JP5987469B2 - 光導波路 - Google Patents

光導波路 Download PDF

Info

Publication number
JP5987469B2
JP5987469B2 JP2012114420A JP2012114420A JP5987469B2 JP 5987469 B2 JP5987469 B2 JP 5987469B2 JP 2012114420 A JP2012114420 A JP 2012114420A JP 2012114420 A JP2012114420 A JP 2012114420A JP 5987469 B2 JP5987469 B2 JP 5987469B2
Authority
JP
Japan
Prior art keywords
meth
lens
optical
optical waveguide
thio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012114420A
Other languages
English (en)
Other versions
JP2013242370A (ja
Inventor
幸太 瀬川
幸太 瀬川
黒田 敏裕
敏裕 黒田
大地 酒井
大地 酒井
洋 別井
洋 別井
雅夫 内ヶ崎
雅夫 内ヶ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012114420A priority Critical patent/JP5987469B2/ja
Publication of JP2013242370A publication Critical patent/JP2013242370A/ja
Application granted granted Critical
Publication of JP5987469B2 publication Critical patent/JP5987469B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、光導波路に関し、特に光の伝達効率が良好な光路変換ミラー付き光導波路に関する。
情報容量の増大に伴い、幹線やアクセス系といった通信分野のみならず、ルータやサーバ装置内の情報処理にも光信号を用いる光インターコネクション技術の開発が進められている。特に、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるための光伝送路としては、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路を用いることが望ましく、中でも、加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。
このような光導波路としては、例えば、特許文献1に記載されているように、まず、下部クラッド層を硬化形成した後に、下部クラッド層上にコアパターンを形成し、上部クラッド層を積層し、光導波路を形成し、その後、切削加工によって光路変換ミラー部を形成した光導波路が提案されている。
このような光導波路に、受発光素子、光ファイバコネクタ、他の光導波路等の独立した外部光学部材を繋ぎ、コアパターン内を伝搬した光信号を接続する場合、コアパターンと当該外部光学部材との伝送ロスを抑える必要がある。
特開2006−011210号公報
しかしながら、特許文献1に記載の光導波路においては、光路変換ミラーにおいて光路変換され、光導波路の外部に出射された光は、外部光学部材の受光部に達するまでに拡散してしまい、光損失が大きくなるという問題があった。
本発明は、以上の問題点に鑑みてなされたものであり、光路変換ミラーを有する光導波路と外部光学部材との間における光伝達効率に優れた光導波路を提供することを目的とする。
本発明者らは、光路変換ミラーにおいて光路変換され、光導波路の外部に出射された光の光路上に、所定の方向に位置ズレしたレンズを配置することで、上記課題を解決し得ることを見出し、本発明を完成したものである。
すなわち、本発明は、以下の発明を提供するものである。
1.下部クラッド層、光信号伝達用コアパターン及び上部クラッド層が順に積層され、かつ、前記光信号伝達用コアパターン上に光路変換ミラーを備える光導波路であって、
前記光路変換ミラーは、前記光信号伝達用コアパターンを伝搬する光の光路上に位置し、かつ、前記光路に対して傾斜しており、
また、前記光路変換ミラーによって光路変換された光の光路上に位置するように、前記下部クラッド層側又は上部クラッド層側にレンズを有し、
さらに、前記レンズの中心点を通りレンズ面に垂直な直線である光軸が前記光路変換ミラーの中心点よりも前記光信号伝達用コアパターン寄りになるように、前記レンズが前記光導波路平面上に配置されている光導波路。
2.前記光路変換ミラーは、前記光路に対して45°傾斜している、上記1に記載の光導波路。
3.前記光導波路平面上における、レンズの中心点とミラーの中心点との間の距離が、前記光信号伝達用コアパターンのコア厚みの5〜100%である上記1又は2に記載の光導波路。
4.前記光導波路平面上において、レンズの直径が、前記光信号伝達用コアパターンのコア径の100〜500%である上記1から3のいずれかに記載の光導波路。
5.前記レンズが、前記光路変換ミラーによって光路変換された光を外部光学部材に受光させるための集光レンズである上記1から4のいずれかに記載の光導波路。
6.さらに、基板を有し、該基板と前記光信号伝達用コアパターンとが下部クラッド層を挟持する上記1から5のいずれかに記載の光導波路。
7.前記基板が前記光路変換ミラーによって光路変換された光を透過する透明基板である上記に記載の光導波路。
8.前記透明基板がポリイミド基板である上記に記載の光導波路。
9.前記基板上に、レンズ厚さ以上の厚さを有するレジスト又はダミーレンズを前記レンズと並設させる、上記6から8のいずれかに記載の光導波路。
10.前記レンズが、フォトリソグラフィー加工レンズである、上記1から9のいずれかに記載の光導波路。
11.前記光路変換ミラーは、前記光信号伝達用コアパターンの切削面である、上記1から10のいずれかに記載の光導波路。
本発明の光導波路は、外部光学部材との間における光伝達効率に優れる。
(a)本発明の光導波路の斜視図、(b)図1(a)の光導波路の平面図、(c)図1(b)の光導波路のA−A’線断面図である。 図1(b)の光導波路の製造方法を、B−B’線断面図にて示す図である。
本発明の光導波路は、必要に応じて設けられる基板1上に、下部クラッド層2、光信号伝達用コアパターン3及び上部クラッド層4が順に積層され、かつ該光信号伝達用コアパターン3上に光路変換ミラー5を備える光導波路であって、該光路変換ミラー5は、該光信号伝達用コアパターン3を伝搬する光の光路上に位置し、かつその光路に対して傾斜しており、また、該光路変換ミラー5によって光路変換された光の光路上に位置するように、該下部クラッド層2側又は上部クラッド層4側にレンズ6を有し、さらに、該光導波路平面上において、レンズの中心点がミラーの中心点よりも光信号伝達用コアパターン3寄りに配置されている。
本発明の光導波路においては、レンズ6が光信号伝達用コアパターン3寄りに配置されていることで、レンズ中心点とミラー中心点が重なっている場合と比較して、光導波路と外部光学部材との間における光伝達効率が改善する。
本発明の光導波路は、下部クラッド層2側又は上部クラッド層4側にレンズ6を有する。ここで、「下部クラッド層側にレンズを有する」とは、下部クラッド層2の光信号伝達用コアパターン3が形成されている面とは反対面側にレンズ6を有することを示し、下部クラッド層2とレンズ6との間に基板1等を有する態様も含む。
図1に示す光導波路においては、基板1上にレンズ6が形成され、下部クラッド層2とレンズ6との間に基板1を挟み込んでおり、上部クラッド層4側から光信号伝達用コアパターン3を切断することで光路変換ミラー5が形成されているが、上部クラッド層4上にレンズ6が形成され、光信号伝達用コアパターン3とレンズ6との間に上部クラッド層4を挟み込むようにして、基板1側から(基板1を有しない場合、下部クラッド層2側から)光信号伝達用コアパターン3を切断することで光路変換ミラー5を形成してもよい。
このように、レンズ6と、光路変換ミラー5を形成するための切り込みとは、互いに光導波路の反対面側に形成される。
[基板]
本発明の光導波路に用い得る基板1の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルム、電気配線板などが挙げられる。また、基板1としては、柔軟性及び強靭性がある点、及び光信号等の長波長側の光を透過する一方、フォトリソグラフィーで使用する活性光線等の短波長側の光を遮光できる点から、ポリアミド、ポリアミドイミド、ポリイミド基板を使用することが好ましく、より好適にはポリイミド基板が好ましい。
基板1は、基板1側にレンズ6を有する場合、光路変換ミラーによって光路変換された光を透過する透明基板であることが好ましい。
基板1の厚みは、5μm〜1mmであることが好ましく、10μm〜100μmであることがさらに好ましい。基板1の厚みが5μm以上であると、基板1の剛性の点で好ましく、1mm以下であると、光路変換ミラー5にて反射された光信号が広がる前にレンズ6に入射されるため好ましい。
[下部クラッド層及び上部クラッド層]
本発明における下部クラッド層2及び上部クラッド層4は、例えば、クラッド層形成用樹脂層を積層し、露光現像することで形成することができる。クラッド層形成用樹脂は、複数の成分を含む組成物であってもよい。
