JP5924416B2 - 車両のブレーキ制御装置 - Google Patents

車両のブレーキ制御装置 Download PDF

Info

Publication number
JP5924416B2
JP5924416B2 JP2014546808A JP2014546808A JP5924416B2 JP 5924416 B2 JP5924416 B2 JP 5924416B2 JP 2014546808 A JP2014546808 A JP 2014546808A JP 2014546808 A JP2014546808 A JP 2014546808A JP 5924416 B2 JP5924416 B2 JP 5924416B2
Authority
JP
Japan
Prior art keywords
pressure
hydraulic pressure
passage
valve
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014546808A
Other languages
English (en)
Other versions
JPWO2014076820A1 (ja
Inventor
徹也 宮崎
徹也 宮崎
和紀 二村
和紀 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5924416B2 publication Critical patent/JP5924416B2/ja
Publication of JPWO2014076820A1 publication Critical patent/JPWO2014076820A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3655Continuously controlled electromagnetic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/90Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using a simulated speed signal to test speed responsive control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Description

本発明は、動力液圧発生装置で発生させた液圧を調圧装置により調整して車輪のホイールシリンダに供給する車両のブレーキ制御装置に関する。
従来から、加圧ポンプの駆動により液圧を発生させる動力液圧発生装置と、動力液圧発生装置から出力された液圧を調整するリニア制御弁等の調圧装置と、調圧装置の作動を制御してホイールシリンダに供給する液圧を目標液圧に追従させる電子制御装置とを備えた車両のブレーキ制御装置が知られている。こうした車両のブレーキ制御装置においては、制御系の異常が発生した場合でも、ホイールシリンダに液圧を供給できるように、ドライバーのブレーキペダル操作によって発生したマスタシリンダの液圧をホイールシリンダに供給するマスタ通路を備えている。
また、特許文献1に提案されたブレーキ制御装置では、パイロット式の増圧装置を備えている。この増圧装置では、マスタシリンダの出力する液圧がパイロット部に入力され、動力液圧発生装置の出力する液圧を利用して、マスタシリンダの出力する液圧よりも高い液圧を発生させて、その液圧をホイールシリンダに供給する。従って、マスタシリンダの液圧に対して所定の増圧比の液圧をホイールシリンダに供給することができる。また、特許文献1に提案されたブレーキ制御装置では、増圧装置が正常に作動するか否かについてチェックするチェック装置を備えている。このチェック装置は、イグニッションスイッチがオフからオンに切り替えられた後の最初にブレーキペダルの踏み込み操作が検出されたときに起動し、ブレーキペダルの踏み込み操作が行われている状態で増圧装置の作動チェックを実施する。このチェック装置は、ブレーキペダルの踏み込み操作中における、パイロット部に入力される液圧(マスタシリンダの出力する液圧)と増圧装置から出力される液圧との関係に基づいて、増圧装置の作動が正常であるか否かについて判定する。
特開2012−116345号公報
しかしながら、上記特許文献1に提案されたブレーキ制御装置においては、増圧装置の作動チェックを行うためには、ドライバーのブレーキペダル踏み込み操作が必要となる。しかも、ドライバーの踏み込み操作力、操作速度がまちまちであるため、毎回、作動チェックに適したマスタシリンダの液圧が得られるとは限らない。従って、チェック精度の面において改良の余地があった、
本発明は、上記問題を解決するためになされたものであり、ドライバーのブレーキペダル操作に頼ることなく増圧装置の作動チェックを行えるようにすることを目的とする。
上記課題を解決する本発明の特徴は、複数の車輪に設けられ作動液の液圧を受けて車輪に制動力を与えるホイールシリンダ(82)と、ドライバーがブレーキペダルを踏み込んだ踏力によって液圧を発生させる踏力液圧発生装置(20)と、電動加圧装置を駆動して液圧を発生させる動力液圧発生装置(30)と、前記動力液圧発生装置の出力する液圧を調整して、調整した液圧を各ホイールシリンダに供給する調圧装置(44,45,91,93)と、前記調圧装置の作動を制御する液圧制御手段(100)と、電気エネルギーを使わずに作動するパイロット式の液圧調整器であって、前記踏力液圧発生装置の出力する液圧をパイロット部に入力し、前記動力液圧発生装置の出力する液圧を利用して、前記踏力液圧発生装置の出力する液圧よりも高い液圧を出力可能な増圧装置(50)と、前記増圧装置の出力する液圧を少なくとも1つのホイールシリンダに供給する通路であるサーボ圧通路(41)と、前記増圧装置が正常に作動するか否かについてチェックする作動チェック手段(100)とを備えた車両のブレーキ制御装置において、
前記動力液圧発生装置の出力する液圧を作動チェック用液圧に調整して、前記作動チェック用液圧を前記増圧装置のパイロット部に供給するチェック用パイロット圧供給手段(44FL,37,96)を備え、前記作動チェック手段(S11〜S22)は、前記チェック用パイロット圧供給手段により作動チェック用液圧が前記増圧装置のパイロット部に供給されているときの前記増圧装置の出力する液圧に基づいて、前記増圧装置が正常に作動するか否かについてチェックすることにある。
本発明は、動力液圧発生装置、調圧装置、液圧制御手段を備えており、液圧制御手段が、調圧装置を制御して動力液圧発生装置の出力する液圧を調整して、調整した液圧を各ホイールシリンダに供給する。例えば、液圧制御手段は、ホイールシリンダの液圧を検出し、その検出液圧が目標液圧に追従するように調圧装置を制御する。さらに、本発明は、踏力液圧発生装置、増圧装置を備えおり、増圧装置が、動力液圧発生装置の出力する液圧を利用して、踏力液圧発生装置の出力する液圧よりも高い液圧をサーボ圧通路を介して少なくとも1つのホイールシリンダに供給する。増圧装置は、電気エネルギーを使わずに作動するパイロット式の液圧調整器であって、踏力液圧発生装置の出力する液圧をパイロット部に入力し、動力液圧発生装置から出力された液圧を、パイロット部に入力した液圧に対して所定の増圧比となる液圧に調整して出力する。
本発明は、増圧装置の作動をチェックするために、チェック用パイロット圧供給手段と作動チェック手段とを備えている。チェック用パイロット圧供給手段は、動力液圧発生装置の出力する液圧を作動チェック用液圧に調整して、その作動チェック用液圧を増圧装置のパイロット部に供給する。作動チェック用液圧は、増圧装置が正常に作動するか否かを判断できる液圧、つまり、増圧装置が正常であれば、パイロット部に入力した液圧よりも高い液圧を出力するように作動する液圧である。作動チェック手段は、作動チェック用液圧が増圧装置のパイロット部に供給されているときの増圧装置の出力する液圧に基づいて、増圧装置が正常に作動するか否かについてチェックする。従って、本発明によれば、ドライバーのブレーキペダルの踏み込み操作を必要とすることなく、増圧装置の作動チェックを実行することができる。このため、精度のよい作動チェックを実施することができる。また、作動チェックを行うタイミングの自由度が拡がる。
本発明の他の特徴は、前記チェック用パイロット圧供給手段は、前記動力液圧発生装置から前記増圧装置のパイロット部(53)へ液圧を供給する通路となる動力液圧パイロット入力通路(37)と、前記動力液圧パイロット入力通路に設けられ、前記動力液圧発生装置の出力する液圧を前記作動チェック用液圧に調整するリニア制御弁(44FL,96)とを備えたことにある。
本発明においては、動力液圧発生装置と増圧装置のパイロット部とが、動力液圧パイロット入力通路により接続され、この動力液圧パイロット入力通路にリニア制御弁が設けられる。リニア制御弁は、動力液圧発生装置の出力する液圧を作動チェック用液圧に調整する。従って、本発明によれば、動力液圧発生装置の出力する液圧を作動チェック用液圧に精度よく調整することができ、作動チェックの精度を更に向上させることができる。
本発明の他の特徴は、前記動力液圧パイロット入力通路に設けられるリニア制御弁の出力する液圧を、前記増圧装置を迂回して前記サーボ通路に供給するバイパス通路(39)と、前記増圧装置を作動不能状態にする作動規制手段(48)とを備え、前記液圧制御手段は、前記増圧装置が作動不能状態におかれているときに、前記動力液圧パイロット入力通路に設けられるリニア制御弁を制御して、前記リニア制御弁により調圧された液圧を前記バイパス通路および前記サーボ圧通路を介して、少なくとも1つのホイールシリンダに供給することにある。
本発明は、バイパス通路と作動規制手段とを備えている。バイパス通路は、リニア制御弁の出力する液圧を、増圧装置を迂回してサーボ通路に供給する通路を構成する。作動規制手段は、増圧装置を作動不能状態にする。作動規制手段は、例えば、動力液圧発生装置の出力する液圧が増圧装置に供給されないようにする。そして、増圧装置が作動不能状態におかれているときに、液圧制御手段が、動力液圧パイロット入力通路に設けられリニア制御弁を制御して、リニア制御弁により調圧された液圧をバイパス通路およびサーボ圧通路を介して、少なくとも1つのホイールシリンダに供給する。従って、リニア制御弁により少なくとも1つのホイールシリンダの液圧を制御することができる。これにより、本発明によれば、動力液圧パイロット入力通路に設けられたリニア制御弁を、調圧装置の少なくとも一部として兼用することができ、低コストにて実施することができる。
本発明の他の特徴は、前記サーボ圧通路は、前記調圧装置の下流側通路と合流することにある。
本発明においては、サーボ圧通路が、調圧装置の下流側通路と合流している。つまり、調圧装置からホイールシリンダへ液圧を供給する通路に、サーボ圧通路が合流している。この場合、制御弁を介在させてサーボ圧通路が調圧装置の下流側通路と合流していてもよい。これにより、本発明では、作動チェック用のリニア制御弁(動力液圧パイロット入力通路に設けられリニア制御弁)を使って、調圧装置の作動を補助することができる。例えば、調圧装置が故障しても、その故障した調圧装置に代わって、作動チェック用のリニア制御弁を使ってホイールシリンダの液圧を制御することができる。この場合、調圧装置の異常を検出する異常検出手段を備え、異常検出手段により調圧装置の異常が検出されたときに、液圧制御手段が、調圧装置に代えて、作動チェック用のリニア制御弁を使ってホイールシリンダに供給する液圧を制御するように構成するとよい。これにより、故障に対する対応能力を向上させることができる。
また、例えば、液圧制御手段が、調圧装置と作動チェック用のリニア制御弁とを交互に作動させてホイールシリンダの液圧を制御するように構成することもできる。この場合には、調圧装置の作動時間を短縮することができ、増圧装置の寿命を延ばすことができる。また、例えば、液圧制御手段が、調圧装置と作動チェック用のリニア制御弁とを同時に作動させてホイールシリンダの液圧を制御するように構成することもできる。この場合には、作動液を流す流量を多くすることができる。
本発明の他の特徴は、左右一方の前輪のホイールシリンダ(82FL)と左右他方の前輪のホイールシリンダ(82FR)とは、ソレノイドへの通電により閉弁し非通電時には開弁状態を維持する常開式開閉弁(46、94FL,94FR)を介して連通しており、前記サーボ圧通路は、前記左右一方の前輪のホイールシリンダに液圧を供給することにある。
本発明においては、左右前輪のホイールシリンダが常開式開閉弁を介して連通しており、サーボ圧通路が左右一方の前輪のホイールシリンダに液圧を供給する。このため、制御系の異常が発生した場合には、増圧装置の出力する液圧を、制動寄与度の高い左右の前輪のホイールシリンダに供給することができる。また、常開式開閉弁を閉弁することにより、左右の前輪のホイールシリンダへの液圧供給路を分離することができるため、液圧制御時、あるいは、作動液の漏れ異常が検出された場合等においても、適正な作動液の流路(液圧路)を形成することができる。
尚、上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は前記符号によって規定される実施形態に限定されるものではない。
図1は、第1実施形態に係る車両のブレーキ制御装置の概略システム構成図である。 図2は、増圧装置の概略構成図である。 図3は、第1実施形態に係る液圧制御時における液圧供給通路を表す説明図である。 図4は、第1実施形態に係る制御系の異常時における液圧供給通路を表す説明図である。 図5は、第1実施形態に係る作動液の漏れ異常時における液圧供給通路を表す説明図である。 図6は、第1実施形態に係る作動チェックルーチンを表すフローチャートである。 図7は、第1実施形態に係る作動チェック時のパイロット圧供給通路とサーボ圧供給通路とを表す説明図である。 図8は、増圧装置の作動特性を表すグラフである。 図9は、第2実施形態に係る車両のブレーキ制御装置の概略システム構成図である。 図10は、第2実施形態に係る液圧制御時における液圧供給通路を表す説明図である。 図11は、第2実施形態に係る液圧制御時における液圧供給通路を表す説明図である。 図12は、第2実施形態に係る制御系の異常時における液圧供給通路を表す説明図である。 図13は、第2実施形態に係る作動液の漏れ異常時における液圧供給通路を表す説明図である。 図14は、第2実施形態に係る作動チェックルーチンを表すフローチャートである。 図15は、第2実施形態に係る作動チェック時のパイロット圧供給通路とサーボ圧供給通路とを表す説明図である。
以下、本発明の実施形態に係る車両のブレーキ制御装置について図面を用いて説明する。図1は、第1実施形態に係る車両のブレーキ制御装置の概略システム構成図である。
第1実施形態のブレーキ制御装置は、ブレーキペダル10と、マスタシリンダ20と、動力液圧発生装置30と、ブレーキアクチュエータ40と、リザーバ70と、ストロークシミュレータ装置75と、各車輪にそれぞれ設けられるディスクブレーキユニット80FL,80FR,80RL,80RRと、ブレーキ制御を司る電子制御装置であるブレーキECU100とを含んで構成される。
