってもよいが、これらには限定されない。
[0024]メモリ212は、様々な形態のアプリケーションソフトウェア、例えば、電力変換モジュール202の動作を制御する(例えば、DC/AC電力変換のための制御及び切り替え信号を提供する、受信した動作停止信号に応答して電力変換モジュール202を運転停止するなどの)ための電力変換モジュール214、本発明に関する1つ又は複数の動作を行なうための送電網インピーダンス検出モジュール110、並びに電力変換モジュール202及び/又は本発明の動作に関連するデータを格納するためのデータベース218を格納することができる。一部の実施形態において、電力変換制御モジュール214、送電網インピーダンス検出モジュール110、及びデータベース218、又はそれらの一部は、ソフトウェア、ファームウェア、ハードウェア、又はそれらの組み合わせのいずれかにおいて実施されてもよい。
[0025]AC電圧サンプリング回路206は、AC送電網電圧をサンプリングするための手段を提供し、コントローラ204にサンプル(すなわち、サンプリングされた電圧を示す信号)を供給する。一部の実施形態において、AC電圧サンプリング回路206は、30.72キロヘルツ(kHz)のレートでAC送電網電圧をサンプリングし、代替え的には、より速い又はより遅いサンプリングレートが利用されてもよい。一部の実施形態において、AC電圧サンプリング回路206は、デジタル形式でサンプルを生成するためのアナログディジタル変換器(ADC)を備える。電力変換制御モジュール214は、電力変換モジュール202を動作可能に制御するために、受信したAC送電網電圧波形情報を利用する。
[0026]本発明の1つ又は複数の実施形態によると、送電網インピーダンス検出モジュール110は、送電網インピーダンスにおける変化を検出し、それに応じて電力変換モジュール202を動作可能に制御する。例えば、送電網インピーダンス検出モジュール110は、5秒以内に瞬間的な1オームのインピーダンス変化を検出し、その結果として、電力変換モジュール202からの電力出力の動作を停止させることができる。送電網インピーダンス検出モジュール110は、電力変換モジュール202からの正弦波電流出力に高周波「トーン」を重畳し、このトーンによってAC送電網電圧波形に引き起こされる対応する擾乱を監視する。一部の実施形態において、重畳される周波数は、送電網周波数のN次の高調波、例えば8次の高調波又は12次の高調波であるが、他の実施形態においては、他の周波数が使用されてもよい。ある代替実施形態において、周波数の組み合わせ、又は0.5高調波をトーン用に使用することができる。
[0027]重畳される周波数を求める基準には、主として2つの要素がある。トーンの完全なサイクルのある一定の数のみを注入するためにゼロ付近にバンドがあることが必要である。周波数が低くなればなるほど、注入することができる相対的なサイクル数が少なくなる。しかし、周波数が高くなればなるほど、(例えば、送電網に同期させることによる)位相ロックループ(PLL)の固有ジッタが、測定においてノイズの原因となる可能性が高くなる。したがって、信号対雑音(SNR)比を最適化するためにトレードオフが行なわれ、一部の実施形態において、重畳される周波数は、送電網周波数の8次の高調波である。
[0028]一般に、重畳される周波数の振幅は、相関が取られるAC電圧信号のノイズフロアを上回る程度に十分高くなるように、しかしまた信号が重畳されたときに負方向電流を誘起しないよう十分低くなるようにも選択される。ACノイズフロアは、トーンが注入されてないときに、相関結果を分析することによって実験的に求めることができる。トーン注入を有する相関結果は、良好な信号対雑音比(SNR)にとってノイズフロアを数倍上回るのが理想的である。重畳される周波数の振幅は、一般に定格のインバータ電流に対して正規化され、例えば、重畳されるトーン振幅は、定格出力電流の約4%でありうる。一部の実施形態において、重畳される周波数の振幅は、実効値(RMS)で37ミリアンペア(mA)である。さらにまた、この信号は、AC送電網電圧波形のサイクル全体にわたっては注入されず(すなわち、この信号はAC送電網電圧波形の基本周期にわたっては注入されず)、一部の実施形態において、高周波トーンの12個の完全なサイクルのうちの10個のサイクルのみが、電力線のサイクルごとに注入される。注入される電流が低い、AC送電網電圧波形のゼロ交差の付近では、トーンは重畳されず、むしろゼロに維持されるが、一部の代替の実施例においては、比較的低い振幅のトーンがここで注入されてもよい。完全なサイクルのトーンのみが注入されるので、完全な1サイクルのギャップはゼロ交差の付近で除外される。例えば、トーン波形は、ゼロ交差の後に(トーンの)半サイクルから始まり、次のゼロ交差の前に(トーンの)半サイクルで終了し、次いで、繰り返すことができる。そうした注入は、一般に対称に維持されるが、一部の実施形態においては、非対称であってもよい。
[0029]注入されるトーンの位相は、一般にAC送電網電圧波形の位相とオフセットされうる。位相オフセットを賢明に選択することにより、送電網インピーダンスの過渡事象中に相関結果の実部、虚部、振幅、又は位相いずれかのサイズにおける変化を効果的に増幅し、それによりロバストな検出が可能となる。例えば、相関結果の虚部が小さい一部の実施形態において、角度の小さな変化は、虚部の大きな変化をもたらす。そうした実施形態において、このことを達成するために角度を2度あたりに設定することができるが、この角度は、ノイズが誤ってトリップをトリガするほどには小さくならないことを確実にする。一般に、オフセットは、AC源インピーダンスに依存するが、代替として仕様書VDE−0126−1−1のインバータ単独運転検出測定部分などの関連する仕様書において指定されたようにインピーダンスに調整されてもよい。しかし、ある実施形態において、注入されたトーンの位相は、AC送電網電圧波形の位相からオフセットされなくてもよい。
[0030]送電網インピーダンスにおける変化を検出するために、送電網インピーダンス検出モジュール110は、サンプリングされたAC電圧波形に対して特定のトーン周波数において相関処理を施す。次いで、送電網インピーダンス検出モジュール110は、相関結果における変化、例えば、相関信号の振幅、位相、実部、虚部、若しくはそれらの組み合わせのうちの1つ又は複数における変化に対して監視を行なう。ある時間にわたる変化が送電網インピーダンスのしきい値よりも大きい場合、送電網インピーダンス検出モジュール110は、例えば電力変換制御モジュール214を介した信号によってインバータ102を「トリップ」させる(すなわち、電力変換モジュール202に電力の生産を止めさせる)。一部の実施形態において、相関処理は、注入された信号周波数(1ACサイクルの正のトーン及び1ACサイクルの負のトーン)のコピーを有する所定の「ウィンドウ」を利用することができる。測定されたサンプルそれぞれに、対応する相関値を掛け合わせる。結果は、測定された信号が相関の成分を有する場合、非常に高い値(例えば、測定可能なダイナミックレンジの約5%より大きな値)であり、そうでない場合は、ゼロ又はほぼゼロ(例えば、測定可能なダイナミックレンジの1%未満)である。結果は、測定されたトーンの実部及び虚部であり、この実部及び虚部から振幅及び位相を求めることができる。
[0031](例えば、トーン注入周波数における高調波成分を有するAC電圧波形の元々存在する歪などの、サイクルごとの乱れにより)インバータ102が誤ってトリップする可能性を最小限にするために、注入されるトーンの位相を送電網電圧波形のサイクルごとに180度だけ変化させる。次いで、AC送電網に誘起されたいかなる波形歪をも相殺し、注入されたトーンだけを検出するために、第2のサイクル上で位相シフトされたシーケンスを有するサンプリングされた送電網電圧波形の2サイクルにわたって、結果として生じる相関が行なわれる。さらに、トーンの周波数が送電網周波数のN次の高調波(N=整数)の場合、トーンの位相をサイクルごとに180°切り替えることによって、平均の重畳された周波数は、(送電網周波数のN次の高調波−送電網の基本周波数/2)及び(送電網周波数のN次の高調波+送電網の基本周波数/2)の2つの周波数となり、これらの2つの周波数は非整数の高調波であり、したがって高調波歪の測定において考慮されない。このようなN次の高調波注入技法は、(サイクル全体にわたってトーンを注入しないため)ゼロ交差におけるクロスオーバー歪の影響を受けず、(180度位相が反転する結果として)元々存在する送電網高調波に影響を受けず、また(やはりサイクル全体にわたってトーンを注入しないため)インバータ102を送電網に同期させるために用いられる位相ロックループ検出ルーチンを妨害しない。
[0032]送電網インピーダンス検出モジュール110は、相関信号を監視し、相関信号のいかなる特性(例えば、信号の大きさ、位相、実部、若しくは虚部のうちの1つ又は複数、或いはそれらの任意の組み合わせ)におけるいかなる変化をも、送電網インピーダンスの変化を検出するために使用することができる。一部の実施形態において、トーンが電流と同相で注入され、したがって虚部がゼロに近いことを意味する、信号の位相がゼロに近い場合、虚部における変化が使用される。そのため、信号の位相角又は振幅におけるいかなる変化にも、相関結果の虚部の大きな変化が直ちに反映することになる。他の実施形態において、位相角における変化は、測定のために利用される。
[0033]相関信号の値は、電圧歪の振幅が非常に小さいため、例えば、240ボルト(V)の波形上で約20ミリボルト(mV)ピークであるため、一般に非常にノイズが多い。より正確な結果を提供するために、信号をある期間にわたって平均化することができ、一部の実施形態において、信号を約3秒間にわたって平均化することができる。次いで、この平均値は、遅延フィルタを通され、それによって最新の平均値が遅延された平均値と比較されうる。平均値と遅延された平均値との差が、送電網インピーダンスのしきい値を超える場合、インバータ102はトリップされ、インバータ102からの発電が止まる。送電網インピーダンスのしきい値は、例えば実験室での試験中に相関結果の変化を観測することによって実験的に求められてもよい。一部の実施形態において、送電網周波数の8次の高調波を利用する1オームの送電網インピーダンスの変化の試験に対して、約20度の位相シフトのしきい値を利用することができる。
[0034]図3は、本発明の1つ又は複数の実施形態による、単独運転状態を示す送電網インピーダンスの変化を検出する方法300の流れ図である。一部の実施形態、例えば、方法300に関して以下に記載する実施形態において、インバータは、PVモジュールからのDC電力をAC電力に変換するためのPVモジュールに結合される(例えば、PVモジュール104に結合されたインバータ102)。インバータは、AC商用電力送電網にさらに結合され、生成されたAC電力を送電網に結合させる。一部の代替の実施形態において、インバータは、さらに、又は代替として他の適切なDC源、例えば他の再生可能エネルギー源(例えば、風力発電所、水力発電システムなど)、電池などから電力を受け取る。
[0035]インバータは、送電網インピーダンスにおける変化を検出し、それに応じてインバータを制御するための送電網インピーダンス検出モジュール(例えば、送電網インピーダンス検出モジュール110)を備える。