本発明で用いるクラッド層形成用樹脂としては、光信号伝達用コアパターン3より低屈折率で、光又は熱により硬化する樹脂であれば特に限定されず、熱硬化性樹脂や感光性樹脂を好適に使用することができる。クラッド層形成用樹脂は、下部クラッド層2及び上部クラッド層4において、該樹脂が含有する成分が同一であっても異なっていてもよく、該樹脂の屈折率が同一であっても異なっていてもよい。
クラッド層形成用樹脂層を積層する方法は特に限定されず、例えば、クラッド層形成用樹脂を溶媒に溶解して塗布するなどして積層してもよく、事前に用意したクラッド層形成用樹脂フィルムをラミネートしてもよい。
塗布による場合には、その方法は限定されず、クラッド層形成用樹脂を常法により塗布すれば良い。
また、ラミネートに用いるクラッド層形成用樹脂フィルムは、例えば、クラッド層形成用樹脂を溶媒に溶解して、キャリアフィルムに塗布し、溶媒を除去することにより容易に製造することができる。
下部クラッド層2及び上部クラッド層4の厚さに関しては、特に限定するものではないが、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、下部クラッド層2及び上部クラッド層4の厚さは、さらに10〜100μmの範囲であることがより好ましい。
(光信号伝達用コアパターン)
光信号伝達用コアパターン3としては、例えば、コア層形成用樹脂層を積層し、露光現像することで形成することができる。コア層形成用樹脂は、複数の成分を含む組成物であってもよい。
コア層形成用樹脂は、下部クラッド層2及び上部クラッド層4より高屈折率であり、活性光線によりパターン化し得るものを用いることが好ましい。パターン化する前のコア層形成用樹脂層の形成方法は限定されず、例えば、コア層形成用樹脂を溶媒に溶解して塗布するなどして積層してもよく、事前に用意したコア層形成用樹脂フィルムをラミネートしてもよい。
コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さが、通常は10〜100μmとなるように調整される。該フィルムの仕上がり後のコア層の厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜90μmの範囲であることが好ましく、該厚みを得るために適宜フィルム厚みを調整すれば良い。
コア層形成用樹脂としては、用いる光信号に対して透明であり、活性光線によりパターンを形成し得るものを用いることが好ましい。
[光路変換ミラー]
光路変換ミラー5は、光導波路平面に対して略平行方向に延在する光信号伝達用コアパターン3を伝搬した光信号を基板1側から(基板1を有しない場合、下部クラッド層2側から)又は上部クラッド層4側から、前記光導波路平面に対して略垂直方向に光路変換する構造であれば特に限定はなく、光信号伝達用コアパターン3に45°程度の切り欠きを設けて形成した空気反射ミラーであっても良いし、切り欠き部に反射金属層を形成した金属反射ミラーであっても良い。
光路変換ミラー5は、図1に示す態様のように、基板1側から、ダイシングソー等を用いて光信号伝達用コアパターン3を切断することにより形成したり、または、上部クラッド層4側からダイシングソー等を用いて、光信号伝達用コアパターン3を切断することにより形成することができ、光信号伝達用コアパターン3の進行方向に対して45°程度であることが好ましい。
<レンズ>
レンズ6は、基板1側(基板1を有しない場合、下部クラッド層2側)又は上部クラッド層4側とは反対側の面が凸面となる凸状レンズであって、光信号伝達用コアパターン3を伝搬した光信号を、外部光学部材の受光部に受光させるための集光レンズであることが好ましい。レンズ6の製造方法は特に限定されず、別途製造したものを接着剤等を介して接着してもよいが、フォトリソグラフィー加工により形成できるように、感光性樹脂組成物により形成されることが好ましく、レンズの透明性が良好になる点からネガ型フォトレジストにより形成されることがより好ましい。
本発明の光導波路においては、レンズ6は、図1(c)に示すように、そのレンズ中心点6aがミラー中心点5aよりも光信号伝達用コアパターン3寄りに配置されている。レンズ中心点6aの配置を光信号伝達用コアパターン3寄りにずらすことで、通常、ミラー中心点5aの直上に配置する外部光学部材の受光部への光伝達効率や位置合わせトレランスが向上する。レンズ中心点6aをミラー中心点5aの直上に配置した場合、光伝搬損失が最も小さい0点が光路変換ミラー5の外側の空気層側(光信号伝達用コアパターン3とは反対側)にずれるため、光伝達効率や位置合わせトレランスが悪化する。
上記レンズ中心点6aとミラー中心点5aとの距離(図1に示すミラー中心点−レンズ中心点間距離d1)は、光信号伝達用コアパターン3のコア厚みの5〜100%とすることが好ましく、10〜80%とすることがより好ましい。光導波路が複数のレンズ6と光路変換ミラー5との組合せを有する場合、少なくともそのいずれかの組合せにおいて、ミラー中心点−レンズ中心点間距離d1が上記範囲を満たすことが好ましく、全てのミラー中心点−レンズ中心点間距離d1が上記範囲を満たすことがより好ましい。
尚、上記レンズ中心点6aとミラー中心点5aとの位置関係は、厳密には、本発明の光導波路を平面として捉えた場合に、該平面へのレンズ中心点6a及びミラー中心点5aの投影が、上記関係を満たすことを示す。レンズ中心点6a及びミラー中心点5aも、それぞれ上記平面への投影に基づいて特定することができる。
レンズ6は、必要に応じて複数個設けることができる。
また、光路変換ミラー5からレンズ6までの高さ方向(光導波路平面に対して垂直方向)に沿う距離は、コア厚みの20〜100%程度であることが好ましく、これにより、レンズ6と光路変換ミラー5の間の光路における光損失を最小限に抑えることができる。尚、上記光路変換ミラー5からレンズ6までの高さ方向に沿う距離は、厳密にはミラー中心点5aにおける距離として特定することができる。
さらに、レンズ6の形状及び大きさは、光路変換ミラー5からの光を効率良く受光するために、光路変換ミラー5の光導波路平面への投影を内包するものとすることが好ましいが、より具体的には、光導波路平面と平行な方向に沿う直径が、コア厚みの100〜500%であることが好ましく、150〜300%であることがより好ましい。レンズ6の形状が楕円形である場合、長径及び短径の少なくとも一方が上記範囲を満たすことが好ましく、両方が上記範囲を満たすことがより好ましい。
(レンズ用感光性樹脂組成物)
レンズ6を形成するための感光性樹脂組成物は、例えば、(a)バインダポリマーと、(b)エチレン性不飽和基を有する光重合性不飽和化合物と、(c)活性光線により遊離ラジカルを生成する光重合開始剤とを含有するものである。かかる感光性樹脂組成物を用いることにより、レンズ形成用樹脂層6bの解像度及び密着性が向上するとともにレンズの光透過性をより確実に確保することができるので、レンズの光学性能及び生産性をさらに高水準で両立させることができる。
(a)バインダポリマーとしては、例えば、ビニル共重合体(a1)が挙げられ、具体的には、下記のビニル単量体を重合させて得られたものが挙げられる。例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸iso−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸エイコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシトリエチレングリコール、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−フルオロエチル、(メタ)アクリル酸2−シアノエチル、スチレン、α−メチルスチレン、シクロヘキシルマレイミド、(メタ)アクリル酸ジシクロペンタニル、ビニルトルエン、塩化ビニル、酢酸ビニル、N−ビニルピロリドン、ブタジエン、イソプレン、クロロプレン、(メタ)アクリルアミド、メタクリルアミド、(メタ)アクリロニトリル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて重合させてもよい。
さらに、本実施形態のレンズ用感光性樹脂組成物においては、(a)バインダポリマーとして、例えば、カルボキシル基、水酸基、アミノ基、イソシアネート基、オキシラン環、酸無水物等の官能基を有するビニル共重合体に、このビニル共重合体が有する官能基と反応して結合する、オキシラン環、イソシアネート基、水酸基、カルボキシル基等の1個の官能基と、少なくとも1個のエチレン性不飽和基とを有する化合物を付加反応させて得られる側鎖にエチレン性不飽和基を有するラジカル重合性共重合体(a2)等を使用することもできる。
上記カルボキシル基、水酸基、アミノ基、オキシラン環、酸無水物等の官能基を有するビニル共重合体の製造に用いられるビニル単量体としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、ケイ皮酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリルアミド、イソシアン酸エチルメタクリレート、グリシジル(メタ)アクリレート、無水マレイン酸等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて重合させてもよい。また、必要に応じて、カルボキシル基、水酸基、アミノ基、オキシラン環、酸無水物等の官能基を有するビニル単量体以外の上記ビニル単量体を共重合させることができる。
