次に、本発明の一実施形態について図面を参照して以下に説明する。
図1及び2において、20は本発明の一実施形態に係る半導体モジュール(パワー半導体モジュールを含む)である。この半導体モジュール20は、複数個の半導体素子21と、本発明の一実施形態に係る絶縁基板の製造方法により製造された絶縁基板1とを具備している。
半導体モジュール20は、IGBTモジュール、MOSFETモジュール、サイリスタモジュール、ダイオードモジュール等である。
半導体素子21は本実施形態の絶縁基板1上に実装されている。半導体素子21は、IGBTチップ、MOSFETチップ、サイリスタチップ、ダイオードチップ等である。
図2に示すように、絶縁基板1は、積層材2と、第2のAl層7と、セラミック層8と、金属応力緩和層9と、放熱部材10とを備えるとともに、この順にこれらが積層状に接合一体化されている。
積層材2は、上から順にNi層3と、Ti層5と、第1のAl層6とを備えるとともに、この順にこれらの層3、5、6が積層状に接合一体化されている。さらに、図1に示すように、この積層材2は、平面視において所望する回路パターン状に形成されている。詳述すると本実施形態では、積層材2は、互いに離間して配置された3つの積層材構成部2a、2a、2aから構成されおり、すなわち、これらの構成部2a、2a、2aが所定の回路パターン状に配置されて積層材2が構成されている。
放熱部材10は、半導体素子21の動作に伴い半導体素子21から発生した熱を放出して半導体素子21の温度を下げるためのものであり、具体的に示すと、空冷式又は水冷式のヒートシンクや冷却器等である。さらに、この放熱部材10は金属製であり、詳述すると例えばAl又はAl合金製である。本実施形態では、放熱部材10は複数の放熱フィンを有する空冷式のAl又はAl合金製シートシンクである。絶縁基板1は、半導体素子21から発生した熱を放熱部材10に良好に伝達しうるように熱的には伝導体として機能するものであり、更に、電気的には絶縁体として機能するものである。
絶縁基板1において、各層は水平状に配置されている。さらに、セラミック層8、金属応力緩和層9及び放熱部材10は、平面視において略方形状に形成されている。積層材2は上述したように平面視において所定の回路パターン状に形成されおり、また同じく、第2のAl層7は平面視において積層材2の形状に対応した回路パターン状に形成されている。
積層材2のNi層3は、Ni又はNi合金で形成されたものであり、詳述するとNi又はNi合金板から形成されたものである。さらに、このNi層3は、その上面3aに半導体素子21がはんだ付けによって接合されるものであり、すなわち絶縁基板1の上面層(表面層)を形成するものである。
積層材2のTi層5は、Ti又はTi合金で形成されたものであり、詳述するとTi又はTi合金板から形成されたものである。このTi層5は、Ni層3の構成元素であるNiとTi層5の構成元素であるTiとが合金化することによりNi−Ti系超弾性合金層4をNi層3とTi層5との接合界面に生成させる役割などを有している。そして、このTi層5がNi層3の下面側に配置されて、Ni層3とTi層5とが拡散接合(クラッド圧延、放電プラズマ焼結法など)によって積層状に互いに接合されている。すなわち、Ti層5はNi層3の下面に直接接合されている。さらに、この接合により、Ni層3とTi層5との接合界面に、Ni層3のNiとTi層5のTiとが合金化したNi−Ti系超弾性合金層4が薄く形成されている。このNi−Ti系超弾性合金層4は、詳述するとNi−Ti系超弾性合金相を含む層である。本実施形態では、Ni−Ti系超弾性合金層4は、例えばNiTi超弾性合金相を含む層であり、即ちNiTi超弾性合金層である。
この超弾性合金層4の超弾性合金は、室温から半導体素子21の動作温度(例:300℃)までの温度範囲に亘って超弾性特性を有していることが望ましく、特に望ましくは、室温から後述するろう付け接合工程S4のろう付け温度(例:600℃)までの温度範囲に亘って超弾性特性を有していることが良い。
ここで、Ni層3、Ti層5及び超弾性合金層4の厚さは、それぞれ限定されるものではない。しかし、Niの熱伝導率は90.7W/m・K、Tiの熱伝導率は21.9W/m・K、Ni−Ti系超弾性合金の熱伝導率は20.0W/m・Kであり、これらの熱伝導率はAlの熱伝導率236W/m・Kと比べて著しく低い。したがって、Ni層3、Ti層5及び超弾性合金層4はいずれもなるべく薄い方が、絶縁基板1の熱伝導率を向上させうる点で望ましい。そこで、Ni層3の厚さの上限は200μm、Ti層5の厚さの上限は200μm、超弾性合金層4の厚さの上限は50μmであるのが望ましい。一方、これらの層3、5、4が薄すぎると、各層の所望する特性が発現しなくなる虞がある。そこで、Ni層3の厚さの下限は5μm、Ti層5の厚さの下限は5μm、超弾性合金層4の厚さの下限は0.05μmであるのが望ましい。
積層材2の第1のAl層6は、Al又はAl合金で形成されたものであり、詳述するとAl又はAl合金板から形成されたものである。そして、この第1のAl層6がTi層5の下面側に配置されて、Ti層5と第1のAl層6とが拡散接合(クラッド圧延、放電プラズマ焼結法など)によって積層状に互いに接合されている。すなわち、第1のAl層6はTi層5の下面に直接接合されている。第1のAl層6の厚さは、第1のAl層6をTi層5に拡散接合によって良好に接合できるようにするため、30〜100μmの範囲に設定されるのが特に望ましい。さらに、後述するろう付け接合工程S4の際のろう付け接合熱によって第1のAl層6と第2のAl層7とを接合するための軟化又は溶融したろう材層12aがTi層5と接触すると、当該接触部分に強度の弱いTiAlSi合金層が形成され、この合金層で割れや剥離が生じ易くなる。そこでこの難点を解消するため、第1のAl層6の厚さは、更にろう材層12aの厚さ以上であることが特に望ましい。
以上のように、Ni層3とTi層5と第1のAl層6とは積層状に接合一体化されており、これにより積層材2が構成されている。
第2のAl層7は、平面視において略方形状の第2のAl層7の上面における積層材2の非配置部分7a(即ち非接合部分)(図4参照)がエッチング液によって深さ方向に溶解除去されることにより、積層材2の形状に対応した回路パターン状に形成されたものである。
この第2のAl層7は、Al又はAl合金で形成されたものであり、詳述するとAl又はAl合金板から形成されたものである。そして、この第2のAl層7が積層材2の第1のAl層6の下面側に配置されて、第1のAl層6と第2のAl層7とがろう付けによって積層状に互いに接合されている。すなわち、第2のAl層7は第1のAl層6の下面に接合されている。第2のAl層7の厚さは、限定されるものではないが、第2のAl層7を絶縁基板1の配線層として確実に機能させるため、100〜1000μmの範囲に設定されるのが特に望ましい。
第1のAl層6と第2のAl層7との接合界面には、両層6、7を接合したろう材層12aが介在されている。このろう材層12aは、Al系ろう材(例:Al−Si系合金のろう材)の層であることが望ましく、またろう材層12aの厚さは例えば10〜100μmである。なお、これらの図では、このろう材層12aは、他の層と区別し易くするためドットハッチングで図示されている。後述するその他のろう材層12b〜12dについても同じ理由によりドットハッチングで図示されている。
セラミック層8は、電気絶縁層として機能するものであり、AlN(窒化アルミニウム)、Al2O3、Si3N4、Y2O3、CaO、BN、BeOからなる群より選択された1種又は2種以上のセラミックで形成されたものであり、詳述するとセラミック板から形成されたものである。そして、このセラミック層8が第2のAl層7の下面側に配置されて、第2のAl層7とセラミック層8とがろう付けによって積層状に互いに接合されている。すなわち、セラミック層8は第2のAl層7の下面に接合されている。セラミック層8の厚さは限定されるものではなく、例えば200〜1000μmである。このセラミック層8の長さ及び幅は、セラミック層8を電気絶縁層として確実に機能させるため、Ni層3、Ti層5、第1のAl層6、第2のAl層7及び金属応力緩和層9の長さ及び幅よりも若干大寸に設定されている。因みに、セラミック層8を形成するセラミックの融点又は分解点は、Ni層3、Ti層5、第1のAl層6、第2のAl層7、金属応力緩和層9及び放熱部材10の融点よりも高い。
第2のAl層7とセラミック層8との接合界面には、両層7、8を接合したろう材層12bが介在されている。このろう材層12bは、Al系ろう材(例:Al−Si系合金のろう材)の層であることが望ましく、またろう材層12bの厚さは例えば10〜100μmである。
金属応力緩和層9は、冷熱サイクル等によって絶縁基板1に発生する熱応力(熱歪み)を緩和するためのものであり、金属製であり、本実施形態では厚さ方向に貫通した複数の貫通孔9aを有するAl又はAl合金製パンチングメタル板から形成されている。そして、この金属応力緩和層9がセラミック層8の下面側に配置されて、セラミック層8と金属応力緩和層9とがろう付けによって積層状に互いに接合されている。すなわち、金属応力緩和層9はセラミック層8の下面に接合されている。この金属応力緩和層9の厚さは限定されるものではなく、例えば600〜2000μmである。
セラミック層8と金属応力緩和層9との接合界面には、両層8、9を接合したろう材層12cが介在されている。このろう材層12cは、Al系ろう材(例:Al−Si系合金のろう材)の層であることが望ましく、またろう材層12cの厚さは例えば10〜100μmである。
放熱部材10は、上述したように金属製であり、詳述すると例えばAl又はAl合金製である。そして、この放熱部材10が金属応力緩和層9の下面側に配置されて、金属応力緩和層9と放熱部材10とがろう付けによって積層状に互いに接合されている。すなわち、放熱部材10は金属応力緩和層9の下面に接合されている。
金属応力緩和層9と放熱部材10との接合界面には、両者9、10を接合したろう材層12dが介在されている。このろう材層12dは、Al系ろう材(例:Al−Si系合金のろう材)の層であることが望ましく、またろう材層12dの厚さは例えば10〜100μmである。
次に、本実施形態の絶縁基板1の製造方法について図3〜7を参照して以下に説明する。
図3及び4に示すように、本実施形態の絶縁基板1の製造方法は、積層材製造工程S1と、ろう付け接合工程S4と、エッチング処理工程S5とを備える。ろう付け接合工程S4は積層材製造工程S1の後で行われる。エッチング処理工程S5はろう付け接合工程S4の後で行われる。
積層材製造工程S1は、Ni層3とTi層5と第1のAl層6とが積層状に接合一体化されるとともに、平面視において所定の回路パターン状に形成された積層材2を製造する工程であり、詳述すると、第1拡散接合工程S2と第2拡散接合工程S3とを備えている。第2拡散接合工程S3は第1拡散接合工程S2の後で行われる。
第1拡散接合工程S2では、Ni層3とTi層5とを互いに重ね合わせて拡散接合によって積層状に接合し、これにより、Ni層3とTi層5との接合界面にNi−Ti系超弾性合金層4を形成する。換言すると、Ni層3とTi層5との接合界面にNi−Ti系超弾性合金層4が形成されるように、Ni層3とTi層5とを拡散接合によって接合する。拡散接合としては、クラッド圧延、放電プラズマ焼結法等が用いられる。この拡散接合により形成される超弾性合金層4は、Ni−Ti系超弾性合金相を含み、しかもNiとTiとの組成比が厚さ方向に徐々に変化する傾斜材料構造を採る。したがって、この超弾性合金層4は、熱応力を確実に緩和・吸収する役割を果たしうる。
なお、Ni層3とTi層5とを拡散接合ではなくろう付けによって接合しても、両層3、5の接合界面に超弾性合金層4は形成されない。
ここで、放電プラズマ焼結(Spark Plasma Sintering:SPS)法は、一般的に、粉体を焼結するため又は部材同士を接合するために適用されるものであり、本実施形態では部材同士(詳述すると金属板同士)を接合するために適用されている。なお、この放電プラズマ焼結法は、「SPS接合法」、「パルス通電圧接法(Pulsed Current Hot Pressing:PCHP)」等とも呼ばれている。
Ni層3とTi層5とを拡散接合としてのクラッド圧延によって接合する場合には、両層3、5間に超弾性合金層4を確実に形成できるようにするため、温間ないし熱間クラッド圧延によって両層3、5を接合するのが望ましい。すなわち、図5に示すように、互いに平行に配置された上下一対の圧延ロール31、31を具備したクラッド圧延装置30を用い、互いに重ね合わされたNi層3とTi層5とを両圧延ロール31、31間に通して両圧延ロール31、31でNi層3とTi層5を挟圧することにより、Ni層3とTi層5とを接合(クラッド)する。この接合の際に、Ni層3とTi層5との接合時の熱によって両層3、5の接合界面にてNi層3のNiとTi層5のTiとが拡散するとともに、拡散したNiとTiとが合金化してNi−Ti系超弾性合金層4が両層3、5の接合界面に形成される。その結果、両層3、5の接合界面にNi−Ti系超弾性合金層4が介在される。その接合条件は、Ni層3とTi層5とを、両層3、5の接合界面にNi−Ti系超弾性合金層4が形成されるように、クラッド圧延により接合可能な条件であれば良く、特に限定されるものではない。例えば、接合条件は、クラッド温度630〜750℃、及び、クラッド率40〜60%である。
Ni層3とTi層5とを拡散接合としての放電プラズマ焼結法によって接合する場合には、図6に示すように、まず、放電プラズマ焼結装置40に備えられた筒状ダイ41内にNi層3とTi層5とを互いに重ね合わせて積層状に配置する。これにより、両層3、5の周囲がダイ41で包囲される。ダイ41は導電性を有するものであり、例えば黒鉛製である。次いで、両層3、5をその積層方向に上下一対のパンチ42、42で挟む。各パンチ42は導電性を有するものであり、例えば黒鉛製である。また、各パンチ42の基部には電極43が電気的に接続されている。そして、例えば1〜10Paの真空雰囲気中、又は、窒素、アルゴン等の不活性ガス雰囲気中にて、両パンチ42、42で両層3、5をその積層方向に加圧しつつ、両パンチ42、42間の通電を確保した状態で両パンチ42、42間にパルス電流を通電することで両層3、5を加熱し、これによりNi層3とTi層5とを接合する。これにより、Ni層3とTi層5との接合界面にNi−Ti系超弾性合金層4が形成される。この接合では、所定厚さのNi−Ti系超弾性合金層4が形成されるように接合条件(例:加熱温度、加熱温度の保持時間、昇温速度、加圧力)を設定するのが望ましい。この接合条件について具体的に例示すると、加熱温度は600〜700℃、加熱温度の保持時間は5〜20min、室温から加熱温度への昇温速度は5〜50℃/min、両層3、5への加圧力は10〜20MPaである。
第2拡散接合工程S3では、第1拡散接合工程S2の後でTi層5と第1のAl層6とを互いに重ね合わせて拡散接合によって積層状に接合する。拡散接合としては、上述したクラッド圧延、放電プラズマ焼結法等が用いられる。
Ti層5と第1のAl層6とを拡散接合としてのクラッド圧延によって接合する場合には、その接合は、図5に示した上記クラッド圧延装置30を用い、Ni層3とTi層5との接合に適用したクラッド温度よりも低い温度をクラッド温度として適用した冷間ないし温間クラッド圧延によって行われる。その接合条件は、Ti層5と第1のAl層6とをクラッド圧延により接合可能な条件であれば良く、特に限定されるものではない。例えば、接合条件は、クラッド温度350〜430℃、及び、クラッド率30〜60%である。
Ti層5と第1のAl層6とを拡散接合としての放電プラズマ焼結法によって接合する場合には、その接合は、図6に示した上記放電プラズマ焼結装置40を用いて行われる。その接合条件は、両層5、6を接合可能な条件であれば良く、具体的に例示すると、加熱温度は500〜560℃、加熱温度の保持時間は5〜20min、室温から加熱温度への昇温速度は5〜50℃/min、両層5、6への加圧力は10〜20MPaである。
以上のように第1拡散接合工程S2と第2拡散接合工程S3とを順次行うことにより、Ni層3とTi層5と第1のAl層6とが積層状に接合一体化された積層材2が得られる。さらに、この積層材2を切削加工等によって平面視において所定の回路パターン状に形成する。これにより、所望する積層材2が製造される。
次いで、ろう付け接合工程S4が行われる。このろう付け接合工程S4は、積層材2と、第2のAl層7と、セラミック層8と、金属応力緩和層9と、放熱部材10とをろう付けによって一括して接合する工程であり、具体的にその説明をすると次のとおりである。
まず、平面視において所定の回路パターン状に形成された積層材2と、平面視において方形状の第2のAl層7と、平面視において方形状のセラミック層8と、平面視において方形状の金属応力緩和層9、平面視において方形状の放熱部材10とを準備する。なお本発明では、この際に用いられる第2のAl層7は、平面視において方形状であることに限定されるものではなく、平面視において第2のAl層7を積層材2の形状に対応した回路パターン状に形成可能な形状及び大きさであれば良い。
次いで、図7に示すように、ろう付け接合用の加圧装置50に備えられた架台55上に、積層材2と、第2のAl層7と、セラミック層8と、金属応力緩和層9と、放熱部材10とを重ね合わせて積層状に配置する。このとき、積層材2は、第2のAl層7の上面上にろう材層12aとしてのAl系ろう材板を介して配置(載置)される。さらに、第2のAl層7とセラミック層8との間と、セラミック層8と金属応力緩和層9との間と、金属応力緩和層9と放熱部材10との間とに、それぞれ、ろう材層12b〜12dとしてのAl系ろう材板を介在配置させる。各ろう材板の厚さは例えば10〜100μmである。次いで、これらを加圧装置50によって積層方向に一括して加圧する。そして、この加圧を維持した状態のままでこれらを炉内ろう付け等のろう付けによって真空中などで一括して接合する。これにより、積層材2と第2のAl層7とセラミック層8と金属応力緩和層9と放熱部材10とを一体に有する接合体15を得る。
加圧装置50は、架台55上に立設された複数の支柱51と、これらの支柱51に架設された昇降板52とを備えている。架台55に対する昇降板52の高さ位置は調節可能で且つ固定可能になっている。さらに、昇降板52には複数の押しバネ53を介して押し板54が取り付けられている。この加圧装置50により加圧を行う場合には、押し板54をNi層3上に載置するとともに、押しバネ53の弾性復元力によって押し板54がNi層3を下方向に常時押すものとなるように、昇降板52の高さ位置を固定する。これにより、積層材2と第2のAl層7とセラミック層8と金属応力緩和層9と放熱部材10とが積層方向に一括して加圧される。このときの加圧力の大きさは限定されるものではないが、290〜1000Paであることが特に望ましい。その他の接合条件についても限定されるものではないが、ろう付け温度は580〜610℃、ろう付け温度の保持時間は5〜30min、真空度は1×10−3〜1×10−5Paであることが特に望ましい。このような接合条件でろう付け接合を行うことにより、接合状態が良好な接合体15を確実に得ることができる。
次いで、エッチング処理工程S5では、積層材2のNi層3をレジスト層(詳述するとエッチングレジスト層)として第2のAl層7をエッチング処理する。すなわち、第2のAl層7の上面における積層材2の非配置部分7a(即ち非接合部分)をエッチング剤としてのエッチング液によって深さ方向に溶解除去する。これにより、第2のAl層7が積層材2の形状に対応した回路パターン状に形成され、すなわち第2のAl層7に所定の回路パターンが形成される。その後、エッチング液を洗浄除去する。つまり、本実施形態ではエッチング処理工程S5はウエットエッチング処理で行われる。なお、レジスト層はマスキング層とも呼ばれている。
エッチング液としては、Ni層3を溶解しないでAl層を溶解し得る液を用いれば良く、特に、水酸化ナトリウム水溶液(濃度:例えば5〜60質量%)、塩化第2鉄水溶液(濃度:例えば20〜50質量%)などを用いることが確実にエッチング処理を行いうる点などで望ましい。さらに、エッチング処理温度を25〜70℃に設定してエッチング処理を行うことが望ましい。
ここで、Niの線熱膨張係数(13.4×10−6/K)、Tiの線熱膨張係数(8.4×10−6/K)及びセラミックの線熱膨張係数は、Alの線熱膨張係数(23.2×10−6/K)よりも格段に小さい。そのため、ろう付け接合工程S4の際にろう付け温度まで上昇した接合体15の温度を室温へ低下させ、その後、積層方向の加圧を解除すると、接合体15には、各層間の熱膨張差に起因した、第1のAl層6及び第2のAl層7が伸びている状態を維持するような熱応力(熱歪み)が蓄積される。詳述すると、第1のAl層6及び第2のAl層7に熱応力としての引張応力が蓄積されるともに、Ni層3、Ti層5及びセラミック層8に熱応力としての圧縮応力が蓄積される。もしこのように熱応力が蓄積された状態のままで接合体15を絶縁基板1として使用すると、その使用時に絶縁基板1の割れ(特にセラミック層8の割れ)や剥離が発生し易い。そこで、ろう付け接合工程S4で接合体15に蓄積された熱応力を除去するため、本実施形態では、ろう付け接合工程S4又はエッチング処理工程S5の後で、接合体15を焼き鈍しすることが望ましい。この工程を焼き鈍し工程という。
焼き鈍し工程では、積層方向(即ち接合体15の厚さ方向)の加圧を解除した状態で、接合体15を焼き鈍し炉(図示せず)を用いて焼き鈍しする。その焼き鈍し条件は、各層3、5、6、7、8、9及び放熱部材10の材質に応じて様々に設定されるものであるが、特に、焼き鈍し温度は275〜580℃、及び、焼き鈍し温度の保持時間は3min以上であることが、熱応力を確実に除去しうる点で望ましい。また、焼き鈍し温度の保持時間の上限は120minであることが特に望ましい。焼き鈍し雰囲気は大気及び真空のいずれでも良く、特に大気であることが焼き鈍しを容易に行える点で望ましい。
以上の工程を得ることにより、本実施形態の絶縁基板1が得られる。
この絶縁基板1を用いて半導体モジュール20を製造する場合には、絶縁基板1のNi層3の上面3aにはんだ付けによって半導体素子21を常法に従って接合する。これにより、半導体モジュール20が得られる。
本実施形態の絶縁基板1の製造方法には次の利点がある。
本実施形態の絶縁基板1の製造方法によれば、上面層がNi層3で形成された絶縁基板1が製造される。そのため、この絶縁基板1は、はんだ接合性が良好であり、したがって半導体素子21をはんだ付けによって良好に接合することができる。
さらに、積層材製造工程S1において、Ni層3と第1のAl層6との間にTi層5が配置されているので、次の効果を奏する。すなわち、もしNi層3と第1のAl層6との間にTi層5を配置しないでNi層3と第1のAl層6とを直接接合した場合には、Ni層3と第1のAl層6との接合界面に強度の弱い合金層が形成されてしまい、その結果、冷熱サイクル等に伴い発生する熱応力(熱歪み)によってこの合金層で割れや剥離が生じ易くなる。これに対して、本実施形態の絶縁基板1の製造方法では、Ni層3と第1のAl層6との間にTi層5が配置されているので、そのような強度の弱い合金層は形成されない。これにより、絶縁基板1の割れや剥離の発生を防止できるし、更にはNi層3の上面3aの変形(凹凸)の発生も防止できる。
さらに、ろう付け接合工程S4では、積層材2(Ni層3、Ti層5、第1のAl層6)と第2のAl層7とセラミック層8とを有する接合体15が得られるので、第1のAl層6と第2のAl層7とを合計した厚いAl層を配線層として利用可能な絶縁基板1を得ることができる。さらに、この厚いAl層は、ろう付け接合工程S4の前では第1のAl層6と第2のAl層7とに分けられていることから、積層材製造工程S1において、第1のAl層6の厚さを、第1のAl層6をTi層5に良好に接合可能な厚さに設定することができる。例えば、積層材製造工程S1(詳述すると第2拡散接合工程S3)においてTi層5と第1のAl層6とをクラッド圧延によって接合する場合、各層5、6の物性値によって両層5、6を良好に接合可能なクラッド率の範囲が決定されるので、厚い第1のAl層はTi層5に良好に接合できないことがある。そこで、最初に、Ti層5にクラッド圧延によって良好に接合可能な薄い第1のAl層6を準備してこれとTi層5とを接合し、次いで、第1のAl層6と厚い第2のAl層7とを接合することでAl層の厚さを増加させる。これにより、配線層として確実に機能しうる厚さを有するAl層を形成することができる。さらに、第1のAl層6及び第2のAl層7の材質をそれぞれ機能、作用、目的等に応じて選択可能となる。
さらに、ろう付け接合工程S4では、積層材2と、第2のAl層7と、セラミック層8とをろう付けによって一括接合するので、能率的に接合を行うことができ、もって絶縁基板1の製造コストを引き下げることができる。
さらに、積層材2は第2のAl層7の上面側に所定の回路パターン状に配置されていることから、エッチング処理工程S5において、積層材2のNi層3をレジスト層として第2のAl層7をエッチング処理すると、第2のAl層7の上面における積層材2の非配置部分(即ち非接合部分)がエッチング液によって深さ方向に除去される。これにより、第2のAl層7を回路パターン状に容易に形成することができる。
さらに、ろう付け接合工程S4では、積層材2と、第2のAl層7と、セラミック層8とを積層方向に加圧した状態で接合するので、積層方向に加圧しない状態で接合する場合に比べて高い接合強度を得ることができる。
さらに、積層材製造工程S1は第1拡散接合工程S2を含んでいるので、熱応力を緩和しうるNi−Ti系超弾性合金層4をNi層3とTi層5との接合界面に形成することができる。そのため、絶縁基板1の割れや剥離の発生を更に確実に防止できるし、更にはNi層3の上面3aの変形(凹凸)の発生も更に確実に防止できる。
さらに、積層材製造工程S1は、第1拡散接合工程S2の後でTi層5と第1のAl層6とを接合する第2拡散接合工程S3を含んでいるので、次のような効果を奏する。
すなわち、もしTi層5と第1のAl層6とを接合した後でNi層3とTi層5とを接合する場合には、Ni層3とTi層5との接合時の熱によってTi層5と第1のAl層6との接合界面に強度の弱い合金層(例:Al−Ti合金層)が形成される虞がある。これに対して、Ni層3とTi層5とを接合した後でTi層5と第1のAl層6とを接合することにより、Ti層5と第1のAl層6との間にそのような強度の弱い合金層が形成されるのを確実に防止することができる。
さらに、もしTi層5と第1のAl層6とを拡散接合ではなくろう付けによって接合する場合には、Ti層5と第1のAl層6との接合界面に、Ti層5のTiと第1のAl層6のAlとろう材層のSiとが合金化したTiAlSi合金層が形成される虞がある。この合金層は強度が弱い。そのためこの合金層で割れや剥離が生じ易くなる。そこでこの難点を解消するため、Ti層5と第1のAl層6とを拡散接合によって接合する。これにより、絶縁基板1の割れや剥離の発生を更に確実に防止できるし、更にはNi層3の上面3aの変形(凹凸)の発生も更に確実に防止できる。
さらに本実施形態では、ろう付け接合工程S4は、積層材2と、第2のAl層7と、セラミック層8と、金属応力緩和層9と、放熱部材10とを一括接合するので、これらを一体に有する絶縁基板1を容易に製造することができる。
以上で本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において様々に変更可能である。
例えば、上記実施形態では、放熱部材はヒートシンクであるが、本発明では、放熱部材はその他に例えば冷却器であっても良い。
また本明細書では、上述したように、説明の便宜上、絶縁基板1における半導体素子21が接合される面側を、絶縁基板1の上面側と定義したが、本発明では、絶縁基板1の上下方向は任意に設定されるものであり、上記実施形態で定義した方向に限定されるものではない。
次に、本発明の具体的な幾つかの実施例を以下に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
<実施例>
本実施例では、図1及び2に示した構成の絶縁基板1を上記実施形態の絶縁基板の製造方法に従って製造した。その具体的な製造方法は以下のとおりである。
積層材2を製造するため、Ni層3、Ti層5及び第1のAl層6として、それぞれ次の平面視方形状の板を準備した。
・Ni層3 :長さ25mm×幅25mm×厚さ30μmの純Ni板
・Ti層5 :長さ25mm×幅25mm×厚さ20μmの純Ti板
・第1のAl層6:長さ25mm×幅25mm×厚さ80μmのAl合金板。
Ni層3を形成する純Ni板の純度はJIS(日本工業規格)1種である。Ti層5を形成する純Ti板の純度はJIS1種である。第1のAl層6を形成するAl合金板の材質はJISで規定されたアルミニウム合金記号A1100である。
積層材製造工程S1の第1拡散接合工程S2では、Ni層3とTi層5とを温間ないし熱間クラッド圧延によって接合し、これによりNi層3とTi層5との接合界面にNi−Ti系超弾性合金層4としてNiTi超弾性合金層(厚さ:約1μmを形成した。次いで、積層材製造工程S1の第2拡散接合工程S3では、Ti層5と第1のAl層6とを冷間ないし温間クラッド圧延により接合した。これにより、Ni層3とTi層5と第1のAl層6とが積層状に接合一体化された積層材2を得た。次いで、積層材2を切削加工によって所定の回路パターン状に形成した。詳述すると、積層材2を切断手段としてのワイヤーカットによって3個の積層材構成部2a、2a、2aに切断し、これにより、積層材2を平面視において所定の回路パターン状に形成した。こうして回路バターン状に形成された積層材2の形状は、図1に示すように、a=25mm、b1=2mm、b2=1mm、b3=19mm、b4=1mm、b5=2mmである。
また、第2のAl層7、セラミック層8、金属応力緩和層9及び放熱部材10として、それぞれ次の平面視方形状の板を準備した。
・第2のAl層7 :長さ25mm×幅25mm×厚さ600μmの高純度Al板
・セラミック層8 :長さ29mm×幅29mm×厚さ0.6mmのAlN板
・金属応力緩和層9:長さ25mm×幅25mm×厚さ1.6mmの高純度Al製パンチングメタル板
・放熱部材10 :長さ50mm×幅50mm×厚さ5mmのAl合金板。
第2のAl層7を形成する高純度Al板の純度は4N(即ち99.99質量%)である。金属応力緩和層9を形成する高純度Al製パンチングメタル板の純度は4N(即ち99.99質量%)である。放熱部材10を形成するAl合金板の材質はJISで規定されたアルミニウム合金記号A3003である。
次いで、ろう付け接合工程S4を次のように行った。図4及び7に示すように、積層材2と、第2のAl層7と、セラミック層8と、金属応力緩和層9と、放熱部材10とを積層状に重ね合わせた。このとき、図1に示すように、積層材2を第2のAl層7の上面上にろう材層12aとしてのAl系ろう材板(長さ25mm×幅25mm×厚さ20μm)を介して配置(載置)した。さらに、第2のAl層7とセラミック層8との間にろう材層12bとしてのAl系ろう材板(長さ25mm×幅25mm×厚さ20μm)を介在配置した。また、セラミック層8と金属応力緩和層9との間と、金属応力緩和層9と放熱部材10との間とに、それぞれ、ろう材層12c、12dとしてのAl系ろう材板(長さ25mm×幅25mm×厚さ50μm)を介在配置した。各ろう材板の材質はいずれもAl−10質量%Siである。そして、加圧装置50によってこれらを積層方向に加圧した状態で真空中にて炉内ろう付けによって積層状に一括して接合した。これにより、接合体15を得た。この際のろう付け接合条件は、積層方向の加圧力:490Pa(5gf/cm2)、ろう付け温度:600℃、ろう付け温度の保持時間:20min、真空度:4×10−4Paである。そして、このろう付け接合が終了したら、積層方向の加圧を解除した。これにより、積層材2と第2のAl層7とセラミック層8と金属応力緩和層9と放熱部材10とを一体に有する接合体15を得た。
次いで、エッチング処理工程S5を次のように行った。エッチング液として60℃の水酸化ナトリウム水溶液(濃度:10質量%)を用いて、接合体15の第2のAl層7に対してエッチング処理を試みた。その結果、第2のAl層7の上面における積層材2の非配置部分(即ち非接合部分)をエッチング液によって深さ方向に溶解除去することができ、これにより、第2のAl層7を積層材2の形状に対応した回路パターン状に形成することができたし、また、積層材2のNi層3がエッチング処理用のレジスト層として機能しうることを確認し得た。
<比較例>
本比較例では、第2のAl層7の上面上にその全面を覆うように積層材2(長さ25mm×幅25mm)を配置したことを除いて、上記実施例と同様に絶縁基板を製造した。
次いで、エッチング液として60℃の水酸化ナトリウム水溶液(濃度:10質量%)中に絶縁基板を浸漬したところ、絶縁基板の積層材2のNi層3は溶解しなかった。したがって、絶縁基板の第2のAl層7をエッチング処理できないことを確認し得た。