ディスクブレーキユニット80FL,80FR,80RL,80RRは、ブレーキディスク81FL,81FR,81RL,81RRとブレーキキャリパに内蔵されたホイールシリンダ82FL,82FR,82RL,82RRとを備えている。ホイールシリンダ82FL,82FR,82RL,82RRは、ブレーキアクチュエータ40に接続され、ブレーキアクチュエータ40から供給される作動液(ブレーキフルード)の液圧により、車輪と共に回転するブレーキディスク81FL,81FR,81RL,81RRにブレーキパッドを押し付けて車輪に制動力を付与する。
尚、各車輪毎に設けられる構成については、その符号の末尾に、左前輪についてはFL、右前輪についてはFR、左後輪についてはRL、右後輪についてはRRを付しているが、以下、前後左右輪の任意のものを特定する必要がない場合には、末尾の符号を省略する。
マスタシリンダ20は、第1加圧室21と第2加圧室22とを備えている。マスタシリンダ20は、ブレーキペダル10の踏み込み操作によって加圧ピストンが前進することにより作動液を加圧して、第1加圧室21と第2加圧室22とにそれぞれ独立したマスタシリンダ圧を発生させる。第1加圧室21は、発生したマスタシリンダ圧PmLを第1マスタ通路23を介してブレーキアクチュエータ40に供給する。第2加圧室22は、発生したマスタシリンダ圧PmRを第2マスタ通路24を介してブレーキアクチュエータ40に供給する。
マスタシリンダ20の上部には、作動液を大気圧で貯留するリザーバ70が設けられている。マスタシリンダ20は、ブレーキペダル10の踏み込み操作が解除されて加圧ピストンが後退しているときに、加圧室21,22がリザーバ70と連通するようになっている。
第1マスタ通路23には、シミュレータ通路76を介してストロークシミュレータ装置75が接続されている。ストロークシミュレータ装置75は、ストロークシミュレータ77とシミュレータカット弁78とから構成される。シミュレータカット弁78は、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドの通電中においてのみ開弁状態となる常閉式電磁弁である。シミュレータカット弁78が閉弁状態にあるときには、加圧室21とストロークシミュレータ77との間の作動液の流通が遮断され、シミュレータカット弁78が開弁状態にあるときには、加圧室21とストロークシミュレータ77との間の作動液の流通が双方向に許容される。
ストロークシミュレータ77は、複数のピストンやスプリングを備えており、シミュレータカット弁78が開弁状態にあるときに、ブレーキ操作量に応じた量の作動液を内部に導入してブレーキペダル10のストローク操作を可能にするとともに、ペダル操作量に応じた反力を発生させて、ドライバーのブレーキ操作フィーリングを良好にするものである。
動力液圧発生装置30は、ブレーキ操作が行われていなくても高圧の液圧を発生する装置であって、吸入通路71を介してリザーバ70から作動液を汲み上げて加圧するポンプ31と、ポンプ31を駆動するモータ32と、アキュムレータ33とを備えている。アキュムレータ33は、ポンプ31により加圧された作動液の圧力エネルギーを窒素等の封入ガスの圧力エネルギーに変換して蓄える。動力液圧発生装置30は、アキュムレータ通路35を介して、加圧された作動液をブレーキアクチュエータ40に供給する。また、動力液圧発生装置30は、リリーフバルブ34を備えている。このリリーフバルブ34は、作動液の圧力が所定の圧力以上に高まった場合に開弁し、作動液をリザーバ70に戻す。以下、動力液圧発生装置30の出力する作動液の液圧をアキュムレータ圧Paccと呼ぶ。
ブレーキアクチュエータ40は、アキュムレータ通路35に連通する主通路36、パイロット入力通路37、高圧供給通路38と、リザーバ70に連通するリターン通路72と、各ホイールシリンダ82FL,82FR,82RL,82RRに連通する4つの個別通路43FL,43FR,43RL,43RRとを備えている。ブレーキアクチュエータ40は、増圧用リニア制御弁44FL,44FR,44RL,44RRを備えており、このうち、増圧用リニア制御弁44FLを除く増圧用リニア制御弁44FR,44RL,44RRが主通路36に接続される。3輪の個別通路43FR,43RL,43RRは、この増圧用リニア制御弁44FR,44RL,44RRを介して主通路36に接続される。増圧用リニア制御弁44FLは、パイロット入力通路37の途中に設けられる。このパイロット入力通路37は、後述するバイパス通路39とサーボ圧通路41とを介して左前輪の個別通路43FLに連通する。また、ブレーキアクチュエータ40は、減圧用リニア制御弁45FL,45FR,45RL,45RRを備えており、この減圧用リニア制御弁45FL,45FR,45RL,45RRを介して個別通路43FL,43FR,43RL,43RRをリターン通路72に接続している。
増圧用リニア制御弁44および減圧用リニア制御弁45は、電磁式のリニア制御弁である。ここで、電磁式のリニア制御弁の作動原理について、常閉式電磁リニア制御弁を例に挙げて説明する。常閉式電磁リニア制御弁は、スプリングが弁体を閉弁方向に付勢するバネ反力f1と、上流側(入口側)と下流側(出口側)の差圧ΔPにより弁体が開弁方向に付勢される液圧力f2との差分である閉弁力(f1−f2)により閉弁状態を維持し、ソレノイドへの通電により発生する弁体を開弁させる電磁力f3が、この閉弁力を上回った場合に、弁体に働く力のバランスに応じた開度で開弁する。従って、ソレノイドへの通電量(電流値)を制御することにより弁体の開度を調整して、リニア制御弁の下流側の液圧を連続的に変化させることができる。
本実施形態においては、増圧用リニア制御弁44FL,44FR,44RL,44RRおよび前輪用の減圧用リニア制御弁45FL,45FRについては、常閉式電磁リニア制御弁が用いられ、後輪用の減圧用リニア制御弁45RL,45RRについては、常開式電磁リニア制御弁が用いられる。従って、増圧用リニア制御弁44FL,44FR,44RL,44RRは、ソレノイドに通電されていない状態では閉弁し、ソレノイドに通電されている状態では、その通電量に応じた開度で開弁して動力液圧発生装置30からホイールシリンダ82FL,82FR,82RL,82RRへの作動液の流入を許容してホイールシリンダ圧を増加させる。また、前輪用の減圧用リニア制御弁45FL,45FRは、ソレノイドに通電されていない状態では閉弁し、ソレノイドに通電されている状態では、その通電量に応じた開度で開弁してホイールシリンダ82FL,82FRからリザーバ70への作動液の流出を許容してホイールシリンダ圧を低下させる。また、後輪用の減圧用リニア制御弁45RL,45RRは、ソレノイドに通電されていない状態では開弁してホイールシリンダ82RL,82RRからリザーバ70への作動液の流出を許容してホイールシリンダ圧を低下させ、ソレノイドに通電されると閉弁してホイールシリンダ82RL,82RRからリザーバ70への作動液の流出を阻止する。この場合、減圧用リニア制御弁45RL,45RRは、ソレノイドの通電量が少ない場合には、閉弁位置にまで弁体が移動せずに通電量に応じた開度に調整される。
従って、増圧用リニア制御弁44と減圧用リニア制御弁45との通電制御を行うことにより、動力液圧発生装置30からホイールシリンダ82への作動液の流入を許容する状態と、ホイールシリンダ82からリザーバ70への作動液の流出を許容する状態と、動力液圧発生装置30からホイールシリンダ82への作動液の流入もホイールシリンダ82からリザーバ70への作動液の流出も許容しない状態とに切り替え可能となっている。これにより、各輪のホイールシリンダ圧を独立して目標液圧に制御することができる。
また、ブレーキアクチュエータ40は、左前輪の個別通路43FLと右前輪の個別通路43FRとを連通する前輪左右連通路42を備えている。前輪左右連通路42には、前輪連通用開閉弁46が設けられる。この前輪連通用開閉弁46は、ソレノイドに通電されていない状態ではスプリングの付勢力により開弁状態を維持して作動液の双方向の流通を許容し、ソレノイドの通電中においてのみ閉弁状態となって作動液の流通を遮断する常開式電磁弁である。
ブレーキアクチュエータ40は、マスタシリンダ20の第1加圧室21から作動液(マスタシリンダ圧PmL)が供給される第1マスタ通路23と、マスタシリンダ20の第2加圧室22から作動液(マスタシリンダ圧PmR)が供給される第2マスタ通路24とを備えている。第2マスタ通路24は、右前輪の個別通路43FRに接続される。第2マスタ通路24には、その途中に第2マスタカット弁47が設けられる。第2マスタカット弁47は、ソレノイドの非通電時にスプリングの付勢力により閉弁状態を維持し、ソレノイドの通電中においてのみ開弁状態となる常閉式電磁弁である。第2マスタカット弁47が閉弁状態にあるときには、マスタシリンダ20の第2加圧室22と右前輪のホイールシリンダ82FRとの間の作動液の流通が遮断され、第2マスタカット弁47が開弁状態にあるときには、マスタシリンダ20の第2加圧室22とホイールシリンダ82FRとの間の作動液の流通が双方向に許容される。
ブレーキアクチュエータ40は、第1マスタ通路23を介してマスタシリンダ圧PmLが供給される増圧装置50を備えている。この増圧装置50は、電気エネルギーを使わずに作動するパイロット式の機械弁であって、マスタシリンダ圧PmLをパイロット圧として入力し、動力液圧発生装置30の出力する液圧(アキュムレータ圧Pacc)を利用して、マスタシリンダ圧PmLよりも高い液圧を出力するものである。つまり、マスタシリンダ圧を使って、アキュムレータ圧Paccを、マスタシリンダ圧PmLに対して所定の増圧比(>1)となる液圧に調整して出力するメカ式パイロット弁装置である。増圧装置50は、図2に示すように、ハウジング51と、ハウジング51に液密かつ摺動可能に嵌合された段付きピストン52とを含み、段付きピストン52の大径側に大径側室53が設けられ、小径側に小径側室54が設けられる。小径側室54は、高圧供給弁56および弁座57を介して高圧室58と連通可能とされている。高圧供給弁56は、高圧室58内にて、スプリング59の付勢力によって弁座57に押し付けられており、常閉弁である。
小径側室54には、高圧供給弁56に対向して開弁部材60が設けられ、開弁部材60と段付きピストン52との間にスプリング61が配置される。このスプリング61の付勢力は、開弁部材60を段付きピストン52から離間させる向きに作用する。また、段付きピストン52の段部とハウジング51との間には、リターンスプリング62が設けられ、段付きピストン52を後退方向に付勢する。尚、段付きピストン52とハウジング51との間には図示しないストッパが設けられて、段付きピストン52の前進端位置を規制するようになっている。
段付きピストン52には、大径側室53と小径側室54とを連通させる連通路63が形成されている。連通路63の途中には、ピストン内逆止弁64が設けられる。ピストン内逆止弁64は、大径側室53から小径側室54へ向かう作動液の流れを阻止し、小径側室54から大径側室53へ向かう作動液の流れを許容する。連通路63は、少なくとも段付きピストン52の後退端位置において、図2に示すように開弁部材60から離間した状態で大径側室53と小径側室54とを連通させ、段付きピストン52が前進して開弁部材60に当接すると遮断される。
図1に示すように、高圧室58は、高圧供給通路38によって動力液圧発生装置30の出力側に接続される。高圧供給通路38には、その途中に、増圧カット弁48と高圧供給通路逆止弁49とが設けられる。従って、高圧室58は、増圧カット弁48と高圧供給通路逆止弁49とを介して動力液圧発生装置30から作動液(アキュムレータ圧Pacc)が供給される。増圧カット弁48は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドへの通電中においてのみ閉弁状態となる常開式電磁弁である。増圧カット弁48が閉弁状態にあるときには、動力液圧発生装置30と増圧装置50との間の作動液の流通が遮断され、増圧カット弁48が開弁状態にあるときには、動力液圧発生装置30と増圧装置50との間の作動液の流通が双方向に許容される。また、高圧供給通路逆止弁49は、動力液圧発生装置30から高圧室58への作動液の流れを許容し、逆向きの流れを阻止する。
小径側室54は、増圧装置50における液圧を出力する部分であり、サーボ圧通路41によって左前輪の個別通路43FLに接続される。大径側室53は、マスタシリンダ20の第1加圧室21から供給される作動液(マスタシリンダ圧PmL)を入力する部分(パイロット入力部)であり、第1マスタ通路23によってマスタシリンダ20の第1加圧室21に接続される。第1マスタ通路23には、その途中に第1マスタカット弁65が設けられる。第1マスタカット弁65は、ソレノイドの非通電時にスプリングの付勢力により開弁状態を維持し、ソレノイドの通電中においてのみ閉弁状態となる常開式電磁弁である。第1マスタカット弁65が閉弁状態にあるときには、マスタシリンダ20の第1加圧室21と増圧装置50の大径側室53との間の作動液の流通が遮断され、第1マスタカット弁65が開弁状態にあるときには、第1加圧室21と大径側室53との間の作動液の流通が双方向に許容される。
第1マスタ通路23には、大径側室53と第1マスタカット弁65との間となる位置に、バイパス通路39の一端が接続される。バイパス通路39の他端は、サーボ圧通路41に接続される。従って、バイパス通路39は、増圧装置50を迂回して第1マスタ通路23とサーボ圧通路41とを接続する。このバイパス通路39には、第1マスタ通路23からサーボ圧通路41への作動液の流れを許容し、サーボ圧通路41から第1マスタ通路23への作動液に流れを阻止するバイパス逆止弁66が設けられる。また、段付きピストン52の段部とハウジング51とによって形成される部屋55は、増圧装置用リターン通路73によってリターン通路72に連通する。従って、この部屋55は、増圧装置用リターン通路73とリターン通路72を介してリザーバ70と連通する。
次に、増圧装置50の動作について説明する。増圧装置50は、第1マスタカット弁65が開弁されている状態において、ドライバーのブレーキペダル操作によりマスタシリンダ20から作動液(マスタシリンダ圧PmL)が大径側室53に供給されると、それに伴って、段付きピストン52に前進方向の力が働く。この前進方向の力が作動開始圧(段付きピストン52を、摺動抵抗、スプリングの付勢力等に抗して前進させ得る大きさの圧力)よりも大きくなると、段付きピストン52が前進する。これにより、段付きピストン52が開弁部材60に当接して連通路63が遮断され、開弁部材60の前進により高圧供給弁56が開弁状態に切り替えられる。高圧供給弁56が開弁状態に切り替えられると、高圧室58から高圧の作動液が小径側室54に供給され、小径側室54の液圧が増加する。この場合、増圧カット弁48が開弁状態とされていて、動力液圧発生装置30の出力するアキュムレータ圧Paccが高圧室58内の液圧よりも高い場合には、動力液圧発生装置30から高圧供給通路逆止弁49を経て高圧室85に高圧の作動液が供給され、小径側室54の液圧が増加する。小径側室54の液圧は、大径側室53の液圧(マスタシリンダ圧PmL)と、段付きピストン52の大径部と小径部との受圧面積の比率とで決まる大きさとなる。小径側室54の液圧をPc、大径側室の液圧をPmL、段付きピストン52の大径部の受圧面積をSm、段付きピストン52の小径部の受圧面積をScとし、仮に、増圧装置50の作動開始圧がゼロであるとした場合には、小径側室54の液圧Pcは、次式にて表される液圧に制御される。
Pc=PmL・(Sm/Sc)
小径側室54に発生した液圧は、サーボ圧通路41に供給される。このように、増圧装置50は、動力液圧発生装置30から供給されるアキュムレータ圧Paccを、大径側室53に入力したマスタシリンダ圧PmLに対して所定の増圧比(>1)となる液圧に調圧して出力するパイロット式機械弁となっている。従って、大径側室53が、パイロット圧を入力するパイロット部として機能する。以下、大径側室53と第1マスタカット弁65との間の第1マスタ通路23をマスタパイロット通路23Pと呼ぶ。
一方、増圧カット弁48が開弁状態にされていて、アキュムレータ圧Paccが高圧室58の液圧以下である場合には、動力液圧発生装置30から高圧室58に作動液が供給されなくなる。これにより、段付きピストン52の前進ができなくなる(ストッパに当接すると考えられる)。従って、小径側室54の液圧は、それ以上高くなることがないため、増圧装置50の増圧機能が発揮できなくなる。この状態から、マスタシリンダ20から供給されるマスタシリンダ圧PmLが上昇して小径側室54の液圧よりも高くなると、バイパス通路39及びバイパス逆止弁66を経てマスタシリンダ圧PmLがサーボ圧通路41に供給される。
本実施形態のブレーキ制御装置においては、後述するように、増圧装置50が正常に作動するか否かをチェックする機能を備えている。増圧装置50の作動チェックは、増圧装置50のパイロット部(大径側室53)に液圧が入力されている時の、増圧装置50の小径側室54から出力される液圧に基づいて行われる。パイロット部53への液圧の入力は、ドライバーのブレーキペダル操作により発生するマスタシリンダ圧PmLを使うことも可能であるが、その場合には、ペダル操作が必要であるし、ペダル操作の行われ方によっては適正なチェック結果が得られない可能性がある。そこで、本実施形態においては、マスタシリンダ圧PmLを利用せずに、アキュムレータ圧Paccを作動チェック用の液圧に調圧して増圧装置50のパイロット部53に供給できるように構成されている。
ブレーキアクチュエータ40は、パイロット入力通路37を備えている。このパイロット入力通路37は、動力液圧発生装置30から増圧装置50のパイロット部53に液圧を供給する通路を構成するもので、例えば、図1に示すように、アキュムレータ通路35と、バイパス通路39(バイパス逆止弁66よりもマスタパイロット通路23P側となる位置におけるバイパス通路39)とを接続する。パイロット入力通路37には、増圧用リニア制御弁44FLが設けられる。このように構成することで、左前輪のホイールシリンダ82FLの液圧を制御するための増圧用リニア制御弁44FLを利用してパイロット圧を制御することができる。
また、ブレーキアクチュエータ40は、アキュムレータ圧センサ67と、マスタシリンダ圧センサ68L,68Rと、ホイールシリンダ圧センサ69FL,69FR,69RL,69RRとを備えている。アキュムレータ圧センサ67は、動力液圧発生装置30の出力する液圧であるアキュムレータ圧Paccを検出する。マスタシリンダ圧センサ68Lは、マスタシリンダ20の第1加圧室21の出力する液圧であるマスタシリンダ圧PmLを検出し、マスタシリンダ圧センサ68Rは、マスタシリンダ20の第2加圧室22の出力する液圧であるマスタシリンダ圧PmRを検出する。ホイールシリンダ圧センサ69FL,69FR,69RL,69RRは、ホイールシリンダ82FL,82FR,82RL,82RRの液圧であるホイールシリンダ圧PwFL,PwFR,PwRL,PwRRを検出する。
動力液圧発生装置30、ブレーキアクチュエータ40、ストロークシミュレータ装置75は、ブレーキECU100により駆動制御される。ブレーキECU100は、マイコンを主要部として備えるとともに、ポンプ駆動回路、電磁弁駆動回路、各種のセンサ信号を入力する入力インターフェース、通信インターフェース、電源回路等を備えている。ブレーキECU100は、4つの増圧用リニア制御弁44、4つの減圧用リニア制御弁45、前輪連通用開閉弁46、マスタカット弁47,65、および、シミュレータカット弁78を接続し、それらに対してソレノイド駆動信号を出力することにより、各弁の開閉状態および開度(リニア制御弁の場合)を制御する。また、ブレーキECU100は、動力液圧発生装置30に設けられたモータ32を接続し、モータ32に駆動信号を出力することによりモータ32を駆動制御する。
また、ブレーキECU100は、アキュムレータ圧センサ67、マスタシリンダ圧センサ68L,68R、ホイールシリンダ圧センサ69FL,69FR,69RL,69RRを接続し、アキュムレータ圧Pacc、マスタシリンダ圧PmL,PmR、ホイールシリンダ圧PwFL,PwFR,PwRL,PwRRを表す信号を入力する。
また、ブレーキECU100は、ペダルストロークセンサ110と、ペダルスイッチ111とを接続している。ペダルストロークセンサ110は、ペダル操作検出装置の一種であり、ブレーキペダル10の踏み込み量であるペダルストロークを検出し、検出したペダルストロークSpを表す信号をブレーキECU100に出力する。ペダルスイッチ111は、ブレーキペダル10が設定位置にまで踏み込まれたときにオンして図示しないストップランプを点灯させるためのスイッチで、スイッチ状態を表す信号(ペダルスイッチ信号)をブレーキECU100に出力する。
ブレーキECU100は、イグニッションスイッチがオンしたとき、あるいは、車両のドアの開閉状態に応じた信号を出力するカーテシスイッチがオンしたとき(ドアが開成したとき)に起動する。ブレーキECU100が起動する前においては、ブレーキアクチュエータ40およびストロークシミュレータ装置75に設けられた全ての電磁制御弁(開閉弁およびリニア制御弁)への通電が停止されている。従って、各電磁制御弁の開閉状態は、図1に示す通りとなっている。また、動力液圧発生装置30への通電も停止されている。
次に、ブレーキECU100が実行するブレーキ制御について説明する。まず、ブレーキ制御装置が正常である場合(作動液の漏れの疑いがない場合、あるいは、制御系に異常が発生していない場合)におけるブレーキ制御について説明する。ブレーキECU100は、各ホイールシリンダ82の液圧を目標液圧に追従させて制動力を発生させる液圧制御を実行する。液圧制御に用いられる目標液圧については、ブレーキ制御装置が適用される車両に応じて異なっている。電気自動車、あるいは、ハイブリッド自動車の場合には、車輪の回転力で走行駆動用モータを発電させ、この発電電力をバッテリに回生させて制動力を得る回生制動を行うことができるため、回生制動と液圧制動とを併用したブレーキ回生協調制御を行うことができる。一方、内燃機関のみにより駆動力を発生する車両の場合には、回生制動力を発生させることができないため、液圧制御のみにより制動力を発生させる。本実施形態のブレーキ制御装置は、電気自動車、あるいは、ハイブリッド自動車に適用されてブレーキ回生協調制御を行うが、内燃機関のみにより駆動力を発生する車両に適用することもできる。
液圧制御においては、ドライバーがブレーキペダル10を踏み込んだ踏力は、ブレーキ操作量の検出用に使用されるだけで、ホイールシリンダ82に伝達されず、代わりに、動力液圧発生装置30の出力するアキュムレータ圧Paccが各輪用の増圧用リニア制御弁44、減圧用リニア制御弁45により個々に調整されてホイールシリンダ82に伝達される。液圧制御においては、マスタカット弁65,47は、閉弁状態に維持される。この場合、第1マスタカット弁65は、常開式電磁弁であるためソレノイドへの通電により閉弁状態に維持される。また、増圧カット弁48は、ソレノイドへの通電により閉弁状態に維持される。また、シミュレータカット弁78は、ソレノイドへの通電により開弁状態に維持される。また、前輪連通用開閉弁46は、ソレノイドへの通電により閉弁状態に維持される。また、全ての増圧用リニア制御弁44、減圧用リニア制御弁45は、通電制御状態におかれて、通電量に応じた開度に制御される。
この場合、増圧装置50は、第1マスタカット弁65および増圧カット弁48が閉弁状態に維持されるため、その作動が規制される。つまり、作動不能状態となる。従って、各輪のホイールシリンダ82には、マスタシリンダ20の出力する液圧および増圧装置50の出力する液圧は供給されず、動力液圧発生装置30の出力するアキュムレータ圧Paccが個々に調整されて供給される。
ブレーキECU100は、制動要求を受けてブレーキ回生協調制御を開始する。制動要求は、例えばドライバーがブレーキペダル10を踏み込み操作した場合など、車両に制動力を付与すべきときにおいて発生する。ブレーキECU100は、制動要求を受けると、ペダルストロークセンサ110により検出されるペダルストロークSpと、マスタシリンダ圧センサ68L,68Rにより検出されるマスタシリンダ圧PmL,PmRとに基づいて要求制動力を演算する。この場合、ブレーキECU100は、マスタシリンダ圧PmLとマスタシリンダ圧PmRの何れか一方、あるいは、両者を組み合わせた値(例えば、平均値)をマスタシリンダ圧Pmに設定する。
要求制動力は、ペダルストロークSpが大きいほど、マスタシリンダ圧Pmが大きいほど大きな値に設定される。この場合、例えば、ペダルストロークSpとマスタシリンダ圧Pmとにそれぞれ重み付け係数Ks,Krを乗算するようにして、ペダルストロークSpが小さい範囲においては、ペダルストロークSpの重み付け係数Ksを大きく設定し、ペダルストロークSpが大きい範囲においては、マスタシリンダ圧Pmの重み付け係数Krを大きく設定して要求制動力を演算するとよい。
ブレーキECU100は、演算した要求制動力を表す情報を回生ECUに送信する。回生ECUは、要求制動力のうち、電力回生により発生させた制動力を演算して、その演算結果である回生制動力を表す情報をブレーキECU100に送信する。これにより、ブレーキECU100は、要求制動力から回生制動力を減算することによりブレーキ制御装置で発生させるべき制動力である要求液圧制動力を演算する。回生ECUで行う電力回生により発生する回生制動力は、モータの回転速度により変化するだけでなく、バッテリの充電状態(SOC)等によっても回生電流制御により変化する。従って、要求制動力から回生制動力を減算することにより、適切な要求液圧制動力を演算することができる。
ブレーキECU100は、演算した要求液圧制動力に基づいて、各ホイールシリンダ82の目標液圧をそれぞれ演算し、ホイールシリンダ圧が目標液圧と等しくなるように、フィードバック制御により増圧用リニア制御弁44と減圧用リニア制御弁45の駆動電流を制御する。つまり、各輪のホイールシリンダ圧センサ69により検出されるホイールシリンダ圧Pwが目標液圧に追従するように、増圧用リニア制御弁44および減圧用リニア制御弁45に流す電流を制御する。
これにより、作動液が動力液圧発生装置30から増圧用リニア制御弁44を介して各ホイールシリンダ82に供給され、車輪に制動力が発生する。また、必要に応じてホイールシリンダ82から作動液が減圧用リニア制御弁45を介して排出され、車輪に発生する制動力が調整される。
尚、通常のブレーキ制御においては、4輪とも同じ目標液圧が設定されるが、旋回制御等の車両挙動制御やABS制御などの特別ブレーキ制御が行われる場合には、各輪毎にそれぞれの目標液圧が設定され、各輪のホイールシリンダ圧センサ69により検出されるホイールシリンダ圧Pwが目標液圧に追従するように、増圧用リニア制御弁44および減圧用リニア制御弁45が制御される。
ブレーキECU100は、増圧用リニア制御弁44と減圧用リニア制御弁45の通電を制御するために、各増圧用リニア制御弁44と各減圧用リニア制御弁45の開弁電流特性を記憶している。電磁式のリニア制御弁においては、上流側液圧(入口側液圧)と下流側液圧(出口側液圧)との圧力差である差圧ΔPと、開弁電流とのあいだに一定の関係が存在する。開弁電流とは、常閉式電磁リニア制御弁の場合には、閉弁している状態から、ソレノイドに流す電流を増加させていったときに弁体が開弁を開始するときの電流値を表し、常開式電磁リニア制御弁の場合には、閉弁している状態から、ソレノイドに流す電流を減少させていったときに弁体が開弁を開始するときの電流値を表す。開弁電流特性は、開弁電流と差圧ΔPとの相関関係を表す
ブレーキECU100は、増圧用リニア制御弁44および減圧用リニア制御弁45の通電を制御する場合には、開弁電流特性を参照して、リニア制御弁の上流側液圧と下流側液圧との差圧ΔPに対応する開弁電流iopenを求め、この開弁電流iopenを基準にして、リニア制御弁に通電する目標電流i*を設定する。例えば、目標電流i*は、開弁電流iopenに、目標液圧P*とホイールシリンダ圧Pwとの偏差にフィードバックゲインGfbを乗じた値を加算することにより計算される(i*=iopen+Gfb・(P*−Pw))。偏差(P*−Pw)が正の場合には、偏差に応じた開度で増圧用リニア制御弁44が開弁されてホイールシリンダ圧が増圧される。偏差(P*−Pw)が負の場合には、偏差の絶対値を使ってフィードバック制御項が計算され、偏差の絶対値に応じた開度で減圧用リニア制御弁45が開弁されてホイールシリンダ圧が減圧される。尚、フィードバックゲインGfbは、増圧時と減圧時とで別々に設定されている。また、目標電流の計算にあたっては、フィードバック制御に代えて、フィードフォワード制御を採用してもよいし、フィードバック制御とフィードフォワード制御とを組み合わせるようにしてもよい。
また、ブレーキECU100は、アキュムレータ圧センサ67により検出されるアキュムレータ圧Paccが予め設定した最低設定圧を下回る場合にはモータ32を駆動してポンプ31により作動液を加圧し、常にアキュムレータ圧Paccが設定圧範囲内に維持されるように制御する。
また、ブレーキECU100は、シミュレータカット弁78を開弁状態に維持する。このため、ドライバーのブレーキペダル10の踏み込み操作に伴って、マスタシリンダ20の第1加圧室21から送出される作動液がストロークシミュレータ77に供給される。これにより、ドライバーのペダル踏力に応じた反力をブレーキペダル10に作用させることができ、ドライバーに対して良好なペダル操作フィーリングを与えることができる。
図3は、こうした液圧制御によって各ホイールシリンダ圧を増圧させているときの作動液の液圧供給路を太線矢印で表している。左前輪を除く3輪のホイールシリンダ82FR,82RL,82RRに対しては、主通路36、増圧用リニア制御弁44FR,44RL,44RR、個別通路43FR,43RL,43RRを介して液圧が供給される。従って、アキュムレータ圧Paccが増圧用リニア制御弁44FR,44RL,44RRにより調圧された液圧がそれぞれホイールシリンダ82FR,82RL,82RRに供給される。一方、左前輪のホイールシリンダ82FLに対しては、パイロット入力通路37、増圧用リニア制御弁44FL、バイパス通路39、バイパス逆止弁66、サーボ圧通路41、個別通路43FLを介して液圧が供給される。従って、左前輪のホイールシリンダ82FLには、アキュムレータ圧Paccが増圧用リニア制御弁44FLにより調圧された液圧が供給される。これにより4輪のホイールシリンダ圧を独立して制御することができる。
ブレーキペダル操作が行われていない状態においては、ブレーキECU100は、ブレーキアクチュエータ40に設けられた全ての弁のソレノイドへの通電を遮断する。従って、各弁は、図1の原位置に戻される。また、増圧装置50においては、段付きピストン52が開弁部材60から離間する。これにより、左前輪のホイールシリンダ82FLの液圧は、連通路63、ピストン内逆止弁64を介してマスタシリンダ20(リザーバ70)に戻される。また、右前輪のホイールシリンダ82FRの液圧は、前輪連通用開閉弁46が開弁状態に維持されるため、左前輪のホイールシリンダ82FLの液圧と同圧となりマスタシリンダ20(リザーバ70)に戻される。また、左右後輪のホイールシリンダ82RL,82RRの液圧は、減圧用リニア制御弁45RL,45RRを介してリザーバ70に戻される。
次に、ブレーキ制御装置内に異常が発生しているときにおけるブレーキECU100の実行する処理について説明する。ブレーキECU100は、制御系の異常、作動液の漏れ異常などのブレーキ制御装置内の異常を検出する異常検出手段を備えており、この異常検出手段が異常検出ルーチン(図示略)を所定の周期で繰り返し実行している。そして、ブレーキECU100は、異常が検出された場合に、制御系の異常と、作動液の漏れ異常とに分けて、ホイールシリンダへの液圧供給態様を設定する。
ここで、異常検出について説明する。制御系の異常とは、ホイールシリンダ82のうち一つでも液圧を制御できない状態をいう。例えば、増圧用リニア制御弁44、減圧用リニア制御弁45、前輪連通用開閉弁46、マスタカット弁65,47、シミュレータカット弁78といった電磁制御弁が断線故障あるいはショート故障を生じている場合が該当する。また、液圧センサ67,68L,68R,69FL,69FR,69RL,69RR、ペダルストロークセンサ110といった液圧制御に関連するセンサ類が適正な検出値を出力しない場合が該当する。また、動力液圧発生装置30から適正圧の作動液を供給できない場合(例えば、モータ32の異常)が該当する。また、電磁制御弁、センサ、モータに適正電力を供給できない電源異常状態が該当する。
一方、作動液の漏れ異常については、作動液の漏れの可能性の高低、液漏れ量の多少を問わない。従って、液漏れの可能性が非常に低い場合、あるいは、漏れ量が非常に少ない場合であっても、液漏れでないと断定できない場合には、作動液の漏れ異常として判定される。作動液の漏れ異常は、例えば、リザーバ70に設けられたレベルスイッチ(図示略)により作動液の液面低下を検出している場合が該当する。また、ブレーキペダル10のストロークとマスタシリンダ20の液圧との関係が適正範囲から外れている場合が該当する。また、ポンプ31が設定時間以上継続して作動しても、アキュムレータ圧センサ67により検出されるアキュムレータ圧Paccが液漏れ判定値を超えない場合などが該当する。
ブレーキECU100は、制御系の異常を検出した場合には、全ての電気アクチュエータ(制御弁、モータ)への通電を停止する。尚、ブレーキECU100自身の失陥時においても同様に、全ての電気アクチュエータ(制御弁、モータ)への通電が停止される。これにより、電磁式制御弁(電磁弁、電磁式リニア制御弁)は、原位置に戻される。この場合、常開弁である第1マスタカット弁65が開弁して、マスタシリンダ20の第1加圧室21と増圧装置50の大径側室53(パイロット部)とが連通する。また、常開弁である増圧カット弁48が開弁して、動力液圧発生装置30と増圧装置50の高圧室58とが高圧供給通路逆止弁49を介して連通する。また、常開弁である前輪連通用開閉弁46が開弁して左前輪の個別通路43FLと右前輪の個別通路43FRとが連通する。
制御系の異常時においては、動力液圧発生装置30のポンプ31の作動が停止されるが、アキュムレータ33に蓄えられた作動液の液圧(アキュムレータ圧Pacc)が、増圧装置50の作動可能圧よりも高い状態になっている場合には、ブレーキペダル10の踏み込み操作によって発生したマスタシリンダ圧PmLが作動開始圧を超えると、段付きピストン52の前進により高圧供給弁56が開弁状態に切り替えられ、高圧室58から高圧の作動液が小径側室54に供給される。これによって、サーボ圧通路41には、大径側室53に供給されたパイロット圧であるマスタシリンダ圧PmLに増圧比(>1)を乗算した大きさの液圧(サーボ圧と呼ぶ)が発生する。このサーボ圧は、左前輪のホイールシリンダ82FLだけでなく、前輪左右連通路42を介して右前輪のホイールシリンダ82FRにも供給される。従って、この場合の左右前輪のホイールシリンダ82FL,82FRへの液圧供給路は、図4に実線の太線矢印で示したようになる。つまり、動力液圧発生装置30から出力されたアキュムレータ圧Paccが、高圧供給通路38、増圧カット弁48、高圧供給通路逆止弁49を介して増圧装置50の高圧室58に供給され、増圧装置50で調圧されたサーボ圧が小径側室54からサーボ圧通路41に供給される。そして、サーボ圧は、個別通路43FLを介して左前輪のホイールシリンダ82FLに供給されるとともに、前輪左右連通路42、前輪連通用開閉弁46、個別通路43FRを介して右前輪のホイールシリンダ82FRに供給される。従って、後輪に比べて制動寄与度の高い前輪のホイールシリンダ83FL,82FRに十分な液圧を供給することができる。
ドライバーのブレーキペダル操作が何度も行われてアキュムレータ圧Paccが低下して増圧装置50の作動可能圧よりも低くなると、動力液圧発生装置30から高圧室58に作動液が供給されなくなり増圧装置50の作動が不能となる。この場合、ドライバーのブレーキペダル踏み込み操作によって発生したマスタシリンダ圧PmLが小径側室54の液圧よりも高くなると、図4に点線の太線矢印で示すように、マスタシリンダ圧PmLは、第1マスタ通路23、第1マスタカット弁65、マスタパイロット通路23P、バイパス通路39、バイパス逆止弁66を介してサーボ圧通路41に供給される。この場合には、マスタシリンダ圧PmLが左右前輪のホイールシリンダ82FL,82FRに直接供給されることになる。
尚、アキュムレータ圧Paccが増圧装置50の作動可能圧よりも高い場合であっても、ドライバーのブレーキペダル踏み込み力が弱く、マスタシリンダ圧PmLが増圧装置50の作動開始圧よりも小さい場合には、増圧装置50からはサーボ圧が出力されず、マスタシリンダ圧PmLがサーボ圧通路41に直接供給される。
次に、作動液の漏れ異常が検出された場合について説明する。ブレーキECU100は、作動液の漏れ異常を検出した場合には、図5に示すように、第1マスタカット弁65と第2マスタカット弁47とを開弁状態にし、増圧カット弁48、シミュレータカット弁78、前輪連通用開閉弁46、左右前輪用の増圧用リニア制御弁44FL,44FRと減圧用リニア制御弁45FL,45FRを閉弁状態にする。また、左右後輪用の増圧用リニア制御弁44RL,44RRと減圧用リニア制御弁45RL,45RRに対しては液圧制御を実行する。これにより、図5に太線矢印にて示すように、右前輪のホイールシリンダ82FRとマスタシリンダ20の第2加圧室22とが連通した右前輪マスタブレーキ系統が形成される。また、増圧カット弁48が閉弁状態に維持されて増圧装置50の機能が停止されるため、左前輪のホイールシリンダ82FLとマスタシリンダ20の第1加圧室21とが連通した左前輪マスタブレーキ系統が形成される。後輪に関しては、動力液圧発生装置30の出力するアキュムレータ圧Paccがそれぞれ調圧されて2つのホイールシリンダ82RL,82RRに供給される後輪アキュムレータブレーキ系統が形成される。この場合、左右前輪用の増圧用リニア制御弁44FL,44FRと減圧用リニア制御弁45FL,45FR、増圧カット弁48、前輪連通用開閉弁46が閉弁状態に維持されるため、3つのブレーキ系統は、互いに独立した状態、つまり、互いに連通が遮断された状態に維持される。これにより、3つのブレーキ系統のうちの1つに作動液の漏れが発生している場合であっても、他のブレーキ系統の作動液が、作動液の漏れが発生しているブレーキ系統に流れ込まないため、他のブレーキ系統に影響が及ばないようにすることができる。つまり、作動液の漏れていないブレーキ系統まで、作動液を消耗させてしまうことを防止することができる。
この制御状態においては、ドライバーがブレーキペダル10を踏み込んだ力を使ってマスタシリンダ20でマスタシリンダ圧PmL,PmRを発生させ、このマスタシリンダ圧PmL,PmRを前輪のホイールシリンダ82FL,82FRに供給することにより、ドライバーのブレーキペダル操作に応じた制動力を前輪に発生させることができる。また、後輪に関しては、ドライバーのブレーキペダル操作に応じた目標液圧が設定され、後輪のホイールシリンダ圧PwRL,PwRRが目標液圧に追従するように増圧用リニア制御弁44RL,44RR、減圧用リニア制御弁45RL,45RRが制御される。
次に、増圧装置50の作動チェックについて説明する。この作動チェックは、ブレーキECU100が起動したとき、あるいは、イグニッションスイッチがオン状態からオフ状態に切り替わったときに開始される。尚、作動チェックは、ドライバーのブレーキペダル踏み込み操作を必要としないため、それ以外にも、適宜のタイミングに設定することができる。図6は、ブレーキECU100の実行する作動チェックルーチンを表す。
作動チェックルーチンが起動すると、ブレーキECU100は、ステップS11において、第1マスタカット弁65のソレノイドに通電して、第1マスタカット弁65を閉弁状態にする。他の弁については、図1で示される原位置のままとする。従って、常開式電磁弁である増圧カット弁48は、開弁状態となっている。続いて、ブレーキECU100は、ステップS12において、左前輪のホイールシリンダ82FLの液圧調整用である増圧用リニア制御弁44FLの目標電流iFLを次式により設定し、設定した目標電流iFLを増圧用リニア制御弁44FLのソレノイドに通電する。
iFL=istart+K・t
ここで、istartは、電流初期値を表す。電流初期値istartは、任意の値に設定することができるが、本実施形態においては、増圧用リニア制御弁44FLの開弁電流iopenを用いる。従って、アキュムレータ圧センサ67により検出されるアキュムレータ圧Paccとホイールシリンダ圧センサ69FLにより検出されるホイールシリンダ圧PwFLとの差圧ΔPに対応した開弁電流iopenが電流初期値istartに設定される。また、Kは、予め設定した電流増加係数である。tは、通電を開始した後の経過時間をカウントするタイマ値であり、その初期値はゼロに設定されている。
従って、作動チェックルーチンが起動した直後においては、ステップS12で増圧用リニア制御弁44FLに開弁電流が通電されることになる。続いて、ブレーキECU100は、ステップS13において、ホイールシリンダ圧センサ69FLにより検出されるホイールシリンダ圧PwFLを読み込む。この処理は、増圧装置50の出力する液圧(サーボ圧)を検出する処理に相当する。このステップS13が最初に行われるときには、増圧用リニア制御弁44FLのソレノイドに開弁電流iopenが通電されることから、増圧装置50のパイロット部53の液圧は、作動開始圧に達していない。従って、この場合においては、ステップS13で検出されるホイールシリンダ圧PwFLは、増圧装置50のパイロット圧に等しい。
続いて、ブレーキECU100は、ステップS14において、増圧用リニア制御弁44FLのソレノイドに通電した電流値である目標電流iFLと、その通電時におけるホイールシリンダ圧センサ69FLにより検出されたホイールシリンダ圧PwFLとを対応付けたデータ(iFL,PwFL)を記憶する。続いて、ブレーキECU100は、ステップS15において、タイマ値tがチェック終了値tmaxに到達したか否かを判断し、タイマ値がチェック終了値tmaxに達していない場合は、ステップS16において、タイマ値tを値「1」だけインクリメントして、その処理をステップS12に戻す。
こうした処理を繰り返すことにより、増圧用リニア制御弁44FLの通電量が増加し、増圧用リニア制御弁44FLの出力する液圧である増圧装置50のパイロット圧が増加していく。パイロット圧が増圧装置50の作動開始圧に到達するまでは、増圧装置50の出力する液圧(サーボ圧)は、パイロット圧と同じ値となる。そして、パイロット圧が増圧装置50の作動開始圧を超えると、増圧装置50が正常であれば、高圧室58から高圧の作動液が小径側室54に供給され、小径側室54の液圧が増加する。従って、サーボ圧は、パイロット圧に比べて所定の増圧比で増圧した値をとる。このサーボ圧は、左右前輪のホイールシリンダ82FL,82FRに供給される。ブレーキECU100は、増圧用リニア制御弁44FLの通電時におけるホイールシリンダ圧PwFL(ホイールシリンダ圧PwFRでもよい)のサンプリングを続ける。図7は、作動チェック時における、増圧装置50が適正に作動しているときのパイロット圧の供給通路LPと、サーボ圧の供給通路LSとを表している。
そして、タイマ値がチェック終了値tmaxに達すると(S15:Yes)、ブレーキECU100は、ステップS17において、増圧用リニア制御弁44FLへの通電を終了し、ステップS18において、減圧用リニア制御弁45FL,45FRを開弁して、前輪のホイールシリンダ82FL,82FRの作動液をリターン通路72に流して、ホイールシリンダ圧を大気圧にまで低下させる。続いて、ブレーキECU100は、ステップS19において、全ての弁を原位置に戻す。この場合、第1マスタカット弁65が開弁状態に戻される。
続いて、ブレーキECU100は、ステップS20において、サンプリングしたデータ(iFL,PwFL)に基づいて、増圧装置50が正常に作動したか否かを判断する。図8は、増圧用リニア制御弁44FLへの通電量iFL(目標電流iFLに相当する)とホイールシリンダ圧PwFLとの関係を表す。図8において、実線で示した太線は、増圧装置50が正常に作動した場合の正常特性を表す。また、点線で示した太線は、増圧カット弁48を閉弁した状態での特性、つまり、増圧装置50の作動を禁止したときの作動禁止特性を表す。作動禁止特性は、増圧用リニア制御弁44FLの通電量と出力液圧との関係を表す。また、グレーで塗りつぶした領域が、増圧装置50の作動が正常であると判定できる正常範囲を表す。
増圧装置50が正常に作動していれば、増圧用リニア制御弁44FLに通電した電流iFL(=目標電流iFL)が、パイロット圧が増圧装置50の作動開始圧P1となる作動開始電流iFL1を超えると、その時点から、電流iFLの増加に対するホイールシリンダ圧PwFL(サーボ圧)の増加係数が、電流iFLの増加に対するパイロット圧の増加係数よりも大きくなる。従って、図8の実線にて示すような特性となる。このため、サンプリングしたデータ(iFL,PwFL)が、図8の実線で示される正常特性ライン上を推移すれば、増圧装置50が正常に作動していると判定することができる。ブレーキECU100は、各種のデータを記憶する不揮発性メモリを備えており、この不揮発性メモリに、予め測定された正常特性を表すデータを記憶している。ブレーキECU100は、この正常特性データを使って増圧装置50の作動チェックを行う。この場合、正常特性の測定誤差、サンプリングデータの測定誤差等を考慮して、図8にて示すように、正常特性ラインに所定の許容値を加味した領域が正常範囲として設定されている。尚、不揮発性メモリに記憶する正常特性データは、正常特性を導き出すことができるデータであればよく、必ずしも正常特性を直接的に表すデータを記憶する必要はなく、例えば、作動禁止特性と、正常特性と作動禁止特性との差を表すデータ等を記憶するようにしてもよい。
ブレーキECU100は、ステップS20においては、この正常特性データと、実際にサンプリングしたデータとを比較し、サンプリングデータが正常範囲に含まれているか否かについて判定する。サンプリングデータが正常範囲に含まれている場合には、ステップS21において、増圧装置50の作動が正常であると判定し、サンプリングデータが正常範囲から外れている場合には、ステップS22において、増圧装置50の作動が異常であると判定する。ブレーキECU100は、この増圧装置50の作動チェック結果を不揮発性メモリに記憶して、作動チェックルーチンを終了する。
以上説明した第1実施形態のブレーキ制御装置によれば、パイロット入力通路37を設け、動力液圧発生装置30の出力する液圧を増圧用リニア制御弁44FLにより作動チェック用液圧に調整して増圧装置50のパイロット部53に供給するため、ドライバーのブレーキペダル操作に頼ることなく増圧装置50の作動チェックを行うことができる。また、増圧用リニア制御弁44FLを、ホイールシリンダ82FLの液圧制御とパイロット圧の制御との両方に兼用して使用するため、パイロット圧制御用の調圧弁を専用に設ける必要が無く、低コストにて実施することができる。
また、増圧用リニア制御弁44FLを使ってパイロット圧を制御するため、作動チェックを精度よく行うことができる。また、ドライバーのブレーキペダル操作に頼ることなく作動チェックを行うことができるため、チェックタイミングの自由度が拡がる。
また、サーボ圧通路41は、左前輪のホイールシリンダ82FLに連通するだけでなく、前輪左右連通路42および常開式の前輪連通用開閉弁46を介して、右前輪用の増圧用リニア制御弁44FRの下流側通路となる個別通路FRに合流する。また、増圧用リニア制御弁44FL,44FR、第2マスタカット弁47が常閉式であり、第1マスタカット弁65、増圧カット弁48が常開式である。これにより、制御系の異常時であっても、サーボ圧を左右前輪のホイールシリンダ82FL,82FRに確実に供給することができる。
また、前輪の左右のホイールシリンダ82FL,82FRを、前輪左右連通路42および前輪連通用開閉弁46を介して互いに連通させることができるため、前輪のホイールシリンダ圧を制御する増圧用リニア制御弁44FL,44FRの何れか一方が故障した場合には、他方の故障していないほうの増圧用リニア制御弁44FL(44FR)を使って、左右両方のホイールシリンダ圧を共通に制御することもできる。通常のブレーキ制御においては、左右輪のホイールシリンダ82FL,82FRの目標液圧が共通の値に設定されるため、1つの増圧用リニア制御弁44FL(44FR)で2つのホイールシリンダ82FL,82FRの液圧を制御しても問題ない。例えば、ブレーキECU100は、異常検出ルーチンによって、左右前輪用の増圧用リニア制御弁44FL,44FRの何れか一方に異常を検出した場合には、液圧制御時において、前輪連通用開閉弁46を開弁状態に維持し、ホイールシリンダ圧PwFLまたはホイールシリンダ圧PwFRが目標液圧Pに追従するように、異常が検出されていない側の増圧用リニア制御弁44FL(44FR)の通電を制御する。これにより、故障に対する対応能力を向上させることができる。
次に、第2実施形態に係る車両のブレーキ制御装置について説明する。図9は、第2実施形態に係る車両のブレーキ制御装置の概略システム構成図である。第2実施形態のブレーキ制御装置は、第1実施形態のブレーキ制御装置のブレーキアクチュエータ40に代えて、ブレーキアクチュエータ400を備えたもので、他の構成については、第1実施形態と同様である。従って、第1実施形態のブレーキ制御装置と同様な構成については、図面に第1実施形態と共通の符号を付して説明を省略する。
第2実施形態のブレーキ制御装置のブレーキアクチュエータ400について説明する。ブレーキアクチュエータ400は、アキュムレータ通路35に連通する主通路90、パイロット入力通路37、高圧供給通路38と、リザーバ70に連通するリターン通路72と、各ホイールシリンダ82FL,82FR,82RL,82RRに連通する4つの個別通路43FL,43FR,43RL,43RRとを備えている。主通路90には、ソレノイドの非通電時に閉弁状態を維持する常閉式の主増圧用リニア制御弁91が設けられる。主通路90における主増圧用リニア制御弁91の下流側を、上流側と区別するために共通通路92と呼ぶ。共通通路92とリターン通路72とは、常閉式の減圧用リニア制御弁93を介して接続されている。
また、ブレークアクチュエータ400は、保持弁94FL,94FR,94RL,94RRを備えており、この保持弁94FL,94FR,94RL,94RRを介して共通通路92と個別通路43FL,43FR,43RL,43RRとを接続している。左右後輪のホイールシリンダ82RL,82RRに連通する保持弁94RL,94RRは、ソレノイドの非通電時に閉弁状態を維持する常閉式電磁弁であり、左右前輪のホイールシリンダ82FL,82FRに連通する保持弁94FL,94FRは、ソレノイドの非通電時に開弁状態を維持する常開式電磁弁である。保持弁94FLは、開弁時に作動液の双方向の流れを許容し、他の保持弁94FR,94RL,94RRは、開弁時に作動液のホイールシリンダ82FR,82RL,82RRに向かう流れのみを許容する。
また、ブレークアクチュエータ400は、減圧弁95FL,95FR,95RL,95RRを備えており、この減圧弁95FL,95FR,95RL,95RRを介してリターン通路72と個別通路43FL,43FR,43RL,43RRとを接続している。左右後輪のホイールシリンダ82RL,82RRに連通する減圧弁95RL,95RRは、ソレノイドの非通電時に開弁状態を維持する常開式電磁弁であり、左右前輪のホイールシリンダ82FL,82FRに連通する減圧弁95FL,95FRは、ソレノイドの非通電時に閉弁状態を維持する常閉式電磁弁である。
保持弁94および減圧弁95は、車輪がロックしてスリップした場合に、ホイールシリンダ圧を下げて車輪のロックを防止するアンチロックブレーキ制御の作動時などにおいて、ブレーキECU100により開閉制御されるもので、通常の液圧制御時においては、保持弁94は開弁状態に維持され、減圧弁95は閉弁状態に維持される。
また、ブレーキアクチュエータ400は、増圧装置50、および、増圧装置50の作動に関連する高圧供給通路38、増圧カット弁48、高圧供給通路逆止弁49、サーボ圧通路41、バイパス通路39、第1マスタ通路23、第1マスタカット弁65、パイロット入力通路37を備えている。これらは、第1実施形態の構成と同様であるが、パイロット入力通路37には、ソレノイドの非通電時に閉弁状態を維持する常閉式電磁リニア制御弁であるパイロット調圧用リニア制御弁96が設けられる。パイロット調圧用リニア制御弁96により調圧された液圧が増圧装置50のパイロット部53(大径側室53)に供給されるように構成されている。また、サーボ圧通路41には、ソレノイドの非通電時に開弁状態を維持する常開式電磁弁である下流側マスタカット弁97が設けられる。下流側マスタカット弁97が閉弁状態にあるときには、増圧装置50の小径側室54と左前輪のホイールシリンダ82FLとの間の作動液の流通が遮断され、下流側マスタカット弁97が開弁状態にあるときには、小径側室54とホイールシリンダ82FLとの間の作動液の流通が双方向に許容される。尚、パイロット入力通路37は、主増圧用リニア制御弁91の上流側のアキュムレータ通路35に接続されており、主増圧用リニア制御弁91の下流側(出力部)が増圧装置50のパイロット部53に接続しないようになっている。
また、ブレーキアクチュエータ400は、第1実施形態と同様に、第2マスタ通路24と、第2マスタ通路24に設けられる第2マスタカット弁47を備えている。第2マスタ通路24は、マスタシリンダ20の第2加圧室22と右前輪の個別通と43FRとを第2マスタカット弁47を介して接続する。
また、ブレーキアクチュエータ400は、第1実施形態と同様に、アキュムレータ圧Paccを検出するアキュムレータ圧センサ67と、マスタシリンダ圧PmFLを検出するマスタシリンダ圧センサ68Lと、マスタシリンダ圧PmFRを検出するマスタシリンダ圧センサ68Rとを備えている。更に、ブレーキアクチュエータ400は、共通通路92における液圧Pxを検出する制御圧センサ98を備えている。この第2実施形態のブレーキ制御装置は、1対の主増圧用リニア制御弁91と減圧用リニア制御弁93により調圧した液圧を4輪のホイールシリンダ82に共通して供給するタイプであるため、各ホイールシリンダ82の液圧は、この制御圧センサ98により検出することができる。以下、制御圧センサ98により検出される液圧を制御圧Pxと呼ぶ。
次に、第2実施形態に係るブレーキECU100が実行するブレーキ制御について説明する。まず、ブレーキ制御装置が正常である場合(作動液の漏れの疑いがない場合、あるいは、制御系に異常が発生していない場合)におけるブレーキ制御について説明する。ブレーキECU100は、2つのマスタカット弁65,47、下流側マスタカット弁97、増圧カット弁48、4つの減圧弁95FL,95FR,95RL,95RR、パイロット調圧用リニア制御弁96を閉弁状態に維持し、4つの保持弁94FL,94FR,94RL,94RR、シミュレータカット弁78を開弁状態に維持して、主増圧用リニア制御弁91と減圧用リニア制御弁93への通電量を制御する。これにより、増圧装置50を作動不能状態にして、各ホイールシリンダ82の液圧を制御することができる。この場合、ブレーキECU100は、要求液圧制動力に基づいて、各ホイールシリンダ82の共通の目標液圧Pを演算し、制御圧センサ98により検出される制御圧Pxが目標液圧Pに追従するように、フィードバック制御により主増圧用リニア制御弁91と減圧用リニア制御弁93の駆動電流を制御する。液圧制御にあたっては、第1実施形態と同様に、制御圧Pxと目標液圧Pとの偏差に基づいて、目標電流i*を計算し、この目標電流i*を主増圧用リニア制御弁91あるいは減圧用リニア制御弁93に流す。図10は、こうした液圧制御によって各ホイールシリンダ圧を増圧させているときの液圧供給路を太線矢印で表している。
また、サーボ圧通路41が、主増圧用リニア制御弁91の下流側の通路に接続されているため、主増圧用リニア制御弁91に代えて、パイロット調圧用リニア制御弁96を使って各ホイールシリンダ82の液圧を制御することもできる。この場合、ブレーキECU100は、主増圧用リニア制御弁91を閉弁状態に維持し、下流側マスタカット弁97を開弁状態に維持する。また、減圧用リニア制御弁93の作動については変更しない。これにより、図11に示すように、増圧装置50の作動が規制された状態で、パイロット調圧用リニア制御弁96により調圧された液圧が、パイロット入力通路37、バイパス通路39、バイパス逆止弁66、サーボ圧通路41、下流側マスタカット弁97、保持弁94FLを介して共通通路92に供給される。従って、主増圧用リニア制御弁91を休止させることができる。この場合、例えば、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを予め設定されたタイミングで交互に切り替えて液圧制御を実施するようにしてもよい。例えば、ブレーキペダル操作が解除されるたびに、次回のブレーキペダル操作時に作動させる増圧用のリニア制御弁を、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とで交互に切り替えるようにしてもよい。この場合、ブレーキECU100は、パイロット調圧用リニア制御弁96を作動させる期間中においては、下流側マスタカット弁97を開弁状態にし、主増圧用リニア制御弁91を作動させる期間中においては、下流側マスタカット弁97を閉弁状態に維持する。これにより、パイロット調圧用リニア制御弁96を使って主増圧用リニア制御弁91を補助することができ、主増圧用リニア制御弁91の寿命を延ばすことができる。また、主増圧用リニア制御弁91が故障した場合に、主増圧用リニア制御弁91に代えてパイロット調圧用リニア制御弁96により4輪の液圧制御を実施するように構成してもよい。これにより、故障に対する対応能力を向上させることができる。
また、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを同時に作動させるようにしてもよい。例えば、ブレーキECU100は、共通通路92に作動液を大流量で流す必要があるか否かを判断し、大流量を流す必要がある場合には、下流側マスタカット弁97を開弁状態に維持して、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを同時に作動させる。この場合、例えば、目標液圧Pと制御圧Pxとの偏差(P−Px)、あるいは、その積算値、あるいは、その微分値が同時使用閾値より大きいか否かに基づいて、大流量を流す必要があるか否かを判断してもよい。これにより、パイロット調圧用リニア制御弁96を使って主増圧用リニア制御弁91を補助することができ、主増圧用リニア制御弁91の仕様を小流量タイプにすることができる。
次に、制御系の異常が検出された場合について説明する。ブレーキECU100は、制御系の異常を検出した場合には、第1実施形態と同様に、全ての電気アクチュエータ(制御弁、モータ)への通電を停止する。これにより、電磁式制御弁(電磁弁、電磁式リニア制御弁)は、原位置に戻される。この場合、常開弁である第1マスタカット弁65が開弁して、マスタシリンダ20の第1加圧室21と増圧装置50の大径側室53(パイロット部53)とが連通する。また、常開弁である増圧カット弁48が開弁して、動力液圧発生装置30と増圧装置50の高圧室58とが高圧供給通路逆止弁49を介して連通する。また、常開弁である下流側マスタカット弁が開弁して、サーボ圧通路41と個別通路43FLとを連通する。また、常開弁である前輪用の保持弁94FL,94FRが開弁して、共通通路92と左右前輪の個別通路43FL,43FRとが連通する。
制御系の異常時においては、動力液圧発生装置30のポンプ31の作動が停止されるが、アキュムレータ33に蓄えられた作動液の液圧(アキュムレータ圧Pacc)が、増圧装置50の作動可能圧よりも高い状態になっている場合には、ブレーキペダル10の踏み込み操作によって発生したマスタシリンダ圧PmLが作動開始圧を超えると、段付きピストン52の前進により高圧供給弁56が開弁状態に切り替えられ、高圧室58から高圧の作動液が小径側室54に供給される。これによって、サーボ圧通路41には、大径側室53に供給されたパイロット圧であるマスタシリンダ圧PmLに増圧比(>1)を乗算した大きさの液圧(サーボ圧と呼ぶ)が発生する。このサーボ圧は、下流側マスタカット弁97を介して左前輪の個別通路43FLに供給され、更に、左右前輪用の保持弁94FL,94FRを介して右前輪の個別通路43FRに供給される。従って、図12に実線の太線矢印にて示すように、増圧装置50から出力されたサーボ圧は、左前輪のホイールシリンダ82FLだけでなく、共通通路92を介して右前輪のホイールシリンダ82FRにも供給される。
アキュムレータ圧Paccが低下して増圧装置50の作動可能圧よりも低くなると、動力液圧発生装置30から高圧室58に作動液が供給されなくなり増圧装置50の作動が不能となる。この場合、ドライバーのブレーキペダル踏み込み操作によって発生したマスタシリンダ圧PmLが小径側室54の液圧よりも高くなると、図12に点線の太線矢印に示すように、マスタシリンダ圧PmLは、第1マスタ通路23、第1マスタカット弁65、マスタパイロット通路23P、バイパス通路39、バイパス逆止弁66を介してサーボ圧通路41に供給される。この場合には、マスタシリンダ圧PmLが左右前輪のホイールシリンダ82FL,82FRに直接供給されることになる。
次に、作動液の漏れ異常が検出された場合について説明する。ブレーキECU100は、作動液の漏れ異常を検出した場合には、図13に示すように、第1マスタカット弁65、下流側マスタカット弁97、第2マスタカット弁47を開弁状態にし、パイロット調圧用リニア制御弁96、増圧カット弁48、シミュレータカット弁78を閉弁状態にする。また、左右前輪用の保持弁94FL,94FRと減圧弁95FL,95FRとを閉弁状態にする。また、後輪側については、通常の液圧制御と同様、つまり、左右の保持弁94RL,94RRを開弁状態にし、左右の減圧弁95RL,95RRを閉弁状態にする。この状態で、ブレーキECU100は、主増圧用リニア制御弁91と減圧用リニア制御弁93を作動させて、左右後輪のホイールシリンダ圧を目標液圧に制御する。
これにより、図13に太線矢印に示すように、右前輪のホイールシリンダ82FRとマスタシリンダ20の第2加圧室21とが連通した右前輪マスタブレーキ系統が形成される。また、増圧カット弁48が閉弁状態に維持されて増圧装置50の機能が停止されるため、左前輪のホイールシリンダ82FLとマスタシリンダ20の第1加圧室21とが連通した左前輪マスタブレーキ系統が形成される。後輪に関しては、動力液圧発生装置30の出力するアキュムレータ圧Paccが調圧されて2つのホイールシリンダ82RL,82RRに供給される後輪アキュムレータブレーキ系統が形成される。この場合、左右前輪用の保持弁94FL,94FRと減圧弁95FL,95FR、増圧カット弁48、パイロット調圧用リニア制御弁96が閉弁状態に維持されるため、3つのブレーキ系統は、互いに独立した状態、つまり、互いに連通が遮断された状態に維持される。これにより、3つのブレーキ系統のうちの1つに作動液の漏れが発生している場合であっても、他のブレーキ系統の作動液が、作動液の漏れが発生しているブレーキ系統に流れ込まないため、他のブレーキ系統に影響が及ばないようにすることができる。
この場合、主増圧用リニア制御弁91の出力部がパイロット入力通路37に連通しないように構成されているため、上記のように3つのブレーキ系統を独立して形成することができる。仮に、主増圧用リニア制御弁91を、アキュムレータ通路35とパイロット入力通路37との接続部よりも上流側のアキュムレータ通路35に設けた場合を想定すると、その場合には、パイロット調圧用リニア制御弁96を設けなくても、主増圧用リニア制御弁91によりパイロット圧を調圧することができる。しかし、その場合、後輪のホイールシリンダ82RL,82RRに対してはアキュムレータ圧Paccを調圧して供給し、前輪のホイールシリンダ82FL,82FRに対しては、左右独立してマスタシリンダ圧を供給するという3つのブレーキ系統を独立して形成することができなくなる。従って、第2実施形態のブレーキアクチュエータ400は、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを別々に設け、共通通路92に液圧を供給する主増圧用リニア制御弁91の出力部が増圧装置50のパイロット部53に連通しないように構成されている。
次に、増圧装置50の作動チェックについて説明する。図14は、第2実施形態における、ブレーキECU100の実行する作動チェックルーチンを表す。この作動チェックルーチンに関しては、第1実施形態における作動チェックと基本的な原理については同様であり、ブレーキアクチュエータ40とブレーキアクチュエータ400との構成の相違に伴って制御対象が若干異なる程度である。従って、第1実施形態と同様の処理については、第1実施形態と共通のステップ番号を付して簡単な説明に留める。
作動チェックルーチンが起動すると、ブレーキECU100は、ステップS11において、第1マスタカット弁65を閉弁状態にする。他の弁については、図9で示される原位置のままとする。従って、常開式電磁弁である増圧カット弁48、下流側マスタカット弁97、左右前輪用の保持弁94FL,94FRは、開弁状態となっている。
ブレーキECU100は、続いて、ステップS112において、パイロット調圧用リニア制御弁96の目標電流isubを次式により設定し、設定した目標電流isubをパイロット調圧用リニア制御弁96のソレノイドに通電する。
isub=istart+K・t
ここで、istartは、電流初期値を表す。電流初期値istartは、任意の値に設定することができるが、本実施形態においては、パイロット調圧用リニア制御弁96の開弁電流iopenを用いる。従って、アキュムレータ圧センサ67により検出されるアキュムレータ圧Paccと制御圧センサ98により検出される制御圧Pxとの差圧ΔPに対応した開弁電流iopenが電流初期値istartに設定される。K,tについては第1実施形態と同様である。
続いて、ブレーキECU100は、ステップS113において、制御圧センサ98により検出される制御圧Pxを読み込む。この処理は、増圧装置50の出力する液圧(サーボ圧)を検出する処理に相当する。続いて、ブレーキECU100は、ステップS114において、パイロット調圧用リニア制御弁96のソレノイドに通電した電流値である目標電流isubと、その通電時における制御圧センサ98により検出された制御圧Pxとを対応付けたデータ(isub,Px)を記憶する。続いて、ブレーキECU100は、ステップS15において、タイマ値tがチェック終了値tmaxに到達したか否かを判断し、タイマ値がチェック終了値tmaxに達していない場合は、ステップS16において、タイマ値tを値「1」だけインクリメントして、その処理をステップS112に戻す。
こうした処理を繰り返すことにより、パイロット調圧用リニア制御弁96の通電量が増加し、パイロット調圧用リニア制御弁96の出力する液圧である増圧装置50のパイロット圧が増加していく。パイロット圧が増圧装置50の作動開始圧に到達するまでは、増圧装置50の出力する液圧(サーボ圧)は、パイロット圧と同じ値となる。そして、パイロット圧が増圧装置50の作動開始圧を超えると、増圧装置50が正常であれば、高圧室58から高圧の作動液が小径側室54に供給され、小径側室54の液圧が増加する。従って、サーボ圧は、パイロット圧に比べて所定の増圧比で増圧した値をとる。このサーボ圧は、左右前輪のホイールシリンダ82FL,82FRに供給される。ブレーキECU100は、パイロット調圧用リニア制御弁96の通電時における制御圧Pxのサンプリングを続ける。図15は、作動チェック時における、増圧装置50が適正に作動しているときのパイロット圧の供給通路LPと、サーボ圧の供給通路LSとを表している。
そして、タイマ値がチェック終了値tmaxに達すると(S15:Yes)、ブレーキECU100は、ステップS117において、パイロット調圧用リニア制御弁96への通電を終了し、ステップS118において、減圧弁95FL,95FRを開弁して、左右前輪のホイールシリンダ82FL,82FRの作動液をリターン通路72に流して、ホイールシリンダ圧を大気圧にまで低下させる。続いて、ブレーキECU100は、ステップS19において、全ての弁を原位置に戻す。この場合、第1マスタカット弁65が開弁状態に戻される。
続いて、ブレーキECU100は、ステップS120において、サンプリングしたデータ(isub,Px)に基づいて、増圧装置50が正常に作動したか否かを判断する。この場合、第1実施形態と同様に、予め記憶されている正常特性データ(図8の縦軸をPx、横軸をisubに置き換えた特性データ)を使って増圧装置50の作動チェックを行う。ブレーキECU100は、サンプリングデータが正常範囲に含まれている場合には、ステップS21において、増圧装置50の作動が正常であると判定し、サンプリングデータが正常範囲から外れている場合には、ステップS22において、増圧装置50の作動が異常であると判定する。ブレーキECU100は、この増圧装置50の作動チェック結果を不揮発性メモリに記憶して、作動チェックルーチンを終了する。
以上説明した第2実施形態のブレーキ制御装置によれば、パイロット入力通路37を設け、動力液圧発生装置30の出力する液圧をパイロット調圧用リニア制御弁96により作動チェック用液圧に調整して増圧装置50のパイロット部53に供給するため、ドライバーのブレーキペダル操作に頼ることなく増圧装置50の作動チェックを行うことができる。また、パイロット調圧用リニア制御弁96を使ってパイロット圧を制御するため、作動チェックを精度よく行うことができる。また、ドライバーのブレーキペダル操作に頼ることなく作動チェックを行うことができるため、チェックタイミングの自由度が拡がる。また、共通通路92に液圧を供給する主増圧用リニア制御弁91の出力部が増圧装置50のパイロット部53に連通しないように構成されているため、作動液の漏れ異常が検出されている場合には、後輪側のホイールシリンダ82RL,82RRに制御液圧を供給する後輪アキュムレータブレーキ系統と、前輪側の2つのマスタブレーキ系統とを独立させて制動力を発生させることができる。
また、サーボ圧通路41が主増圧用リニア制御弁91の下流側通路に合流するため、パイロット調圧用リニア制御弁96を4輪のホイールシリンダ82の液圧制御用に使用することができる。これにより、主増圧用リニア制御弁91の作動を補助することができる。例えば、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを交互に作動させる構成を採用した場合には、主増圧用リニア制御弁91の作動時間を短縮することができ、主増圧用リニア制御弁91の寿命を延ばすことができる。また、主増圧用リニア制御弁91とパイロット調圧用リニア制御弁96とを同時使用するように構成した場合には、共通通路92に作動液を流すことができる流量を多くすることができ、個々の主増圧用リニア制御弁91、パイロット調圧用リニア制御弁96を小流量タイプのものにすることができる。また、主増圧用リニア制御弁91が故障した場合には、主増圧用リニア制御弁91に代えてパイロット調圧用リニア制御弁96により4輪の液圧制御を実施するように構成した場合には、故障に対する対応能力を向上させることができる。
以上、本実施形態の車両のブレーキ制御装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、上記第1実施形態においては、パイロット入力通路37として、左前輪のホイールシリンダ82FLへ制御液圧を供給する液圧供給通路を使用しているが、他の車輪のホイールシリンダ82への液圧供給通路を使用するようにしてもよい。この場合、前輪の何れか一方のホイールシリンダ82FL,82FRへの液圧供給通路を使用することが好ましい。例えば、増圧装置50のパイロット入力通路37として、右前輪のホイールシリンダ82FRへの液圧供給通路を使用すれば、上記実施形態と同様に左右前輪のホイールシリンダ82FL,82FRにサーボ圧を供給することができる。この場合、サーボ圧通路41を右前輪の個別通路43FRに接続し、第2マスタ通路24を左前輪の個別通路43FLに接続するようにすればよい。同様に、第2実施形態においても、サーボ圧通路41を右前輪のホイールシリンダ82FRに接続するように構成してもよい。この場合、第2マスタ通路24を左前輪の個別通路43FLに接続すればよい。
また、上記2つの実施形態においては、作動チェックにあたって、増圧用リニア制御弁44FL(第2実施形態ではパイロット調圧用リニア制御弁96)に流す電流と、増圧装置50の出力液圧であるサーボ圧との関係に基づいて、増圧装置50が正常に作動するか否かについて判断しているが、リニア制御弁のソレノイドに流す電流とリニア制御弁の出力側の液圧とは一定の関係を有するため、パイロット圧とサーボ圧との関係に基づいて判断するようにしてもよい。この場合、例えば、パイロット部32と同圧となる部位に液圧センサを設け、この液圧センサにより検出されるパイロット圧と、ホイールシリンダ圧センサ69FL(第2実施形態では制御圧センサ98)により検出されるサーボ圧との関係に基づいて作動チェックを行えばよい。
また、上記2つの実施形態においては、作動チェックにあたって、増圧用リニア制御弁44FL(第2実施形態ではパイロット調圧用リニア制御弁96)に流す電流を増加させて、そのときのサーボ圧の推移をサンプリングしているが、増圧用リニア制御弁44FL(パイロット調圧用リニア制御弁96)に流す電流を作動開始電流よりも大きな初期電流値から減少させながらサンプリングするようにしてもよい。また、必ずしも、複数のサンプリングデータを取得する必要はなく、例えば、増圧用リニア制御弁44FL(パイロット調圧用リニア制御弁96)に、作動開始電流よりも大きな作動チェック用の設定電流(固定値)を流したときのサーボ圧が正常範囲に入るか否かに基づいて判定するようにしてもよい。
また、上記2つの実施形態においては、増圧装置50の出力液圧であるサーボ圧の供給先を、2つのホイールシリンダ82としているが、サーボ圧の供給先は、1つのホイールシリンダ82であってもよいし、3つ、あるいは、4つのホイールシリンダ82であってもよい。また、増圧装置50を複数設けてもよい。
また、上記2つの実施形態においては、4輪の自動車のブレーキ制御装置であるが、4輪以外の自動車においても適用できる。例えば、前輪が1輪、後輪が2輪の合計3輪の自動車において、任意の車輪(例えば、前輪)のホイールシリンダに対してのみにサーボ圧を供給する構成を採用してもよい。
また、上記2つの実施形態においては、リニア制御弁によりアキュムレータ圧を調整して、作動チェック用のパイロット圧を増圧装置に供給するが、パイロット圧は、必ずしもリニア制御弁を使って調整する必要はなく、例えば、アキュムレータ圧を予め設定された作動チェック用の液圧(固定圧)に調圧する調圧弁を用いることもできる。