さらに、(a)バインダポリマーとしては、例えば下記一般式(I)で表される硫黄含有化合物と、不飽和カルボン酸及び/又は不飽和カルボン酸無水物とを共重合することで得ることができる硫黄含有共重合体(a3)を使用してもよい。
Figure 0005987469
式(I)中、R1は水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基又は置換基を有していてもよいアリール基を示し、R2は水素原子又はメチル基を示し、Aは2価の有機基を示し、X1及びX2はそれぞれ独立に硫黄原子又は酸素原子を示し、X1及びX2のうち少なくとも一方は硫黄原子である。
一般式(I)で表される硫黄含有化合物は、(メタ)アクリル酸エステル化合物であり、硫黄原子を含有することを特徴としている。
1が置換基を有していてもよいアルキル基である場合、置換基としては、例えば、アルキル基に有していてもよい置換基が、アルコキシ基、アラルキルオキシ基、アリールオキシ基、アリールオキシアルキルオキシ基、アルキルチオ基、アラルキルチオ基、アリールチオ基及びアリールチオアルキルチオ基が挙げられる。また、R1が置換基を有していてもよいアラルキル基又は置換基を有していてもよい芳香族残基である場合、置換基としては、例えば、アラルキル基又は芳香族残基に有していてもよい置換基が、アルキル基、アルコキシ基、アリール基、アラルキルオキシ基、アリールオキシ基、アリールオキシアルキルオキシ基、アルキルチオ基、アラルキルチオ基、アリールチオ基及びアリールチオアルキルチオ基及びハロゲン原子が挙げられる。
1としては、例えば、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基、ヘプチル基、オクチル基、シクロヘキシル基、シクロヘキシルメチル基等の直鎖状、分岐状又は環状のアルキル基、ベンジル基、4−メチルベンジル基、4−クロロベンジル基、4−ブロモベンジル基、β−フェニルエチル基等の置換又は未置換のアラルキル基、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−フェニルフェニル基、4−フェノキシフェニル基、3−フェノキシフェニル基、2−フェノキシフェニル基、4−メチルチオフェニル基、3−メチルチオフェニル基、2−メチルチオフェニル基、4−クロロフェニル基、3−クロロフェニル基、2−クロロフェニル基、4−ブロモフェニル基、3−ブロモフェニル基、2−ブロモフェニル基、α−ナフチル基、β−ナフチル基等の置換又は未置換のアリール基が挙げられる。透明性及び屈折率をより高くする観点から、R1は置換又は未置換のアラルキル基、又は置換又は未置換のアリール基であることが好ましい。
Aは、具体的には、酸素原子又は硫黄原子を含有していてもよい炭素数1〜10のアルキレン基であることが好ましく、炭素数2〜5のアルキレン基であることがより好ましい。また、屈折率をより高くする観点から、X1及びX2が硫黄原子であることが好ましい。
上記一般式(I)で表される硫黄含有化合物として、例えば、1−チオメチル−2−(メタ)アクリロイルチオメタン、1−チオメチル−2−(メタ)アクリロイルチオエタン、1−チオメチル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオメチル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオメチル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオメチル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオエチル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオエチル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオエチル−2−(メタ)アクリロイルチオメタン、1−チオエチル−2−(メタ)アクリロイルチオエタン、1−チオエチル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオエチル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオエチル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオエチル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオエチル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオエチル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオメタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオエタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−n−プロピル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオメタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオエタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−n−ブチル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオベンジル−2−(メタ)アクリロイルチオメタン、1−チオベンジル−2−(メタ)アクリロイルチオエタン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオベンジル−2−(メタ)アクリロイルチオイソプロパン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオベンジル−2−(メタ)アクリロイルチオイソブタン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオベンジル−2−(メタ)アクリロイルチオイソペンタン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオベンジル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオメタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオメタン、1−チオ−(2'−メチルチオベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(3'−メチルチオベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオメタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルオキシベンジル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−クロロベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−ブロモベンジル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−フェニルエチルベンジル)−2−(メタ)アクリロイルチオエタン、1−チオフェニル−2−(メタ)アクリロイルチオメタン、1−チオフェニル−2−(メタ)アクリロイルチオエタン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−プロパン、1−チオフェニル−2−(メタ)アクリロイルチオイソプロパン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−ブタン、1−チオフェニル−2−(メタ)アクリロイルチオイソブタン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオフェニル−2−(メタ)アクリロイルチオイソペンタン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオフェニル−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオメタン、1−チオ−(2'−メチルフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(3'−メチルフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオメタン、1−チオ−(2'−メチルチオフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(3'−メチルチオフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオメタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−プロパン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオイソプロパン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−ブタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオイソブタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−ペンタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオイソペンタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−ヘキサン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−ヘプタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルチオ−n−オクタン、1−チオ−(4'−フェニルフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−フェニルオキシフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−クロロフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(4'−ブロモフェニル)−2−(メタ)アクリロイルチオエタン、1−チオナフチル−2−(メタ)アクリロイルチオエタン、1−チオメチル−2−(メタ)アクリロイルオキシエタン、1−チオエチル−2−(メタ)アクリロイルオキシエタン、1−チオ−n−プロピル−2−(メタ)アクリロイルオキシエタン、1−チオ−n−ブチル−2−(メタ)アクリロイルオキシエタン、1−チオベンジル−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(2'−メチルチオベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(3'−メチルチオベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルチオベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルオキシベン

ジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−クロロベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−ブロモベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−フェニルエチルベンジル)−2−(メタ)アクリロイルオキシエタン、1−チオフェニル−2−(メタ)アクリロイルオキシエタン、1−チオ−(2'−メチルフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(3'−メチルフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルフェニル)−2−(メタ)アクリロイルチオエタン、1−チオ−(2'−メチルチオフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(3'−メチルチオフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルチオフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−メチルオキシフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−フェニルフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−フェニルオキシフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−クロロフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオ−(4'−ブロモフェニル)−2−(メタ)アクリロイルオキシエタン、1−チオナフチル−2−(メタ)アクリロイルオキシエタンが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
一般式(I)で表される硫黄含有化合物と共重合される不飽和カルボン酸及び/又は不飽和カルボン酸無水物としては、特に制限はなく、例えば、(メタ)アクリル酸、クロトン酸、2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸、2−アクリロイルオキシエチルヘキサヒドロフタル酸、2−メタクリロイルオキシエチルヘキサヒドロフタル酸等のモノカルボン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等のジカルボン酸、無水マレイン酸、無水フマル酸、無水シトラコン酸、無水メサコン酸、無水イタコン酸等のジカルボン酸無水物が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
上記硫黄含有共重合体は、一般式(I)で表される硫黄含有化合物、及び、不飽和カルボン酸及び/又は不飽和カルボン酸無水物に加えて、他の不飽和化合物をモノマー単位として含んでいてもよい。
硫黄含有共重合体(a3)にモノマー単位として含まれても良い他の不飽和化合物としては、一般式(I)で表される硫黄含有化合物、及び、不飽和カルボン酸及び/又は不飽和カルボン酸無水物と共重合可能な不飽和化合物であれば特に制限はない。具体的には、上記したビニル共重合体(a1)を得るためのビニル単量体として列挙した各種不飽和化合物や、γ−クロロ−β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシエチル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、(メタ)アクリル酸−2−ヒドロキシ−3−クロロプロピル、o−フェニルフェノールグリシジルエーテル(メタ)アクリレート、(メタ)アクリル酸−2−ヒドロキシ−3−フェノキシプロピル、(メタ)アクリル酸−2−[(1,1'−ビフェニル)オキシ]エトキシ、(メタ)アクリル酸−2−(2−メトキシエトキシ)エチル、オキシエチレン基の数が2〜23である(メタ)アクリル酸メトキシポリオキシエチレン、(メタ)アクリル酸−2−フェノキシエチル、(メタ)アクリル酸−2−(2−フェノキシエチル−オキシ)エチル等が挙げられる。屈折率をより向上する観点から、他の不飽和化合物成分として、(メタ)アクリル酸−2−[(1,1'−ビフェニル)オキシ]エトキシを共重合することが好ましい。これらは、1種を単独で又は2種類以上を組み合わせて使用することができる。
(a)バインダポリマーの重量平均分子量(ゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン換算した値)は、耐熱性、加熱溶融性、塗布性、後述するマイクロレンズアレイ用感光性エレメントとした場合のフィルム性(フィルム状の形態を保持する特性)、溶媒への溶解性、及び、現像工程における現像液への溶解性等の観点から、1,000〜300,000とすることが好ましく、5,000〜150,000とすることがより好ましい。
さらに、(a)バインダポリマーは、現像工程において、公知の各種現像液により現像可能となるように酸価を規定することが好ましい。例えば、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム、トリエタノールアミン等のアルカリ水溶液を用いて現像する場合には、酸価を50〜260mgKOH/gとすることが好ましい。この酸価が、50mgKOH/g以上とすることで、現像が行いやすくなる傾向にあり、260mgKOH/g以下となることで、耐現像液性(現像により除去されずにパターンとなる部分が、現像液によって侵されない性質)が良好になる傾向にある。また、水又はアルカリ水溶液と1種以上の界面活性剤とからなるアルカリ水溶液を用いて現像する場合には、酸価を、16〜260mgKOH/gとすることが好ましい。酸価が、16mgKOH/g以上であることにより、現像しやすい傾向にあり、260mgKOH/g以下とすることにより、耐現像液性が良好になる傾向にある。
(b)エチレン性不飽和基を有する光重合性不飽和化合物
エチレン性不飽和基を有する光重合性不飽和化合物としては、例えば、多価アルコールとα,β−不飽和カルボン酸とを反応させて得られる化合物、2,2−ビス(4−(ジ(メタ)アクリロキシポリエトキシ)フェニル)プロパン、グリシジル基含有化合物とα,β−不飽和カルボン酸とを反応させて得られる化合物、ウレタンモノマー、ノニルフェニルジオキシレン(メタ)アクリレート、γ−クロロ−β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシエチル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、(メタ)アクリル酸アルキルエステル等が挙げられる。
上記多価アルコールとα,β−不飽和カルボン酸とを反応させて得られる化合物としては、例えば、エチレン基の数が2〜14であるポリエチレングリコールジ(メタ)アクリレート、プロピレン基の数が2〜14であるポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート(ペンタエリスリトールトリ(メタ)アクリレート)、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
上記2,2−ビス(4−(ジ(メタ)アクリロキシポリエトキシ)フェニル)プロパンとしては、例えば、2,2−ビス(4−(ジ(メタ)アクリロキシジエトキシ)フェニル)プロパン、2,2−ビス(4−(ジ(メタ)アクリロキシトリエトキシ)フェニル)プロパン、2,2−ビス(4−(ジ(メタ)アクリロキシペンタエトキシ)フェニル)プロパン、2,2−ビス(4−(ジ(メタ)アクリロキシデカエトキシ)フェニル)等が挙げられる。
上記グリシジル基含有化合物とα,β−不飽和カルボン酸とを反応させて得られる化合物としては、例えば、トリメチロールプロパントリグリシジルエーテルトリ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロキシ−2−ヒドロキシ−プロピルオキシ)フェニル等が挙げられる。
上記ウレタンモノマーとしては、例えば、β位にOH基を有する(メタ)アクリルモノマーと、イソホロンジイソシアネート、2,6−トルエンジイソシアネート、2,4−トルエンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等のイソシアネート化合物との付加反応物、トリス((メタ)アクリロキシテトラエチレングリコールイソシアネート)ヘキサメチレンイソシアヌレート、エチレンオキシド変性ウレタンジ(メタ)アクリレート、エチレンオキシド,プロピレンオキシド変性ウレタンジ(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2−エチルヘキシルエステル等が挙げられる。
上記の光重合性不飽和化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。
また、(a)バインダポリマーとして硫黄含有共重合体(a3)が使用される場合には、(b)エチレン性不飽和基を有する光重合性不飽和化合物は、(B1)エチレン性不飽和基を1つ有する光重合性化合物及び(B2)エチレン性不飽和基を少なくとも2つ有する光重合性化合物を含むことが好ましい。
(B1)エチレン性不飽和基を1つ有する光重合性不飽和化合物として、例えば、γ−クロロ−β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシエチル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、β−ヒドロキシプロピル−β'−(メタ)アクリロイルオキシエチル−o−フタレート、(メタ)アクリル酸−2−ヒドロキシ−3−クロロプロピル、o−フェニルフェノールグリシジルエーテル(メタ)アクリレート、(メタ)アクリル酸−2−ヒドロキシ−3−フェノキシプロピル、(メタ)アクリル酸−2−[(1,1'−ビフェニル)オキシ]エトキシ、(メタ)アクリル酸−2−(2−メトキシエトキシ)エチル、オキシエチレン基の数が2〜23である(メタ)アクリル酸メトキシポリオキシエチレン、(メタ)アクリル酸−2−フェノキシエチル、(メタ)アクリル酸−2−(2−フェノキシエチル−オキシ)エチル、オキシエチレン基の数が2〜23である(メタ)アクリル酸フェノキシポリオキシエチレンが挙げられる。中でも、(B1)成分としては、屈折率をより向上する観点から、(メタ)アクリル酸−2−[(1,1'−ビフェニル)オキシ]エトキシ又はオキシエチレン基の数が2〜5である(メタ)アクリル酸フェノキシポリオキシエチレンが好ましい。また、上記一般式(I)で表される硫黄含有化合物を、(B1)成分として使用することができる。さらに、上述の他の不飽和化合物を、(B1)成分として使用することもできる。これらの化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
(B2)エチレン性不飽和基を少なくとも2つ有する光重合性不飽和化合物としては、例えば、上記した、多価アルコールとα,β−不飽和カルボン酸とを反応させて得られる化合物、グリシジル基含有化合物とα,β−不飽和カルボン酸とを反応させて得られる化合物,ウレタンモノマーや、ビス(4−メタクリロイルチオフェニル)スルフィド、ビス[(2−メタクリロイルチオ)エチル]スルフィド等の多価チオールとα,β−不飽和カルボン酸とを反応させて得られる化合物等が好適に使用される。
これらの(B2)成分として例示した化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
(c)光重合開始剤
活性光線により遊離ラジカルを生成する光重合開始剤としては、例えば、ベンゾフェノン、N,N'−テトラメチル−4,4'−ジアミノベンゾフェノン(ミヒラーケトン)、N,N'−テトラエチル−4,4'−ジアミノベンゾフェノン、4−メトキシ−4'−ジメチルアミノベンゾフェノン、1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)](「イルガキュア−OXE01」、チバスペシャリティーケミカルズ(株)商品名)、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)(イルガキュア−OXE02、チバスペシャリティーケミカルズ(株)商品名)、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン(「イルガキュア−369」、チバスペシャリティーケミカルズ(株)商品名)、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン(「イルガキュア−907」、チバスペシャリティーケミカルズ(株)商品名)等の芳香族ケトン;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル−1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;9−フェニルアクリジン、1,7−ビス(9,9'−アクリジニル)ヘプタン等のアクリジン誘導体;N−フェニルグリシン、N−フェニルグリシン誘導体、クマリン系化合物などが挙げられる。
また、2,4,5−トリアリールイミダゾール二量体において、2つの2,4,5−トリアリールイミダゾールに置換した置換基は同一でも相違していてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。
なお、フォトリソグラフィー工程における密着性及び感度の観点から、(c)成分としては、2,4,5−トリアリールイミダゾール二量体が好ましく、マイクロレンズとした場合の可視光線透過率の観点から1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]がより好ましい。
上記の光重合開始剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
レンズ用感光性樹脂組成物における、(a)バインダポリマーの配合割合は、(a)及び(b)成分の総量100質量部に対して、20〜90質量部とすることが好ましく、30〜85質量部とすることがより好ましく、35〜80質量部とすることが特に好ましく、40〜75質量部とすることが極めて好ましい。この配合割合が20質量部以上とすることで、塗布性、加熱溶融性、或いは後述するレンズ用感光性エレメントとした場合のフィルム性が良好になる傾向にあり、90質量部以下とすることで、光硬化性あるいは耐熱性が良好になる傾向にある。
また、レンズ用感光性樹脂組成物における、(b)エチレン性不飽和基を有する光重合性不飽和化合物の配合割合は、(a)及び(b)成分の総量100質量部に対して、10〜80質量部とすることが好ましく、15〜70質量部とすることがより好ましく、20〜65質量部とすることが特に好ましく、25〜60質量部とすることが極めて好ましい。この配合割合が10質量部以上では、光硬化性あるいは耐熱性が良好になる傾向にあり、80質量部以下とすることで、塗布性、加熱溶融性、或いはレンズ用感光性エレメントとした場合のフィルム性が良好になる傾向にある。
また、レンズ用感光性樹脂組成物における、(c)光重合開始剤の配合割合は、(a)及び(b)成分の総量100質量部に対して、0.05〜20質量部とすることが好ましく、0.1〜15質量部とすることがより好ましく、0.15〜10質量部とすることが特に好ましい。この配合割合を0.05質量部以上とすることで、光硬化が良好になる傾向にあり、20質量部以下とすることで、硬化工程において、レンズ形成用樹脂層6bの活性光線照射表面での活性光線の吸収が増大することを防止し、内部の光硬化が不十分となることが防止される。
レンズ用感光性樹脂組成物には、必要に応じて、シランカップリング剤などの密着性付与剤、レベリング剤、可塑剤、充填剤、消泡剤、難燃剤、安定剤、酸化防止剤、香料、熱架橋剤、重合禁止剤等を含有させることができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。また、これらの配合割合は、(a)及び(b)成分の総量100質量部に対して、それぞれ0.01〜20質量部とすることができる。
<保護材>
本発明の光導波路は、レンズ6と並設してレジスト(図示せず)を設けてもよい。レジストはレンズ6を保護し、レンズ6が損傷することを防止する保護材である。レジストは、複数設けられ、各レンズ6を一対以上のレジストで挟み込むように配置することが好ましい。すなわち、光導波路平面方向において、レンズ6の両側に一対以上のレジストが、配置されることが好ましい。
各レジストは、レンズ6の厚さ以上の厚さを有しており、好ましくはレンズ6の厚さより厚く、これにより、レンズ6を適切に保護することができるようになる。
レジストは、レンズ6の厚さよりも厚くしやすくするために、レンズ6を形成した後に別途形成することが好ましい。具体的には、レンズ6が設けられた面上に、レンズ6を覆うように樹脂層を積層し、その後、レジストの形成予定箇所以外の樹脂層を除去することにより各レジストを形成する。そのため、レジストの材料としては、感光性樹脂や熱硬化性樹脂が使用可能であるが、感光性樹脂が使用され、フォトリソグラフィーにより形成されることが好ましい。レンズ6及びレジストがともにフォトリソグラフィーにより形成されることにより、レジストとレンズ6との位置合わせの精度を高めることができる。
また、レンズ6を保護するための保護材としては、レジストの代わりにダミーレンズを使用してもよい。ダミーレンズは、レンズ形成用樹脂層6b(図2参照)から、例えばフォトリソグラフィーによりレンズ6と一括形成されるものである。これにより、保護材を形成するための特別な工程を追加する必要がなくなるとともに、レンズ6とダミーレンズの位置合わせの精度も高めることができる。ダミーレンズの形成位置は、レジストの形成位置と同様であるので、その説明は省略する。
ダミーレンズの厚さは、レンズ6の厚み以上であればよいが、レンズ6の厚さよりも大きいことが好ましい。ダミーレンズの厚さをレンズ6の厚さより大きくする方法としては、例えば、ダミーレンズの形成予定箇所に対する活性光線の照射量を、レンズ6の形成予定箇所に対する活性光線の照射量より大きくして、ダミーレンズの形成予定箇所の硬化度合いを、レンズ6の形成予定箇所の硬化度合いよりも大きくすること等が挙げられる。なお、ダミーレンズは、レンズ6と同様にレンズ表面が凸状に膨らむものが好ましいが、その構成に限定されるわけではない。
なお、基板1が電気配線を有する電気配線板である場合には、レジストは、電気配線の少なくとも一部の上に積層され、電気配線を保護する保護レジストとして使用されることが好ましい。なお、電気配線は、表面の一部に金メッキ等の金属保護膜が被覆されるとともに、その他の表面の上にレジストが積層されるのが好ましい。このような構成により、電気配線を保護するためのめっき量を抑えることができる。ダミーレンズ、細長レジストも、同様に電気配線の上に積層され、電気配線を保護するための部材として使用してもよい。
[電気配線]
本発明の光導波路は、基板1の裏面に各種光学素子を実装する場合、基板1の裏面に電気配線を設けても良い。
[電気配線保護層]
コア形成用樹脂は、用いる光信号に対して透明であり、活性光線によりパターンを形成し得るものであり、電気配線保護層として使用可能であれば、前述の電気配線を保護する電気配線保護層として使用できる。
[蓋材層]
本発明の光導波路は、さらに蓋材層を有していてもよい。
蓋材層は、好ましくは上部クラッド層4上に設けられ、光導波路の反りを抑制することができる。
蓋材層の具体例としては、基材と接着剤層からなるものが挙げられ、基材に関しては、上述の基板1と同様のものを用いれば良い。接着剤層に関しては、上部クラッド層4との密着性があるものであれば特に限定はないが、屈曲性の観点から100MPa〜2GPaの引張弾性率であると好ましい。接着剤層の厚みとしては特に限定はないが、屈曲耐性の観点から、5μm〜25μmであれば良く、安定した屈曲性を得るためには、5μm〜15μmであると更に良い。また、基板1よりも低弾性率の材料を用いると更に屈曲耐性が向上するため尚良い。蓋材層としては、上述の範囲で一般的にフレキシブル電気配線に用いられるカバーレイフィルムを用いることができる。
本発明の光導波路は、例えば、以下の第1〜5工程により製造することができる。以下、各工程について説明する。
(第1工程)
第1工程は、図2(a)〜(c)に示されるように、基板1の一方の面側にレンズ6を形成する工程である。
レンズ6は、上記したように別途製造したものを接着剤等を介して接着してもよいが、フォトリソグラフィー法によって形成することが好ましい。以下、レンズ形成方法の一例として、レンズをネガ型フォトレジストにより形成する場合の例を説明するが、レンズはポジ型フォトレジストで形成しても良い。
図2(a)に示す工程においては、基板1の一方の面上に感光性樹脂組成物からなるレンズ形成用樹脂層6bを積層している。レンズ形成用樹脂層6bは、例えば感光性樹脂組成物の各成分を溶剤に均一に溶解または分解して得た塗布液を、基板1の他方の面に塗布して塗膜を形成し、その後、塗膜から溶剤を乾燥除去することにより形成する。
ただし、支持体フィルムに感光性樹脂組成物からなる感光層を積層して構成されるレンズ用感光性エレメントを、基板1に貼付することによりレンズ形成用樹脂層6bを設けてもよい。
次いで、図2(b)に示す工程においては、レンズ形成用樹脂層6bが形成されている面側に所定パターンを有するレンズ用フォトマスクを被せ、レンズ用フォトマスクを介して特定の活性光線をレンズ形成用樹脂層6bに照射して、レンズ形成予定箇所を硬化させ、その後、現像液を用いた現像によりレンズ形成予定箇所以外の未硬化部分を除去して、基板1の一方の面上に複数のレンズ形成用レジスト6cを形成している。
レンズ形成用樹脂層6bを硬化する際の活性光線としては、通常紫外線を使用するが、基板1としてポリイミド基板を使用すると、活性光線(紫外線)は基板1を透過しなくなる。そのため、基板の各面に照射された活性光線は、基板を透過して反対側の面に照射されることはないので、適切なフォトリソグラフィー加工を行うことができる。
レンズ形成用レジスト6cを現像する方法としては、アルカリ水溶液、水系現像液、有機溶剤等の公知の現像液を用いて、スプレー、シャワー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像を行い、未露光部を除去する方法が挙げられ、中でも、環境、安全性の観点からアルカリ水溶液を用いることが好ましいものとして挙げられる。
アルカリ水溶液の塩基としては、水酸化アルカリ(リチウム、ナトリウム又はカリウムの水酸化物等)、炭酸アルカリ(リチウム、ナトリウム又はカリウムの炭酸塩若しくは重炭酸塩等)、アルカリ金属リン酸塩(リン酸カリウム、リン酸ナトリウム等)、アルカリ金属ピロリン酸塩(ピロリン酸ナトリウム、ピロリン酸カリウム等)、水酸化テトラメチルアンモニウム、モノエタノールアミン、トリエタノールアミンが挙げられる。
現像後、形成されたレンズ形成用レジスト6cは、さらに加熱して溶融することで、基板1に接する面とは反対側の面を、所望の曲率を有する凸面とし、レンズ6を形成している(図2(c)参照)。
レンズ6の形成は、後述する光路変換ミラー5を形成する前に行うことが好ましい。光路変換ミラー5を形成した後にレンズ6をフォトリソグラフィーで形成すると、光路変換ミラー5にひずみが生じる等の不具合が生じやすくなる。
また、第1工程の露光現像は、後述する第2〜4工程における露光現像と同時に行うことができ、その場合工程が簡略化されるため、生産効率に優れると共に、光導波路の熱収縮が抑制されるため、歩留りの観点からも好ましい。
(第2工程)
第2工程は、図2(a)〜(b)に示されるように、基板1上に下部クラッド層2を形成する工程であり、クラッド層形成用樹脂層2aを積層し、露光現像することで行うことができる。
基板1上にクラッド層形成用樹脂層2aを積層する方法については特に制限はないが、クラッド層形成用樹脂がワニス状の場合は、基板1に常法によって塗布すれば良く、クラッド層形成用樹脂がフィルム状の場合は、ロールラミネータ、真空加圧ラミネータ、プレス、真空プレス等の各種方法を用いれば良い。
(第3工程)
第3工程は、図2(d)〜(e)に示されるように、下部クラッド層2上にコア形成用樹脂層3aを積層し、露光現像によって光信号伝達用コアパターン3を形成する工程である。
基板1上にコア形成用樹脂層3aを積層する方法は、上述のクラッド層形成用樹脂層2aを積層する方法と同様にして行うことができる。
(第4工程)
第4工程は、図2(f)に示されるように、光信号伝達用コアパターン3上に上部クラッド層4を形成する工程である。
光信号伝達用コアパターン3上にクラッド層形成用樹脂層を積層する方法は、上述の第2工程と同様にして行うことができる。
(第5工程)
第5工程は、光信号伝達用コアパターン3に光路変換ミラー5を形成する工程である。
光路変換ミラー5を形成する方法は特に限定されず、公知の方法を適用することができる。例えば、光信号伝達用コアパターン3形成面側から、ダイシングソー等を用いて、光信号伝達用コアパターン3を切削することにより形成することができる。形成する光路変換ミラー5の角度は、約45°であることが好ましい。
また、光路変換ミラー5に蒸着装置を用いて、金等の金属を蒸着し、反射金属層を備えたミラーとしても良い。
本発明に係る光導波路の製造方法は、蓋材層を有する光導波路を製造する場合には、さらに上記第5工程において切削した面側に蓋材層を積層する工程を有する。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1
<クラッド層形成用樹脂フィルムの作製>
[(A)(メタ)アクリルポリマー(ベースポリマー)の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(A)(メタ)アクリルポリマーの溶液(固形分45質量%)を得た。
[重量平均分子量の測定]
(A)(メタ)アクリルポリマーの重量平均分子量(標準ポリスチレン換算)をGPC(東ソー(株)製「SD−8022」、「DP−8020」、及び「RI−8020」)を用いて測定した結果、3.9×104であった。なお、カラムは日立化成工業(株)製「Gelpack GL−A150−S」及び「Gelpack GL−A160−S」を使用した。
[酸価の測定]
(A)(メタ)アクリルポリマーの酸価を測定した結果、79mgKOH/gであった。なお、酸価は(A)(メタ)アクリルポリマー溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[クラッド層形成用樹脂ワニスの調合]
ベースポリマーとして、前記(A)(メタ)アクリルポリマー溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「U−200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「UA−4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン(株)製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン(株)製「イルガキュア2959」)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン(株)製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋(株)製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスを得た。
[クラッド層形成用樹脂フィルムの作製]
上記で得られたクラッド層形成用樹脂ワニスを、支持フィルムであるPETフィルム(東洋紡績(株)製「コスモシャインA4100」、厚み50μm)の非処理面上に、塗工機(マルチコーターTM−MC、(株)ヒラノテクシード製)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムを得た。
このとき、クラッド層形成用樹脂ワニスより形成される樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、その膜厚については後述する。
<コア層形成用樹脂フィルムの作製>
(A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成(株)製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業(株)製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業(株)製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上述のクラッド層形成用樹脂ワニスの調合と同様の方法及び条件でコア層形成用樹脂ワニスを調合した。その後、上記と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスを、支持フィルムであるPETフィルム(商品名:コスモシャインA1517、東洋紡績(株)製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。
このとき、コア層形成用樹脂ワニスより形成される樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、その膜厚については後述する。
<レンズ用感光性エレメントの作製>
撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート190質量部を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃に保ちながら、メタクリル酸10質量部、メタクリル酸n−ブチル1質量部、メタクリル酸ベンジル74質量部、メタクリル酸2−ヒドロキシエチル15質量部、及び2,2’−アゾビス(イソブチロニトリル)2.5質量部を4時間かけて均一に滴下した。滴下終了後、80℃で6時間撹拌を続け、重量平均分子量が約30,000のバインダポリマー(a)の溶液(固形分35質量%)を得た。
次に、バインダポリマー(a)の溶液(固形分35質量%)200質量部(固形分:70質量部)に、2,2−ビス(4−(ジ(メタ)アクリロキシポリエトキシ)フェニル)プロパン8質量部、β−ヒドロキシエチル−β’−(メタ)アクリロイルオキシエチル−o−フタレート22質量部、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体2.1質量部、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン0.33質量部、メルカプトベンゾイミダゾール0.25質量部、(3‐メタクリロイルプロピル)トリメトキシシラン8質量部、メチルエチルケトン30質量部を加えて攪拌機を用いて15分間混合し、レンズ用感光性樹脂組成物溶液を作製した。
支持体フィルムとして厚さ16μmのポリエチレンテレフタレートフィルムを使用し、上記で得られたレンズ用感光性樹脂組成物溶液を支持体フィルム上にコンマコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶剤を除去し、レンズ形成用樹脂層6bを形成した。得られたレンズ形成用樹脂層6bの厚さは30μmであった。次いで、得られたレンズ形成用樹脂層6bの上に、さらに、25μmの厚さのポリエチレンテレフタレートフィルムを、カバーフィルムとして貼り合わせて、レンズ用感光性エレメントを作製した。
<光導波路の作成>
[レンズ及び下部クラッド層の一括形成]
基板1として150mm×150mmのポリイミドフィルム(ポリイミド;ユーピレックスRN(宇部日東化成(株)製)、厚み;25μm)を用い、その一方の面上に、レンズ用感光性エレメントのカバーフィルムを剥がしながら、レンズ形成用樹脂層6bが接するようにラミネータ(日立化成工業(株)製、商品名「HLM−1500型」)を用いて、ロール温度120℃、基板送り速度1m/分、圧着圧力(シリンダ圧力)4×105Paの条件でラミネートして、支持体フィルム付きのレンズ形成用樹脂層6bを積層した。
次いで、基板1の他方の面上に、上記で得られた15μm厚みのクラッド層形成用樹脂フィルムの保護フィルムを剥離した後に、真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートし、クラッド層形成用樹脂層2aを形成した(図2(a)参照)。
次いで、レンズ形成用樹脂層6bから支持体フィルムをはく離した後、レンズ形成用樹脂層6b側に、開口幅=100μmの開口部を有するレンズ用フォトマスクを配置した。
その後、紫外線露光機(機種名:EXM−1172、株式会社オーク製作所製)により、紫外線を(波長365nm)を0.3J/cm2で、フォトマスクを介してレンズ形成用樹脂層6b側に照射し、同時に、クラッド層形成用樹脂フィルムの支持フィルム側からも3.0J/cm2で照射し、次いで、現像液1.0質量%の炭酸カリウム水溶液を用いてエッチングして、レンズ形成用レジスト6c及び下部クラッド層2を形成した(図2(b)参照)。
さらに、レンズ形成用レジスト6cをさらに加熱して溶融し、凸面を有するレンズ6を得た(図2(c)参照)。
[光信号伝達用コアパターンの形成]
上記で形成した下部クラッド層2上に、上記で得られた50μm厚みのコア層形成用樹脂フィルムを、保護フィルムを剥離した後に、ロールラミネータ(日立化成テクノプラント(株)製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件でラミネートし、次いで上記の真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着し、コア形成用樹脂層3aを形成した(図2(d)参照)。
続いて、光信号伝達用コアパターン3を形成するネガ型フォトマスクと、上記紫外線露光機とを用いて、支持フィルム側から紫外線(波長365nm)を0.8J/cm2で照射し、次いで80℃で5分間露光後加熱を行った。尚、図1及び2に示すように、光信号伝達用コアパターン3は光導波路の中央部に延在する4つのコアを有するものとした。
その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いてエッチングした。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、光信号伝達用コアパターン3を形成した(図2(e)参照)。
[上部クラッド層の形成]
得られた光信号伝達用コアパターン3上から、上記で得られた55μm厚みのクラッド層形成用樹脂フィルムを、保護フィルムを剥離した後に、真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。
続いて、上記紫外線露光機を用いて、クラッド層形成用樹脂フィルムの支持フィルム側から紫外線(波長365nm)を3.0J/cm2で照射し、支持フィルムを剥離後、80℃で5分間露光後加熱を行い上部クラッド層4を形成した(図2(f)参照)。
[光路変換ミラーの形成]
得られた光導波路の上部クラッド層4側からダイシングソー(DAC552、(株)ディスコ社製)を用いて45°の光路変換ミラー5を形成し、本発明の光導波路を得た。尚、各コアパターンにおいて、ミラー中心点−レンズ中心点間距離d1が30μmとなるように光路変換ミラー5の形成位置を調節した。
[光損失の測定]
光ファイバA(GI50、NA=0.2)を用いて850nmの光信号を光導波路に入射し、光信号伝達用コアパターン3を透過し、光路変換ミラー5において反射し、レンズ6を透過して出力された光信号を、ミラー中心点5a上において光ファイバB(GI50、NA=0.2)を用いて受光した時の光損失(A)を測定した。このとき、基板1表面と光ファイバBとの距離は30μmとした。次いで、光路変換ミラー5を上記のダイシングソーを用いて切断し、ミラーなしの光導波路を得た。次いで、上記の光ファイバA及び光ファイバBを用い、光信号伝達用コアパターン3と同軸方向の入射部側に光ファイバAを、出射部側に光ファイバBを調芯し、光損失(B)を測定した。
以上より、光路変換ミラー5からレンズ6を透過するまでの光損失(C)を以下の式に従って算出した。
(式)(C)=(A)−(B)
実施例1において得られた光導波路における光損失(C)は0.99dBであった。
比較例1
レンズ中心点6aとミラー中心点5aとの距離が0μmとなるように光路変換ミラー5の形成位置を調節した以外は、実施例1と同様にして光導波路を作成し、その光損失を測定した。
比較例1において得られた光導波路における光損失(C)は1.11dBであった。
1.基板
2.下部クラッド層
2a.クラッド層形成用樹脂層
3.光信号伝達用コアパターン
3a.コア形成用樹脂層
4.上部クラッド層
5.光路変換ミラー
5a.ミラー中心点
6.レンズ
6a.レンズ中心点
6b.レンズ形成用樹脂層
6c.レンズ形成用レジスト
10.光導波路
d1.ミラー中心点−レンズ中心点間距離

Claims (11)

  1. 下部クラッド層、光信号伝達用コアパターン及び上部クラッド層が順に積層され、かつ、前記光信号伝達用コアパターン上に光路変換ミラーを備える光導波路であって、
    前記光路変換ミラーは、前記光信号伝達用コアパターンを伝搬する光の光路上に位置し、かつ、前記光路に対して傾斜しており、
    また、前記光路変換ミラーによって光路変換された光の光路上に位置するように、前記下部クラッド層側又は上部クラッド層側にレンズを有し、
    さらに、前記レンズの中心点を通りレンズ面に垂直な直線である光軸が前記光路変換ミラーの中心点よりも前記光信号伝達用コアパターン寄りになるように、前記レンズが前記光導波路平面上に配置されている光導波路。
  2. 前記光路変換ミラーは、前記光路に対して45°傾斜している、請求項1に記載の光導波路。
  3. 前記光導波路平面上における、レンズの中心点とミラーの中心点との間の距離が、前記光信号伝達用コアパターンのコア厚みの5〜100%である請求項1又は2に記載の光導波路。
  4. 前記光導波路平面上において、レンズの直径が、前記光信号伝達用コアパターンのコア径の100〜500%である請求項1から3のいずれか1項に記載の光導波路。
  5. 前記レンズが、前記光路変換ミラーによって光路変換された光を外部光学部材に受光させるための集光レンズである請求項1から4のいずれか1項に記載の光導波路。
  6. さらに、基板を有し、該基板と前記光信号伝達用コアパターンとが下部クラッド層を挟持する請求項1から5のいずれか1項に記載の光導波路。
  7. 前記基板が前記光路変換ミラーによって光路変換された光を透過する透明基板である請求項に記載の光導波路。
  8. 前記透明基板がポリイミド基板である請求項に記載の光導波路。
  9. 前記基板上に、レンズ厚さ以上の厚さを有するレジスト又はダミーレンズを前記レンズと並設させる、請求項6から8のいずれか1項に記載の光導波路。
  10. 前記レンズが、フォトリソグラフィー加工レンズである、請求項1から9のいずれか1項に記載の光導波路。
  11. 前記光路変換ミラーは、前記光信号伝達用コアパターンの切削面である、請求項1から10のいずれか1項に記載の光導波路。
JP2012114420A 2012-05-18 2012-05-18 光導波路 Expired - Fee Related JP5987469B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114420A JP5987469B2 (ja) 2012-05-18 2012-05-18 光導波路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114420A JP5987469B2 (ja) 2012-05-18 2012-05-18 光導波路

Publications (2)

Publication Number Publication Date
JP2013242370A JP2013242370A (ja) 2013-12-05
JP5987469B2 true JP5987469B2 (ja) 2016-09-07

Family

ID=49843332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114420A Expired - Fee Related JP5987469B2 (ja) 2012-05-18 2012-05-18 光導波路

Country Status (1)

Country Link
JP (1) JP5987469B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014842A (ja) * 2014-07-03 2016-01-28 日本電信電話株式会社 光導波路部品およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248953A (ja) * 1998-03-04 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> マイクロレンズ付き光導波路およびその製造方法
JP2004302188A (ja) * 2003-03-31 2004-10-28 Hitachi Cable Ltd 光導波路付き電気配線基板
JP2004361858A (ja) * 2003-06-06 2004-12-24 Sharp Corp マイクロレンズ付き光導波路およびその製造方法
JP2005010645A (ja) * 2003-06-20 2005-01-13 Mitsubishi Rayon Co Ltd 光導波路フィルムの製造方法
JP4509178B2 (ja) * 2006-03-10 2010-07-21 イビデン株式会社 光電気混載基板の製造方法
JP2008040029A (ja) * 2006-08-03 2008-02-21 Ntt Electornics Corp モニタ用光学素子及びその製造方法
WO2008062836A1 (fr) * 2006-11-22 2008-05-29 Nikon Corporation Module de guide d'onde optique et son procédé de fabrication

Also Published As

Publication number Publication date
JP2013242370A (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
JP2013217989A (ja) 光ファイバコネクタ
EP2159262B1 (en) Optical waveguide comprising a resin film
US9069128B2 (en) Opto-electric combined circuit board and electronic devices
US9519109B2 (en) Substrate with lens and production method therefor, and optical waveguide with lens
JP5359889B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
WO2012070585A1 (ja) 光導波路
JP5212141B2 (ja) フレキシブル光導波路の製造方法
WO2013105471A1 (ja) 光導波路及びその製造方法
US20110262091A1 (en) Optical waveguide
US8620127B2 (en) Optical waveguide and method for manufacturing the same
JP5966470B2 (ja) 光導波路及びその製造方法
JP5987469B2 (ja) 光導波路
WO2010087378A1 (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP2014048493A (ja) 光学部材及び光デバイス
JP5228947B2 (ja) フレキシブル光導波路及びその製造方法
JP2007084772A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれを用いた光導波路
JP2013231859A (ja) レンズ付き透明基板の製造方法
JP2013231860A (ja) レンズ付き光導波路の製造方法
JP2010197985A (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
JP2010271371A (ja) フレキシブル光導波路
JP6003147B2 (ja) レンズ付き基板及びその製造方法、並びにレンズ付き光導波路及びその製造方法
JP2018084638A (ja) 光導波路
JP2010286674A (ja) 光導波路及び光電気複合配線板
JP2011017993A (ja) 光導波路及び光電気複合配線板
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees