JP5948691B1 - 成形型、成形型の製造方法及び複製品の製造方法 - Google Patents

成形型、成形型の製造方法及び複製品の製造方法 Download PDF

Info

Publication number
JP5948691B1
JP5948691B1 JP2015558055A JP2015558055A JP5948691B1 JP 5948691 B1 JP5948691 B1 JP 5948691B1 JP 2015558055 A JP2015558055 A JP 2015558055A JP 2015558055 A JP2015558055 A JP 2015558055A JP 5948691 B1 JP5948691 B1 JP 5948691B1
Authority
JP
Japan
Prior art keywords
fine concavo
convex structure
mold
manufacturing
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015558055A
Other languages
English (en)
Other versions
JPWO2017037918A1 (ja
Inventor
山本 和也
和也 山本
山本 剛司
剛司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Application granted granted Critical
Publication of JP5948691B1 publication Critical patent/JP5948691B1/ja
Publication of JPWO2017037918A1 publication Critical patent/JPWO2017037918A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/08Transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

広い領域のピッチの微細凹凸構造の形状を十分に満足できる程度に調整することのできる成形型の製造方法を提供する。成形型の製造方法であって、反応性イオンエッチング装置内に、六フッ化硫黄と反応する半導体または金属の基材を配置し、六フッ化硫黄と酸素との混合ガスを導入し、プラズマドライエッチングプロセスにおいて、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、微細凹凸構造を形成し、その後、該微細凹凸構造の凸部の形状を調整するように該微細凹凸構造にイオンビームを照射する。

Description

本発明は、表面に微細凹凸構造を備えた成形型、成形型の製造方法及び成形型を使用する複製品の製造方法に関する。
光の波長よりも小さなピッチ(周期)で配列された微細凹凸構造からなる反射防止構造が光学素子に使用されている。このような微細凹凸構造用の成形型の製造方法として、干渉露光装置や電子ビーム描画装置を使用してレジストをパターニングし、エッチングまたは電鋳を行う方法が知られている。しかし、これらの方法によって、大きな面積の平面や曲面に微細凹凸構造を形成するのは困難である。
そこで、本出願の発明者は、パターニングを必要とせずに、反応性イオンエッチングプロセスにより微細凹凸構造を備えた成形型を製造する製造方法を開発した(特許文献1)。本方法によれば、パターニングを行わずに大きな面積の平面や曲面に微細凹凸構造を形成することができる。
しかし、可視光の最小波長以下の波長に対応する、たとえば0.26マイクロメータ以下のピッチの微細凹凸構造を形成する場合に、反応性イオンエッチングプロセスのみによって微細凹凸構造の形状を十分に満足できる程度に調整することは困難であった。
そこで、可視光の波長以下の領域を含む広い領域のピッチの微細凹凸構造の形状を十分に満足できる程度に調整することのできる成形型の製造方法、及びその製造方法によって製造された、十分に満足できる程度に調整された形状の微細凹凸構造を備えた成形型に対するニーズがある。
WO2014/076983A1
したがって、本発明の技術的課題は、可視光の波長以下の領域を含む広い領域のピッチの微細凹凸構造の形状を十分に満足できる程度に調整することのできる成形型の製造方法、及びその製造方法によって製造された、十分に満足できる程度に調整された形状の微細凹凸構造を備えた成形型を提供することである。
本発明の第1の態様による成形型の製造方法は、反応性イオンエッチング装置内に、六フッ化硫黄と反応する半導体または金属の基材を配置し、六フッ化硫黄と酸素との混合ガスを導入し、プラズマドライエッチングプロセスにおいて、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、微細凹凸構造を形成し、その後、該微細凹凸構造の凸部の形状を調整するように該微細凹凸構造にイオンビームを照射することを含む。
本態様の成形型の製造方法は、反応性イオンエッチング装置において微細凹凸構造を形成することに加えて、該微細凹凸構造の凸部の形状を調整するように該微細凹凸構造にイオンビームを照射することを含むので、該微細凹凸構造の凸部の形状を所望の形状にすることができる。その結果、一例として、微細凹凸構造による反射防止機能を向上させることができる。
本発明の第1の態様の第1の実施形態の成形型の製造方法は、さらに、電鋳によって該微細構造を再生することを含む。
本実施形態によれば、より広い分野に応用することができる。
本発明の第1の態様の第2の実施形態の成形型の製造方法は、イオンビームを照射する際に、該基材の表面に対するイオンビームの角度が0度から20度の範囲である。
本実施形態によれば、該微細凹凸構造の凸部の形状を、たとえば、反射防止機能を向上させるために有利な錘状に形成するのが容易である。
本発明の第1の態様の第3の実施形態の成形型の製造方法は、該基材が基板または膜として形成されている
本発明の第1の態様の第4の実施形態の成形型の製造方法は、六フッ化硫黄と酸素との混合ガスの代わりに、四フッ化炭素またはトリフルオロメタンと酸素との混合ガスを使用する。
本発明の第2の態様による成形型は、第1の態様の製造方法によって製造されたものである。
本態様の成形型は、第1の態様の製造方法によって製造されているので、微細凹凸構造の凸部が所望の形状、たとえば錘状に形成されている。
本発明の第2の態様の第1の実施形態の成形型は、光学素子用のものである。
本発明の第2の態様の第2の実施形態の成形型は、反射防止構造用のものである。
本発明の第2の態様の第3の実施形態の成形型は、可視光域の光の反射防止構造用のものである。
本発明の第3の態様による複製品の製造方法は、第1の態様の成形型の製造方法によって成形型を製造し、該成形型を使用して成形によって複製品を製造する。
本態様によれば、成形型の微細凹凸構造の凸部が所望の形状に形成されているので、所望の性能を備えた複製品が得られる。
本発明の一実施形態による成形型の製造方法を示す流れ図である。 表面に微細凹凸構造を備えた成形型の製造に使用される反応性イオンエッチング装置の構成を示す図である。 反応性イオンエッチングによる微細凹凸構造の形成を説明するための流れ図である。 平面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。 曲面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。 表面に微細凹凸構造を備えた成形型の製造に使用されるイオンビームエッチング装置の構成を示す図である。 加工対象物を取り付けるステージの動作を説明するための図である。 微細凹凸構造の凸部の長手方向とイオンビームの方向が一致している場合のイオンビームの微細凹凸構造の凸部に対する作用を説明するための図である。 イオンビームの方向が微細凹凸構造の凸部の長手方向に対して角度θを有する場合のイオンビームの微細凹凸構造の凸部に対する作用を説明するための図である。 表1に示した条件における反応性イオンエッチングの処理時間と微細凹凸構造のピッチとの関係を示す図である。 表1に示した条件における反応性イオンエッチングの処理時間と微細凹凸構造の深さとの関係を示す図である。 表2のエッチング条件を維持して、高周波電源の電力を100ワット及び200ワットとした場合の反応性イオンエッチングの処理時間と微細凹凸構造のピッチとの関係を示す図である。 表2のエッチング条件を維持して、高周波電源の電力を100ワット及び200ワットとした場合の反応性イオンエッチングの処理時間と微細凹凸構造の深さとの関係を示す図である。 異なる角度のイオンビームのイオンビームエッチングによって得られた微細凹凸構造の形状を示す写真である。 イオンビームの角度θを15度として、異なるイオンビームエッチングの処理時間によって得られた微細凹凸構造の形状を示すSEM写真である。 表3に示した条件で反応性イオンエッチングを実施し、その後、表5に示した条件でイオンビームエッチングを実施して得られた微細凹凸構造を示すSEM写真である。 成形型の波長と反射率との関係を示す図である。 「加工なし」の成形型、「RI」の成形型、及び「RI+IB」の成形型の外観を示す写真である。 ニッケル電鋳により再生した微細凹凸構造を示すSEM写真である。 複製品の微細凹凸構造を示すSEM写真である。 複製品の波長と反射率との関係を示す図である。 反射率を低下させたい光の波長と、反射率を低下させる微細凹凸微細構造のピッチとの関係の一例を示す図である。
図1は、本発明の一実施形態による成形型の製造方法を示す流れ図である。本製造方法においては、最初に反応性イオンエッチングによって基材の表面に微細凹凸構造を形成し、次に上記のように形成した微細凹凸構造をイオンビームエッチングによってさらに加工する。図1の流れ図は、反射防止構造用の成形型を製造する場合を説明するものである。
図1のステップS1010において、反応性イオンエッチングの加工条件を定める。反応性イオンエッチングの加工条件については後で詳細に説明する。
図1のステップS1020において、基材に反応性イオンエッチングを実施する。
図2は、表面に微細凹凸構造を備えた成形型の製造に使用される反応性イオンエッチング装置200の構成を示す図である。反応性イオンエッチング装置200は、容器201を有する。真空排気された容器201には、ガス供給口207からガスが供給される。さらに、容器201には、ガス排気口209が設けられ、ガス排気口209には、図示しないバルブが取り付けられている。バルブを操作することにより、容器201内のガス圧力を所望の圧力値とすることができる。容器201には、上部電極203及び下部電極205が備わり、両電極間に高周波電源211により高周波電圧をかけてプラズマを発生させることができる。下部電極205には、基材の基板101が配置される。下部電極205は、冷却装置213によって所望の温度に冷却することができる。冷却装置213は、たとえば、冷却に水冷式チラーを使用するものである。下部電極205を冷却するのは、基板101の温度を所望の温度とすることによりエッチング反応を制御するためである。
図2を使用して説明した反応性イオンエッチング装置は、容量結合型イオンエッチング装置であるが、他のタイプのイオンエッチング装置、たとえば、誘導結合型イオンエッチング装置を使用してもよい。
ここで、容器201に供給されるガスは、六フッ化硫黄と酸素との混合ガスである。また、基材は、六フッ化硫黄と反応する半導体または金属である。
図3は、反応性イオンエッチング装置200内における、反応性イオンエッチングによる微細凹凸構造の形成を説明するための流れ図である。
図3のステップS2010において、プラズマドライエッチングを実施するように、高周波電圧をかけることにより、混合ガスがプラズマ化される。
図3のステップS2020において、プラズマ中の酸素イオンと、フッ素系ガス(六フッ化硫黄)に反応した基材の金属または半導体イオンとが結合し、酸化物として基材表面のランダムな位置に付着する。上記の酸化物は、六フッ化硫黄でほとんどエッチングされず、エッチング防止マスクとして機能する。
図3のステップS2030において、基材表面に付着した上記の酸化物をエッチング防止マスクとして六フッ化硫黄によって基材表面の酸化物に覆われていない部分のエッチングが進行する。この結果、基材表面に微細凹凸構造が形成される。
使用するガスは、上述のように、六フッ化硫黄(SF)と酸素との混合ガスである。
基材は、六フッ化硫黄と反応する、半導体、金属である。具体的には、シリコン、チタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金などである。
図4は、平面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。
図4(a)は、エッチング前の基材からなる基板の断面を示す図である。基材は、一例としてシリコンである。
図4(b)は、基材からなる基板の表面に反応性イオンエッチング装置を使用して微細凹凸構造を形成したものの断面を示す図である。なお、図4(b)において、わかりやすくするために、基板の寸法と比較して微細凹凸構造の寸法を拡大して記載している。
図4(c)及び図4(d)については後で説明する。
図5は、曲面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。
図5(a)は、曲面を形成した成形型のコアを示す図である。コアの材料は、一例としてステンレス鋼である。
図5(b)は、コアの曲面に基材からなる膜を形成したものを示す図である。基材は、一例としてシリコンである。
図5(c)は、膜の表面に反応性イオンエッチング装置を使用して微細凹凸構造を形成したものの断面を示す図である。なお、図5(c)において、わかりやすくするために、膜の寸法と比較して微細凹凸構造の寸法を拡大して記載している。
図5(d)については後で説明する。
図1のステップS1030において、表面に微細凹凸構造を備えた対象物の反射率及び微細凹凸構造の形状を評価する。形状の評価は、たとえば、走査型電子顕微鏡を使用して行う。
図1のステップS1040において、反射率及び形状が適切であるかどうか判断する。適切であれば、ステップS1050に進む。適切でなければ、ステップS1045に進む。
図1のステップS1045において、反応性イオンエッチングの加工条件を修正する。
図1のステップS1050において、イオンビームエッチングの加工条件を定める。イオンビームエッチングの加工条件については後で詳細に説明する。
図1のステップS1060において、微細凹凸構造を備えた対象物にイオンビームエッチングを実施する。
図6は、表面に微細凹凸構造を備えた成形型の製造に使用されるイオンビームエッチング装置300の構成を示す図である。イオンビームエッチング装置300は、容器301を有する。真空排気された容器301には、ガス供給口303からガスが供給される。さらに、容器301には、ガス排気口304が設けられ、ガス排気口304には、図示しないバルブが取り付けられている。バルブを操作することにより、容器301内のガス圧力を所望の圧力値とすることができる。なお、高周波電源211の周波数は、2.45ギガヘルツ(GHz)の高周波電源305によって容器301内のガスに電力を供給することによりプラズマを発生させる。プラズマのイオンの密度が適切な値となるように、ガス流量、ガス圧力及び高周波電力を調整する。容器301のある部分の外側にはマグネットコイル307が備わる。マグネットコイル307によって磁場を生成させてプラズマ分布を制御し、イオン密度及びイオン分布(均一度)を調整する。加速電極板309は、正の電位を与えられ、プラズマ内のイオンを、ステージ313に取り付けられた加工対象物101に向けて移動させるように機能する。エクストラクター電極板311は、負の電位を与えられ、プラズマ内への電子の流入を抑制するように機能する。このようにしてイオンビームがステージ313に取り付けられた加工対象物101に向けられる。
図7は、加工対象物101を取り付けるステージ313の動作を説明するための図である。ステージ313は、加工対象物101を取り付ける面に垂直な軸の周りに回転するように構成されている。また、該軸は、図6に示すイオンビームの方向に対して可変の角度θで傾斜させることができるように構成されている。
図7(a)は、該軸とイオンビームの方向が一致している場合、すなわち、角度θが0である場合を示す図である。
図7(b)は、該軸が、イオンビームの方向に対して、0ではない角度θで傾斜している場合を示す図である。
図8は、微細凹凸構造の凸部の長手方向とイオンビームの方向が一致している場合のイオンビームの微細凹凸構造の凸部に対する作用を説明するための図である。図1のステップS1020に示す反応性イオンエッチングプロセスにおいて、微細凹凸構造の凸部は基板または膜の面にほぼ垂直に形成される。したがって、図8の場合は、ステージの軸とイオンビームの方向が一致している図7(a)の場合に対応する。
図8(a)は、イオンビームによる加工を開始した際の微細凹凸構造の凸部の形状を示す図であり、図8(b)は、イオンビームによる加工を終了した後の微細凹凸構造の凸部の形状を示す図である。基板または膜の面に衝突したイオンにより、スパッタが生じ基材の粒子が、凸部の側面に付着する。したがって、微細凹凸構造の凸部がイオンビームを受ける時間にしたがって、凸部の径は大きくなる。また、凸部の下部の方が上部よりも多くの粒子を受けるので凸部の下部の径が凸部の上部の径よりも大きくなる。イオンビームエッチングにおいて、微細凹凸構造の凸部のエッチングレイトは、凹部のエッチングレイトより大きいので、格子深さはわずかに浅くなる。
図9は、イオンビームの方向が微細凹凸構造の凸部の長手方向に対して角度θを有する場合のイオンビームの微細凹凸構造の凸部に対する作用を説明するための図である。図9の場合は、ステージの軸が、イオンビームの方向に対して、θの角度で傾斜している図7(b)の場合に対応する。
図9(a)は、イオンビームによる加工を開始した際の微細凹凸構造の凸部の形状を示す図であり、図9(b)は、イオンビームによる加工を終了した後の微細凹凸構造の凸部の形状を示す図である。イオンビームの方向が微細凹凸構造の凸部の長手方向に対して角度θを有するので、イオンビームによって凸部の先端が削られて凸部の先端は錘状、または尖った形状となる。図8の場合と同様に、基板または膜の面に衝突したイオンによるスパッタも生じるが、イオンビームの方向が微細凹凸構造の凸部の長手方向に対して角度θを有するので、図8の場合と比較して、凸部の側面に付着する機材の粒子の量は少ない。したがって、凸部の径の増加は、図8の場合と比較して小さい。
このように、イオンビームエッチングの加工条件として、イオンビームを照射する時間及びイオンビームの角度θを変化させることにより、微細凹凸構造の凸部の形状を変化させることができる。微細凹凸構造の凸部の形状は反射率に影響を与えるので、適切なイオンビームエッチングの加工条件を選択して、微細凹凸構造にイオンビームを照射することによって、反射率を低下させるように微細凹凸構造の凸部の形状を変化させることができる。
図6を使用して説明したイオンビームエッチング装置は、電子サイクロトロン共鳴(ECR)イオンビームエッチング装置である。代替的に、容量結合型イオンエッチング装置や誘導結合型イオンエッチング装置において、アルゴンなどの不活性ガスを使用してイオンビームを生成させてもよい。
図4(c)は、基材からなる基板の表面に形成した、図4(b)に示す微細凹凸構造にイオンビームを照射して凸部の形状を変化させたものの断面を示す図である。
図4(d)は、図4(c)に示す微細凹凸構造を電鋳により再生した微細凹凸構造の断面を示す図である。
図4(c)に示す微細凹凸構造を成形型として使用してもよい。あるいは、図4(d)に示す微細凹凸構造を成形型として使用してもよい。
図5(d)は、膜の表面に形成した微細凹凸構造にイオンビームを照射して凸部の形状を変化させたものの断面を示す図である。図5(d)に示す微細凹凸構造を成形型として使用する。
図1のステップS1070において、表面に微細凹凸構造を備えた成形型の反射率及び微細凹凸構造の形状を評価する。形状の評価は、たとえば、走査型電子顕微鏡を使用して行う。
図1のステップS1080において、反射率及び形状が適切であるかどうか判断する。適切であれば、処理を終了する。適切でなければ、ステップS1085に進む。
図1のステップS1085において、イオンビームエッチングの加工条件を修正する。
図1に示した製造方法において、後で説明するように、微細凹凸構造のピッチ及び深さは、ステップS1020の反応性イオンエッチングの加工条件によって実質的に定まる。
ここで、微細凹凸構造のピッチは、原子間力顕微鏡などによって得られた微細凹凸構造の断面における、隣接する凸部間または隣接する凹部間の基材面に平行な方向の距離の平均値である。微細凹凸構造の断面のフーリエ解析により求めてもよい。
ここで、微細凹凸構造の深さは、原子間力顕微鏡などによって得られた微細凹凸構造の断面における、隣接する凸部及び凹部間の基材面に垂直な方向の距離の平均値である。
さらに、微細凹凸構造の凸部の形状は、上述したように、ステップS1060のイオンビームエッチングの加工条件によって実質的に定まる。
反応性イオンエッチングにおいて、微細凹凸構造のピッチ及び深さをどのように変化させるかについて以下に説明する。
表1は、反応性イオンエッチング装置200の容器201内のガス圧力(処理圧力)、六フッ化硫黄(SF)及び酸素(O)の供給量(SF、O混合比)、高周波電源211の電力(RF電力)及び基板101の冷却温度を含む反応性イオンエッチングの加工条件の一例を示す表である。なお、高周波電源211の周波数は、13.56MHzである。基板101の材料はシリコンである。
Figure 0005948691
図10は、表1に示した条件における反応性イオンエッチングの処理時間と微細凹凸構造のピッチとの関係を示す図である。図10の横軸は、反応性イオンエッチングの処理時間を示し、図10の縦軸は、微細凹凸構造のピッチを示す。時間の単位は秒であり、ピッチの単位はマイクロメータである。
図11は、表1に示した条件における反応性イオンエッチングの処理時間と微細凹凸構造の深さとの関係を示す図である。図11の横軸は、反応性イオンエッチングの処理時間を示し、図11の縦軸は、微細凹凸構造の深さを示す。時間の単位は秒であり、深さの単位はマイクロメータである。
図10及び図11によれば、微細凹凸構造のピッチ及び深さは、反応性イオンエッチングの処理時間にしたがって増加する。
表2は、反応性イオンエッチング装置200の容器201内のガス圧力(処理圧力)、六フッ化硫黄(SF)及び酸素(O)の供給量(SF、O混合比)、及び基板101の冷却温度を含む反応性イオンエッチングの加工条件の他の例を示す表である。基板101の材料はシリコンである。
Figure 0005948691
図12は、表2のエッチング条件を維持して、高周波電源211の電力を100ワット及び200ワットとした場合の反応性イオンエッチングの処理時間と微細凹凸構造のピッチとの関係を示す図である。図12の横軸は、反応性イオンエッチングの処理時間を表し、図12の縦軸は微細凹凸構造のピッチを表す。時間の単位は分であり、ピッチの単位はマイクロメータである。
図13は、表2のエッチング条件を維持して、高周波電源211の電力を100ワット及び200ワットとした場合の反応性イオンエッチングの処理時間と微細凹凸構造の深さとの関係を示す図である。図13の横軸は、反応性イオンエッチングの処理時間を表し、図13の縦軸は微細凹凸構造の深さを表す。時間の単位は分であり、深さの単位はマイクロメータである。
図12及び図13によれば、微細凹凸構造のピッチ及び深さは、反応性イオンエッチングの処理時間にしたがって増加し、高周波電源211の電力にしたがって増加する。
図10乃至図13によれば、反応性イオンエッチングの処理時間及び高周波電源211の電力を適切に定めることにより、0.08マイクロメータから3マイクロメータのピッチ、及び0.1マイクロメータから2.8マイクロメータの深さの微細凹凸構造を製造することができる。
表3は、反応性イオンエッチング装置200の容器201内のガス圧力(処理圧力)、六フッ化硫黄(SF)及び酸素(O)の供給量(SF、O混合比)、及び基板101の冷却温度の他の例を示す表である。基板101の材料はシリコンである。
Figure 0005948691
表3の加工条件によって得られた微細凹凸構造3のピッチは、18.0マイクロメータであり、深さは6.0マイクロメータである。
図14は、異なる角度のイオンビームのイオンビームエッチングによって得られた微細凹凸構造の形状を示す写真である。イオンビームの角度θは、図7を使用して説明した角度である。イオンビームエッチングの処理時間は10分である。
図14(a)は、角度θが0度の場合を示す走査型電子顕微鏡(SEM)写真である。
図14(b)は、角度θが10度の場合を示すSEM写真である。
図14(c)は、角度θが15度の場合を示すSEM写真である。
図14(d)は、角度θが20度の場合を示すSEM写真である。上記において、角度θが0度から20度の場合について記載したが、所望の形状によっては、角度θとして45度までの値を採用してもよい。
図15は、イオンビームの角度θを15度として、異なるイオンビームエッチングの処理時間によって得られた微細凹凸構造の形状を示すSEM写真である。
図15(a)は、イオンビームエッチングの処理時間が10分の場合を示すSEM写真である。
図15(b)は、イオンビームエッチングの処理時間が15分の場合を示すSEM写真である。
表4は、図14及び図15に示した微細凹凸構造の反応性イオンエッチングの加工条件を示す表である。
Figure 0005948691
表5は、図14及び図15に示す微細凹凸構造を形成した際の、イオンビームエッチングの、イオンビームの角度及び処理時間以外の加工条件を示す表である。なお、高周波電源305の周波数は、2.45ギガヘルツ(GHz)である。
Figure 0005948691
図14及び図15に示した微細凹凸構造の反射率及び形状を評価し、イオンビームエッチングの処理時間を10分、イオンビームの角度θを15度と定めた。
表6は、このようにして定めたイオンビームエッチングの加工条件を示す表である。
Figure 0005948691
図16は、表4に示した条件で反応性イオンエッチングを実施して得られた微細凹凸構造、及び該微細凹凸構造に、表6示した条件でイオンビームエッチングを実施して得られた微細凹凸構造を示すSEM写真である。
図16(a)は、表4に示した条件で反応性イオンエッチングを実施して得られた微細凹凸構造を示すSEM写真である。図16(a)に示す微細凹凸構造のピッチは、0.12マイクロメータであり、深さは、0.270マイクロメータである。
図16(b)は、図16(a)に示した微細凹凸構造に、表6に示した条件でイオンビームエッチングを実施して得られた微細凹凸構造を示すSEM写真である。図16(b)に示す微細凹凸構造のピッチは、0.12マイクロメータであり、深さは、0.265マイクロメータである。
図17は、成形型の波長と反射率との関係を示す図である。図17の横軸は、成形型に入射させる電磁波の波長を示し、図17の縦軸は、該電磁波の反射率を示す。電磁波は、成形型の面に垂直に入射させた。図17は、表面に微細構造を備えていない成形型の反射率(図17において「加工なし」で示す)、反応性イオンエッチングを実施して得られた微細凹凸構造を備えた、図16(a)に示した成形型の反射率(図17において「RI」で示す)、図16(a)に示した成形型にイオンビームエッチングを実施して得られた、図16(b)に示した成形型の反射率(図17において「RI+IB」で示す)を示す。400ナノメータから800ナノメータの電磁波に対して、「加工なし」の成形型の反射率は、約33パーセントから約49パーセントであり、「RI」の成形型の反射率は、約9パーセントから約19パーセントであり、「RI+IB」の成形型の反射率は、4パーセント以下である。このように、反応性イオンエッチングを実施して得られた微細凹凸構造は、反射率を低下させ、反応性イオンエッチングを実施して得られた微細凹凸構造にさらにイオンビームエッチングを実施して得られた微細構造は、さらに反射率を低下させる。反応性イオンエッチングを実施して得られた微細凹凸構造にさらにイオンビームエッチングを実施することによって反射率が低下するのは、微細構造の凸部の形状が、柱状から錘状に変化したためと考えられる。このように、本発明の方法によれば、適切な加工条件を設定してイオンビームエッチングを実施することによって、微細構造の凸部を好ましい形状、たとえば錘状に変化させることができる。したがって、本発明の方法は、反応性イオンエッチングのみを実施する方法と比較して有利である。
図18は、同一の基板上に形成した「加工なし」の成形型、「RI」の成形型、及び「RI+IB」の成形型の外観を示す写真である。図18の写真において、「RI+IB」の成形型の部分が最も暗く、反射率が最も低いことがわかる。
つぎに、図16(b)に示した成形型の微細凹凸構造を、ニッケル電鋳により再生して成形型を製造し、射出成形によってポリメタクリル酸メチル樹脂(PMMA)の複製品を製造した。
図19は、ニッケル電鋳により再生した微細凹凸構造を示すSEM写真である。
図20は、図19に示す成形型による複製品の微細凹凸構造を示すSEM写真である。
図21は、複製品の波長と反射率との関係を示す図である。図21の横軸は、複製品に入射させる電磁波の波長を示し、図21の縦軸は、該電磁波の反射率を示す。電磁波は、複製品の面に垂直に入射させた。図21は、表面に微細構造を備えていない成形型を使用した複製品の反射率(図21において「加工なし」で示す)、反応性イオンエッチングを実施して得られた微細凹凸構造を備えた、図16(a)に示した成形型を使用した複製品の反射率(図21において「RI」で示す)、図19に示した成形型を使用した複製品の反射率(図21において「RI+IB」で示す)を示す。350ナノメータから1050ナノメータの電磁波に対して、「加工なし」の複製品の反射率は、約3.8パーセントから約4.3パーセントであり、「RI」の複製品の反射率は、約1.4パーセントから約2.9パーセントであり、「RI+IB」の成形型の反射率は、1.5パーセント以下である。このように、複製品においても、反応性イオンエッチングを実施して得られた微細凹凸構造は、反射率を低下させ、反応性イオンエッチングを実施して得られた微細凹凸構造にさらにイオンビームエッチングを実施して得られた微細構造は、さらに反射率を低下させる。
上述の実施形態においては、反応性イオンエッチングプロセスにおいて、六フッ化硫黄と酸素の混合ガスを使用した。他の実施形態において、六フッ化硫黄の代わりに四フッ化炭素またはトリフルオロメタンなどのフッ素系ガスを使用することもできる。
上述のように本発明の成形型は、可視光以下の波長領域及び赤外域を含む広い波長範囲の光の反射防止用の光学素子の製造に使用することができる。
図22は、反射率を低下させたい光の波長と、反射率を低下させる微細凹凸微細構造のピッチとの関係の一例を示す図である。図22の横軸は、反射率を低下させたい光の波長を表し、図22の縦軸は、反射率を低下させる微細凹凸微細構造のピッチを表す。
たとえば、表3の加工条件によって製造した微細凹凸構造のピッチは、可視光の波長よりも十分に大きい。他方、該微細凹凸構造の隣接する凸部または凹部間の基材面に平行な方向の距離は一定ではなく所定の範囲に分布している。したがって、該微細凹凸構造によって、種々の波長の種々の次数の回折光が生じる。すなわち、表面に該微細凹凸構造を備えた基板は、可視光を拡散させる。このように、本発明の成形型は、光の拡散用の素子の製造に使用することができる。
また、本発明の成形型は、反射防止と同様の原理により「艶消し」の目的で使用することができる。
また、本発明の成形型によって形成される微細凹凸構造のピッチは一定ではないので、反射回折波が干渉により強めあうことがない。したがって、本発明の成形型によって形成される微細凹凸構造は、反射を少なくするとともに「ソフトな色合い」を生成するために使用することができる。
さらに、本発明の成形型は、接着性を有する面を形成するために使用することができる。特に、錘状の凸部の微細凹凸構造を面上に形成することにより、接着剤が付着しやすくなり面の接着性が向上する。
さらに、たとえば、切削加工などにより曲面に加工したシリコンの表面に、図1及び図4に示す手順で反応性イオンエッチング及びイオンビームエッチングを実施することによって微細凹凸構造を形成し、赤外域用の光学素子を製造することができる。

Claims (9)

  1. 成形型の製造方法であって、
    反応性イオンエッチング装置内に、六フッ化硫黄と反応する半導体または金属の基材を配置し、
    六フッ化硫黄と酸素との混合ガスを導入し、プラズマドライエッチングプロセスにおいて、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、微細凹凸構造を形成し、
    その後、該微細凹凸構造の凸部の形状を調整するように該微細凹凸構造にイオンビームを照射することを含む成形型の製造方法。
  2. さらに、イオンビームを照射して該微細凹凸構造の凸部の形状を調整した後に、電鋳によって該微細凹凸構造を再生することを含む請求項1に記載の成形型の製造方法。
  3. イオンビームを照射する際に、該基材の表面に対するイオンビームの角度が0度から20度の範囲である請求項1または2に記載の成形型の製造方法。
  4. 該基材が基板または膜として形成されている請求項1から3のいずれかに記載の成形型の製造方法。
  5. 六フッ化硫黄と酸素との混合ガスの代わりに、四フッ化炭素またはトリフルオロメタンと酸素との混合ガスを使用する請求項1から4のいずれかに記載の成形型の製造方法。
  6. 光学素子用の成形型を製造する請求項1から5のいずれかに記載の成形型の製造方法。
  7. 反射防止構造用の成形型を製造する請求項1から5のいずれかに記載の成形型の製造方法。
  8. 可視光域の光の反射防止構造用の成形型を製造する請求項1から5のいずれかに記載の成形型の製造方法。
  9. 請求項1から8のいずれかの方法によって成形型を製造し、
    該成形型を使用して成形によって複製品を製造する複製品の製造方法。
JP2015558055A 2015-09-03 2015-09-03 成形型、成形型の製造方法及び複製品の製造方法 Active JP5948691B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075073 WO2017037918A1 (ja) 2015-09-03 2015-09-03 成形型、成形型の製造方法及び複製品の製造方法

Publications (2)

Publication Number Publication Date
JP5948691B1 true JP5948691B1 (ja) 2016-07-06
JPWO2017037918A1 JPWO2017037918A1 (ja) 2017-08-31

Family

ID=56329496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558055A Active JP5948691B1 (ja) 2015-09-03 2015-09-03 成形型、成形型の製造方法及び複製品の製造方法

Country Status (5)

Country Link
US (1) US10363687B2 (ja)
JP (1) JP5948691B1 (ja)
CN (1) CN107848151B (ja)
DE (1) DE112015006873B4 (ja)
WO (1) WO2017037918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072885A (ja) * 2017-10-13 2019-05-16 株式会社エンプラス ドライエッチング法による成形型の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018108074A1 (de) * 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verwendung eines Bauteils mit mikrostrukturierter Oberfläche als Fließbett für diskrete Mengen einer Flüssigkeit
DE102018108053A1 (de) * 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikrostrukturierter Gegenstand
WO2020250300A1 (ja) * 2019-06-11 2020-12-17 ナルックス株式会社 表面に微細凹凸構造を備えたプラスチック素子の製造方法
CN111517274B (zh) * 2020-04-29 2022-03-29 中国科学院光电技术研究所 一种曲面衬底上微纳结构图形高精度刻蚀传递方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068926A (ja) * 2004-08-31 2006-03-16 Alps Electric Co Ltd 樹脂製光学部品用の成形型の製造方法
WO2007020967A1 (ja) * 2005-08-19 2007-02-22 Kiichi Takamoto マイクロレンズ用金型およびその製法
JP2010272801A (ja) * 2009-05-25 2010-12-02 Hitachi Maxell Ltd 表面加工方法、及びこの方法により製造されるインプリント用モルド
JP2013077617A (ja) * 2011-09-29 2013-04-25 Toppan Printing Co Ltd 低反射構造を成型するための原版の製造方法および原版

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027347B2 (ja) * 2010-04-28 2012-09-19 シャープ株式会社 型および型の製造方法
CN201807659U (zh) * 2010-09-30 2011-04-27 鑫鸿交通工业(安徽)有限公司 上模具、下模具和模具组件
US20150192702A1 (en) 2012-11-16 2015-07-09 Nalux Co., Ltd. Mold, optical element and method for manufacturing the same
DE112013005487B4 (de) 2012-11-16 2022-07-07 Nalux Co., Ltd. Verfahren zur Herstellung einer Form für eine Antireflexionsstruktur und einer Form für ein optisches Gitter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068926A (ja) * 2004-08-31 2006-03-16 Alps Electric Co Ltd 樹脂製光学部品用の成形型の製造方法
WO2007020967A1 (ja) * 2005-08-19 2007-02-22 Kiichi Takamoto マイクロレンズ用金型およびその製法
JP2010272801A (ja) * 2009-05-25 2010-12-02 Hitachi Maxell Ltd 表面加工方法、及びこの方法により製造されるインプリント用モルド
JP2013077617A (ja) * 2011-09-29 2013-04-25 Toppan Printing Co Ltd 低反射構造を成型するための原版の製造方法および原版

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072885A (ja) * 2017-10-13 2019-05-16 株式会社エンプラス ドライエッチング法による成形型の製造方法
JP6993837B2 (ja) 2017-10-13 2022-02-04 株式会社エンプラス ドライエッチング法による成形型の製造方法

Also Published As

Publication number Publication date
US20180154556A1 (en) 2018-06-07
WO2017037918A1 (ja) 2017-03-09
DE112015006873B4 (de) 2023-08-31
JPWO2017037918A1 (ja) 2017-08-31
CN107848151B (zh) 2020-03-03
US10363687B2 (en) 2019-07-30
DE112015006873T5 (de) 2018-05-17
CN107848151A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP5948691B1 (ja) 成形型、成形型の製造方法及び複製品の製造方法
CN108025909B (zh) 在单一衬底上包括多个纳米结构梯度的纳米结构化衬底的制造
US8698109B2 (en) Method and system for controlling critical dimension and roughness in resist features
JP6539813B2 (ja) 光学素子の製造方法及び光学素子用成型型の製造方法
KR102273971B1 (ko) 파라데이 상자를 이용한 플라즈마 식각 방법
JP5584907B1 (ja) 反射防止構造用金型製造方法、及び反射防止構造用金型としての使用方法
JP5647220B2 (ja) マイクロ及びナノスケールの3次元構造の製造方法並びに製造装置
TW201929043A (zh) 利用法拉第盒的電漿蝕刻製程方法
Shim et al. Nanoscale dry etching of germanium by using inductively coupled CF 4 plasma
CN111640651A (zh) 基于离子轰击技术的亚波长表面纳米结构及其制备方法
US11567247B2 (en) Plasma etching method using faraday cage
CN110596801B (zh) 闪耀光栅及其制备方法和应用
CN110589756B (zh) 曲面纳米结构的制备方法
CN111591954B (zh) 在光刻胶表面制备亚波长纳米结构的方法
JP2004107765A (ja) シリコン表面および金属表面の処理方法
JPH02244002A (ja) 射出成形用光回折格子コアの作成方法
CN112158798A (zh) 利用双层材料制备有序自组织纳米结构的方法
JP6993837B2 (ja) ドライエッチング法による成形型の製造方法
WO2023207053A1 (zh) 一种类光栅结构金属电极制造方法和电极
WO2019211920A1 (ja) 表面に微細凹凸構造を備えたプラスチック成型品の製造方法
JPWO2020045668A1 (ja) 成形型及びレンズ
JPS6060725A (ja) パタ−ン形成方法
Kurisu et al. Developments in SiO2 multistep diffractive optical element for beam homogenizing
JPH04247614A (ja) X線マスク吸収体の製造方法及びその製造装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5948691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250