[0036]方法300は、ステップ302から開始し、ステップ304に進む。ステップ304において、高周波のトーンは、図2に関して先に説明したようにインバータからの電流出力に重畳される。ステップ306において、AC送電網電圧波形は、例えば30.72キロヘルツ(kHz)のレートでサンプリングされる。方法300は、ステップ308に進み、特定の周波数(すなわち、重畳されたトーンの周波数)において、第2のサイクル上で反転したシーケンスを有するサンプリングされたAC電圧波形の2つのサイクルにわたって、相関処理が施される。一般に、相関処理は2つのサイクルにわたって施されるが、一部の代替の実施形態において、相関処理は2の倍数である数多くのサイクルにわたって施されてもよい。ステップ310において、相関信号の値は、約3秒間にわたって平均化される。
[0037]方法300は、ステップ312に進む。ステップ312において、相関信号の対象とする1つ又は複数の特性(すなわち、振幅、位相、実部、虚部、若しくはそれらの組み合わせのうちの1つ又は複数)のそれぞれに対して、平均化された相関信号の値は、遅延させた平均化された相関信号の値(すなわち、遅延フィルタを通過させた、先に平均化された相関信号の値)と比較される。例えば、現在の平均相関信号に対する値及び以前の平均相関信号に対する値は、それらの値間の差を計算し、その差を送電網インピーダンスのしきい値と比較することによって比較されうる。一部の実施形態において、振幅及び位相のそれぞれに対して、現在の平均相関信号値と以前の平均相関信号値との差を求め、対応する送電網インピーダンスのしきい値と比較することができる。ステップ314において、相関信号の1つ又は複数の特性における変化(例えば、信号の振幅、位相、実部、若しくは虚部、又はそれらの組み合わせのうちの1つ或いは複数における変化)が、対応する送電網インピーダンスのしきい値を超えるかどうかが判定される。そうした判定の結果が「いいえ」の場合、方法300は、ステップ304に戻る。ステップ314において、判定の結果が「はい」の場合、方法300は、ステップ316に進み、インバータは、「トリップされ」、すなわちインバータからの電力出力が止められる。次いで、方法300は、ステップ318に進み、終了する。
[0038]図4は、本発明の1つ又は複数の実施形態による、複数の結合されたインバータのうちのあるインバータを動作させる方法400の流れ図である。一部の実施形態、例えば、方法400に関して以下に記載する実施形態において、複数のインバータが、一対一対応で複数のPVモジュールに接続され、インバータ出力がACバスに、及び最終的に負荷センターを介してAC商用電力送電網に接続される(例えば、インバータ102、PVモジュール104、ACバス106及び負荷センター108)。図2及び3に関して先に説明したように、インバータのそれぞれは、単独運転状態を示す送電網インピーダンスの変化を検出し、それに応じて対応するインバータを制御するための送電網インピーダンス検出モジュール(例えば、送電網インピーダンス検出モジュール110)を備える。
[0039]一部の代替の実施形態において、インバータは、追加的に又は代替的に、他の適切なDC源、例えば他の再生可能エネルギー源(例えば、風力発電所、水力発電システムなど)、電池などからの電力を受け取ることができる。
[0040]方法400は、ステップ402から始まり、ステップ404に進み、インバータが起動し、電力を送電網に伝達し始める(すなわち、対応するPVモジュールからのDC電流をAC電流に変換し、このAC電流を送電網に結合させる)。そうした起動は、例えば十分な光がPVモジュールに達する日の出の後に、又はインバータをリセットした後に起こりうる。ステップ406において、インバータは、出力電流上に注入される高周波のトーンの振幅を上げ始め、一部の実施形態において、20秒間にわたってインバータの定格出力電流の最大4%に達するように振幅を上げることができる。ステップ408において、インバータ出力は、高周波のトーンで無作為に変調される(例えば、トーンがオフの状態でインバータ出力の数サイクル、トーンがオンの状態などでインバータ出力の1サイクルなど)。
[0041]方法400は、ステップ410に進む。ステップ410において、インバータは、例えば30.72kHzのレートでAC送電網波形をサンプリングし、このサンプリングされたAC波形に相関処理を施す。変調されていない期間に、インバータは、ステップ412において相関信号を監視する。ステップ414において、監視された相関信号の位相が高周波のトーンに対する位相と同じかどうかが判定される。そうした判定の結果が「はい」である場合、方法400は、ステップ416に進み、そこで高周波のトーンを現在の電力線サイクルに同期させる。判定の結果が「いいえ」である(すなわち、監視された相関信号がトーン信号に対して逆位相である)場合、方法400は、ステップ418に進み、高周波のトーンを、後続の電力線サイクルに同期させ、ACバス上の動作しているその他のインバータからの既存の出力に適合させる。複数のインバータが同時に動作し始めるとき、信号の注入を無作為に(すなわち、ステップ408におけるように)行なうことにより、確実に1つの位相が支配的になり、残りのインバータが、この支配的な位相に同期するようにする。注入される高調波シーケンスがサイクルごとに位相が反転される結果として、ストリング上のインバータ間のそうした同期が必要であり、インバータの出力信号が互いに相殺するのを防止する。
[0042]方法400は、ステップ416又はステップ418のいずれかからステップ420に進み、トーン信号の振幅が、相関処理が施されたAC電圧信号のノイズフロアを上回る程度に十分に高いかどうかが判定される。そうした判定の結果が「いいえ」である場合、方法400は、ステップ422に進み、振幅を増加させ、方法400は、ステップ420に戻る。ステップ420において、判定の結果が「はい」である場合、方法400は、ステップ424に進む。ステップ424において、待機期間(例えば、5秒)を実施して遅延バッファを落ち着かせる。次いで、方法400は、ステップ426に進み、方法300に関して先に説明したように、インバータは、送電網インピーダンスの変化に対して監視を行なう。ステップ428において、単独運転を示す送電網インピーダンスの変化が生じたかどうかが判定される。そうした判定の結果が「いいえ」である場合、方法400は、ステップ426に戻り、監視が継続する。ステップ428において、判定の結果が「はい」である場合、方法400は、ステップ430に進む。ステップ430において、高周波出力の振幅を、例えば、ハードウェアの制約によって制限されるような最大にまで直ちに上昇させ、ACバス上の他のインバータが同時にトリップするように仕向ける。一部の実施形態において、一部のインバータが直ぐにトリップし、それによって検出される信号の大きさが減少し、その結果残りのインバータがトリップしなくなるのを防止するために、最大値は、約1秒間保持されることがある。代替態様としては、高周波出力を最大にまで上昇させるのではなく、確実に他のすべてのインバータが信号の変化を検知し、同様にトリップしてオフラインとなるように十分高く高周波出力を上げてもよい。
[0043]方法400は、ステップ432に進み、インバータは所要のオフタイム期間、電源が落とされる。ステップ434において、インバータをリセットすべきかどうかが判定される。判定の結果がはいである場合、方法400は、ステップ404に戻る。ステップ434での判定の結果がいいえである場合、方法400は、ステップ436に進み、終了する。
[0044]図5は、本発明の1つ又は複数の実施形態による、変調された電流波形502のグラフ500である。波形502は、先に説明したように高周波のトーンによって変調されたインバータからの正弦波電流出力を表す。一部の実施形態において、AC商用送電網は、60ヘルツ(Hz)で動作し、T0からT1までの時間(すなわち、波形502の単一のサイクル)は、0.0167秒である。
[0045]図6は、本発明の1つ又は複数の実施形態による、注入された変調された電流波形502によって生じる、誇張された送電網電圧波形歪602のグラフ600である。グラフ600は、変調された電流波形502の一部、及び結果として生じるAC電圧波形歪の誇張されたバージョンを波形602として表す。
[0046]本発明の実施形態の前述の説明は、説明したような様々な機能を行なう数多くの素子、デバイス、回路、及び/又は組立体を含む。例えば、PVモジュールは、電力変換装置にDC入力を供給するための手段の例であり、送電網インピーダンス検出モジュールは、AC電力線に結合されたAC電流上にトーンを重畳するための手段、サンプリングされたAC電圧に対して相関処理を施して相関信号を生成するための手段、及び相関信号の特性に少なくとも1つの変化が生じるかどうかを判定するための手段の例である。これらの素子、デバイス、回路、及び/又は組立体は、それぞれ説明されたそれらの機能を行なうための手段の例示的な実施態様である。
[0047]前述の説明は、本発明の実施形態を対象としているが、本発明の他の及びさらなる実施形態が、本発明の基本的な範囲から逸脱せずに考案されてもよく、その範囲は、添付の特許請求の範囲によって決まる。

Claims (15)

  1. AC電力線のインピーダンス変化を監視する方法であって、
    AC電力線に結合されたAC電流にトーン信号を重畳するステップであって、前記トーン信号が前記AC電力線上のAC電圧波形の周波数よりも高い周波数を有する、ステップと、
    サンプリングされた前記AC電圧波形と、重畳された前記トーン信号のコピーとの間で相関処理を施して相関信号を生成するステップであって、前記サンプリングされたAC電圧波形は、前記AC電流に前記トーン信号を重畳した後に前記AC電圧波形をサンプリングすることによって得られる、ステップと、
    前記相関信号の特性に少なくとも1つの変化が生じるかどうかを判定するステップとを含む方法。
  2. 前記トーン信号が前記AC電圧波形のN次の高調波であり、Nが整数である、請求項1に記載の方法。
  3. 前記トーン信号が、前記AC電圧波形の周期の一部にわたって重畳される、請求項1又は2に記載の方法。
  4. 前記トーン信号が前記AC電圧波形の第1のサイクル中に第1の位相を有し、前記AC電圧波形の第2のサイクル中に第2の位相を有する、請求項1〜3のいずれか一項に記載の方法。
  5. 前記相関処理が前記サンプリングされたAC電圧波形の連続する2つのサイクルにわたって施される、請求項1〜4のいずれか一項に記載の方法。
  6. 前記少なくとも1つの変化が生じるかどうかを判定するステップが、
    前記相関信号を平均化期間にわたって平均化して平均化された相関信号値を生成するステップと、
    前記平均化された相関信号値と以前に平均化された相関信号値との差を求めるステップと、
    前記差をしきい値と比較するステップとを含む、請求項1〜5のいずれか一項に記載の方法。
  7. 前記AC電流を前記トーン信号で無作為に変調して無作為に変調されたAC電流を生成するステップと、
    変調されていない期間に、第1のサンプリングされたAC電力線電圧に基づいた第1の相関信号を監視するステップと、
    前記第1の相関信号及び前記トーン信号の位相が等しいかどうかを判定するステップと、
    前記位相が等しいかどうかに基づいて、前記トーン信号を前記AC電圧波形の電力線サイクルに同期させるステップであって、前記AC電流を無作為に変調する、前記第1の相関信号を監視する、前記位相が等しいかどうかを判定する、及び前記トーン信号を同期させる前記ステップが、AC電流に前記トーン信号を重畳する前に行なわれるステップとを、さらに含む請求項1〜6のいずれか一項に記載の方法。
  8. AC電力線のインピーダンス変化を監視するための装置であって、
    AC電力線に結合されたAC電流にトーン信号を重畳するための手段であって、前記トーン信号が前記AC電力線上のAC電圧波形の周波数よりも高い周波数を有する、手段と、
    サンプリングされた前記AC電圧波形と、重畳された前記トーン信号のコピーとの間で相関処理を施し、相関信号を生成するための手段であって、前記サンプリングされたAC電圧波形は、前記AC電流に前記トーン信号を重畳した後に前記AC電圧波形をサンプリングすることによって得られる、手段と、
    前記相関信号の特性に少なくとも1つの変化が生じるかどうかを判定するための手段とを備える装置。
  9. 前記トーン信号が前記AC電圧波形のN次の高調波であり、Nが整数である、請求項8に記載の装置。
  10. 前記トーン信号が前記AC電圧波形の周期の一部にわたって重畳される、請求項8又は9に記載の装置。
  11. 前記トーン信号が前記AC電圧波形の第1のサイクル中に第1の位相を有し、前記AC電圧波形の第2のサイクル中に第2の位相を有する、請求項8〜10のいずれか一項に記載の装置。
  12. 前記相関が前記サンプリングされたAC電圧波形の連続する2つのサイクルにわたって施される、請求項8〜11のいずれか一項に記載の装置。
  13. 前記少なくとも1つの変化が生じるかどうかを判定することが、前記相関信号を平均化期間にわたって平均化して平均化された相関信号値を生成することと、前記平均化された相関信号値と以前に平均化された相関信号値との差を求めることと、前記差をしきい値と比較することとを含む、請求項8〜12のいずれか一項に記載の装置。
  14. 前記トーン信号を前記AC電流に重畳する前に、前記トーン信号を重畳するための前記手段が、前記AC電流を前記トーン信号で無作為に変調して無作為に変調されたAC電流を生成し、前記少なくとも1つの変化が生じるかどうかを判定するための前記手段が、(i)変調されていない期間に、前記AC電力線の電圧の第1のサンプリングに基づいた第1の相関信号を監視し、(ii)前記第1の相関信号及び前記トーン信号の位相が等しいかどうかを判定し、(iii)前記位相が等しいかどうかに基づいて、前記トーン信号を前記AC電圧波形の電力線サイクルに同期させる、請求項8〜13のいずれか一項に記載の装置。
  15. DC入力を電力変換装置に供給するための手段をさらに備え、前記電力変換装置が前記DC入力から前記AC電流を生成する、請求項8〜14のいずれか一項に記載の装置。
JP2014513699A 2011-06-01 2012-05-31 送電網インピーダンス検出のための方法及び装置 Active JP5987903B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161519915P 2011-06-01 2011-06-01
US61/519,915 2011-06-01
PCT/US2012/040229 WO2012166933A1 (en) 2011-06-01 2012-05-31 Method and apparatus for grid impedance detection

Publications (2)

Publication Number Publication Date
JP2014523520A JP2014523520A (ja) 2014-09-11
JP5987903B2 true JP5987903B2 (ja) 2016-09-07

Family

ID=47259859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014513699A Active JP5987903B2 (ja) 2011-06-01 2012-05-31 送電網インピーダンス検出のための方法及び装置

Country Status (7)

Country Link
US (2) US8896330B2 (ja)
EP (1) EP2715377A4 (ja)
JP (1) JP5987903B2 (ja)
KR (1) KR20140037156A (ja)
AU (1) AU2012262169B2 (ja)
CA (1) CA2831576A1 (ja)
WO (1) WO2012166933A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780592B1 (en) 2011-07-11 2014-07-15 Chilicon Power, LLC Systems and methods for increasing output current quality, output power, and reliability of grid-interactive inverters
JP6161783B2 (ja) * 2013-03-28 2017-07-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft コンピュータ支援により送配電網のインピーダンスを求める方法、当該方法を実施するための発電装置及びコンピュータプログラム
US9742188B2 (en) * 2013-06-26 2017-08-22 Energy Development Llc System and method for installing solar panels based on number of panels and output of panels
CN103499955A (zh) * 2013-09-25 2014-01-08 东莞市盛扬实业有限公司 光伏并网逆变器远程监控及数据分析系统
DE102013111870A1 (de) * 2013-10-28 2015-04-30 Sma Solar Technology Ag Wechselrichter und Detektionsverfahren für einen Wechselrichter zur Erkennung eines Netzfehlers
CN103675562B (zh) * 2013-12-31 2016-06-08 广东易事特电源股份有限公司 检测孤岛效应的方法及装置
CN104009489B (zh) * 2014-05-21 2017-05-31 深圳市汇川技术股份有限公司 一种微电网管理系统及其管理方法
US9906036B2 (en) * 2014-05-25 2018-02-27 Sunpower Corporation Alternative source module array characterization
WO2016049856A1 (zh) * 2014-09-30 2016-04-07 阳光电源股份有限公司 一种并网逆变器安全检测装置及方法
JP2016103902A (ja) * 2014-11-28 2016-06-02 株式会社日立製作所 電力変換装置およびその制御方法
US20180026446A1 (en) * 2015-02-06 2018-01-25 United Technologies Corporation Seamless transition between grid connected and islanded modes
US10008854B2 (en) * 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
CN106159985B (zh) 2015-03-26 2018-11-27 国网河北省电力公司电力科学研究院 一种直流配电网分布式电源的防孤岛方法及设备
CN105158592B (zh) * 2015-07-09 2018-01-12 中国矿业大学 电网不对称条件下三相电网阻抗实时检测方法
EP3347960B1 (en) * 2015-09-11 2021-08-11 Enphase Energy, Inc. Method and apparatus for impedance matching in virtual impedance droop controlled power conditioning units
US10312822B2 (en) * 2015-12-18 2019-06-04 S&C Electric Company Electrical systems and methods for islanding transitions
JP6638080B2 (ja) * 2016-10-13 2020-01-29 株式会社日立製作所 電力系統のインピーダンス測定装置及び方法、並びに電力系統の力率改善装置及び方法
CN107576853B (zh) * 2017-07-12 2019-11-05 国网上海市电力公司 基于典型相关性分析的配电网谐波阻抗计算方法
CN107782972B (zh) * 2017-10-17 2020-07-03 国网江苏省电力公司南通供电公司 一种基于变pwm载波频率的电网阻抗测量方法
LU100681B1 (en) 2018-01-25 2019-08-21 Univ Luxembourg Grid conductance and susceptance estimation for power control in grid-tied inverters
CN108490295B (zh) * 2018-04-25 2020-05-08 合肥为民电源有限公司 一种基于虚拟平均无功鉴相的主动孤岛检测方法和装置
CN108680794B (zh) * 2018-05-28 2020-06-09 江南大学 一种线路阻抗参数测量装置及方法
CN112567584B (zh) * 2018-08-20 2024-03-05 西门子股份公司 功率转换器控制器的电网阻抗估计
CN110031680B (zh) * 2019-04-28 2020-06-12 四川大学 一种系统侧谐波阻抗估计方法和系统
CN110112776B (zh) * 2019-05-07 2020-09-25 郑州轻工业学院 考虑电网背景谐波的并网逆变器电网阻抗辨识方法
EP3790143B1 (en) * 2019-09-09 2023-08-02 General Electric Technology GmbH Electrical assembly
US11349310B2 (en) * 2019-11-15 2022-05-31 Smart Wires Inc. Adaptive control technique for stability of impedance injection unit
CN111175578B (zh) * 2020-01-16 2021-02-26 武汉大学 一种复杂工况下单相或三相逆变器并网系统的阻抗检测系统及方法
CN111555306B (zh) * 2020-04-29 2023-09-01 云南电网有限责任公司电力科学研究院 一种风电机组参与区域电网快速调频的系统和方法
CN112782481B (zh) * 2020-12-30 2022-04-01 合肥工业大学 扰动自适应调节的阻抗测量方法
CN113219252B (zh) * 2021-05-14 2022-03-01 浙江大学 一种非侵入式在线检测变换器阻抗的方法
CN113671257B (zh) * 2021-08-12 2022-10-04 合肥工业大学 扰动方式切换的阻抗测量方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658365A (en) * 1984-02-02 1987-04-14 Electric Power Research Institute, Inc. Device for in-situ monitoring of corrosion rate of cathodically polarized metals
SU1541532A1 (ru) * 1987-05-12 1990-02-07 Мариупольский металлургический институт Способ определени составл ющих внутреннего сопротивлени электрической сети
JPH06343231A (ja) * 1993-05-31 1994-12-13 Nishishiba Electric Co Ltd 系統連系保護装置
JPH089650A (ja) * 1994-04-22 1996-01-12 Nippon Electric Ind Co Ltd 系統連系インバータ・システム
EP0783702B1 (de) * 1994-09-29 1999-05-12 Klaus-Wilhelm Köln Verfahren und vorrichtung zur impedanzmessung in wechselstromnetzen sowie verfahren und vorrichtung zur verhinderung von inselnetzen
US6326796B1 (en) * 1997-07-07 2001-12-04 Nissin Electric Co., Ltd. Harmonic measuring method and a current injection device for harmonic measurement
JP3598871B2 (ja) * 1999-04-16 2004-12-08 株式会社日立製作所 単独運転検出機能を有する系統連系用電力変換システム
DE10006443B4 (de) * 2000-02-14 2005-06-16 Klaus-Wilhelm Köln Verfahren zur Messung der Impedanz in Stromnetzen
JP2001251767A (ja) * 2000-03-06 2001-09-14 Kansai Electric Power Co Inc:The 分散電源の単独運転検出装置
US6545885B2 (en) * 2000-03-13 2003-04-08 Nissin Electric Co., Ltd. Isolated operation prevention device for distributed power supply and interharmonic detection method
JP2001258161A (ja) * 2000-03-13 2001-09-21 Nissin Electric Co Ltd 分散型電源及び電力設備
JP2001275259A (ja) * 2000-03-29 2001-10-05 Canon Inc 系統連系インバータおよび分散形発電システム
US6816797B2 (en) * 2000-09-29 2004-11-09 Hydrogenics Corporation System and method for measuring fuel cell voltage and high frequency resistance
US6603290B2 (en) 2001-11-26 2003-08-05 Visteon Global Technologies, Inc. Anti-islanding detection scheme for distributed power generation
US6933714B2 (en) * 2002-02-19 2005-08-23 Institut Fuer Solare Energieversorgungs-Technik (Iset) Verein An Der Universitaet Gesamthochschule Kassel E.V. Method and apparatus for measuring the impedance of an electrical energy supply system
DE10211206A1 (de) * 2002-03-06 2003-09-18 Klaus-Wilhelm Koeln Verfahren und Vorrichtung zur Kontrolle von Inselbildungen im Stromnetz, bei dem automatisch zwischen einem aktiven und passiven Modus gewechselt werden kann
US7843145B2 (en) * 2006-01-13 2010-11-30 Universal Lighting Technologies, Inc. System and method for power line carrier communication using high frequency tone bursts
JP3948487B1 (ja) * 2006-01-13 2007-07-25 オムロン株式会社 単独運転検出方法、分散型電源の単独運転検出用制御装置、単独運転検出装置および分散型電源
JP4724834B2 (ja) * 2006-04-12 2011-07-13 農工大ティー・エル・オー株式会社 電力変換装置、系統連係分散発電システム、および複数の電力変換装置による系統連係運転の停止方法
AT505731B1 (de) * 2007-08-29 2013-03-15 Fronius Int Gmbh Verfahren zur diebstahlerkennung bei einer photovoltaikanlage und wechselrichter für eine photovoltaikanlage
US20100198424A1 (en) * 2009-01-30 2010-08-05 Toru Takehara Method for reconfigurably connecting photovoltaic panels in a photovoltaic array
JP2010213529A (ja) * 2009-03-12 2010-09-24 Tokyo Electric Power Co Inc:The 単独運転検出方法及びその装置
US9401439B2 (en) * 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
US8258759B2 (en) * 2010-02-03 2012-09-04 Xantrex Technology Inc. Anti-islanding for grid-tie inverter using covariance estimation and logic decision maker
KR101120367B1 (ko) * 2010-06-22 2012-03-02 성균관대학교산학협력단 전력 제어 시스템의 단독 운전 방지 장치 및 방법

Also Published As

Publication number Publication date
CA2831576A1 (en) 2012-12-06
WO2012166933A1 (en) 2012-12-06
EP2715377A1 (en) 2014-04-09
AU2012262169B2 (en) 2016-05-19
KR20140037156A (ko) 2014-03-26
AU2012262169A1 (en) 2013-10-17
US20120306515A1 (en) 2012-12-06
EP2715377A4 (en) 2015-10-14
US8896330B2 (en) 2014-11-25
JP2014523520A (ja) 2014-09-11
US9952263B2 (en) 2018-04-24
US20150077145A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5987903B2 (ja) 送電網インピーダンス検出のための方法及び装置
US8183852B2 (en) Method and apparatus for determining AC voltage waveform anomalies
JP5524335B2 (ja) Dcアーク故障を検出及び制御するための方法及び装置
US8195414B2 (en) Method and apparatus for identifying an islanding condition
KR102210384B1 (ko) 접지 장애 검출을 위한 방법 및 장치
US7906870B2 (en) System and method for anti-islanding, such as anti-islanding for a grid-connected photovoltaic inverter
CA2750103A1 (en) Method and apparatus for characterizing a circuit coupled to an ac line
Yin et al. Islanding detection using proportional power spectral density
CN103091604B (zh) 一种光伏并网发电系统的孤岛检测方法和检测装置
JP2012026836A (ja) 分散型電源の周波数検出方法及び系統連系保護装置
US20140084695A1 (en) Serially connected micro-inverter system having concertina output voltage control
Braca et al. An improved method for grid impedance estimation by digital controlled PV inverters suitable for ENS detection
Yin et al. A new islanding detection method based on hidden gene concept

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250