JP5916953B2 - 多孔性窒化ホウ素及びその製造方法 - Google Patents

多孔性窒化ホウ素及びその製造方法 Download PDF

Info

Publication number
JP5916953B2
JP5916953B2 JP2015524180A JP2015524180A JP5916953B2 JP 5916953 B2 JP5916953 B2 JP 5916953B2 JP 2015524180 A JP2015524180 A JP 2015524180A JP 2015524180 A JP2015524180 A JP 2015524180A JP 5916953 B2 JP5916953 B2 JP 5916953B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitrogen
porous boron
porous
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015524180A
Other languages
English (en)
Other versions
JP2015522520A (ja
Inventor
シン−ホ・カン
ジ−ソン・イム
ドン−オク・キム
ジン−ホン・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Solutions Corp
Original Assignee
Hanwha Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Solutions Corp filed Critical Hanwha Solutions Corp
Publication of JP2015522520A publication Critical patent/JP2015522520A/ja
Application granted granted Critical
Publication of JP5916953B2 publication Critical patent/JP5916953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • C01B35/146Compounds containing boron and nitrogen, e.g. borazoles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

本発明は多孔性窒化ホウ素及びその製造方法に関するものである。より詳しくは、本発明は高気孔及び高比表面積を有する多孔性窒化ホウ素及びその製造方法に関するものである。本出願は2012年7月27日に韓国特許庁に提出された韓国特許出願第10−2012−0082716号の出願日の利益を主張し、その内容全部は本明細書に含まれる。
炭素材料は、触媒、燃料電池、2次電池電極材料、スーパーキャパシタ、複合材料、ガスセンサー、太陽電池、各種電子素子などの多方面の産業に適用される利用価値の大きい材料である。炭素は非常に多様な形態に応用されている。
特に、炭素繊維、炭素ナノチューブなどは高い伝導度を有しながらも機械的物性が非常に高く、比表面積が非常に高い活性炭または非晶質炭素の場合、高い気孔度及び安定な炭素の特性で燃料電池及び2次電池の電極材料分野で多く研究が行なわれている。また、炭化水素及び水素などの燃料用気体貯蔵物質または汚染された地域や二酸化炭素などの人体に有害な気体を精製できる分離母体としても注目を集めている。
最近、多孔性炭素材料としてカーバイド由来炭素(Carbide derived carbon、以下、CDC)物質が研究され大きい関心を集めている(Gogotsiet al. 1997 J. Mater. Chem. 7:1841−1848;Boehm et al. Proc. 12th Biennial Conf. on Carbon149−150(Pergamon, Oxford, 1975)。非晶質相のCDCは大部分2nm以下のマイクロ気孔を有しており、したがって、水素貯蔵に使用できる理想的な気孔の大きさの0.6〜0.9nmの気孔のみを選択的に生成することができると報告した。
しかし、2nm以上のメソ気孔も、半導体または大きさの大きい気体貯蔵、医学用治療剤の吸着母体または潤滑油の吸着剤など非常に多様な産業で相対的に大きい気孔の需要が非常に大きい。
最近は単純に比表面積、気孔大きさの調節だけでない、気孔体積の調節がさらに重要な特性として注目を集めている。したがって、気孔調節のために多様な原料を用いてCDC合成を試みた。CDCの原料物質としては、TiC、ZrC、WC、SiC、TaC、BC、HfC、Alなど大部分の炭化物が使用されたが、若干の差以外には、炭化物の金属原子種類によって注目を集めるほどの結果を示していないため、まだ2nm以上のメソ気孔まで形成可能なCDCについては報告されたことがない。
窒化ホウ素(BN)はこのような炭素素材(carbonous materials)に比べて理論的に1.5倍以上の結合エネルギーを有している物質である。これは窒化ホウ素の極性(hetero−polarity)に起因したことであり、界面によれば、炭素素材の場合は0.05〜0.06ev/atomである反面、BNは0.09〜0.1ev/atomであった。これに関する様々な研究が報告されたことがあり、鋳型法(template method)、置換法(substitution method)が現在まで知られた主要合成方法である。但し、今まで報告された窒化ホウ素の比表面積(SSA)は炭素素材に比べて非常に低い状態である。これを効果的に増やす方案が確保されたら窒化ホウ素物質が炭素素材を含む様々な気孔素材を代替できるはずである。
Gogotsiet al. 1997 J. Mater. Chem. 7:1841−1848 Boehm et al. Proc. 12th Biennial Conf. on Carbon149−150(Pergamon, Oxford, 1975)
このような従来技術の問題点を解決するために、本発明は、マイクロ気孔及びメソ気孔を有する高比表面積の多孔性窒化ホウ素を提供することを目的とする。
また、本発明は、前記多孔性窒化ホウ素の製造方法を提供することを目的とする。
前記の目的を達成するために、本発明は、直径が2nm未満であるマイクロ気孔及び2乃至50nmであるメソ気孔を含む多孔性窒化ホウ素を提供する。
また、本発明は、
ホウ素またはホウ素含有化合物から選択される1種以上のホウ素ソースと窒素または窒素含有化合物から選択される1種以上の窒素ソースを混合する段階;
前記混合された混合物を加熱してハロゲン気体と反応させる段階;及び
水素雰囲気下で加熱する段階を含む多孔性窒化ホウ素の製造方法を提供する。
本発明の多孔性窒化ホウ素によれば、直径が2nm未満であるマイクロ気孔及び2nm以上のメソ気孔を含む多孔性窒化ホウ素を提供することによって相対的に大きい気孔が要求される多様な応用分野で有用に用いることができる。
また、本発明の多孔性窒化ホウ素の製造方法によれば、簡単な方法で用途によって多様な大きさの気孔と比表面積を有する多孔性窒化ホウ素を容易に製造することができる。
実施例1乃至4によって製造された窒化ホウ素粉末のXRD結果を示すグラフである。 実施例1乃至4によって製造された窒化ホウ素粉末の窒素吸着結果を示すグラフである。
本発明の多孔性窒化ホウ素は、直径が2nm未満であるマイクロ気孔及び2乃至50nmであるメソ気孔を含む。
また、本発明の多孔性窒化ホウ素の製造方法は、ホウ素またはホウ素含有化合物から選択される1種以上のホウ素ソースと窒素または窒素含有化合物から選択される1種以上の窒素ソースを混合する段階;前記混合された混合物を加熱してハロゲン気体と反応させる段階;及び水素雰囲気下で加熱する段階を含む多孔性窒化ホウ素の製造方法を提供する。
以下、図面を参照して本発明の多孔性窒化ホウ素及びその製造方法を詳細に説明する。
本発明の一側面によれば、本発明は、直径が2nm未満であるマイクロ気孔及び2乃至50nmであるメソ気孔を含む多孔性窒化ホウ素を提供する。
本発明の多孔性窒化ホウ素(boron nitride)は、カーバイド由来炭素(Carbide derived carbon、CDC)と類似の方法で収得できる。カーバイド由来炭素は、カーバイド化合物をハロゲン元素含有気体と熱化学反応させてカーバイド化合物内の炭素を除いた残りの元素を抽出することによって製造される炭素であって水素貯蔵物質及び電極材料として既存の活性炭素(activated carbon)に比べて良好な物性を示すため関心を集めている。
多孔性窒化ホウ素において、2nm未満のマイクロ気孔を有する多孔性の多孔性窒化ホウ素は知られているが、2nm以上の大きさを有するメソ気孔を有する多孔性窒化ホウ素は報告されたことがない。
本発明において、マイクロ気孔(micropores)は直径が約2nm未満である気孔を意味し、メソ気孔(mesopores)は直径が約2nm以上、例えば約2乃至約50nmである気孔を意味する。
本発明の多孔性窒化ホウ素は、表面に複数の気孔が形成されており、マイクロ気孔及びメソ気孔を全て含む。
前記のように、本発明の多孔性窒化ホウ素は、2nm未満のマイクロ気孔と2nm以上のメソ気孔を共に有することによって、水素のような大きさが小さい気体の貯蔵や吸着だけでなく相対的に大きい気孔が要求される領域、例えば、水素より大きさが大きい気体の貯蔵、医学用治療剤の吸着母体または潤滑油の吸着剤、触媒、スーパーキャパシター(super capacitor)の電極、フィルターなど多様な応用分野で有用に使用できる。
また、本発明の多孔性窒化ホウ素において、前記マイクロ気孔の体積の分率は、前記マイクロ気孔及びメソ気孔を含む気孔の総体積に対して約30%以上、例えば約30乃至約90%、好ましくは約40%乃至約80%であり得る。前記気孔の体積は、特定温度を維持した状態で、例えば液体窒素を用いて77Kを維持しながら、窒素気体を0気圧から1気圧まで入れながら吸着した窒素の量を体積に換算して測定する。この時、気孔に気体が満ちている状態を基準に気孔の体積を全体体積で割れば気孔の体積比率が分かる。
本発明の一実施形態によれば、本発明の多孔性窒化ホウ素でマイクロ気孔は約0.1乃至約0.4cm/g含まれ、メソ気孔は約0.4乃至約0.7cm/g含まれる。
本発明の一実施形態によれば、本発明の多孔性窒化ホウ素の比表面積は約300m/g以上であり、例えば約300乃至約1,200m/g、好ましくは約500乃至約1,200m/g、より好ましくは約600乃至約1,000m/gであり得る。前記比表面積は特定温度を維持した状態で、例えば液体窒素を用いて77Kを維持しながら、窒素気体を0気圧から1気圧まで入れながらそれぞれの圧力条件で吸着した窒素の量を単分子層に窒素が吸着したという仮定下に下記計算式1を通じて求められる。
[計算式1]
SSA=Vmono/22400*σ*N=4.35Vmono
(SSA=比表面積[m/g]、Vmono=気孔体グラム当り窒素の単分子層吸着測定体積[m/g]、22400=窒素1molの体積[m/mol]、 σ=窒素の断面積(cross sectional area[m/atom]、N=アボガドロ数[atom/mol])
本発明の多孔性窒化ホウ素は、ホウ素またはホウ素含有化合物から選択される1種以上のホウ素ソースと窒素または窒素含有化合物から選択される1種以上の窒素ソースを混合した後に加熱して化合物を形成した後、ホウ素と窒素を除いた残りの元素を抽出することによって収得でき、後述する多孔性窒化ホウ素の製造方法でより詳しく説明する。
本発明の他の一側面によれば、ホウ素またはホウ素含有化合物から選択される1種以上のホウ素ソースと窒素または窒素含有化合物から選択される1種以上の窒素ソースを混合する段階;前記混合された混合物を加熱してハロゲン気体と反応させる段階;及び水素雰囲気下で加熱する段階を含む多孔性窒化ホウ素の製造方法を提供する。
本発明の一実施形態によれば、前記ホウ素ソースはTiBのようなホウ素金属化合物であってもよく、前記窒素ソースはTiNのような窒素金属化合物であってもよい。
前記ホウ素ソースと前記窒素ソースの組成比は、ホウ素原子(B)と窒素原子(N)の化学量論的比(stoichiometry)が実質的に1:1になるように、即ち、Boron−Nitride結合をするように調節できる。
従来の多孔性窒化ホウ素を合成する方法としては、高気孔炭素物質をボロン酸化物と混合した後、約1,500℃の高温条件で窒素雰囲気で置換過程を通じて合成する方法がある。または、ゼオライト(zeolite)、高気孔炭素物質を母体にしてホウ素前駆体を用いて鋳型法(template method)を使用することが知られている。しかし、このような方法は、合成温度が非常に高温で行なわれなければならず、高価の前駆体を必要とし、適切な後処理なしでは高純度を得ることができないという短所を有している。しかし、本発明の多孔性窒化ホウ素の製造方法によれば、簡単な方法と安価な前駆体を用いて用途によって多様な大きさの気孔と比表面積を有する多孔性窒化ホウ素を相対的に低温の条件で容易に製造することができる。
本発明の一実施形態によれば、前記ホウ素ソースと前記窒素ソースを混合する段階以後に、または、混合と同時に粉砕する工程を行なってもよい。前記粉砕工程は、例えば、高エネルギーボールミル(high energy ball mill)を用いて行なうことができる。前記高エネルギーボールミルを用いることによって前記ホウ素ソースと前記窒素ソースの混合物をより均一に混合することができ、また、一般的なボールミルより混合物に高いエネルギーでを加えて粉砕するので欠陥(defect)の量を増加させ安定的に多孔性素材を製造することができる。
前記高エネルギーボールミル(high energy ball mill)を用いて粉砕する時、例えば、アトリターミル(attritor mill)、遊星型ミル(planetary mill)、または水平型ミル(horizontal mill)などの手段を用いることができ、BPR(ball−to−power ratio)が約10:1以上、ミリング速度は約50rpm以上として乾式に粉砕することが好ましい。
前記混合された混合物をハロゲン気体と反応させる段階は、約300乃至約1,200℃の温度で加熱時間は約5分乃至約5時間、好ましくは約600乃至約800℃の温度で約1時間乃至約4時間加熱して行なうことができる。この時使用されるハロゲン気体は塩素気体(Cl)を使用することが好ましい。
前記混合された混合物をハロゲン気体と反応させることによって、前記混合物においてホウ素及び窒素を除いた元素は抽出され、これら元素があった位置に気孔が生成され、多孔性窒化ホウ素を収得することができる。
本発明の一実施形態によれば、上記式1で示される化合物をハロゲン気体と反応させる段階以後に、水素雰囲気下で約400乃至約1,000℃、好ましくは約400乃至約800℃の温度で加熱して熱処理する段階を行うことによって残余ハロゲン気体を除去することができる。
また、本発明の一実施形態によれば、前記水素雰囲気下で加熱して残余ハロゲン気体を除去する段階後に、気孔を活性化(activation)する段階をさらに行なってもよい。
前記気孔を活性化する段階を行うことによって、表面にさらに多くの気孔を発生させたり気孔の直径を増加させ単位質量当り表面積をより増加させることができる。
本発明の一実施形態によれば、気孔を活性化する段階は、多孔性窒化ホウ素粉末に対してHeまたはArのような非活性気体及びN気体のうちからなる群より選択された一つ以上の気体雰囲気で一定の温度、例えば約25乃至約1,000℃に到達するまで加熱した後、前記到達した目標温度で二酸化炭素気体(CO)を流しながら一定時間、例えば約10分乃至約2時間加熱することによって遂行できる。前記のように二酸化炭素を投入する以前に非活性気体を利用すれば気孔活性化を効果的に達成することができる。
以下、次の実施例を挙げて本発明をより具体的に説明する。しかし、次の実施例に対する説明は本発明の具体的な実施の可能性を特定して説明するものに過ぎず、本発明の権利範囲をこれらに記載された内容で限定したり制限解釈しようと意図するのではない。
実施例1
目標となるBとNの比率を1:1に近接するようにして結合する元素との化学量論的比(stoichiometry)がBoron−Nitride結合をするようにTiB1.0788gとTiN1.9212gを準備して混合した。
これらを遊星型ミル(Planetary mill)で250rpm条件でBPR(Ball−to−Powder Ratio)30:1の条件で20時間乾式にYSZ(Yittrium Stabilized Zirconia)ボールを用いて粉砕した。
製造された化合物粉末を500℃で3時間塩素気体で処理した後、600℃で2時間水素雰囲気で熱処理することによって残余塩素気体を除去して多孔性窒化ホウ素粉末を収得した。
実施例2乃至4
塩素気体で処理する温度を異にしたことを除いては実施例1と同様な方法で多孔性窒化ホウ素粉末を製造した。
各実施例による多孔性窒化ホウ素の比表面積(SSA)、マイクロ気孔の体積及びメソ気孔の体積を測定して下記表1に共に示した。
上記表1を参照すれば、総比表面積(SSA)はマイクロ気孔の体積と比例的な関係にあることが分かる。
図1は実施例1乃至4によって製造された多孔性窒化ホウ素粉末のXRD結果を示すグラフである。
図1を参照すれば、実施例1乃至4によって製造された全ての粉末は(002)ピークと(10)ピークが示される典型的な乱層の(turbostratic)窒化ホウ素の構造を有することが分かる。また、実施例2が最も無定形の(amorphous)特性を示すということも分かる。
図2は実施例1乃至4によって製造された多孔性窒化ホウ素粉末の窒素吸着結果を示すグラフである。図2において、adはadsorption(吸着)を、deはdesorption(脱着)を意味する。
図2を参照すれば、実施例1の場合、IUPACの分類を参考にしてみる時、IVタイプの吸着曲線を示し、これはメソ細孔(mesopore)の構造であるのを証明する。反面、実施例2、3及び4の場合、IタイプとIVタイプが同時に示され、これはマイクロ気孔とメソ気孔が全て存在する構造であるのを意味する。
実施例2と3の脱着曲線に示されるヒステリシス曲線(hysteresis loop)もこれらがメソ気孔構造を有しているのを証明する。

Claims (11)

  1. 直径が2nm未満であるマイクロ気孔及び2乃至50nmであるメソ気孔を含み、比表面積が600乃至1,000m /gである、多孔性窒化ホウ素。
  2. 前記メソ気孔を0.4乃至0.7cm/g含む請求項1に記載の多孔性窒化ホウ素。
  3. 前記マイクロ気孔を0.1乃至0.4cm/g含む請求項1に記載の多孔性窒化ホウ素。
  4. 前記マイクロ気孔及びメソ気孔を含む気孔の総体積に対して、前記メソ気孔の体積比率が30%以上である請求項3に記載の多孔性窒化ホウ素。
  5. ホウ素またはホウ素含有化合物から選択される1種以上のホウ素ソースと窒素または窒素含有化合物から選択される1種以上の窒素ソースを混合する段階;
    前記混合された混合物を加熱してハロゲン気体と反応させる段階;及び
    水素雰囲気下で加熱する段階を含む多孔性窒化ホウ素の製造方法。
  6. 前記ホウ素ソースはTiBであり、前記窒素ソースはTiNである請求項に記載の多孔性窒化ホウ素の製造方法。
  7. 前記ホウ素ソースと前記窒素ソースを混合すると同時に、または混合する段階後に、前記混合物を粉砕する段階をさらに含む請求項に記載の多孔性窒化ホウ素の製造方法。
  8. 前記混合物を粉砕する段階は、高エネルギーボールミル(high energy ball mill)を用いて遂行する請求項に記載の多孔性窒化ホウ素の製造方法。
  9. 前記ハロゲン気体は、塩素(Cl)気体である請求項に記載の多孔性窒化ホウ素の製造方法。
  10. 前記混合された混合物をハロゲン気体と反応させる段階は、300乃至1,200℃の温度で5分乃至5時間遂行する請求項に記載の多孔性窒化ホウ素の製造方法。
  11. 前記水素雰囲気下で加熱する段階は、400乃至1,000℃の温度で遂行する請求項に記載の多孔性窒化ホウ素の製造方法。
JP2015524180A 2012-07-27 2013-07-24 多孔性窒化ホウ素及びその製造方法 Active JP5916953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0082716 2012-07-27
KR1020120082716A KR101412774B1 (ko) 2012-07-27 2012-07-27 다공성 질화붕소 및 이의 제조방법
PCT/KR2013/006639 WO2014017835A1 (ko) 2012-07-27 2013-07-24 다공성 질화붕소 및 이의 제조방법

Publications (2)

Publication Number Publication Date
JP2015522520A JP2015522520A (ja) 2015-08-06
JP5916953B2 true JP5916953B2 (ja) 2016-05-11

Family

ID=49997573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015524180A Active JP5916953B2 (ja) 2012-07-27 2013-07-24 多孔性窒化ホウ素及びその製造方法

Country Status (5)

Country Link
US (1) US9796595B2 (ja)
EP (1) EP2878578B1 (ja)
JP (1) JP5916953B2 (ja)
KR (1) KR101412774B1 (ja)
WO (1) WO2014017835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187222B2 (en) 2014-11-06 2019-01-22 Honeywell Technologies Sarl Methods and devices for communicating over a building management system network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201704321D0 (en) * 2017-03-17 2017-05-03 Imp Innovations Ltd Amorphous porous boron nitride
US20210261414A1 (en) * 2018-07-11 2021-08-26 National Research Council Of Canada Process and apparatus for purifying bnnt

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE342047C (de) * 1919-03-22 1921-10-12 Friedrich Meyer Dr Verfahren und Einrichtung zur Herstellung von reinem Bornitrid
FR1065685A (fr) * 1951-08-25 1954-05-28 Cie Des Meules Norton Procédé de fabrication du nitrure de bore
US3837997A (en) 1971-03-16 1974-09-24 Carborundum Co Boron nitride products
US4014979A (en) * 1971-07-19 1977-03-29 Anatoly Nikolaevich Dremin Method of producing wurtzite-like boron nitride
US4402925A (en) 1981-09-28 1983-09-06 Union Carbide Corporation Porous free standing pyrolytic boron nitride articles
US5096740A (en) * 1990-01-23 1992-03-17 Sumitomo Electric Industries, Ltd. Production of cubic boron nitride films by laser deposition
US5053365A (en) * 1990-02-28 1991-10-01 The Ohio State University Research Foundation Method for the low temperature preparation of amorphous boron nitride using alkali metal and haloborazines
US5169613A (en) * 1991-02-06 1992-12-08 The Ohio State University Research Foundation Method for the preparation of boron nitride using ammonia-monohaloborane
JP2927149B2 (ja) * 1993-08-05 1999-07-28 日本鋼管株式会社 窒化ホウ素含有無機材料の製造方法
RU94032296A (ru) * 1994-09-07 1996-07-20 Обнинское научно-производственное предприятие "Технология" Способ получения керамического изделия на основе нитрида бора
SE519862C2 (sv) * 1999-04-07 2003-04-15 Sandvik Ab Sätt att tillverka ett skär bestående av en PcBN-kropp och en hårdmetall- eller cermet-kropp
AU3886801A (en) * 1999-09-21 2001-04-24 Saint-Gobain Ceramics And Plastics, Inc. Thermally conductive materials in a hydrophobic compound for thermal management
CN1101337C (zh) 2001-07-10 2003-02-12 山东大学 制备氮化硼纳米微粉的方法
JP3890408B2 (ja) * 2002-11-27 2007-03-07 独立行政法人物質・材料研究機構 水素吸蔵用窒化ホウ素ナノチューブの製造方法
JP4803422B2 (ja) * 2005-07-22 2011-10-26 独立行政法人物質・材料研究機構 窒化ホウ素系多孔体およびその製造方法
US7745362B2 (en) * 2006-08-11 2010-06-29 General Electric Company Metal-containing structured ceramic materials
CN101602497A (zh) 2009-07-03 2009-12-16 山东大学 一步法无模板低温制备多孔氮化硼的工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187222B2 (en) 2014-11-06 2019-01-22 Honeywell Technologies Sarl Methods and devices for communicating over a building management system network

Also Published As

Publication number Publication date
CN104507862A (zh) 2015-04-08
EP2878578A4 (en) 2016-09-28
EP2878578B1 (en) 2017-08-23
US20150246821A1 (en) 2015-09-03
WO2014017835A1 (ko) 2014-01-30
KR101412774B1 (ko) 2014-07-02
EP2878578A1 (en) 2015-06-03
KR20140015986A (ko) 2014-02-07
JP2015522520A (ja) 2015-08-06
US9796595B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
JP6122113B2 (ja) 多孔性炭素及びその製造方法
Gogotsi et al. Nanoporous carbide-derived carbon with tunable pore size
Jiang et al. Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres
Yeon et al. Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon
Borchardt et al. Ordered mesoporous carbide-derived carbons prepared by soft templating
JP5294234B2 (ja) 窒素ドープメソポーラスカーボン(n−kit−6)およびその製造方法
CN106467300B (zh) 微孔-介孔-大孔多级结构的三维石墨烯材料及其制备方法和应用
Sevilla et al. Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties
US8685359B2 (en) Atomic carbon material and method for preparation thereof
Shi et al. Ordered mesoporous SiOC and SiCN ceramics from atmosphere-assisted in situ transformation
JP5916953B2 (ja) 多孔性窒化ホウ素及びその製造方法
JP6072248B2 (ja) 多孔性炭素及びその製造方法
Yang et al. Synthesis of spinous ZrO2 core–shell microspheres with good hydrogen storage properties by the pollen bio-template route
Kutty et al. A topologically substituted boron nitride hybrid aerogel for highly selective CO 2 uptake
Nickel et al. Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hard-templating
KR101759720B1 (ko) 다공성 탄소 및 이의 제조 방법
Liqun et al. Etching process of silicon oxycarbide from polysiloxane by chlorine
Yang et al. A Systematic Study on the Preparation and Hydrogen Storage of Zeolite 13X‐Templated Microporous Carbons
Duan et al. Etching process of silicon carbide from polysiloxane by chlorine
CN104507862B (zh) 多孔氮化硼和该多孔氮化硼的制备方法
Xing Preparation and Properties of Porous Carbon Materials
Laversenne et al. High surface and high nanoporosity boron nitride adapted to hydrogen sequestration
Fisher et al. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage
Sevilla Solís et al. Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250