Claims (5)

  1. 複数の車輪に設けられ作動液の液圧を受けて車輪に制動力を与えるホイールシリンダと、
    ドライバーがブレーキペダルを踏み込んだ踏力によって液圧を発生させる踏力液圧発生装置と、
    電動加圧装置を駆動して液圧を発生させる動力液圧発生装置と、
    前記動力液圧発生装置の出力する液圧を調整して、調整した液圧を各ホイールシリンダに供給する調圧装置と、
    前記調圧装置の作動を制御する液圧制御手段と、
    電気エネルギーを使わずに作動するパイロット式の液圧調整器であって、前記踏力液圧発生装置の出力する液圧をパイロット部に入力し、前記動力液圧発生装置の出力する液圧を利用して、前記踏力液圧発生装置の出力する液圧よりも高い液圧を出力可能な増圧装置と、
    前記増圧装置の出力する液圧を少なくとも1つのホイールシリンダに供給する通路であるサーボ圧通路と、
    前記増圧装置が正常に作動するか否かについてチェックする作動チェック手段と
    を備えた車両のブレーキ制御装置において、
    前記動力液圧発生装置の出力する液圧を作動チェック用液圧に調整して、前記作動チェック用液圧を前記増圧装置のパイロット部に供給するチェック用パイロット圧供給手段を備え、
    前記作動チェック手段は、前記チェック用パイロット圧供給手段により作動チェック用液圧が前記増圧装置のパイロット部に供給されているときの前記増圧装置の出力する液圧に基づいて、前記増圧装置が正常に作動するか否かについてチェックすることを特徴とする車両のブレーキ制御装置。
  2. 前記チェック用パイロット圧供給手段は、前記動力液圧発生装置から前記増圧装置のパイロット部へ液圧を供給する通路となる動力液圧パイロット入力通路と、
    前記動力液圧パイロット入力通路に設けられ、前記動力液圧発生装置の出力する液圧を前記作動チェック用液圧に調整するリニア制御弁と
    を備えたことを特徴とする請求項1記載の車両のブレーキ制御装置。
  3. 前記動力液圧パイロット入力通路に設けられるリニア制御弁の出力する液圧を、前記増圧装置を迂回して前記サーボ通路に供給するバイパス通路と、
    前記増圧装置を作動不能状態にする作動規制手段と
    を備え、
    前記液圧制御手段は、前記増圧装置が作動不能状態におかれているときに、前記動力液圧パイロット入力通路に設けられるリニア制御弁を制御して、前記リニア制御弁により調圧された液圧を前記バイパス通路および前記サーボ圧通路を介して、少なくとも1つのホイールシリンダに供給することを特徴とする請求項2記載の車両のブレーキ制御装置。
  4. 前記サーボ通路は、前記調圧装置の下流側通路と合流することを特徴とする請求項2または3記載の車両のブレーキ制御装置。
  5. 左右一方の前輪のホイールシリンダと左右他方の前輪のホイールシリンダとは、ソレノイドへの通電により閉弁し非通電時には開弁状態を維持する常開式開閉弁を介して連通しており、
    前記サーボ圧通路は、前記左右一方の前輪のホイールシリンダに液圧を供給することを特徴とする請求項1ないし請求項4の何れか一項記載の車両のブレーキ制御装置。
JP2014546808A 2012-11-16 2012-11-16 車両のブレーキ制御装置 Expired - Fee Related JP5924416B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079840 WO2014076820A1 (ja) 2012-11-16 2012-11-16 車両のブレーキ制御装置

Publications (2)

Publication Number Publication Date
JP5924416B2 true JP5924416B2 (ja) 2016-05-25
JPWO2014076820A1 JPWO2014076820A1 (ja) 2017-01-05

Family

ID=50730760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014546808A Expired - Fee Related JP5924416B2 (ja) 2012-11-16 2012-11-16 車両のブレーキ制御装置

Country Status (5)

Country Link
US (1) US9776605B2 (ja)
JP (1) JP5924416B2 (ja)
CN (1) CN104781115B (ja)
DE (1) DE112012007142T5 (ja)
WO (1) WO2014076820A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976451B (zh) * 2016-01-19 2020-01-31 上海汽车集团股份有限公司 车辆动态稳定控制系统及其控制方法
US9640311B1 (en) * 2016-01-26 2017-05-02 Goodrich Corporation Systems and methods for solenoid state determination
DE102016215356A1 (de) * 2016-08-17 2018-02-22 Continental Teves Ag & Co. Ohg Bremssystem und Verfahren zum Betreiben eines Bremssystems
US10315640B2 (en) 2016-12-08 2019-06-11 Robert Bosch Gmbh Vehicle having brake system and method of operating
JP2018199412A (ja) * 2017-05-26 2018-12-20 トヨタ自動車株式会社 液圧ブレーキ装置
JP6935710B2 (ja) * 2017-09-26 2021-09-15 株式会社アドヴィックス 車両の制動制御装置
KR102501038B1 (ko) * 2018-01-30 2023-02-17 에이치엘만도 주식회사 전자식 브레이크 시스템
JP2019069756A (ja) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 車両用制動力制御装置
DE102017221716A1 (de) * 2017-12-01 2019-06-06 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betreiben einer Bremsanlage
TWI663086B (zh) * 2018-06-20 2019-06-21 宏碁股份有限公司 自動駕駛車輛的煞車系統及其設定方法
KR102620657B1 (ko) * 2019-01-03 2024-01-03 현대모비스 주식회사 차량의 제동장치 및 그 제어방법
DE102019201907A1 (de) * 2019-02-14 2020-08-20 Robert Bosch Gmbh Elektronisch schlupfregelbare Fremdkraftbremsanlage
US11981303B2 (en) * 2020-08-21 2024-05-14 Robert Bosch Gmbh Vehicle braking system and method of operating the same
US11767003B2 (en) * 2020-12-14 2023-09-26 Continental Automotive Systems, Inc. By-wire brake system for motor vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156999A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp ブレーキシステム
JP2012116345A (ja) * 2010-12-01 2012-06-21 Toyota Motor Corp ブレーキシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508458B2 (ja) 1997-04-14 2004-03-22 トヨタ自動車株式会社 液圧ブレーキ制御装置
JPH1148955A (ja) * 1997-08-08 1999-02-23 Toyota Motor Corp 液圧ブレーキ装置
JP3564960B2 (ja) * 1997-08-12 2004-09-15 トヨタ自動車株式会社 ブレーキ液圧制御装置
JP3496549B2 (ja) * 1998-04-17 2004-02-16 トヨタ自動車株式会社 液圧ブレーキ装置
JP4934937B2 (ja) * 2001-01-31 2012-05-23 株式会社デンソー 車両用ブレーキ装置
JP4297151B2 (ja) * 2006-10-05 2009-07-15 トヨタ自動車株式会社 ブレーキ制御装置
RU2531788C2 (ru) * 2010-02-02 2014-10-27 Тойота Дзидося Кабусики Кайся Тормозная система

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156999A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp ブレーキシステム
JP2012116345A (ja) * 2010-12-01 2012-06-21 Toyota Motor Corp ブレーキシステム

Also Published As

Publication number Publication date
US20150314767A1 (en) 2015-11-05
CN104781115A (zh) 2015-07-15
JPWO2014076820A1 (ja) 2017-01-05
WO2014076820A1 (ja) 2014-05-22
DE112012007142T5 (de) 2015-08-13
US9776605B2 (en) 2017-10-03
CN104781115B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5924416B2 (ja) 車両のブレーキ制御装置
JP4588578B2 (ja) 車両のブレーキ装置
EP1106461B1 (en) Vehicle braking system having devices for controlling fluid flows between the pressurizing and assisting chambers of a master cylinder , a pressure source and a reservoir
JP5682738B2 (ja) 車両のブレーキ装置
JP5123972B2 (ja) 車両用ブレーキ装置および車両用ブレーキ装置の制御方法
JP5843021B2 (ja) 車両のブレーキ制御装置
JP5516819B2 (ja) マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
US7926887B2 (en) Brake control system and brake control method
US8991941B2 (en) Vehicle brake apparatus
JP5580293B2 (ja) Bbw式ブレーキ装置
JP5484359B2 (ja) 車両用ブレーキ装置の制御方法
US20120193975A1 (en) Vehicle brake apparatus
JP5151081B2 (ja) 車両用制動装置
JP5850170B2 (ja) 車両のブレーキ制御装置
JP2007203804A (ja) 車両用制動装置
JP5626414B2 (ja) マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
JPWO2011105405A1 (ja) 車両用ブレーキ装置および車両用ブレーキ装置の制御方法
US8768591B2 (en) Method for operating a boosted brake system of a vehicle and control device for a boosted brake system of a vehicle
JP5787125B2 (ja) 車両のブレーキ装置
WO2019146404A1 (ja) ブレーキ制御装置およびブレーキ制御装置の故障検出方法
JP6261078B2 (ja) ブレーキ液圧発生装置
JP2014234010A (ja) 車両のブレーキ装置
KR20140140143A (ko) 차량 유압 제어 장치 및 그 제어 방법
JP2014080146A (ja) 車両のブレーキ制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R151 Written notification of patent or utility model registration

Ref document number: 5924416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees