JP5962588B2 - ブレーキ液圧制御システム - Google Patents

ブレーキ液圧制御システム Download PDF

Info

Publication number
JP5962588B2
JP5962588B2 JP2013112461A JP2013112461A JP5962588B2 JP 5962588 B2 JP5962588 B2 JP 5962588B2 JP 2013112461 A JP2013112461 A JP 2013112461A JP 2013112461 A JP2013112461 A JP 2013112461A JP 5962588 B2 JP5962588 B2 JP 5962588B2
Authority
JP
Japan
Prior art keywords
brake
actual
coil
solenoid valve
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013112461A
Other languages
English (en)
Other versions
JP2014231274A (ja
Inventor
宏司 中岡
宏司 中岡
佐藤 圭
圭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013112461A priority Critical patent/JP5962588B2/ja
Publication of JP2014231274A publication Critical patent/JP2014231274A/ja
Application granted granted Critical
Publication of JP5962588B2 publication Critical patent/JP5962588B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Description

本発明は、ブレーキシリンダの液圧を制御する電磁弁の特性の取得に関するものである。
特許文献1には、車両用油圧作動式変速機のクラッチ等の油圧を制御する油圧制御装置が記載されている。油圧制御装置において、クラッチ等の油圧は電磁弁により制御されるが、電磁弁のコイルに加えられる電圧の制御によりコイルへの供給電流が制御される。
一方、コイルについての電圧と電流との関係(以下、特性と称する)は、下式で表される。
Vc=Vs+R・Ic
Vcは印加される電圧、Icはコイルに流れる電流であり、Vsはバイアス電圧(切片)、Rは抵抗である。抵抗Rは、温度が変化すると変化するため、特許文献1に記載の油圧制御装置においては、実際の電圧V、電流I(実測点)が検出され、検出された実測点(V*,I*)から実際の抵抗Rが求められ{R=(V*−Vs)/I*}、実際の特性が取得される。
また、特許文献1に記載の油圧制御装置においては、実測点が、シフトポジションがN,Pである場合等の電磁弁の制御不要時に取得される。
特開平7−77271
本発明の課題は、電磁弁の実際の特性である実特性を、ブレーキシリンダの液圧制御の開始前に良好に取得されるようにすることである。
課題を解決するための手段および効果
本願発明に係るブレーキ液圧制御システムにおいては、電磁弁のコイルについての実特性が、ブレーキシリンダの液圧制御の開始が予測された場合に取得される。
例えば、開始条件が成立するとブレーキシリンダの液圧制御が開始される場合において、開始条件より緩やかであって、近い将来、開始条件が成立する可能性が高いと予測される開始予測条件が成立した場合に実特性が取得される。その後、開始条件が成立して行われるブレーキシリンダの液圧制御において、取得された実特性を用いることが可能となり、制御開始初期から、ブレーキシリンダの液圧を精度よく制御することが可能となる。
また、開始予測条件が成立したタイミングを利用して学習が行われるようにすれば、その後、開始条件が成立して行われるブレーキシリンダの液圧制御の前に良好に実特性を取得することができる。さらに、液圧制御の開始直前に実特性が取得されるのであり、液圧制御の実行時(特に、制御初期)とほぼ同じ温度において実特性を取得できるという利点もある。
特許請求可能な発明
以下、本願において特許請求が可能と認識されている発明、あるいは、発明の特徴点について説明する。
(1)少なくとも1つの電磁弁と、それら少なくとも1つの電磁弁のコイルへの供給電流を、それぞれコイルに加えられる電圧を制御することにより制御して、車両の複数の車輪にそれぞれ設けられた液圧ブレーキのブレーキシリンダのうちの前記少なくとも1つの電磁弁に接続されたブレーキシリンダの液圧をそれぞれ制御可能なブレーキ液圧制御部とを含むブレーキ液圧制御システムであって、
前記ブレーキ液圧制御部が、(i)前記車両の実際の挙動を表す実挙動値と、前記車両の目標挙動を表す目標挙動値との差の絶対値である偏差が開始予測しきい値を超えた場合に、前記少なくとも1つの電磁弁のうちの1つ以上である第1電磁弁のコイルについて、実際に加えられた電圧と実際に流れた電流との関係である実特性を取得する実特性取得部と、(ii)前記偏差が前記開始予測しきい値より大きい開始判定しきい値を超えた場合に、前記実特性取得部によって取得された実特性に基づいて前記少なくとも1つの電磁弁のうちの1つ以上である第2電磁弁のコイルへの供給電流の制御を開始して、前記複数のブレーキシリンダのうちの前記第2電磁弁に接続されたブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とするブレーキ液圧制御システム。
「車両の挙動」は、車両の走行状態(旋回状態)、車輪の回転状態等で表すことができる。車両の旋回状態は、ヨーレイト、横加速度、ステアリングホイールの操舵角度等のうちの1つ以上で表すことができ、車輪の回転状態は、回転速度、回転加速度、スリップに関連する値(スリップ率、スリップ量等)等のうちの1つ以上で表すことができる。
第2電磁弁、すなわち、ブレーキシリンダの液圧制御の対象の1つ以上の電磁弁(制御対象電磁弁と称することができる)は、車両の実際の挙動、ブレーキシリンダの液圧制御の目的等で決まる。第1電磁弁、すなわち、実特性が取得される対象の1つ以上の電磁弁(実特性取得対象電磁弁、事前印加対象電磁弁と称することができる)は、少なくとも1つの電磁弁のうち予め決められたものとしたり、車両の実際の挙動等に基づいてその都度決められたものとしたりすること等ができる。また、少なくとも1つの電磁弁すべてを第1電磁弁とすることもできる。このように、第1電磁弁は第2電磁弁と一致する必要は必ずしもなく、第1電磁弁に第2電磁弁が含まれていればよい(第2電磁弁=第1電磁弁、第2電磁弁⊂第1電磁弁)。
実特性取得部は、第1電磁弁のコイルに実際に電流を供給して実特性を取得するが、実特性を取得する際には、ブレーキシリンダの液圧制御は行われないのであり、実特性の取得に起因するブレーキシリンダの液圧への影響はない。
(2)前記実特性取得部が、前記偏差が前記開始予測しきい値を超えた状態が第1設定時間継続した場合に、前記第1電磁弁のコイルについての実特性を取得する開始前実特性取得部を含む(1)項に記載のブレーキ液圧制御システム。
(3)前記実特性対応制御部が、前記偏差が前記開始判定しきい値を超えた状態が第2設定時間継続した場合に、前記第2電磁弁のコイルへの供給電流の制御を開始する制御開始部を含む(1)項または(2)項に記載のブレーキ液圧制御システム。
例えば、開始判定しきい値は、実挙動値と目標挙動値との偏差が大きく、ブレーキシリンダの液圧制御が必要であると考えられる値とすることができ、第2設定時間は、ノイズ等に起因することなく、偏差が開始判定しきい値を超えたと考えることができ、かつ、ブレーキシリンダの液圧制御が必要であると考えられる時間とすることができる。開始予測しきい値は、近い将来、偏差が開始判定しきい値を超えると予測される値とすることができ、第1設定時間は、ノイズ等に起因することなく、偏差が開始予測しきい値を超えたと考えることができ、かつ、ブレーキシリンダの液圧制御が開始するまでの間に、実特性を取得し得る時間とすることができる。
(4)前記第1電磁弁が、コイルへの供給電流の制御により開状態と閉状態とに切り換えられるものであり、前記実特性取得部が、前記第1電磁弁の開状態と閉状態とのいずれか一方において、前記実際の電圧と前記実際の電流とで決まる実測点を1つ以上取得する非電磁弁作動時実測点取得部を含む(1)項ないし(3)項のいずれか1つに記載のブレーキ液圧制御システム。
電磁弁が開状態と閉状態との間で切り換わると音が発生し、望ましくない。それに対して、電磁弁が開状態と閉状態との間で切り換わらない範囲において実測点が取得されるようにすれば、音の発生を抑制しつつ、実特性を取得することができる。
コイルに加えられる電圧と電流との関係である特性は直線で規定されるため、理論的には2つの実測点が決まれば特性(直線)を規定することができる。一方、温度が変わっても直線が通る点(以下、基準点と称する)があり、その基準点が既知である場合には、1つの実測点に基づけば直線を規定することができる。また、2つ以上の実測点に基づいて勾配を取得して、勾配と基準点とに基づいて直線を規定することもできる。さらに、3つ以上の実測点等を統計的に処理して1つの直線を規定することもできる。
(5)前記実特性取得部が、前記複数のブレーキシリンダに液圧が供給されない状態で、前記第1電磁弁のコイルについての実際の電圧と電流とで決まる実測点を1つ以上取得する非ブレーキ作動時実測点取得部を含む(1)項ないし(4)項のいずれか1つに記載のブレーキ液圧制御システム。
「複数のブレーキシリンダに液圧が供給されない状態」とは、ブレーキ操作部材が操作されていない状態(運転者の制動要求がない状態)、動力式液圧源から作動液が供給されることがない状態(動力式液圧源に電力が供給されない状態)等が該当する。すなわち、実測点の取得時においてブレーキシリンダが非作用状態(ブレーキシリンダに液圧が発生していない状態)にあり、かつ、作動しない状態(ブレーキシリンダに液圧が供給されることがない状態)である。この場合には、第1電磁弁が開状態にあっても閉状態にあっても、ブレーキシリンダの液圧に影響がないのであり、運転者が意図することなくブレーキが作動させられることがない。そのため、第1電磁弁のコイルに任意の電流を供給することができるのであり、開始条件が成立した後に行われるブレーキシリンダの液圧制御において用いられる範囲の実測点を取得することができる。
(6)当該ブレーキ液圧制御システムが、電力の供給により作動させられ、前記複数のブレーキシリンダの上流側に高圧の作動液を供給可能な動力式液圧源を含み、
前記第1電磁弁が、前記動力式液圧源の出力側と前記複数のブレーキシリンダの各々との間にそれぞれ設けられた複数の電磁弁のうちの1つ以上であり、
前記実特性取得部が、前記動力式液圧源に前記電力が供給されない状態で、前記第1電磁弁のコイルへの実際の電圧と電流とで表される実測点を1つ以上取得する非電力供給時実測点取得部を含む(1)項ないし(5)項のいずれか1つに記載のブレーキ液圧制御システム。
本項に記載のブレーキ液圧制御システムはいわゆる還流型のブレーキ回路を備えた液圧ブレーキシステムに適用される。
ブレーキ操作部材の非操作状態においては、原則として、マスタシリンダに液圧が発生せず、ブレーキシリンダに液圧が供給されることはない。
また、動力式液圧源から出力された液圧を利用してブレーキシリンダ液圧が制御される場合には、ブレーキシリンダの液圧制御の開始時から動力式液圧源に電力が供給され、開始前には電力が供給されないのが普通である。そのため、開始前の実測点を取得する場合には、動力式液圧源から作動液が出力されず、第1電磁弁を開閉してもブレーキシリンダへの影響がないのであり、第1電磁弁のコイルに任意の大きさの電圧を印加することができる。
(7)前記ブレーキ液圧制御部が、前記第2電磁弁のコイルへの供給電流を制御することにより前記第2電磁弁に接続されたブレーキシリンダの液圧を制御して、前記第2電磁弁に対応する車輪のスリップを抑制するスリップ制御部を含む(1)項ないし(6)項のいずれか1つに記載のブレーキ液圧制御システム。
スリップ制御部には、例えば、駆動輪の駆動スリップを抑制して、路面の摩擦係数で決まる適正な範囲に保つトラクション制御部、前記車両の実際の旋回状態が目標旋回状態に近づくように、前記複数の車輪のうちの少なくとも1輪の横スリップを抑制して、前記路面の摩擦係数で決まる適正な状態に保つビークルスタビリティ制御部等ブレーキ操作部材の非操作状態において行われるスリップ制御が該当する。
(8)当該ブレーキ液圧制御システムが、前記実挙動を検出する実挙動検出装置と、前記目標挙動を取得する目標挙動取得装置とを含む(1)項ないし(7)項のいずれか1つに記載のブレーキ液圧制御システム。
実挙動検出装置は、例えば、車輪速度センサ、ヨーレイトセンサ等を含むものとすることができる。
目標挙動取得装置は、例えば、駆動輪の目標回転速度を取得するものとしたり、目標ヨーレイトを取得するものとしたりすること等ができる。目標回転速度は、推定車体速度(非駆動輪の回転速度に基づいて決まる)としたり、推定車体速度より大きい値(推定車体速度に設定値を加えた値、推定車体速度に1より大きい比率を掛けた値)としたりすること等ができる。また、目標ヨーレイトは、例えば、ステアリングホイールの操舵角度、推定車体速度等に基づいて取得することができる。
(9)少なくとも1つの電磁弁と、それら少なくとも1つの電磁弁のコイルへの供給電流をそれぞれコイルに加えられる電圧を制御することにより制御するコイル電流制御部とを含み、開始条件が成立した場合に、前記少なくとも1つの電磁弁のうちの1つ以上である制御対象電磁弁のコイルへの供給電流の制御により、車両の複数の車輪にそれぞれ設けられた複数の液圧ブレーキのブレーキシリンダのうちの前記制御対象電磁弁に接続された制御対象ブレーキシリンダの液圧を制御するブレーキ液圧制御システムであって、
前記コイル電流制御部が、(i)前記開始条件が成立すると予測される開始予測条件が成立した場合に、前記制御対象電磁弁を含む1つ以上の電磁弁である取得対象電磁弁のコイルに加えられる実際の電圧とコイルに流れる実際の電流との関係である実特性を取得する実特性取得部と、(ii)前記開始条件が成立した場合に、前記実特性取得部によって取得された実特性を用いて、前記制御対象電磁弁のコイルへの供給電流を制御して、前記制御対象ブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とするブレーキ液圧制御システム。
本項に記載のブレーキ液圧制御システムには、(1)項ないし(8)項のいずれかに記載の技術的特徴を採用することができる。
開始予測条件が成立した場合には、設定時間の経過後、開始条件が成立すると予測される。そのため、開始予測条件が成立した場合に実特性が取得されれば、その後、開始条件が成立した場合に、その実特性を用いて制御を開始することができるのであり、ブレーキシリンダの液圧制御の開始当初に実特性を用いてブレーキシリンダの液圧を精度よく制御することができる。その結果、ブレーキシリンダの液圧制御が良好に行われるようにすることができるのであり、例えば、車両の走行安定性の低下が早期に抑制されたり、発進性の低下が早期に抑制されたりする等の効果が得られる。
開始予測条件は、例えば、(x)コイルの温度がほぼ同じであると推定される間に開始条件が成立すると予測される条件としたり、(y)実特性を取得するのに要する時間の経過後に開始条件が成立すると予測される条件としたりすること等ができる。
(10)少なくとも1つの電磁弁と、それら少なくとも1つの電磁弁のコイルへの供給電流を、それぞれコイルの各々に加えられる電圧を制御することにより制御して、車両の複数の車輪にそれぞれ設けられた液圧ブレーキのブレーキシリンダのうちの前記少なくとも1つの電磁弁に接続されたブレーキシリンダの液圧をそれぞれ制御可能なブレーキ液圧制御部とを含むブレーキ液圧制御システムであって、
前記ブレーキ液圧制御部が、(i)前記車両の実際の挙動である実挙動が第1設定挙動である状態が第3設定時間継続した場合に、前記少なくとも1つの電磁弁のうちの1つ以上である第1電磁弁のコイルに加えられる実際の電圧とコイルに流れる実際の電流との関係である実特性を取得する実特性取得部と、(ii)前記実挙動が第2設定挙動である状態が第4設定時間継続した場合に、前記少なくとも1つの電磁弁のうちの1つ以上である第2電磁弁のコイルへの供給電流の制御を行い、前記複数のブレーキシリンダのうちの前記第2電磁弁に接続されたブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とするブレーキ液圧制御システム。
本項に記載のブレーキ液圧制御システムには、(1)項ないし(8)項のいずれかに記載の技術的特徴を採用することができる。
第1設定挙動と第2設定挙動とは同じであっても異なっていてもよい。第1設定挙動と第2設定挙動とが異なる場合には第3設定時間と第4設定時間とは同じ長さであっても異なる長さであってもよいが、第1設定挙動と第2設定挙動とが同じである場合には第3設定時間は第4設定時間より短い時間とされる。
また、第1設定挙動は、例えば、実挙動と目標挙動との差の絶対値である偏差が第1設定値以上である状態とすることができ、第2設定挙動は、偏差が第1設定値より大きい第2設定値以上である状態とすることができる。
(11)少なくとも1つの電磁弁のコイルを含む制御回路について、前記コイルに実際に加えられる電圧と前記コイルに流れる実際の電流との関係である実特性を取得する実特性取得装置であって、
前記少なくとも1つの電磁弁のうちの1つ以上のコイルへの供給電流の制御が開始されると予測された場合に、前記1つ以上の電磁弁のコイルについての実特性を取得することを特徴とする実特性取得装置。
本項に記載の実特性取得装置によって特性が取得される電磁弁は、ブレーキシリンダの圧力を制御するものであっても、車高調整アクチュエータにおける流体の流入・流出を制御するものであっても、トランスミッションにおけるクラッチを制御するものであってもよい。なお、本項に記載の実特性取得装置には、(1)項ないし(10)項のいずれかに記載の技術的特徴を採用することができる。
(12)車両の複数の車輪にそれぞれ設けられ、ブレーキシリンダの液圧により作動させられる液圧ブレーキと、
複数の電磁弁と、
それら複数の電磁弁のコイルへの供給電流を、それぞれ、コイルに加えられる電圧を制御することにより制御して、前記複数のブレーキシリンダのうちの前記複数の電磁弁に接続されたブレーキシリンダの液圧をそれぞれ制御可能なブレーキ液圧制御部と
を含む液圧ブレーキシステムであって、
前記ブレーキ液圧制御部が、(i)前記車両の実際の挙動を表す実挙動値と、前記車両の目標挙動を表す目標挙動値との差の絶対値である偏差が開始予測しきい値を超えた場合に、前記複数の電磁弁のうちの1つ以上である第1電磁弁のコイルについて、実際に加えられた電圧と実際に流れた電流との関係である実特性を取得する実特性取得部と、(ii)前記偏差が前記開始予測しきい値より大きい開始判定しきい値を超えた場合に、前記実特性取得部によって取得された実特性に基づいて前記複数の電磁弁のうちの1つ以上である第2電磁弁のコイルへの供給電流の制御を開始して、前記複数のブレーキシリンダのうちの前記第2電磁弁に接続されたブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とする液圧ブレーキシステム。
本項に記載の液圧ブレーキシステムには、(1)項ないし(11)項のいずれかに記載の技術的特徴を採用することができる。
本発明の実施例1に係るブレーキ液圧制御システムを含む液圧ブレーキシステムの回路図である。 上記ブレーキ液圧制御システムのブレーキECUの周辺を示す図である。 (a)前記ブレーキECUに含まれる制御回路の回路図である。(b)(a)の制御回路における電流の変化を示す図である。 (a)前記制御回路における電流と電圧との関係を示す図である。(b)上記ブレーキECUの記憶部に記憶された上記制御回路の特性を概念的に示す図である。 上記ブレーキECUの記憶部に記憶されたスリップ制御プログラムを表すフローチャートである。 上記プログラムの一部を表すフローチャートである(事前印加)。 上記液圧ブレーキシステムにおける作動を示す図である。
発明の望ましい形態
本発明の一実施形態であるブレーキ液圧制御システムを含む液圧ブレーキシステムについて図面に基づいて詳細に説明する。本液圧ブレーキシステムは左右前輪が駆動輪である車両に適用されるが、左右後輪が駆動輪である車両、前後左右の4輪が駆動輪である4輪駆動車両に適用することもできる。
また、本発明に係るブレーキ液圧制御システムは、本液圧ブレーキシステムとは別の液圧回路を備えたブレーキシステムに適用することもできる。
<液圧回路>
図1において、符号10はブレーキ操作部材としてのブレーキペダルを示し、符号12はブースタを示し、符号14はマスタシリンダを示す。
マスタシリンダ14は、2つの加圧ピストン20,22を含み、加圧ピストン20,22の前方が、それぞれ、加圧室24,26とされる。加圧ピストン20には、ブレーキペダル10に加えられた踏力がブースタ12を介して伝達される。
マスタシリンダ14の加圧室26には右前輪28FR、左後輪28RLの液圧ブレーキ30FR,RLのブレーキシリンダ32FR,RLが接続され、加圧室24には左前輪28FL、右後輪28RRの液圧ブレーキ30FL,RRのブレーキシリンダ32FL,RRが接続される。このように、本液圧ブレーキシステムは、X配管の液圧ブレーキ回路を含むものとされる。以下、加圧室26,右前輪28FR,左後輪28RLのブレーキシリンダ32FR,RLを含むブレーキ系統について説明し、加圧室24,左前輪28FL,右後輪28RRのブレーキシリンダ32FL,RRを含むブレーキ系統については構造等が同じであるため、説明を省略する。
加圧室26には、右前輪FRのブレーキシリンダ32FRと左後輪RLのブレーキシリンダ32RLとが、それぞれ、主通路50と個別増圧通路52FR,RLとによって接続される。個別増圧通路52FR,RLにはそれぞれ保持弁54FR,RLが設けられ、ブレーキシリンダ52FR,RLの各々とリザーバ(減圧用リザーバと称することもできる)56とを接続する個別リザーバ通路57FR,RLには、それぞれ、減圧弁58FR,RLが設けられる。保持弁54FR,RLは常開弁であり、減圧弁58FR,RLは常閉弁である。
リザーバ56にはポンプ通路60が接続され、ポンプ通路60に動力式液圧源としてのポンプ装置62、吐出弁64、ダンパー65等が設けられる。ポンプ装置62は、ポンプ66とポンプモータ68とを含み、ポンプ66の吸入側がリザーバ56に接続され、出力側(吐出側)が主通路50(個別増圧通路52FR,RLの保持弁54FR,RLの上流側の部分)に接続される。ポンプ66によってリザーバ56の作動液が汲み上げられて主通路50に出力される。
また、加圧室26とリザーバ56とが、補給通路70によって補給弁72を介して接続される。補給弁72は、リザーバ56のリザーバ室73に収容された作動液量が設定量より少なくなると、開状態に切り換えられる。ブレーキペダル10が操作されていない場合(後退端位置にある場合)には加圧室26はマスタリザーバ74に連通させられているため、補給通路70によって、マスタリザーバ74の作動液がリザーバ室73に供給される。
主通路50のポンプ通路60の接続部とマスタシリンダ14との間に圧力制御弁80が設けられる。圧力制御弁80は、ブレーキシリンダ32FR,RL側の液圧とマスタシリンダ14側の液圧との差圧を制御するものであり、ブレーキシリンダ32FR,RL側の液圧をマスタシリンダ14側の液圧に対して、制御差圧だけ高くする。圧力制御弁80において、コイル82への供給電流が大きいほど制御差圧が大きくされるのであり、圧力制御弁80の制御により、ブレーキペダル10が踏み込まれていない状態で、ブレーキシリンダ32FR,RLに液圧を発生させることができるのであり、液圧を所望の大きさに制御することができる。
なお、圧力制御弁80と並列にマスタシリンダ側からブレーキシリンダ側に向かう作動液の流れを許容する逆止弁84が設けられる。逆止弁84により、圧力制御弁80が閉状態にあっても、ブレーキペダル10が踏み込まれて、マスタシリンダ14側の液圧がブレーキシリンダ32FR,RL側の液圧より高くなると、ブレーキシリンダ32FR,RLに液圧を供給することができる。
以下、車輪28、保持弁54、減圧弁58、ブレーキシリンダ32等を示す場合に、前後左右の車輪位置を特定する必要がある場合には車輪位置を表す符号FR,FL,RL,RRを付すが、車輪位置を特定する必要がない場合、総称する場合等には車輪位置を表す符号を付さないで記載する。
<ブレーキECU>
ブレーキECU100は、図2に示すように、コンピュータを主体とするものであり、実行部102、記憶部104、入出力部106、制御回路108等を含む。
入出力部106には、ブレーキペダル10が操作されているか否かを検出するブレーキスイッチ120,前後左右の各車輪毎に設けられ、車輪の回転を検出する車輪速センサ122FR,RL,RR,RL、車両のヨーレイトを検出するヨーレイトセンサ124、図示しないステアリングホイールの操舵角度を検出する操舵角度センサ126、制御回路108のコイルに流れる電流をモニタする電流モニタ128等が接続される。また、ポンプモータ68が図示しない駆動回路を介して接続されるとともに、圧力制御弁80のソレノイド82、保持弁54、減圧弁58のソレノイド130,132が、それぞれ、制御回路108を介して接続される。
記憶部104には、図4(b)の実線が示す標準特性(コイルの温度が標準温度である場合のコイルに加えられる電圧と電流との関係をいう。以下、同様とする)、図5のフローチャートで表されるスリップ制御プログラム等、複数のプログラムやテーブル等が記憶されている。
また、ブレーキECU100において、車輪速センサ122によって検出された各輪の車輪速度に基づいて車両の走行速度、換言すれば、推定車体速度が取得される。
制御回路108は、図3(a)に示すように、電源150、スイッチング素子152、コイル130が直列に接続されて構成される。ここでは、保持弁54のコイル130の制御回路108について説明するが、他のコイル132、82等についても同様である。抵抗154は制御回路108の全体の抵抗を等価的に記載したものであるが、主としてコイル130の抵抗であると考えることができる。スイッチング素子152は例えばトランジスタとすることができ、デューティ制御されることにより、コイル130に印加される電圧が制御されて、コイル130に流れる電流が制御される。コイル130に印加される電圧は、デューティ比が大きい場合は小さい場合より大きくなるため、本実施例においては、電圧をデューティ比で表す。
図3(a)の制御回路において、
u(t)=R・i(t)+L・di(t)/dt
が成立する。tは時間であり、u(t)はスイッチング素子152のデューティ制御によりコイル130に印加された電圧であり、i(t)はコイル130に流れる電流である。また、Lはコイル130のインダクタンスであり、Rはコイル130の抵抗値と考える。
上式をラプラス変換すると(d/dt=s)、下式が得られる。
I(s)={1/(L・s+R)}・U(s)
上式に示すように、電圧(デューティ比)と電流との間の伝達関数は一次遅れ応答の式で表される。図3(b)に示すように、電流値は、デューティ比の変化に対して(過渡的に)、遅れて増加し、その後(定常的に)、デューティ比および抵抗値で決まる一定の大きさとなる。
コイル130の抵抗値は、下式に示すように、温度が高くなると大きくなる。
R(T)=R(T0)+γ(T−T0)
Tは実際の温度であり、T0は標準温度(例えば、25℃)であり、γは正の係数である。電流とデューティ比との関係は、図4(a)に示すように、標準温度である場合には実線が示す関係となり、温度が高くなると一点鎖線に示す関係となり、温度が低くなると二点鎖線に示す関係となる。
<液圧ブレーキシステムにおける作動>
通常のブレーキ操作が行われた場合には、圧力制御弁80は開状態に保たれる。ブレーキペダル10の踏込操作に伴ってマスタシリンダ14に液圧が発生させられ、ブレーキシリンダ32に供給される。それにより、液圧ブレーキ30が作動させられ、車輪28の回転が抑制される。
トラクション制御、ビークルスタビリティ制御等、ブレーキペダル10の踏込操作が行われていない場合においてブレーキシリンダ32の液圧制御が行われる場合には、ポンプモータ98が始動させられ、圧力制御弁80のコイル82に電流が供給される。マスタシリンダ14の加圧室24,26の液圧はほぼ大気圧にあるため、圧力制御弁80のコイル82への供給電流に応じて、圧力制御弁80のブレーキシリンダ側の部分の液圧が制御される。なお、トラクション制御、ビークルスタビリティ制御においては、保持弁54、減圧弁58等により、各輪毎に、独立にそれぞれブレーキシリンダ液圧が制御されるため、圧力制御弁80のブレーキシリンダ側の部分の液圧は予め定められた設定液圧に制御されるようにすることができる。
[トラクション制御]
駆動輪である左右前輪28FL,FRに加えられる駆動力が路面の摩擦係数に対して過大になると、左右前輪28FL,FRの駆動スリップが大きくなる。そして、駆動スリップが大きい等のトラクション制御開始条件が成立すると、トラクション制御が開始される。トラクション制御においては、駆動輪28FR,FLのブレーキシリンダ32FR,FLの液圧の制御により、駆動スリップが抑制され、路面の摩擦係数で決まる適正範囲内に保たれる。
トラクション制御の開始条件は、車輪速度センサ122によって検出された駆動輪28FR,FLの実際の回転速度(駆動輪車輪速度と称する)Wdから推定車体速度に基づいて決まる目標駆動輪車輪速度Wrefを引いた値である偏差が制御開始判定しきい値(単に、開始判定しきい値(ΔWtha)と称することもできる}より大きい状態が第2設定時間{以下、制御開始判定時間(Ttha)と称する}継続したことである。
Wd−Wref>ΔWtha
推定車体速度Wsは、基本的には、非駆動輪の車輪速度に基づいて決まり、目標駆動輪車輪速度Wrefは、通常、推定車体速度(本実施例においては、車輪速度に換算した値をいう。以下、同様とする)より多少大きい値とされる。例えば、推定車体速度より設定速度大きい値(Wref=Ws+δ)としたり、推定車体速度に1より大きい比率γを掛けた値(Wref=Ws・γ)としたりすること等ができる。
なお、車輪のスリップは、車輪速度から推定車体速度(車輪速度に換算した値)を引いた値に応じた値であると考えることができるため、偏差は駆動スリップに対応すると考えることができる。偏差が大きい場合は駆動スリップも大きいのである。
トラクション制御においては、駆動スリップの大きさ、駆動輪28の回転加速度等に基づいて駆動輪28ブレーキシリンダ32の目標液圧が決定され、主として保持弁54のコイル130への供給電流の制御により、実際の液圧が目標液圧に近づけられる。
標準特性と目標電流とに基づいてデューティ比が決定され、スイッチング素子152が制御されるのであるが、コイル130の抵抗は、前述のように、温度の変化に伴って変化する。そのため、図4(a)に示すように、目標電流Irefと標準特性とに基づき決まるデューティ比Dnでスイッチング素子152が制御されても、コイル130の温度が高い場合に、実際に流れる電流(実電流)はIa1となり、目標電流Irefに対して不足する。それに対して、温度が低い場合には目標電流Irefより大きい電流Ia2が流れるのであり、ブレーキシリンダ32の液圧を精度よく制御することができない。例えば、ブレーキシリンダ液圧が目標液圧より高くなって、発進性が悪くなったり、ブレーキシリンダ液圧が目標液圧より低くなって、駆動スリップを抑制することができなかったりするのである。
そこで、本実施例においては、トラクション制御の開始条件が成立する前の、トラクション制御の開始条件が成立すると予測される開始予測条件が成立した場合に、デューティ比と電流との実際の関係である実特性が取得される。コイル130の現実の温度におけるデューティ比と電流との関係(実特性)が取得されるのである。
開始予測条件は、偏差(駆動輪車輪速度Wdから目標駆動輪車輪速度Wrefを引いた値)が開始判定しきい値ΔWthaより小さい事前印加開始判定しきい値(実特性取得開始判定しきい値、開始予測しきい値と称することもできる)ΔWthbより大きい状態が第1設定時間(事前印加開始判定時間Tthbと称することができる)継続した場合に成立する条件である。
Wd−Wref>ΔWthb
駆動輪車輪速度Wdと目標駆動輪車輪速度Wrefとの偏差が事前印加開始判定しきい値ΔWthbより大きく、この状態が事前印加開始判定時間Tthb継続すれば、実特性を取得するのに要する時間が経過した後にトラクション制御が開始される(トラクション制御の開始条件が成立する)と予測される。また、事前印加開始判定時間Tthbは、ノイズ等に起因することなく、偏差が事前印加開始判定しきい値より大きいと考え得る時間と考えることもできる。
図4(b)に示すように、デューティ比と電流との関係は直線で表され、かつ、直線が温度が異なっても予め決められた点である基準点(電流が0である場合のデューティ比の値:切片)を通ることが既知である。そのため、事前印加(実測点の取得、実特性取得と称することができる)において、実際のデューティ比と電流とで決まる実測点が少なくとも1つ取得されれば、直線である実特性を取得することができる。本実施例においては、互いに異なる2つの実測点が取得されるのであるが、各々の実測点は、複数回(例えば、2回)ずつ取得した点の平均的な値とされる。例えば、2つの実測点に基づいて勾配が取得され、勾配と切片とを通る直線を取得することができる。
事前印加において、互いに異なる2つの目標電流Iref1,Iref2の各々と標準特性とに基づいてデューティ比Dn1、Dn2が取得されて、スイッチング素子152が制御される。その場合に実際に流れる電流Ia1,Ia2が電流モニタ128によって監視されて、実測点P1(Dn1,Ia1),P2(Dn2,Ia2)が取得される。そして、これら実測点と切片とに基づいて図4(b)の一点鎖線で示す実特性が取得される。
本実施例においては、事前印加およびトラクション制御が図5のフローチャートで表されるスリップ制御プログラム(トラクション制御プログラム)の実行により行われる。スリップ制御プログラムは予め定められた設定時間毎に実行される。
ステップ1(以下、S1と略称する。他のステップについても同様とする)において、車輪速度センサ122の検出値に基づいて実挙動値としての駆動輪車輪速度WdFR,FLが取得され、S2において、推定車体速度Wsが取得されるとともに目標挙動値としての駆動輪目標車輪速度Wrefが取得される。そして、S3において、トラクション制御中であるかどうかが判定され、トラクション制御中でない場合には、S4において、開始条件が成立するかどうか、S5において、開始予測条件が成立するかどうかが判定される。通常の走行中においては、いずれの判定もNOとなり、S1〜5が繰り返し実行される。
それに対して、発進時等に駆動輪28FR,FLに路面の摩擦係数に対して過大な駆動力が加えられた場合等には、駆動輪28FR,FLの駆動スリップが大きくなる(以下、駆動輪28FRの駆動スリップが大きくなった場合について説明する)。そして、開始予測条件が成立すると、S5の判定がYESとなり、S5aにおいて、ブレーキシリンダ32に液圧が供給されない状態にあるかどうか、すなわち、ブレーキスイッチ120の状態に基づきブレーキペダル10が非操作状態にあり、かつ、ポンプモータ68が停止状態にあるか否かが判定される。ブレーキスイッチ120がOFFであり、かつ、ポンプモータ68が停止状態にある場合には、判定がYESとなり、S6において、保持弁54FRのコイル130FRについて事前印加が行われ、実特性が取得される。そして、取得された実特性がS7において記憶される。
その後、駆動輪28FRの駆動スリップがさらに大きくなり、開始条件が成立すると、S4の判定がYESとなり、S8において、ポンプモータ68が始動させられ、圧力制御弁80のコイル82に電流が供給される等のトラクション制御の開始処理が行われる。また、トラクション制御中フラグがセットされる。
そして、トラクション制御中フラグがセット状態にあるため、次にS3の判定がYESになり、S9においてトラクション制御の終了条件が成立するかどうかが判定される。終了条件は、例えば、アクセル操作が解除された場合、走行速度が設定速度以上になった場合等に成立する条件とすることができる。終了条件が成立しない場合には、S10において、ブレーキシリンダ32FRの液圧制御が主として保持弁54FRの制御により行われる。この場合には、S6,7において取得されて、記憶された実特性が用いられる。そして、終了条件が成立するまでの間、S1〜3,9,10が繰り返し実行されるのであり、トラクション制御が継続して行われる。
そのうちに、終了条件が成立すると、S9の判定がYESとなり、S11においてポンプモータ98が停止させられる等の終了処理が行われる。また、減圧弁58FRが開状態とされ、ブレーキシリンダ32FRの液圧が開放される。
S6の事前印加(実特性の取得)は、図6のフローチャートに従って行われる。
S21〜23において、図4(b)に示すように、スイッチング素子152が目標電流Iref1と標準特性とに基づいて決定されたデューティ比Dn1で制御され、定常状態に達した後の実電流Ia1が電流モニタ128によって監視されて、実測点P1(Dn1,Ia1)が求められる。S24〜26において、目標電流Iref2と標準特性とに基づいて決定されたデューティ比Dn2が印加され、定常状態に達した後の実電流Ia2が取得され、実測点P2(Dn2,Ia2)が取得される。互いに異なる実測点P1,P2が取得された後、S27において、カウンタが1増加されて、S28において、カウント値が設定値Nth以上であるか否かが判定される。カウンタは平均的な実測点を取得する際に用いるデータの個数をカウントするものであり、カウント値の設定値Nthは、本実施例においては、2とされている。
S21〜26が2回実行されて、カウント値Nが2になると、S28の判定がYESとなり、S29において実特性を規定する直線が取得される。
前述のように、トラクション制御においては、開始条件が成立すると開始処理(S8)が行われ、ポンプモータ68が始動させられるのであり、開始予測条件が成立した時点(S5の判定がYES)においては、ポンプモータ68は非作動状態にある(S5aの判定がYES)。ポンプ装置62から作動液が出力されないため、保持弁54FRを開閉してもブレーキシリンダ32FRの液圧への影響はない。そのため、事前印加において、保持弁54FRのコイル130FRへの供給電流を任意の大きさとすることができるのであり、トラクション制御において実際に用いられる範囲の電流が供給される。
トラクション制御においては、ブレーキシリンダ32の液圧は比較的低い値に制御されるのが普通である。そのため、保持弁54FRへの供給電流も、閉状態に切り換えるのに要する電流より小さい範囲、すなわち、開度が全開と全閉との中間となる範囲の大きさとされる。目標電流Iref1,Iref2が、前述の中間の範囲の大きさに予め設定されているのであり、トラクション制御において、実際に用いられる範囲の実測点が取得され、実特性が取得される。
また、開始予測条件が成立して実特性が取得される場合と開始条件が成立して保持弁54への供給電流が制御される場合とでは、コイル130の温度はほぼ同じであると推定することができる。そのため、ブレーキシリンダの液圧の制御精度をより一層、向上させることができる。
なお、本実施例においては、駆動輪28FRについて開始予測条件、開始条件が成立した場合に、保持弁54FRについて事前印加が行われて実特性が取得される場合について説明したが、トラクション制御は、左右駆動輪28FR,FLについて同様に行われる場合が多い。そのため、駆動輪28FRについて先に開始予測条件が成立しても、保持弁54FR、FLの両方について事前印加が行われるようにすることもできる。また、トラクション制御においては、減圧弁58FR,FLによりブレーキシリンダ32の液圧が減圧されることは少ない(終了処理において開状態とされることが多い)ため、本実施例においては、開始予測条件が成立しても減圧弁58FR,FLについては実特性が取得されることがないが、減圧弁58FR,FLについても実特性が取得されるようにすることもできる。
また、S5aのステップは不可欠ではない。トラクション制御が開始される前は、ポンプモータ68は停止状態にあるのが普通である。また、開始予測条件が成立したこと(駆動スリップが0より大きいこと)から車輪に駆動力が付与された状態にあると考えられるからである。
図7に従って実際の車輪速度の変化、制御回路108の制御等について説明する。
時間t1において、駆動輪28FRの車輪速度WdFRが目標駆動輪車輪速度Wrefに事前印加開始判定しきい値ΔWthbを加えた値より大きくなり(WdFR>Wref+ΔWthb)、時間t2において、その状態が事前印加開始判定時間Tthb継続したため、開始予測条件が成立し、事前印加(実特性取得)が行われる。この場合には、保持弁54FRのコイル130FRにデューティ比Dn1,Dn2に応じた電圧が印加され、実電流Ia1,Ia2が取得され、互いに異なる2つの実測点P1,P2が取得されて、実特性が取得される。
一方、時間t3において、駆動輪28の車輪速度Wdが目標駆動輪車輪速度Wrefに制御開始判定しきい値ΔWthaを加えた値より大きくなり(WdFR>Wref+ΔWtha)、時間t4において、制御開始判定時間Ttha継続したため、開始条件が成立し、トラクション制御が行われる。保持弁54FRへの供給電流が実特性に基づいて制御されるのであり、図7に示すように、コイル130FRに実際に流れる電流(実電流)を目標電流に良好に近づけることが可能となり、ブレーキシリンダ32FRの液圧を良好に目標液圧に近づけることができる。その結果、トラクション制御を良好に行うことが可能となり、速やかに発進性の低下を抑制することができる。
本実施例においては、ブレーキECU100および保持弁54、減圧弁58、ポンプ装置62等によりブレーキ液圧制御システムが構成される。そのうちの、ブレーキECU100の図5のフローチャートで表されるスリップ制御プログラムを記憶する部分、実行する部分等によりブレーキ液圧制御部が構成され、そのうちのS6を記憶する部分、実行する部分等により実特性取得部が構成され、S10を記憶する部分、実行する部分等により実特性対応制御部が構成される。実特性取得部のうちのS21〜26を記憶する部分、実行する部分等により、非ブレーキ作動時実測点取得部、非電力供給時実測点取得部が構成される。また、実特性対応制御部は制御開始部を含む。さらに、保持弁54FRが第1電磁弁、第2電磁弁、取得対象電磁弁、制御対象電磁弁に対応する。
[ビークルスタビリティ制御]
なお、ビークルスタビリティ制御が行われる場合も同様である。ビークルスタビリティ制御においては、S1において、ヨーレイトセンサ124の検出値に基づいて実際のヨーレイトが実挙動値として取得され、S2において、操作角度センサ126、推定車体速度等に基づいて目標ヨーレイトが目標挙動値として取得される。そして、これら目標ヨーレイトと実ヨーレイトとの差の絶対値である偏差が制御開始判定しきい値より大きい等の開始条件が成立すると、ビークルスタビリティ制御が開始される(S4,S8)。また、偏差が制御開始判定しきい値より小さい事前印加開始判定しきい値より大きい等の開始予測条件が成立し、かつ、ブレーキシリンダ32に液圧が供給されない状態にある場合に、事前印加が行われ、実特性が取得される(S5〜S7)。この場合には、前後左右の4輪すべてに対応する保持弁54FR,FL,RL,RRのコイル130についての実特性が取得されるようにしたり、目標ヨーレイトと実ヨーレイトとに基づき、スピン傾向にあるかドリフトアウト傾向にあるかが判定されるとともに、旋回の向きが判定され、それに基づいてスピン傾向やドリフトアウト傾向を抑制し得るように制御対象輪が決定され、その制御対象輪に対応する保持弁54のコイル130についての実特性が取得されるようにしたりすること等ができる。また、減圧弁58のコイル132についての実特性も取得されるようにすることもできる。
このように、ビークルスタビリティ制御においても、開始予測条件が成立した場合に実特性が取得され、その実特性に基づいて制御対象輪のブレーキシリンダ32の液圧制御が行われるため、ブレーキシリンダ32の液圧の制御精度を向上させることができ、良好にスピン傾向やドリフトアウト傾向を抑制することができ、速やかに車両の走行安定化を図ることができる。
なお、ビークルスタビリティ制御自体は、ブレーキペダル10の操作状態において実行されてもよい。実測点が取得される場合に、ブレーキペダル10が非操作状態にあればよいのである。
その他、保持弁54は常閉弁でもよい等、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
28:車輪 54:保持弁 58:減圧弁 92:ポンプ 98:ポンプモータ 108:制御回路 122:車輪速度センサ 124:ヨーレイトセンサ 126:操舵角度センサ 128:電流モニタ 130,132:コイル 150:電源 152:スイッチング素子

Claims (6)

  1. 少なくとも1つの電磁弁と、それら少なくとも1つの電磁弁のコイルへの供給電流を、それぞれ、前記コイルの各々に加えられる電圧を制御することにより制御して、車両の複数の車輪にそれぞれ設けられた液圧ブレーキのブレーキシリンダのうちの前記少なくとも1つの電磁弁に接続されたブレーキシリンダの液圧をそれぞれ制御可能なブレーキ液圧制御部とを含むブレーキ液圧制御システムであって、
    前記ブレーキ液圧制御部が、(i)前記車両の実際の挙動を表す実挙動値と、前記車両の目標挙動を表す目標挙動値との差の絶対値である偏差が開始予測しきい値を超えた場合に、前記少なくとも1つの電磁弁のうちの1つ以上である第1電磁弁のコイルについて、コイルに実際に加えられた電圧と実際に流れる電流との関係である実特性を取得する実特性取得部と、(ii)前記偏差が前記開始予測しきい値より大きい開始判定しきい値を超えた場合に、前記実特性取得部によって取得された前記実特性に基づいて前記少なくとも1つの電磁弁のうちの1つ以上である第2電磁弁のコイルへの供給電流の制御を行って、前記複数のブレーキシリンダのうちの前記第2電磁弁に接続されたブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とするブレーキ液圧制御システム。
  2. 前記実特性取得部が、前記偏差が前記開始予測しきい値を超えた状態が第1設定時間継続した場合に、前記第1電磁弁のコイルについての実特性を取得する開始前実特性取得部を含み、
    前記実特性対応制御部が、前記偏差が前記開始判定しきい値を超えた状態が第2設定時間継続した場合に、前記第2電磁弁のコイルへの供給電流の制御を開始する制御開始部を含む請求項1に記載のブレーキ液圧制御システム。
  3. 前記実特性取得部が、前記複数のブレーキシリンダに液圧が供給されない状態で、前記第1電磁弁のコイルについての実際の電圧と電流とで決まる実測点を1つ以上取得する非ブレーキ作動時実測点取得部を含む請求項1または2に記載のブレーキ液圧制御システム。
  4. 当該ブレーキ液圧制御システムが、電力の供給により作動させられ、前記複数のブレーキシリンダの上流側に高圧の作動液を供給可能な動力式液圧源を含み、
    前記第1電磁弁が前記動力式液圧源の出力側と前記複数のブレーキシリンダの各々との間にそれぞれ設けられた複数の電磁弁のうちの1つ以上であり、
    前記実特性取得部が、前記動力式液圧源に前記電力が供給されない状態で、前記第1電磁弁のコイルへの実際の電圧と電流とで表される実測点を1つ以上取得する非電力供給時実測点取得部を含む請求項1ないし3のいずれか1つに記載のブレーキ液圧制御システム。
  5. 前記ブレーキ液圧制御部が、前記第2電磁弁のコイルへの供給電流を制御することにより前記第2電磁弁に接続されたブレーキシリンダの液圧を制御して、前記第2電磁弁に対応する車輪のスリップを抑制するスリップ制御部を含む請求項1ないし4のいずれか1つに記載のブレーキ液圧制御システム。
  6. 少なくとも1つの電磁弁と、それら少なくとも1つの電磁弁のコイルへの供給電流をそれぞれコイルに加えられる電圧を制御することにより制御するコイル電流制御部とを含み、開始条件が成立した場合に、前記少なくとも1つの電磁弁のうちの1つ以上である制御対象電磁弁のコイルへの供給電流の制御により、車両の複数の車輪にそれぞれ設けられた複数の液圧ブレーキのブレーキシリンダのうちの前記1つ以上の制御対象電磁弁に接続された制御対象ブレーキシリンダの液圧を制御するブレーキ液圧制御システムであって、
    前記コイル電流制御部が、(i)前記開始条件が成立すると予測される開始予測条件が成立した場合に、前記制御対象電磁弁を含む1つ以上の電磁弁である取得対象電磁弁のコイルに加えられる実際の電圧とコイルに流れる実際の電流との関係である実特性を取得する実特性取得部と、(ii)前記開始条件が成立した場合に、前記実特性取得部によって取得された実特性を用いて、前記制御対象電磁弁のコイルへの供給電流を制御して、前記制御対象ブレーキシリンダの液圧を制御する実特性対応制御部とを含むことを特徴とするブレーキ液圧制御システム。
JP2013112461A 2013-05-29 2013-05-29 ブレーキ液圧制御システム Expired - Fee Related JP5962588B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112461A JP5962588B2 (ja) 2013-05-29 2013-05-29 ブレーキ液圧制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112461A JP5962588B2 (ja) 2013-05-29 2013-05-29 ブレーキ液圧制御システム

Publications (2)

Publication Number Publication Date
JP2014231274A JP2014231274A (ja) 2014-12-11
JP5962588B2 true JP5962588B2 (ja) 2016-08-03

Family

ID=52124948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112461A Expired - Fee Related JP5962588B2 (ja) 2013-05-29 2013-05-29 ブレーキ液圧制御システム

Country Status (1)

Country Link
JP (1) JP5962588B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953480A (ja) * 1995-08-15 1997-02-25 Toyota Motor Corp トラクション制御装置
DE19859281A1 (de) * 1998-12-22 2000-06-29 Bosch Gmbh Robert Verfahren zur Kompensation der Temperaturabhängigkeit eines Spulenwiderstandes einer Ventilspule
JP5056714B2 (ja) * 2008-10-14 2012-10-24 トヨタ自動車株式会社 ブレーキ制御装置

Also Published As

Publication number Publication date
JP2014231274A (ja) 2014-12-11

Similar Documents

Publication Publication Date Title
US20150232076A1 (en) Brake Control Device
US20130080016A1 (en) Method and Device for Controlling an Electrohydraulic Braking System for Motor Vehicles
JP2015509460A (ja) ブレーキ装置を作動させるための方法
JP6339547B2 (ja) 車両用回生制動システムの制御方法
US8915554B2 (en) Vehicle brake fluid pressure control apparatus
US20180056952A1 (en) Hydraulic apparatus and control method for hydraulic apparatus
US8915555B2 (en) Brake control device for vehicle
KR101979413B1 (ko) 브레이크 트랙션 제어 시스템 및 그 제어방법
JP5163817B2 (ja) 車両用液圧ブレーキシステム
JP5884244B2 (ja) 車両用ブレーキ液圧制御装置
JP5998649B2 (ja) 制動制御装置
US10723333B2 (en) Brake fluid pressure control device for vehicle
JP5962588B2 (ja) ブレーキ液圧制御システム
JP6623952B2 (ja) 車両用制動装置
JP2016088508A (ja) 車両姿勢制御装置および制御方法
WO2017170596A1 (ja) 車両用制動装置
CN106240549A (zh) 线控制动系统的控制方法和控制装置
US10744983B2 (en) Brake fluid pressure control device for vehicle
JP5079414B2 (ja) 車両用ブレーキ液圧制御装置
US20130076117A1 (en) Vehicle brake fluid pressure control apparatus
JP4436287B2 (ja) 車両用ブレーキ液圧制御装置
JP6449071B2 (ja) 車両用ブレーキ液圧制御装置
JP6098280B2 (ja) 車両用ブレーキ制御装置
JP2009274582A (ja) アンチロック制御装置
JP2008302717A (ja) 車両のアンチロックブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R151 Written notification of patent or utility model registration

Ref document number: 5962588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees