JP5917931B2 - パラフィンの製造方法およびパラフィン製造装置 - Google Patents

パラフィンの製造方法およびパラフィン製造装置 Download PDF

Info

Publication number
JP5917931B2
JP5917931B2 JP2012022352A JP2012022352A JP5917931B2 JP 5917931 B2 JP5917931 B2 JP 5917931B2 JP 2012022352 A JP2012022352 A JP 2012022352A JP 2012022352 A JP2012022352 A JP 2012022352A JP 5917931 B2 JP5917931 B2 JP 5917931B2
Authority
JP
Japan
Prior art keywords
olefin
gas
raw material
separation
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012022352A
Other languages
English (en)
Other versions
JP2013159576A (ja
Inventor
晃裕 桑名
晃裕 桑名
坂本 純一
純一 坂本
啓之 畑
啓之 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2012022352A priority Critical patent/JP5917931B2/ja
Priority to KR1020147013757A priority patent/KR101914966B1/ko
Priority to PCT/JP2012/074561 priority patent/WO2013114667A1/ja
Priority to US14/364,734 priority patent/US9862656B2/en
Priority to TW101136027A priority patent/TWI564289B/zh
Publication of JP2013159576A publication Critical patent/JP2013159576A/ja
Application granted granted Critical
Publication of JP5917931B2 publication Critical patent/JP5917931B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、エタンおよびプロパンなどのパラフィンを製造する方法およびパラフィン製造装置に関する。
低級オレフィンの一例であるプロピレンは、ポリプロピレン、アクリロニトリルなどの合成樹脂製品、合成ゴム製品の原料として知られているが、近年、半導体電子材料分野での利用が広まっている。かかる用途については、プロピレンはより高純度であることが要求される。
高純度化の原料として用いるプロピレンを主成分とする原料ガスには、不純物として例えば、メタン、エタン、プロパン、イソブタン、ノルマルブタンなどが含まれている。この原料ガスからプロピレンガスを精製する方法としては、例えば、膜分離、吸着分離、吸収分離など種々の方法が知られている。その中で、銀イオンへのオレフィン類の吸着特性を利用した、膜分離、吸着分離、吸収分離の方法が知られている。
特許文献1には、銀イオンを用いた膜分離の方法によって、オレフィンを分離精製する技術が記載されている。特許文献1に記載の技術によれば、銀イオンをドープした分離膜を用いることによって、不純物としてパラフィンを含有するオレフィン原料から、オレフィンを分離精製している。
特許文献2には、銀イオンを用いた吸着分離の方法によって、オレフィンを分離精製する技術が記載されている。特許文献2に記載の技術によれば、アルミナ上に銀イオンを担持した吸着剤を用いることによって、不純物としてパラフィンを含有するオレフィン原料から、オレフィンを分離精製している。
特許文献3には、銀イオンを用いた吸収分離の方法によって、オレフィンを分離精製する技術が記載されている。特許文献3に記載の技術によれば、銀イオンを含有した吸収液を用いることによって、不純物としてパラフィンを含有するオレフィン原料から、オレフィンを分離精製している。
また、銀イオンを用いて分離精製したオレフィン中に含まれる主な不純物はパラフィンであり、オレフィンの高純度化により得られる高純度オレフィン中に残存してくる不純物も主にパラフィンであることがわかっている。例えば、特許文献3に記載の方法で精製されたプロピレン中の主な不純物はプロパン(100モルppm程度)であり、99.99モル%程度の高純度のプロピレンが得られる。
一方、低級パラフィンの一例であるプロパンは、次世代パワーデバイス材料であるSiCの原料用途など、半導体電子材料分野で利用され、水素希釈のプロパンガス、およびプロパンの純ガスで用いられる。かかる用途については、プロパンはより高純度であることが要求される。
高純度プロパンの原料として用いるプロパンを主成分とする原料ガスには、不純物として例えば、エタン、プロピレン、イソブタン、ノルマルブタンが高濃度含まれている。この原料ガスからプロパンを精製する方法としては、例えば、蒸留や、上述のオレフィン精製と同様に膜分離、吸着分離、吸収分離の方法が挙げられる。例えば、特許文献4には、プロピレンとプロパンとを蒸留法によって分離することが記載されている。
特開2001−321643号公報 US6468329 B2号 特表WO2009/110492号公報 特開2002−356448号公報
特許文献4に記載の技術のように、蒸留法によって、例えばプロピレンとプロパンとを分離する場合、それらの沸点が近いため(沸点差4.9℃)、その分離に多段階で蒸留を繰り返す必要がある。したがって、大規模な設備と精密な蒸留条件の設定が必要であり、実用化するうえで多大な障壁となっている。炭素数が同一のオレフィンとパラフィンとを、蒸留法によって分離する場合についても同様の問題が生じる。
また、特許文献1〜3に記載の技術のような、銀イオンを用いた膜分離、吸着分離、吸収分離による方法は、オレフィンとパラフィンとその他の不純物とを含む原料ガス中から、オレフィンを分離精製する方法としては優れている。しかしながら、銀イオンを用いた膜分離、吸着分離、吸収分離による方法は、原料ガスからパラフィンを分離精製する場合には、原料ガスから分離したパラフィン中にオレフィン以外のその他の不純物が残存しやすく、パラフィンを高純度で精製するには課題が多い。例えば、メタン、エタン、プロパン、プロピレン、イソブタン、ノルマルブタンを含む原料ガス中から、銀イオンを用いた分離によってプロパンを精製する場合、プロピレンを分離除去することができるものの、メタン、エタン、イソブタン、ノルマルブタンは残存してしまう問題がある。
したがって本発明の目的は、蒸留のような煩雑な操作を行うことなく、効率よく高純度のパラフィンを製造することができるパラフィンの製造方法、およびパラフィン製造装置を提供することである。
本発明者は、銀イオンと接触させることによってパラフィンと分離された、高純度のオレフィン中に含まれる僅かではあるが主な不純物が、取得目的とするパラフィンであることに着目した。そして、本発明者は、前記高純度のオレフィンを水添反応させることによって、不純物のパラフィンの除去精製が不必要であり、高収率で、かつ高純度のパラフィンが得られることを見出し、本発明を完成させるに至った。
本発明は、オレフィンを主成分として含有する原料オレフィンを、銀イオンを含む分離体と接触させることによって、原料オレフィンから不純物を分離して99.99モル%以上のオレフィンを回収する分離回収工程と、
前記分離回収工程において回収されたオレフィンを、触媒存在下で水素と接触させて水添反応させることによってパラフィンを得る水添工程と、を含むことを特徴とするパラフィンの製造方法である。
また本発明のパラフィンの製造方法において、前記分離体は、銀イオンがドープされた分離膜、銀イオンが担持された吸着剤、および銀イオンを含有する吸収液から選ばれることを特徴とする。
また本発明のパラフィンの製造方法において、前記吸収液は、硝酸銀水溶液であることを特徴とする。
また本発明のパラフィンの製造方法において、前記触媒は、パラジウム、ロジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも1種を含む触媒であることを特徴とする。
また本発明のパラフィンの製造方法において、前記原料オレフィンに含有されるオレフィンが、炭素数2または3のオレフィンであることを特徴とする。
また本発明のパラフィンの製造方法は、前記分離回収工程の前工程としての前水添工程であって、原料オレフィンを触媒存在下で水素と接触させて水添反応させることによって、原料オレフィンに含有されるアセチレンをエチレンにする前水添工程をさらに含むことを特徴とする。
また本発明は、銀イオンを含む分離体を有する分離回収手段であって、オレフィンを主成分として含有する原料オレフィンを、前記分離体と接触させることによって、原料オレフィンから不純物を分離して99.99モル%以上のオレフィンを回収する分離回収手段と、
前記分離回収手段で回収されたオレフィンを、触媒存在下で水素と接触させて水添反応させることによってパラフィンを得る水添手段と、を含むことを特徴とするパラフィン製造装置である。
本発明によれば、パラフィンの製造方法は、分離回収工程と水添工程とを含む。分離回収工程では、不純物としてパラフィンを含有する原料オレフィンを、銀イオンを含む分離体と接触させる。原料オレフィンの主成分であるオレフィンは、分離体に含まれる銀イオンと接触することによって錯体を形成する。これによって錯体を形成しないパラフィンを、原料オレフィンから分離でき、オレフィンを99.99モル%以上の高純度品として回収することができる。水添工程では、分離回収工程において得られた高純度オレフィンを、触媒存在下で水素と接触させて水添反応させる。このように、高純度オレフィンを水添反応させることによって、高純度のパラフィンを得ることができる。
また本発明によれば、分離回収工程において用いる分離体は、銀イオンがドープされた分離膜、銀イオンが担持された吸着剤、および銀イオンを含有する吸収液から選ばれることが好ましい。このような分離体を用いることによって、原料オレフィンからオレフィンを効率よく分離回収することができる。
また本発明によれば、分離体としての吸収液は、硝酸銀水溶液であることが好ましい。硝酸銀水溶液と接触した原料オレフィンの主成分であるオレフィンは、銀イオンと錯体を効率よく形成する。そのため、原料オレフィンの主成分であるオレフィンと、その他のパラフィンなどの含有物との、硝酸銀水溶液に対する溶解度の差が大きくなり、硝酸銀水溶液に対して溶解度の高い錯体を形成するオレフィンをより効果的に分離回収することができる。これによって、分離回収工程において99.99モル%以上の高純度のオレフィン(以下、高純度オレフィンまたは高純度のオレフィンということがある)を得ることができ、それに伴って水添工程において高純度のパラフィンを得ることができる。
以上




また本発明によれば、水添工程においてオレフィンの水添反応に用いられる触媒が、パラジウム、ロジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも1種を含む触媒であることが好ましい。このような触媒の存在下でオレフィンの水添反応を行うことによって、水添反応の効率を向上することができ、高純度のパラフィンの生産性を向上することができる。
また本発明によれば、原料オレフィンの主成分であるオレフィンが、炭素数2または3のオレフィン、すなわち、エチレンおよびプロピレンであることが好ましい。このようなエチレンおよびプロピレンを水添工程において水添反応させることによって、パラフィンとしてエタンおよびプロパンを製造することができる。
また本発明によれば、パラフィンの製造方法は、分離回収工程の前工程としての前水添工程をさらに含む。この前水添工程では、原料オレフィンを触媒存在下で水素と接触させて水添反応させることによって、原料オレフィンに含有されるアセチレンをオレフィンであるエチレンに変質させる。このように、分離回収工程の前に、原料オレフィンに含有されるアセチレンを予めオレフィンに変質させることによって、分離回収工程において高純度のオレフィンを得ることができる。
また本発明によれば、パラフィン製造装置は、分離回収手段と水添手段とを含む。分離回収手段は、銀イオンを含む分離体を有する。原料オレフィンの主成分であるオレフィンは、分離体に含まれる銀イオンと接触することによって錯体を形成し、錯体を形成しないパラフィンとはこれによって原料オレフィンからパラフィンを分離でき、オレフィンを高純度で回収することができる。水添手段は、分離回収手段で回収された高純度オレフィンを、触媒存在下で水素と接触させて水添反応させる。このように、高純度オレフィンを水添反応させることによって、高純度のパラフィンを得ることができる。
本発明の第1実施形態に係るパラフィン製造装置100の構成を示す図である。 本発明の第2実施形態に係るパラフィン製造装置300の構成を示す図である。
図1は、本発明の第1実施形態に係るパラフィン製造装置100の構成を示す図である。パラフィン製造装置100は、分離回収手段1と水添手段2とを含んで構成される。また、パラフィン製造装置100は、本発明に係るパラフィンの製造方法を実現し、分離回収手段1が分離回収工程を実行し、水添手段2が水添工程を実行する。
分離回収手段1は、オレフィンを主成分として含有する原料オレフィン(以下、「原料ガス」という)を、銀イオンを含む分離体と接触させることによって、原料ガスから不純物を分離してオレフィンを回収する。前記分離体としては、銀イオンがドープされた分離膜、銀イオンが担持された吸着剤、および銀イオンを含有する吸収液を挙げることができる。以下では、分離体として銀イオンを含有する吸収液を用いた場合を例として説明する。
分離回収手段1は、原料シリンダ11、吸収塔13、放散塔14、第1ミスト除去器15、第2ミスト除去器16、および脱水塔18を含んで構成される。
原料シリンダ11は、オレフィンを主成分として含有する原料ガスが充填されたシリンダであり、高圧条件で原料ガスが封入されている。
原料ガス中の主成分であるオレフィンとしては、エチレン、プロピレン、シクロプロペン、1−ブテン、2−ブテン、イソブテン、シクロブテン、1−メチルシクロプロペン、2−メチルシクロプロペン、メチリデンシクロプロパン、イソブチレン、1,3−ブタジエン、1,2−ブタジエン、シクロペンテン、2−メチル−1−ブテン、1−ペンテン、2−ペンテン、2−メチル−2−ブテン、1,4−ペンタジエン、1,3−ペンタジエン、シクロペンテン、メチレンシクロブタン、ビニルシクロプロパン、3−メチル−1,2−ブタジエン、1,2−ペンタジエン、イソプレン、2,3−ペンタジエン、1−ヘキセン、2−ヘキセン、3−ヘキセン、4−メチル−2−ペンテン、4−メチル−1−ペンテン、3,3−ジメチル−1−ブテン、2−メチル−ペンテン、2,3−ジメチル−1−ブテン、2,3−ジメチル−2−ブテン、2−メチル−2−ペンテン、3−メチル−1−ペンテン、3−メチル−2−ペンテン、3−メチル−2−ペンテン、4−メチル−2−ペンテン、2−エチル−1−ブテン、1,5−ヘキサジエン、1,4−ヘキサジエン、2,4−ヘキサジエン、2−メチル−1,3−ペンタジエン、2−メチル−1,4−ペンタジエン、3−メチル−1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン、シクロヘキセン、1,3−ヘキサジエン、2,4−ヘキサジエン、1−メチル−1−シクロペンテン、3−メチル−1,3−ペンタジエン、3−メチル−1,4−ペンタジエン、メチレンシクロペンタンなどが挙げられる。
本発明は、前記のオレフィンのうち、炭素数2または3のオレフィン(エチレン、プロピレンなど)を主成分として含有する原料ガスを用いた場合に特に効果的である。炭素数2または3のオレフィンを主成分として含有する原料ガスを用いた場合、本実施形態のパラフィン製造装置100は、炭素数2または3のパラフィンを製造することになる。
原料シリンダ11から導出された原料ガスは、吸収塔13に連続的に導入される。原料シリンダ11と吸収塔13との間には、第1流量調整器12が設けられた原料ガス導入管191が接続されている。原料シリンダ11から導出された原料ガスは、第1流量調整器12で所定の流量に制御されて原料ガス導入管191内を流過して、吸収塔13に導入される。吸収塔13に導入される原料ガスの流量は、例えば、吸収塔13の塔断面積1mあたり1〜100L/secであり、実験室規模であれば40〜4000mL/minである。
なお、原料シリンダ11と吸収塔13との間に、前水添手段(不図示)を配置するようにしてもよい。この前水添手段は、本発明のパラフィンの製造方法における前水添工程を実行する。前水添手段は、原料シリンダ11から導出された原料ガスを、触媒存在下で水素と接触させて水添反応させることによって、原料ガスに含有されるアセチレンをオレフィンであるエチレンに変質させる。このように、吸収塔13に導入される前に、原料ガスに含有されるアセチレンを予めオレフィンに変質させることによって、分離回収手段1において高純度のオレフィンを得ることができる。また、原料ガスに含有されるアセチレンを予めオレフィンに変質させることによって、吸収塔13内において貯留される銀イオンを含む吸収液中に、爆発性の銀アセチリドが蓄積されるのを防止することができる。
前水添手段による、アセチレンを選択的に水素添加してエタンまで変質しないようにエチレンに変質させる水添方法としては、例えば特公平3−63431号公報に記載の選択的水素添加用触媒(Pd/Al触媒)を用いる方法を挙げることができる。
吸収塔13は、中空筒状に形成された密閉容器であり、その内部空間には銀イオン含有溶液からなる吸収液が貯留されている。この吸収液は、例えば、所定の濃度に調製された硝酸銀水溶液である。原料ガス導入管191の一端部は、吸収塔13の下部において吸収液中で開放している。原料シリンダ11から導出されて原料ガス導入管191内を吸収塔13に向けて流過する原料ガスは、原料ガス導入管191の前記一端部から吸収液中に流れ込む。このようにして、原料ガスが、銀イオンを含有する吸収液と接触することになる。吸収液と接触した原料ガスは、吸収液に吸収される。原料ガス中の主成分であるオレフィンの吸収液に対する溶解度は、原料ガス中の不純物(例えばパラフィン)の吸収液に対する溶解度に比べて相当に大きいので、オレフィンが優先的に吸収液に吸収される。
吸収塔13内の吸収液(例えば硝酸銀水溶液)については、濃度が高いほうが単位体積・単位時間あたりのオレフィンの吸収量が多くなるので好ましい。実用上の観点から、オレフィンがプロピレンの場合、硝酸銀水溶液の濃度は、例えば1〜6mol/Lの範囲とされ、より好ましくは3〜5mol/Lとされる。硝酸銀水溶液の温度については、低温であるほうがオレフィンの吸収量が多くなるので有利であり、例えば0〜60℃の範囲とされ、より好ましくは0〜40℃とされる。吸収塔13の内部圧力については、一定範囲では高圧であるほうがオレフィンの吸収量が多くなるので好ましい。実用上の観点から、吸収塔13の内部圧力は、例えば0.1〜0.8MPa(ゲージ圧:以下「(G)」と表記する)とされる。
また、吸収塔13には、第1吸収液導出管192と第1ガス導出管194とが接続されている。第1吸収液導出管192は、その一端部が吸収塔13の下部において吸収液中で開放しており、吸収塔13内の吸収液(原料ガスが吸収された吸収液、以下「原料ガス吸収液」という)を塔外へ導出するための配管である。この第1吸収液導出管192は、その他端部が吸収液導入管193と接続されている。吸収塔13から導出されて第1吸収液導出管192内を流過する原料ガス吸収液は、流量制御バルブ192Aによって所定の流量に調整されて、吸収液導入管193を介して後述する放散塔14に導入される。
第1ガス導出管194は、吸収塔13の上部に接続されており、吸収塔13内に貯留される吸収液に吸収されなかったガス(非吸収ガス)を塔外へ導出するための配管である。この第1ガス導出管194は、その一端部が吸収塔13の上部に接続され、他端部が後述する第1ミスト除去器15に接続されている。吸収塔13から導出されて第1ガス導出管194内を流過する非吸収ガスは、第1ミスト除去器15に導入される。
上記のように構成される吸収塔13としては、例えば、公知の気泡塔、充填塔、濡れ壁塔、スプレー塔、スクラバー、棚段塔などを採用することができる。また、吸収塔13には、吸収塔13内に貯留される吸収液を所望の温度に維持するための温度調整装置が取付けられている。この温度調整装置は、例えば、気体または液体からなる温調媒体を、吸収塔13の周囲に設けられたジャケットに通流させる。
吸収塔13から導出された原料ガス吸収液は、吸収塔13の内部圧力と放散塔14の内部圧力との圧力差によって、吸収液導入管193を介して放散塔14に導入される。なお、前記圧力差が小さい場合には、ポンプを用いて原料ガス吸収液を移送するようにしてもよい。放散塔14に導入される原料ガス吸収液の流量は、流量制御バルブ192Aによって調整され、例えば、放散塔14の塔断面積1mあたり0.1〜10L/secであり、実験室規模であれば5〜500mL/minである。
放散塔14は、中空筒状に形成された密閉容器であり、その内部空間には所定量の原料ガス吸収液を収容可能である。この放散塔14は、その内部空間に収容された原料ガス吸収液に含まれるガス成分を放散させる。当該ガス成分を効率よく放散させる観点から、放散塔14の内部温度は吸収塔13に比べて高くされていることが好ましく、内部圧力は吸収塔13に比べて低くされていることが好ましい。放散塔14内の原料ガス吸収液の温度は、オレフィンがプロピレンの場合、例えば10〜70℃が好ましく、20〜70℃がより好ましい。放散塔14の内部圧力は、オレフィンがプロピレンの場合、例えば−0.09〜0.3MPa(G)が好ましく、0〜0.3MPa(G)がより好ましい。
また、放散塔14には、第2ガス導出管195と第2吸収液導出管196とが接続されている。第2ガス導出管195は、放散塔14の上部に接続されており、原料ガス吸収液から放散されたガス成分(以下、「放散ガス」という)を塔外へ導出するための配管である。この第2ガス導出管195は、その一端部が放散塔14の上部に接続され、他端部が後述する第2ミスト除去器16に接続されている。放散塔14から導出されて第2ガス導出管195内を流過する放散ガスは、第2ミスト除去器16に導入される。
第2吸収液導出管196は、その一端部が放散塔14の下部において原料ガス吸収液中で開放しており、放散塔14内の原料ガス吸収液(ガス成分が放散された吸収液、以下「ガス成分放散吸収液」という)を塔外へ導出するための配管である。この第2吸収液導出管196は、その他端部がポンプ17を介して吸収塔13の第1ガス導出管194の中間部分に接続されている。放散塔14から導出されて第2吸収液導出管196内を流過するガス成分放散吸収液は、ポンプ17によって送液されて、第1ガス導出管194を介して吸収塔13内に戻される。
上記のように構成される放散塔14としては、原料ガス吸収液が液分散させられる構成のものが好適であり、例えば、公知の充填塔、スプレー塔などを採用することができる。また、放散塔14には、放散塔14内に収容される原料ガス吸収液を所望の温度に維持するための温度調整装置が取付けられている。
吸収塔13から導出されて第1ガス導出管194内を流過する非吸収ガスは、第1ミスト除去器15に導入される。第1ミスト除去器15は、吸収塔13から導出される非吸収ガスに含まれるミストを分離する。第1ミスト除去器15には、当該第1ミスト除去器15を通過したガスを装置外部に導くためのガス排出管197が接続されている。ガス排出管197には、第1圧力計197Aおよび第1背圧弁197Bが設けられている。第1背圧弁197Bは、吸収塔13の内部が所定の圧力となるように開度が制御される。
放散塔14から導出されて第2ガス導出管195内を流過する放散ガスは、第2ミスト除去器16に導入される。第2ミスト除去器16に導入される放散ガスは、吸収塔13において原料ガス中のオレフィンが優先的に吸収された原料ガス吸収液から放散したものであるので、原料ガスよりもオレフィン濃度が高まっている。第2ミスト除去器16は、放散塔14から導出される放散ガスに含まれるミストを分離する。第2ミスト除去器16には、当該第2ミスト除去器16を通過したガスを脱水塔18に導くための第3ガス導出管198が接続されている。第3ガス導出管198には、第2圧力計198Aおよび第2背圧弁198Bが設けられている。第2背圧弁198Bは、放散塔14の内部が所定の圧力となるように開度が制御される。
脱水塔18は、第2ミスト除去器16から導出された、放散ガスからミストが除去されたガス(原料ガスよりもオレフィン濃度が高濃度化されたガス、以下「高濃度オレフィンガス」という)に含まれる水分を除去する。脱水塔18には、水分を吸着する吸着剤が充填されている。このような吸着剤としては、シリカゲル、アルミナ、およびゼオライトなどを挙げることができ、ゼオライトとしては、モレキュラーシーブ3A、モレキュラーシーブ4A、およびモレキュラーシーブ13Xなどを挙げることができる。脱水塔18において水分が吸着除去された高濃度オレフィンガスは、後述する水添手段2に供給されるものであり、原料ガスに含有されていた不純物が低濃度化され、かつオレフィンが高濃度化された高純度オレフィンとなる。このような高純度オレフィンは、脱水塔18に接続される精製オレフィン導出管199を介して水添手段2に導入される。
以上のような、原料シリンダ11、吸収塔13、放散塔14、第1ミスト除去器15、第2ミスト除去器16、および脱水塔18を含んで構成される分離回収手段1によれば、吸収塔13内では、原料シリンダ11から原料ガス導入管191を介して原料ガスが導入されると、当該原料ガスが吸収液と接触し、順次吸収液に吸収される。吸収液に対するオレフィンの溶解度が、原料ガス中の不純物の溶解度に比べて相当に大きいので、原料ガス中の主成分であるオレフィンが優先的に吸収液に吸収される。そのため、原料ガスが吸収液中を吸収されながら上昇するにつれて、当該ガス中においてはオレフィン濃度が低下する一方、不純物濃度は上昇する。
その一方、吸収塔13内の吸収液については、吸収塔13内で原料ガスを吸収した吸収液(原料ガス吸収液)が、吸収塔13の下部から第1吸収液導出管192を介して所定流量で吸収塔13外へ流出しつつ、放散塔14内でガス成分を放散した吸収液(ガス成分放散吸収液)が、ポンプ17によって送液されて、第1ガス導出管194を介して吸収塔13の上部から吸収塔13内に戻される。これによって、吸収塔13内の吸収液においては、下向きの流れが生じている。したがって、原料ガス導入管191から吸収塔13内に導入された原料ガスは、吸収塔13内で下向きに流れる吸収液と向流接触し、当該接触により吸収液に吸収されなった非吸収ガスが吸収塔13の上部空間へ吹き抜ける。当該非吸収ガスは、第1ガス導出管194を介して第1ミスト除去器15に送られ、液体成分が分離除去された上で、ガス排出管197を介して系外へオフガスとして排出される。一方、第1ミスト除去器15によって分離された液体成分は、液滴となって第1ガス導出管194を通じて落下し、吸収塔13内に戻される。
このようにして、吸収塔13では、連続的に供給される原料ガスが吸収液と接触することにより当該原料ガス中のオレフィンが優先的に吸収液に吸収される一方、非吸収ガスが塔外へ排出される。
放散塔14内では、吸収塔13から導出された原料ガス吸収液中のガス成分が放散される。原料ガス吸収液から放散された放散ガスは、第2ガス導出管195を介して第2ミスト除去器16に送られ、液成分が除去された上で、第3ガス導出管198を介して脱水塔18に送られて水分が吸着除去されて、高純度オレフィンとして水添手段2に供給される。
放散塔14内において、ガス成分が放散した吸収液は、第2吸収液導出管196を通じてポンプ17によって第1ガス導出管194へと送出され、その後、吸収塔13内に落下する。このとき、ポンプ17によって送出される吸収液の流量は、吸収塔13から放散塔14へ流入する吸収液の流量と同程度とされている。これにより、吸収塔13内の吸収液と放散塔14内の吸収液とは、相互にバランスして循環する。
このようにして、放散塔14では、所定流量で流入し続ける吸収液のガス成分が放散するとともに放散ガスが塔外に導出されて、脱水塔18を介して高純度オレフィンとして水添手段2に供給されることになる。
水添手段2は、分離回収手段1から導出された高純度オレフィンを、触媒存在下で水素と接触させて水添反応させ、高純度のパラフィンを得る手段である。水添手段2は、水素シリンダ22、水添反応器24、および回収容器25を含んで構成される。
分離回収手段1の脱水塔18から導出されて精製オレフィン導出管199内を流過する高純度オレフィンは、第2流量調整器21によって所定の流量に調整されて、精製オレフィン供給管261内を流過し、混合配管263を介して後述する水添反応器24に連続的に導入される。水添反応器24に導入される高純度オレフィンは、空間速度SVが、10〜10000/hになるように調整されることが好ましく、200〜10000/hに調整されることが特に好ましい。
水素シリンダ22は、水素ガスが充填されたシリンダであり、高圧条件で水素ガスが封入されている。水素ガスの純度は、99〜99.99999モル%であり、好ましくは99.99999モル%である。高純度オレフィンの水添反応に用いる水素ガスの純度が低いと、得られるパラフィンと水素との混合ガス中において、その他の不純物濃度が高くなる。水素シリンダ22から導出された水素ガスは、第3流量調整器23によって所定の流量に調整されて、水素供給管262内を流過し、混合配管263を介して水添反応器24に連続的に導入される。水添反応器24に導入される水素ガスの流量は、空間速度SVが、10〜10000/hになるように調整されることが好ましく、200〜10000/hに調整されることが特に好ましい。
精製オレフィン供給管261内を流過する高純度オレフィンと、水素供給管262内を流過する水素ガスとは、混合配管263内で混合されて水添反応器24に導入される。
水添反応器24は、中空筒状に形成された密閉容器であり、その内部空間に触媒が充填されている。また、水添反応器24には、水添反応器24内を所望の温度に維持するための温度調整装置が取付けられている。水添反応器24内では、分離回収手段1によって精製された高純度オレフィンが触媒存在下で水素ガスと接触して水添反応が行われて、高純度のパラフィンを生成する。
例えば、原料シリンダ11から導出される原料ガスが、プロピレンを主成分とするガスである場合、その原料ガスには、不純物として、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、イソブタン、ノルマルブタン、1,3−ブタジエンなどが含まれている。このような、プロピレンを主成分とする原料ガス(以下、「粗プロピレン」という)を、分離回収手段1で精製することなく、水添手段2に直接導入して水添反応を行い、プロピレンの水添物であるプロパンを生成する場合、粗プロピレンに含まれる不純物に由来の、下記式(1)のシフト反応、下記式(2)の酸化反応、下記式(3),(4)の水添反応などの副反応が起こる可能性がある。
Figure 0005917931
Figure 0005917931
Figure 0005917931
Figure 0005917931
式(1)のシフト反応が起こった場合、所望の生成物であるプロパン(C)以外の不純物が増えてしまう。式(2)の酸化反応が起こった場合、所望の生成物であるプロパン(C)の収率が低下したり、その他の不純物が増えてしまう。式(3),(4)の水添反応が起こった場合、所望の生成物であるプロパン(C)以外の不純物パラフィンが増えてしまう。
すなわち、原料シリンダ11から導出される原料ガスを、分離回収手段1で精製することなく、水添手段2に直接導入して水添反応を行った場合には、原料ガス中に含まれる不純物に由来する副反応の影響によって、高純度のパラフィンを生成することができない。
これに対して、本実施形態のパラフィン製造装置100では、分離回収手段1によって精製された高純度オレフィンを、水添反応器24内で水添反応させる。分離回収手段1によって精製された高純度オレフィン(オレフィンがプロピレンの場合)の不純物濃度は、例えば、酸素が1モルppm以下、窒素が5モルppm以下、二酸化炭素が1モルppm以下、プロパンが100モルppm以下である。
本実施形態では、上記のような、不純物濃度が極めて低い高純度オレフィンを、水添反応器24内で水添反応させるので、不純物に由来する副反応の影響を抑制することができ、これによって高純度のパラフィンを生成することができる。
水添反応器24内に充填される触媒としては、還元触媒であれば特に限定されるものではないが、例えば、パラジウム(Pd)、ロジウム(Rh)、白金(Pt)、ルテニウム(Ru)、およびニッケル(Ni)から選ばれる少なくとも1種を含む触媒であることが好ましく、パラジウム(Pd)を含む触媒であることが特に好ましい。このような触媒の存在下で高純度オレフィンの水添反応を行うことによって、水添反応の効率を向上することができ、高純度のパラフィンの生産性を向上することができる。
なお、アルミナボールやセラミックボールなどと触媒とを混合した状態で、水添反応器24内に充填するようにしてもよい。これによって、水添反応器24内での水添反応に伴う発熱を抑制することができるので、反応温度を一定に保持することができる。
また、水添反応器24内において、高純度オレフィンおよび水素ガスの空間速度SVは、10〜100000/hであることが好ましく、200〜10000/hであることが特に好ましい。空間速度SVが小さすぎる場合、使用する触媒量が多くなりコストが高くなる。空間速度SVが大きすぎる場合、オレフィンがパラフィンに変質するように十分な水添が行われないおそれがある。
また、水添反応器24内において、高純度オレフィンと水素ガスとのモル比は、高純度オレフィン/水素=1/1〜1/100であることが好ましく、1/1.1〜1/10であることが特に好ましい。高純度オレフィンに対する水素のモル比が小さすぎる場合、オレフィンがパラフィンに変質させる水添が十分に行われないおそれがある。高純度オレフィンに対する水素のモル比が大きすぎる場合、生成されるパラフィン中に未反応の水素ガスが多く残り過ぎてしまう。
また、水添反応器24内の温度は、0〜700℃であることが好ましく、50〜200℃であることが特に好ましい。温度が低すぎる場合、触媒を用いる水添反応が進みにくくなる。また、温度が高すぎる場合、水添反応時の温度を一定に保持するための設備コストがかかるばかりではなく、オレフィンの分解が起こるおそれがある。
また、水添反応器24内の圧力は、0.0〜2.0MPa(G)であることが好ましく、0.0〜0.5MPa(G)であることが特に好ましい。水添反応は、一般的に高圧条件下で促進される傾向であるが、圧力が高すぎる場合には、反応熱が多く発生し反応温度を安定させるための障害となる。また、圧力が高すぎる場合、高圧用コンプレッサーなどの設備が必要になり、コストが高くなる問題がある。
本実施形態の水添反応器24では、分離回収手段1により精製された高純度オレフィンを、触媒存在下で水素ガスと接触させて水添反応を行うことによって、高純度パラフィンを生成することができる。
水添反応器24内において高純度オレフィンの水添反応によって生成された高純度パラフィンは、水素ガスとともに、精製パラフィン導出管264を介して回収容器25に送出されて、回収容器25内に収容される。この回収容器25内に収容された高純度パラフィンは、水素との混合物である。また、精製パラフィン導出管264には、第3圧力計264Aおよび第3背圧弁264Bが設けられている。第3背圧弁264Bは、水添反応器24の内部が所定の圧力となるように開度が制御される。
以上のように、本実施形態のパラフィン製造装置100では、分離回収手段1によって精製された高純度オレフィンを、水添手段2によって触媒存在下で水素ガスと接触させて水添反応を行うことによって、蒸留のような煩雑な操作を行うことなく、効率よく高純度のパラフィンを得ることができる。
図2は、本発明の第2実施形態に係るパラフィン製造装置300の構成を示す図である。本実施形態のパラフィン製造装置300は、前述のパラフィン製造装置100に類似し、対応する部分については同一の参照符号を付して説明を省略する。パラフィン製造装置300では、水添手段301の構成が、前述のパラフィン製造装置100の水添手段2と異なる。このパラフィン製造装置300は、パラフィン製造装置100と同様に分離回収手段1を備えるけれども、図2では分離回収手段1を省略している。
パラフィン製造装置300の水添手段301は、水素分離装置302をさらに備えること以外は、パラフィン製造装置100の水添手段2と同様である。
水素分離装置302は、水添反応器24から導出される、高純度パラフィンと水素との混合物から水素を分離除去するための装置である。また、水素分離装置302は、水素以外にも窒素、酸素などの低沸点ガスも除去できる。このような水素分離装置302としては、混合物を分縮することで混合物から水素を分離除去するコンデンサー、または、水素分離膜を用いることで混合物から水素を分離除去する水素分離膜装置などを挙げることができる。
水素分離装置302によって水素が分離除去された高純度パラフィンは、水素分離装置302の下部から精製パラフィン導出管303を介して回収容器25に送出されて、回収容器25内に収容される。
また、水素分離装置302には、水素導出管304が接続されている。水素導出管304は、水素分離装置302の上部に接続されており、高純度パラフィンと水素との混合物から分離された水素ガスを、装置外へ導出するための配管である。水素導出管304は、その一端部が水素分離装置302の上部に接続され、他端部が、水添反応器24に高純度オレフィンを導入するための精製オレフィン供給管261の中間部分に接続されている。
水素分離装置302から導出されて水素導出管304内を流過する水素ガスは、精製オレフィン供給管261を介して水添反応器24内に戻されて、水添反応器24内での水添反応の水素源として用いることができる。なお、混合物から分離された水素ガスは、上記のように水添反応器24内に戻すようにせずに、系外に排気するようにしてもよい。
以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
(実施例1)
<高純度オレフィンの製造>
原料ガスとして、プロピレンを主成分とする粗プロピレン(プロピレン濃度99.5モル%、プロパン濃度0.5モル%、三井化学社製)を用いた。この粗プロピレンを、吸収液として硝酸銀水溶液を用いた図1に示す分離回収手段1に、流量663mL/minで供給して精製した。具体的には、気泡塔からなる吸収塔13および放散塔14として、それぞれ、ステンレス製の円筒管(内径54.9mm×高さ500mm、容積1185mL)を用いた。吸収塔13には、5mol/Lの硝酸銀水溶液を735mL(吸収液の液面高さ310mm)貯留させ、放散塔14には、同濃度の硝酸銀水溶液を355mL(吸収液の液面高さ150mm)貯留させた。
吸収塔13における条件としては、内部圧力を0.5MPa(G)とし、内部温度を25℃とした。放散塔14における条件としては、内部圧力を0.1MPa(G)とし、内部温度を25℃とした。吸収塔13および放散塔14に貯留された硝酸銀水溶液は、流量が25mL/minとなるように循環させた。放散塔14では、放散ガス(精製プロピレンガス)が637mL/minで導出され、回収率は96.1モル%であった。また、吸収塔13では、非吸収ガスが26mL/minで排出され、排出率は3.9モル%であった。
分離回収手段1で得られたプロピレンガスの純度をガスクロマトグラフィー(FID)により分析したところ、純度99.99モル%であり、主な不純物であるプロパンの不純物濃度は56モルppmであった。
<パラフィンの生成>
分離回収手段1で得られた高純度プロピレンガスを、図1に示す水添手段2の水添反応器24に、流量40mL/minで供給した。また、純度99.9999モル%の水素ガスを、水素シリンダ22から水添反応器24に、流量60mL/minで供給した。水添反応器24として、ステンレス製の円筒管(内径12.4mm×高さ50mm)を用いた。水添反応器24には、Pd(0.5重量%)/Al触媒(N1182AZ、日揮触媒化成製)を6mL充填した。水添反応器24における水添反応条件としては、内部圧力を0.1MPa(G)とし、内部温度を150℃とした。
水添反応器24から導出された生成ガスは、プロパンガスと水素ガスとの混合ガス(プロパン/水素のモル比=2/1)であり、その生成ガスにおける主な不純物であるプロピレンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、1モルppm以下であった。
以上のように、実施例1では、プロピレン濃度99.5モル%、プロパン濃度0.5モル%の粗プロピレンを原料として、プロピレン濃度1モルppm以下の高純度プロパンが得られた。
(実施例2)
<高純度オレフィンの製造>
原料ガスとして、エチレンを主成分とする粗エチレン(エチレン濃度99.4モル%、エタン濃度0.6モル%、日本ファインガス社製)を用いた。この粗エチレンを、吸収液として硝酸銀水溶液を用いた図1に示す分離回収手段1に、流量800mL/minで供給して精製した。吸収塔13には、3mol/Lの硝酸銀水溶液を237mL(吸収液の液面高さ100mm)貯留させ、放散塔14には、同濃度の硝酸銀水溶液を355mL(吸収液の液面高さ150mm)貯留させた。
吸収塔13における条件としては、内部圧力を0.5MPa(G)とし、内部温度を25℃とした。放散塔14における条件としては、内部圧力を0.1MPa(G)とし、内部温度を40℃とした。吸収塔13および放散塔14に貯留された硝酸銀水溶液は、流量が25mL/minとなるように循環させた。放散塔14では、放散ガス(精製エチレンガス)が760mL/minで導出され、回収率は95.0モル%であった。また、吸収塔13では、非吸収ガスが40mL/minで排出され、排出率は5.0モル%であった。
分離回収手段1で得られたエチレンガスの純度をガスクロマトグラフィー(FID)により分析したところ、純度99.99モル%であり、主な不純物であるエタンの不純物濃度は33モルppmであった。
<パラフィンの生成>
分離回収手段1で得られた高純度エチレンガスを、図1に示す水添手段2の水添反応器24に、流量40mL/minで供給した。また、純度99.9999モル%の水素ガスを、水素シリンダ22から水添反応器24に、流量60mL/minで供給した。水添反応器24には、Rh(0.5重量%)/Al触媒(アルドリッチ社製)を12mL充填した。水添反応器24における水添反応条件としては、内部圧力を0.1MPa(G)とし、内部温度を130℃とした。
水添反応器24から導出された生成ガスは、エタンガスと水素ガスとの混合ガス(エタン/水素のモル比=2/1)であり、その生成ガスにおける主な不純物であるエチレンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、1モルppm以下であった。
以上のように、実施例2では、エチレン濃度99.4モル%、エタン濃度0.6モル%の粗エチレンを原料として、エチレン濃度1モルppm以下の高純度エタンが得られた。
(実施例3)
<高純度オレフィンの製造>
分離回収手段の分離体として、銀イオンがドープされた分離膜を用いた。この分離膜は、具体的には、スルホン酸型パーフルオロ系カチオン交換膜を銀イオンで交換したものである。スルホン酸型パーフルオロ系カチオン交換膜を、濃度1mol/Lの硝酸銀水溶液中に24時間以上浸漬し、対イオンを交換した。膜表面に付着している溶液を排除した後、25℃で24時間自然乾燥して銀イオン交換したスルホン酸型パーフルオロ系カチオン膜を作製した。この銀イオン交換膜を用いて、膜分離を行った。膜分離装置は、広く知られた一般的な装置を用いた。
原料ガスとして、プロピレンを主成分とする粗プロピレン(プロピレン濃度99.5モル%、プロパン濃度0.5モル%、三井化学社製)を用いた。膜分離による粗プロピレンの精製は、並流で行った。粗プロピレンを、流量200mL/minで連続的に銀イオン交換膜に流し、膜の内外の差圧を0.4MPaに保持して膜分離装置を稼働させた。
膜分離装置により得られたプロピレンガスにおける主な不純物であるプロパンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、800モルppmであった。また、銀イオン交換膜の分離係数αは5.8であった。
<パラフィンの生成>
膜分離装置により得られた高純度プロピレンガスを、図1に示す水添手段2の水添反応器24に、流量40mL/minで供給した。また、純度99.9999モル%の水素ガスを、水素シリンダ22から水添反応器24に、流量60mL/minで供給した。水添反応器24として、ステンレス製の円筒管(内径12.4mm×高さ50mm)を用いた。水添反応器24には、Pd(0.5重量%)/Al触媒(N1182AZ、日揮触媒化成製)を6mL充填した。水添反応器24における水添反応条件としては、内部圧力を0.0MPa(G)とし、内部温度を170℃とした。
水添反応器24から導出された生成ガスは、プロパンガスと水素ガスとの混合ガス(プロパン/水素のモル比=2/1)であり、その生成ガスにおける主な不純物であるプロピレンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、1モルppm以下であった。
以上のように、実施例3では、プロピレン濃度99.5モル%、プロパン濃度0.5モル%の粗プロピレンを原料として、プロピレン濃度1モルppm以下の高純度プロパンが得られた。
(実施例4)
<高純度オレフィンの製造>
分離回収手段の分離体として、銀イオンが担持された吸着剤を用いた。この吸着剤は、具体的には、硝酸銀をY型ゼオライト(320HOA、東ソー社製)に24重量%含浸させた吸着剤である。この吸着剤を吸着塔(20A×300mm)に充填した装置を分離回収手段とした。
原料ガスとして、プロピレンを主成分とする粗プロピレン(プロピレン濃度99.5モル%、プロパン濃度0.5モル%、三井化学社製)を用いた。吸着分離操作は次のように行った。吸着工程では、粗プロピレンを吸着塔に供給して破過させた後、さらに15分間150mL/minで通気した。その後、吸着塔から導出されたプロピレンガスを減圧(〜10mmHg)下で回収した。
吸着分離操作により得られたプロピレンガスにおける主な不純物であるプロパンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、110モルppmであった。
<パラフィンの生成>
吸着分離操作により得られた高純度プロピレンガスを、図1に示す水添手段2の水添反応器24に、流量40mL/minで供給した。また、純度99.9999モル%の水素ガスを、水素シリンダ22から水添反応器24に、流量60mL/minで供給した。水添反応器24として、ステンレス製の円筒管(内径12.4mm×高さ100mm)を用いた。水添反応器24には、Rh(0.5重量%)/Al触媒(アルドリッチ社製)6mLと直径2mmのアルミナボール(HD−2、住友化学製)6mLとの混合物を充填した。水添反応器24における水添反応条件としては、内部圧力を0.2MPa(G)とし、内部温度を200℃とした。
水添反応器24から導出された生成ガスは、プロパンガスと水素ガスとの混合ガス(プロパン/水素のモル比=2/1)であり、その生成ガスにおける主な不純物であるプロピレンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、1モルppm以下であった。
以上のように、実施例4では、プロピレン濃度99.5モル%、プロパン濃度0.5モル%の粗プロピレンを原料として、プロピレン濃度1モルppm以下の高純度プロパンが得られた。
(実施例5)
<高純度オレフィンの製造>
原料シリンダ11と分離回収手段1との間に、前水添手段を配置したパラフィン製造装置を用いた。前水添手段は、不純物として5モルppmのアセチレンを含有する粗エチレン(エチレン濃度99.4モル%、エタン濃度0.6モル%)を、選択的水添反応させた。前水添手段としては、具体的には、ステンレス製の円筒管(内径12.4mm×高さ50mm)にPd(0.5重量%)/Al触媒(N1182AZ、日揮触媒化成製)を6mL充填したものを用いた。
この前水添手段に、粗エチレンガスを流量40mL/minで供給し、純度99.9999モル%の水素ガスを流量60mL/minで供給した。前水添手段における水添反応条件としては、内部圧力を0.0MPa(G)とし、内部温度を100℃とした。前水添手段から導出された生成ガス(エチレンガス)は、アセチレンが検出されなかった。
以上のようにしてアセチレンを除去したエチレンガスを、吸収液として硝酸銀水溶液を用いた図1に示す分離回収手段1に、流量800mL/minで供給して精製した。吸収塔13には、3mol/Lの硝酸銀水溶液を237mL(吸収液の液面高さ100mm)貯留させ、放散塔14には、同濃度の硝酸銀水溶液を355mL(吸収液の液面高さ150mm)貯留させた。
吸収塔13における条件としては、内部圧力を0.5MPa(G)とし、内部温度を25℃とした。放散塔14における条件としては、内部圧力を0.1MPa(G)とし、内部温度を40℃とした。吸収塔13および放散塔14に貯留された硝酸銀水溶液は、流量が25mL/minとなるように循環させた。放散塔14では、放散ガス(精製エチレンガス)が760mL/minで導出され、回収率は95.0モル%であった。また、吸収塔13では、非吸収ガスが40mL/minで排出され、排出率は5.0モル%であった。
分離回収手段1で得られたエチレンガスの純度をガスクロマトグラフィー(FID)により分析したところ、純度99.99モル%であり、主な不純物であるエタンの不純物濃度は33モルppmであった。
<パラフィンの生成>
分離回収手段1で得られた高純度エチレンガスを、図1に示す水添手段2の水添反応器24に、流量40mL/minで供給した。また、純度99.9999モル%の水素ガスを、水素シリンダ22から水添反応器24に、流量60mL/minで供給した。水添反応器24には、Rh(0.5重量%)/Al触媒(アルドリッチ社製)を12mL充填した。水添反応器24における水添反応条件としては、内部圧力を0.1MPa(G)とし、内部温度を130℃とした。
水添反応器24から導出された生成ガスは、エタンガスと水素ガスとの混合ガス(エタン/水素のモル比=2/1)であり、その生成ガスにおける主な不純物であるエチレンの不純物濃度は、ガスクロマトグラフィー(FID)により分析したところ、1モルppm以下であった。
以上のように、実施例5では、エチレン濃度99.4モル%、エタン濃度0.6モル%の粗エチレンを原料として、エチレン濃度1モルppm以下の高純度エタンが得られた。
1 分離回収手段
2,301 水添手段
11 原料シリンダ
12 第1流量調整器
13 吸収塔
14 放散塔
15 第1ミスト除去器
16 第2ミスト除去器
17 ポンプ
18 脱水塔
21 第2流量調整器
22 水素シリンダ
23 第3流量調整器
24 水添反応器
25 回収容器
100,300 パラフィン製造装置
302 水素分離装置

Claims (7)

  1. オレフィンを主成分として含有する原料オレフィンを、銀イオンを含む分離体と接触させることによって、原料オレフィンから不純物を分離して99.99モル%以上のオレフィンを回収する分離回収工程と、
    前記分離回収工程において回収されたオレフィンを、触媒存在下で水素と接触させて水添反応させることによってパラフィンを得る水添工程と、を含むことを特徴とするパラフィンの製造方法。
  2. 前記分離体は、銀イオンがドープされた分離膜、銀イオンが担持された吸着剤、および銀イオンを含有する吸収液から選ばれることを特徴とする請求項1に記載のパラフィンの製造方法。
  3. 前記吸収液は、硝酸銀水溶液であることを特徴とする請求項2に記載のパラフィンの製造方法。
  4. 前記触媒は、パラジウム、ロジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも1種を含む触媒であることを特徴とする請求項1〜3のいずれか1つに記載のパラフィンの製造方法。
  5. 前記原料オレフィンに含有されるオレフィンが、炭素数2または3のオレフィンであることを特徴とする請求項1〜4のいずれか1つに記載のパラフィンの製造方法。
  6. 前記分離回収工程の前工程としての前水添工程であって、原料オレフィンを触媒存在下で水素と接触させて水添反応させることによって、原料オレフィンに含有されるアセチレンをエチレンにする前水添工程をさらに含むことを特徴とする請求項1〜5のいずれか1つに記載のパラフィンの製造方法。
  7. 銀イオンを含む分離体を有する分離回収手段であって、オレフィンを主成分として含有する原料オレフィンを、前記分離体と接触させることによって、原料オレフィンから不純物を分離して99.99モル%以上のオレフィンを回収する分離回収手段と、
    前記分離回収手段で回収されたオレフィンを、触媒存在下で水素と接触させて水添反応させることによってパラフィンを得る水添手段と、を含むことを特徴とするパラフィン製造装置。
JP2012022352A 2012-02-03 2012-02-03 パラフィンの製造方法およびパラフィン製造装置 Active JP5917931B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012022352A JP5917931B2 (ja) 2012-02-03 2012-02-03 パラフィンの製造方法およびパラフィン製造装置
KR1020147013757A KR101914966B1 (ko) 2012-02-03 2012-09-25 파라핀의 제조 방법 및 파라핀 제조 장치
PCT/JP2012/074561 WO2013114667A1 (ja) 2012-02-03 2012-09-25 パラフィンの製造方法およびパラフィン製造装置
US14/364,734 US9862656B2 (en) 2012-02-03 2012-09-25 Method for producing paraffins
TW101136027A TWI564289B (zh) 2012-02-03 2012-09-28 A method for producing paraffin wax and a paraffin making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022352A JP5917931B2 (ja) 2012-02-03 2012-02-03 パラフィンの製造方法およびパラフィン製造装置

Publications (2)

Publication Number Publication Date
JP2013159576A JP2013159576A (ja) 2013-08-19
JP5917931B2 true JP5917931B2 (ja) 2016-05-18

Family

ID=48904735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022352A Active JP5917931B2 (ja) 2012-02-03 2012-02-03 パラフィンの製造方法およびパラフィン製造装置

Country Status (5)

Country Link
US (1) US9862656B2 (ja)
JP (1) JP5917931B2 (ja)
KR (1) KR101914966B1 (ja)
TW (1) TWI564289B (ja)
WO (1) WO2013114667A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891644B1 (en) 2012-08-31 2019-08-07 NGK Insulators, Ltd. Method for recovering olefin
JP6730929B2 (ja) 2014-09-29 2020-07-29 日本碍子株式会社 分離方法及び分離装置
KR102574793B1 (ko) * 2017-03-22 2023-09-06 스미토모 세이카 가부시키가이샤 프로필렌의 정제방법 및 정제장치
CN107653053A (zh) * 2017-09-26 2018-02-02 新乡市恒星科技有限责任公司 一种自动化程度高的润滑脂制备装置
KR101944256B1 (ko) 2018-03-28 2019-02-01 에스케이이노베이션 주식회사 탄화수소 유분으로부터 노멀파라핀 및 이소파라핀을 분리하는 방법
KR102652166B1 (ko) * 2019-01-29 2024-03-27 란자테크, 인크. 바이오 기반 액화 석유 가스의 생산
WO2024106373A1 (ja) * 2022-11-16 2024-05-23 株式会社レゾナック 炭化水素の製造方法及び炭化ケイ素の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123539A (ja) * 1982-12-28 1984-07-17 Mitsubishi Chem Ind Ltd 選択的水素添加用触媒
US4623443A (en) * 1984-02-07 1986-11-18 Phillips Petroleum Company Hydrocarbon conversion
JPH0363431A (ja) * 1989-07-31 1991-03-19 Matsushita Refrig Co Ltd 空気調和機
KR100279881B1 (ko) * 1998-06-29 2001-03-02 손재익 탄화수소혼합물로부터에틸렌및프로필렌,그리고불포화탄화수소분리용흡착제제조방법,그리고이흡착제를이용한분리방법
US6297414B1 (en) * 1999-10-08 2001-10-02 Stone & Webster Process Technology, Inc. Deep selective hydrogenation process
JP2001321643A (ja) 2000-05-17 2001-11-20 Toray Ind Inc 有機液体混合物用分離膜およびその製造方法並びにその分離膜を用いた分離方法および装置
JP2002356448A (ja) 2001-05-30 2002-12-13 Sumitomo Chem Co Ltd プロピレンの精製分離方法
US20070004954A1 (en) * 2003-02-18 2007-01-04 Sachio Asaoka Method for producing liquefied petroleum gas
CN100455643C (zh) * 2003-02-18 2009-01-28 日本气体合成株式会社 液化石油气的制造方法
KR100611682B1 (ko) * 2005-07-12 2006-08-14 한국과학기술연구원 은 나노 입자/고분자 나노 복합체를 이용한 올레핀/파라핀분리용 나노 복합 분리막 및 제조 방법
PT103453B (pt) 2006-03-24 2008-05-28 Univ Do Porto Dispositivo de separação de olefinas de parafinas e de purificação de olefinas e sua utilização
JP5546447B2 (ja) * 2008-03-07 2014-07-09 住友精化株式会社 プロピレンの精製方法および精製装置
CN102264673A (zh) * 2008-12-24 2011-11-30 住友精化株式会社 链烷烃的精制方法和精制装置
WO2010119820A1 (ja) * 2009-04-13 2010-10-21 住友精化株式会社 ガス精製装置およびガス精製方法

Also Published As

Publication number Publication date
WO2013114667A1 (ja) 2013-08-08
US20140378721A1 (en) 2014-12-25
KR20140128941A (ko) 2014-11-06
JP2013159576A (ja) 2013-08-19
US9862656B2 (en) 2018-01-09
TW201332966A (zh) 2013-08-16
KR101914966B1 (ko) 2018-11-05
TWI564289B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
JP5917931B2 (ja) パラフィンの製造方法およびパラフィン製造装置
JP4773012B2 (ja) イソブテンをノルマルブテン類から分離するための方法
US8013197B2 (en) Absorption and conversion of acetylenic compounds
KR100869156B1 (ko) 석유 열분해 공정에서 얻은 c5 커트의 분리 방법
BRPI0609307A2 (pt) processo para a hidroisomerização de ligação dupla de olefinas c4 e aparelho para a hidroisomerização de ligação dupla de 1-buteno a 2-buteno
JP5546447B2 (ja) プロピレンの精製方法および精製装置
ES2401420T3 (es) Proceso para la eliminación de MAPD de corrientes de hidrocarburos
KR101777201B1 (ko) 파라핀 제조 방법 및 파라핀 제조 장치
JP5781768B2 (ja) パラフィンの精製方法および精製装置
RU2015143021A (ru) Способ изомеризации углеродных фракций с5/с6 с рециркуляцией хлорсодержащих соединений
JP5142433B2 (ja) i−ブテン含有C4流からのDIBの選択的製造方法
TWI675823B (zh) 丙烷之製造方法及丙烷製造裝置
CN106478352A (zh) 一种生产高纯度异丁烯的方法
JP2011098923A (ja) プロピレンの製造方法
KR102574793B1 (ko) 프로필렌의 정제방법 및 정제장치
JP2017071579A (ja) オレフィン中に含有される不純物を除去する、オレフィンの精製方法
JP2019019086A (ja) オレフィンの精製方法
TH77481A (th) กรรมวิธีและตัวเร่งปฏิกิริยาสำหรับการไฮโดรจิเนทของไดอีนและแอซิทิลีนแบบมีอำนาจเลือก

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5917931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250