JP5908194B1 - 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法 - Google Patents

蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法 Download PDF

Info

Publication number
JP5908194B1
JP5908194B1 JP2015557677A JP2015557677A JP5908194B1 JP 5908194 B1 JP5908194 B1 JP 5908194B1 JP 2015557677 A JP2015557677 A JP 2015557677A JP 2015557677 A JP2015557677 A JP 2015557677A JP 5908194 B1 JP5908194 B1 JP 5908194B1
Authority
JP
Japan
Prior art keywords
layer
steel foil
storage device
nickel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015557677A
Other languages
English (en)
Other versions
JPWO2016013575A1 (ja
Inventor
雅晴 茨木
雅晴 茨木
能勢 幸一
幸一 能勢
石塚 清和
清和 石塚
後藤 靖人
靖人 後藤
長崎 修司
修司 長崎
海野 裕人
裕人 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP5908194B1 publication Critical patent/JP5908194B1/ja
Publication of JPWO2016013575A1 publication Critical patent/JPWO2016013575A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/134Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この蓄電デバイス容器用鋼箔は、圧延鋼箔と、前記圧延鋼箔の表面に形成されたニッケル層と、前記ニッケル層の表面に形成されたクロム系表面処理層と、を備え、前記ニッケル層は、前記クロム系表面処理層に接してかつ金属元素中90質量%以上のNiを含む上層部と、前記圧延鋼箔に接してかつ金属元素中90質量%未満のNiと、Feとを含有する下層部と、を備え、前記ニッケル層における圧延方向の逆極点図の<111>極密度が3.0以上6.0以下であり、前記ニッケル層が、相対方位差2°以上5°以下の2つの結晶の粒界である亜粒界と、相対方位差15°以上の2つの結晶の粒界である大角粒界と、を持ち、前記亜粒界の長さである粒界長L5と、前記大角粒界の長さである粒界長L15との比L5/L15の平均値が1.0以上である。

Description

本発明は、蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法に関する。本願は、2014年07月22日に、日本に出願された特願2014−149248号に基づき優先権を主張し、その内容をここに援用する。
電子機器及び電子部品、特に携帯電話、ノート型パーソナルコンピュータ、ビデオカメラ、人工衛星、電気・ハイブリッド自動車に、ニッケル−カドミウム電池、ニッケル−水素電池、リチウムイオン電池等の2次電池が広く使用されている。従来、ニッケル−カドミウム電池、ニッケル−水素電池等の強アルカリ電解質を使用する2次電池では、そのケースとして、ニッケルめっきした冷延鋼板からなるケースやプラスチックケースが使用されている。また、リチウムイオン電池のように非水電解質を使用する電池でも、そのケースとして、ニッケルめっき鋼板やステンレス鋼板が使用されている。さらに、リチウムイオン電池では、アルミニウムパウチに内蔵された非水電解質をプラスチックケースで包む場合もある。
近年、電子・電気部品の小型化に伴い、2次電池にも小型化・軽量化が要望されるようになってきた。このような動向の中で、2次電池容器の薄肉化は、限定された容積により多くの電解液や活物質を搭載し、電池容量を増大できるツールとして注目されている。しかしながら、薄肉化により容器の強度が低下すると、外力や突き刺しが加えられた際に変形、あるいは破壊して内容物である電解液の液漏れが発生する危険性がある。電解液の液漏れは、2次電池が内蔵された装置に甚大な障害を与える可能性が高い。一般に、容器の部材がプラスチックやアルミニウムである場合、肉厚が200μm以下では強度が不十分である。そのため、容器のさらなる薄肉化には強度の高い材料を用いる必要があるが、量産を考慮するとその材料は安価な汎用材料であることが好ましい。すなわち、2次電池容器の薄肉化のために、高強度かつ電解液(非水電解液)に対する耐腐食性に優れ、汎用性が高い材料が求められている。また、電解液を備えたキャパシタなど、2次電池以外の蓄電デバイスの容器についても同様の要望がある。
例えば特許文献1には、3価クロム処理やクロメート処理などのクロム系表面処理をしたアルミニウム箔に、腐食原因物質バリア性のある酸変性ポリオレフィン樹脂層を積層した金属箔が提案されている。この技術によれば、加工性や耐腐食性がある程度まで改善できる。しかしながら、アルミニウムは上述のように強度が不十分である。
強度の高い材料として、ステンレス鋼箔などの鋼箔を用いることが考えられる。鋼箔とは、鋼を200μm以下の厚みにまで薄肉化した箔である。鋼箔の引張強さ、ビッカース硬さは、一般にプラスチックやアルミニウムの2〜10倍であるので、2次電池容器の薄肉材料として有望である。しかしながら、鋼箔は、電解液中での耐腐食性に劣るので、電池の筐体やリード線に使用すると、電解液により腐食する場合があった。
これに対し、特許文献2には、クロム系表面処理をしたステンレス鋼箔等に、ポリオレフィン樹脂層などの樹脂層を積層した金属箔が提案されている。この例では、一定の強度と耐腐食性を両立できるが、ステンレス鋼箔を用いる場合、材料コストが高価であることに加え、加工硬化が大きいので圧延して箔にするためのコストも高くなるという問題があった。
特許文献3には、めっきを行った圧延鋼箔を非水系電解液二次電池の負極集電箔に用いることが開示されている。しかしながら、負極集電箔は、蓄電デバイス用容器とは異なり、使用時には、負極電位に保持されるため、電気化学的にカソード防食される。これに対し、中立電位で使用される容器材料には、電気化学的な防食作用が働かないため、より高い耐腐食性が求められる。
また、負極集電箔はその表面積の大きさが電池の容量・出力など、電池の主要な性能を向上させる部材であるので、電池の部材として、容器材料よりもはるかに大きな面積を持つ。そのため、電池メーカーからのコストダウンの要請も厳しく、製造コスト削減のため、高圧下率による最低数の圧延パスで高効率に圧延することが一般的であり、特許文献3にも、50%の高圧下率の圧延も可能であることがうたわれている。
しかしながら、後述するように、高圧下率の圧延は、箔の集合組織を制御するには有利である一方、耐腐食性を劣化させる原因にもなる。そのため、特許文献3の鋼箔は、より高い耐腐食性が求められる二次電池の容器としては耐腐食性が十分でないことが考えられる。
日本国特開2000−357494号公報 国際公開WO2007/072604号公報 国際公開WO2013/157600号公報
本発明は、上記事情に鑑みてなされた。本発明は、高強度を得られる圧延鋼箔であって、ポリオレフィン樹脂層を表面に形成した蓄電デバイス用容器にした場合に、電解液(非水電解液)中でも基材と樹脂層との密着性に優れる蓄電デバイス容器用鋼箔を安価に提供とすることを課題とする。また、この蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器、及びこの蓄電デバイス用容器を備えた蓄電デバイスを提供することを課題とする。さらに、蓄電デバイス容器用鋼箔の製造方法を提供することを課題とする。本発明において、電解液中での基材と樹脂層との密着性を耐電解液性と言う。
本発明は上記の知見に基づいてなされた。本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る蓄電デバイス容器用鋼箔は、圧延鋼箔と、前記圧延鋼箔の表面に形成されたニッケル層と、前記ニッケル層の表面に形成されたクロム系表面処理層と、を備え、前記ニッケル層は、前記クロム系表面処理層に接してかつ金属元素中90質量%以上のNiを含む上層部と、前記圧延鋼箔に接してかつ金属元素中90質量%未満のNiと、Feとを含有する下層部と、を備え、前記ニッケル層における圧延方向の逆極点図の<111>極密度が3.0以上6.0以下であり、前記ニッケル層が、相対方位差2°以上5°以下の2つの結晶の粒界である亜粒界と、相対方位差15°以上の2つの結晶の粒界である大角粒界と、を持ち、前記亜粒界の長さである粒界長L5と、前記大角粒界の長さである粒界長L15との比L5/L15の平均値が1.0以上である。
(2)上記(1)に記載の蓄電デバイス容器用鋼箔では、前記ニッケル層の付着量が0.3g/m以上であってもよい。
(3)上記(1)または(2)に記載の蓄電デバイス容器用鋼箔では、前記クロム系表面処理層の表面に形成されたポリオレフィン系樹脂層を有してもよい。
(4)本発明の別の態様に係る蓄電デバイス用容器は、上記(3)に記載の蓄電デバイス容器用鋼箔からなる。
(5)本発明の別の態様に係る蓄電デバイスは、上記(4)に記載の蓄電デバイス用容器を備える。
(6)本発明の別の態様に係る蓄電デバイス容器用鋼箔の製造方法は、鋼板にニッケルめっきを行って前記鋼板上にニッケルめっき層を形成し、ニッケルめっき鋼板を得るニッケルめっき工程と、前記ニッケルめっき鋼板に、前記ニッケルめっき層が再結晶するように焼鈍を行う再結晶焼鈍工程と、前記ニッケルめっき鋼板に、冷間圧延を施して、鋼箔を得る冷間圧延工程と、前記鋼箔に対してクロム系表面処理を行うクロム系表面処理工程と、を有し、前記冷間圧延工程では、圧延パスの回数を少なくとも7パス以上とし、1回目の圧延パスの圧下率を30%以下とし、4回目の圧延パスまでの累積圧延率を70%以下とし、最終パスの2つ前の圧延パスまでの累積圧延率と最終パスまでの累積圧延率との差を5%以下とし、前記最終パスまでの累積圧延率を70%以上とする。
(7)上記(6)に記載の蓄電デバイス容器用鋼箔の製造方法では、前記ニッケルめっき工程において、ニッケルめっき層の付着量を1g/m以上としてもよい。
(8)上記(6)または(7)に記載の蓄電デバイス容器用鋼箔の製造方法では、さらに、前記クロム系表面処理工程後の前記鋼箔の表面に、ポリオレフィン樹脂層を形成するポリオレフィン樹脂層の形成工程を含んでもよい。
本発明の上記態様によれば、高強度を有する圧延鋼箔であって、ポリオレフィン樹脂層を表面に形成した蓄電デバイス用容器にした場合に、電解液中でも基材と樹脂層との密着性に優れる蓄電デバイス容器用鋼箔を安価に提供できる。また、この蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器及び蓄電デバイス用容器を備える蓄電デバイスを提供できる。
EBSD法によって計測した、本実施形態に係る蓄電デバイス容器用鋼箔におけるNi集合組織(逆極点図)の一例を示す図であり、具体的にはND、即ち、板面法線方向の逆極点図である。 EBSD法によって計測した、本実施形態に係る蓄電デバイス容器用鋼箔におけるNi集合組織(逆極点図)の一例を示す図であり、具体的にはRD、即ち、圧延方向の逆極点図である。 EBSD法によって計測した、本実施形態に係る蓄電デバイス容器用鋼箔におけるNi集合組織(逆極点図)の一例を示す図であり、具体的にはTD、即ち、圧延方向に直交する方向の逆極点図である。 EBSDによって計測した、本実施形態に係る蓄電デバイス容器用鋼箔におけるNi粒界のうち、角度差(相対方位差)が15°以上である2つの結晶の粒界である大角粒界の一例を示す図である(紙面縦方向がRD、横方向がTD、視野はRDが120μm、TDが100μm)。 EBSD法によって計測した、本実施形態に係る蓄電デバイス容器用鋼箔におけるNi粒界のうち、角度差(相対方位差)が2°以上5°以下である2つの結晶の粒界である亜粒界の一例を示す図である(紙面縦方向がRD、横方向がTD、視野はRDが120μm、TDが100μm)。 ニッケル層の構成金属元素を深さ方向に沿って分析した結果を示すグラフである。 ニッケル層の構成金属元素を深さ方向に沿って分析した結果を示すグラフである。 本実施形態に係る蓄電デバイス容器用鋼箔の製造方法を示すフローチャートである。 本実施形態に係る蓄電デバイス容器用鋼箔の断面の模式図である。 本実施形態に係る蓄電デバイス容器を備える蓄電デバイスの一例である。
蓄電デバイス容器用鋼箔を用いて製造される蓄電デバイス用容器は、クロム系表面処理層が形成された金属基材に、さらにポリオレフィン樹脂層が形成されたものが一般的に使用される。本実施形態においては、3価クロム処理やクロメート処理などのクロム系表面処理によって形成された表面処理層をクロム系表面処理層という。
本発明者らは、上記のような蓄電デバイス用容器において、電解液中で樹脂層が剥離する原因について鋭意検討を行った。
このような蓄電デバイス用容器は、蓄電デバイスに備えられた非水電解液に常に曝される。非水電解液は有機溶媒とリチウム塩とを含んでおり、長期間の使用によって有機溶媒又はリチウム塩が分解して酸などの腐食原因物質が生成する場合がある。例えば、六ふっ化りん酸リチウムをリチウム塩として用いた場合は、腐食原因物質としてふっ酸が生成する場合がある。
本発明者らは、腐食原因物質が有機溶媒中に生成すると、金属基材、クロム系表面処理層またはポリオレフィン樹脂層を攻撃し、ポリオレフィン樹脂層の剥離が発生する場合があることを見出した。ポリオレフィン樹脂層の剥離は、金属基材の腐食またはポリオレフィン樹脂層の劣化によるものと考えられる。従って、ポリオレフィン樹脂層の剥離防止には、金属基材の耐腐食性の向上が有効と考えられる。
本実施形態に係る蓄電デバイス容器用鋼箔(以下、本実施形態に係る鋼箔と言う場合がある)は、基材となる、表面に特定の集合組織からなるニッケル層が形成された圧延鋼箔と、圧延鋼箔のニッケル層の表面に形成されたクロム系表面処理層と、を備える。更に、本実施形態に係る蓄電デバイス容器用鋼箔には、図5に示すようにクロム系表面処理層上にポリオレフィン樹脂層が形成されていてもよい。本実施形態の蓄電デバイス容器用鋼箔は、圧延鋼箔の表面に付着されたニッケル層が特定の集合組織からなり、かつ、ニッケル層の表層に金属元素中90質量%以上のニッケルを含む部分がある。そのため、非水電解液に対する耐腐食性の向上を期待できる。以下、本実施形態に係る蓄電デバイス容器用鋼箔について詳細に説明する。
<基材>
本実施形態に係る鋼箔は、表面に特定の集合組織からなるニッケル層が形成された圧延鋼箔を基材とする。
圧延鋼箔を用いたのは、電解箔よりもコストと強度との点で有利であることに加え、後述するように、表面に形成されるニッケル層の集合組織を制御するためにも圧延が有用だからである。
<圧延鋼箔>
本実施形態に係る鋼箔の基材に用いる圧延鋼箔は、鋼板を圧延することによって得られる。鋼板は、特に限定されず、熱延鋼板、冷延鋼板、及び冷延焼鈍鋼板のいずれも用いることができる。しかしながら、熱延鋼板を後述の冷間圧延で100μm以下の箔とすることは、圧延能力上、困難な場合が多い。また、可能であっても、非効率、非経済的となる。従って、本実施形態に係る鋼箔の基材には冷延鋼板、又は冷延焼鈍鋼板を用いるのがよい。
本実施形態に係る蓄電デバイス容器用鋼箔の基材に用いる鋼板は、その成分組成(化学成分)について特に限定されない。高強度化のために、又は、耐腐食性の向上のために特定元素を鋼板に多量に含有させることは、必須の要件でない。いわゆる高強度鋼の適用も可能であるが、後述する圧延性の確保の点からは、一般的な成分組成の鋼板を用いることが好ましい。成分組成の一例は、次の通りである。成分組成に関する%は質量%である。
C:0.0001〜0.1%、
Si:0.001〜0.5%、
Mn:0.01〜1.0%、
P:0.001〜0.05%、
S:0.0001〜0.02%、
Al:0.0005〜0.20%、
N:0.0001〜0.0040%、及び、
残部:Fe及び不純物。
各元素の含有量を上述の範囲とすることが好ましい理由について説明する。
(C:0.0001〜0.1%)
Cは、鋼の強度を高める元素である。C含有量が過剰になると鋼の強度が上昇しすぎて、圧延性が低下する。本実施形態に係る鋼箔は、後に述べるように、大きな累積圧延率の加工硬化によって高強度化する。そのため、圧延の容易さを考慮すると、素材となる鋼板は軟質であることが好ましい。従って、C含有量の上限を0.1%とするのが好ましい。C含有量の下限を特に規定する必要はないが、精錬コストを考慮して、C含有量の下限は0.0001%とすることが好ましい。C含有量は、より好ましくは0.001%〜0.01%である。
(Si:0.001〜0.5%)
Siは、鋼の強度を高める元素である。Si含有量が過剰になると鋼の強度が上昇しすぎて、鋼の圧延性が低下する。従って、Si含有量の上限を0.5%とすることが好ましい。Si含有量の下限は特に規定する必要はないが、精練コストを考慮して、Si含有量の下限を0.001%とすることが好ましい。より高い圧延性を確保するためには、Si含有量は0.001〜0.02%がより好ましい。
(Mn:0.01〜1.0%)
Mnは、鋼の強度を高める元素である。Mn含有量が過剰になると鋼の強度が上昇しすぎて、圧延性が低下する。従って、Mn含有量の上限を1.0%とすることが好ましい。Mn含有量の下限を特に規定する必要はないが、精練コストを考慮して、Mn含有量の下限を0.01%とすることが好ましい。より高い圧延性を確保するためには、Mn含有量は0.01〜0.5%とすることがより好ましい。
(P:0.001〜0.05%)
Pは、鋼の強度を高める元素である。P含有量が過剰になると鋼の強度が上昇しすぎて、圧延性が低下する。従って、P含有量の上限を0.05%とすることが好ましい。P含有量の下限を特に規定する必要はないが、精練コストを考慮して、P含有量の下限を0.001%とすることが好ましい。より高い圧延性を確保するためには、P含有量は0.001〜0.02%とすることがより好ましい。
(S:0.0001〜0.02%)
Sは、鋼の熱間加工性及び耐腐食性を低下させる元素である。そのため、S含有量は少ないほど好ましい。特に、S含有量が0.02%を超えると熱間加工性及び耐腐食性の低下が顕著となるので、S含有量の上限を0.02%とすることが好ましい。S含有量の下限を特に規定する必要はないが、精練コストを考慮して、S含有量の下限を0.0001%とすることが好ましい。より高い圧延性を確保するため、また、コストの点で優位性を得るためには、S含有量を0.001〜0.01%とすることがより好ましい。
(Al:0.0005〜0.20%)
Alは、鋼の脱酸元素として添加される。脱酸による効果を得るためには、Al含有量を0.0005%以上とすることが好ましい。しかしながら、Al含有量が過剰になると鋼の圧延性が低下するので、Al含有量の上限を0.20%とすることが好ましい。より高い圧延性を確保するためには、Al含有量を0.001〜0.10%とすることがより好ましい。
(N:0.0001〜0.0040%)
Nは、鋼の熱間加工性及び加工性を低下させる元素である。そのため、N含有量は少ないほど好ましい。特に、N含有量が0.0040%を超えると熱間加工性及び加工性の低下が顕著となるので、N含有量の上限を0.0040%とすることが好ましい。N含有量の下限を特に規定する必要はないが、精錬コストを考慮して、N含有量の下限を0.0001%とすることが好ましい。また、コストの点で優位性を得るためには、N含有量を0.001〜0.0040%とすることがより好ましい。
(残部:Fe及び不純物)
鋼板の残部は、Fe及び不純物である。
本実施形態に係る鋼箔を製造するための鋼材は、さらに、付加成分として、Ti、Nb、B、Cu、Ni、Sn、及びCrなどを、Feの一部に代えて、本実施形態の効果を損なわない範囲で含有してもよい。特にTi及びNbは、鋼中のC及びNを炭化物及び窒化物として固定して、鋼の加工性を向上させる効果を有するので、Ti:0.01〜0.8%、Nb:0.005〜0.05%の範囲で1種または2種を含有させてもよい。
<ニッケル層>
本実施形態に係る鋼箔が備えるニッケル層は、<111>方位が圧延方向(鋼箔の圧延方向)に平行である集合組織からなる。ここで、<111>方位が圧延方向に平行とは、fcc(面心立方格子)構造のNi(ニッケル)の<111>方位が圧延方向に平行であることを意味する。
具体的には、その集合組織として、圧延方向の<111>方位の極密度が3.0以上である。圧延方向の<111>方位の極密度が3.0以上であれば、良好な特性が得られる。本発明における<111>方位の極密度とは、<111>から5°以内の結晶方位の範囲における最大の極密度の値として定義される。圧延方向の<111>方位の極密度の最大値は、特に限定されないが、通常、6.0程度を超えない。従って、圧延方向の<111>方位の極密度の実質的な上限は6.0である。
ニッケルの集合組織を上述の範囲とすることで、少ないニッケル量で耐腐食性を向上させることができる。言い換えれば、有機電解液に含まれる腐食原因物質に対する耐腐食性を満足するために必要なニッケル量を最小限にとどめることが可能となる。そのため、コスト的にも有利となる。すなわち、上記の構成とすることで、コスト及び性能の両方が産業利用上優れたレベルとなる。
少ないニッケル量で、このような効果が得られる理由は、必ずしも明らかでない。しかしながら、ニッケルの均一性と被覆性とが向上することが影響していると推定される。具体的には、Niはfcc構造であり、原子が最も密になる面は{111}面であるので、ニッケル層における<111>方位を圧延方向と平行にすることで、緻密なニッケル層が形成されるためであると推定される。
fcc構造であるNiにおいて、{111}面は「すべり面」と呼ばれる。{111}面は、冷間圧延をはじめとする塑性加工によって、優先的に配向させることが可能である。そのため、圧延工程を利用することで、前述の集合組織を制御することが可能である。
本実施形態に係る鋼箔のニッケル層の集合組織の特定には、EBSD(電子線反射回折:Electron BackScatter Diffraction)法を用いる。具体的には、SEM(走査電子顕微鏡)中で、大きく傾斜(70°)した試料表面から得られるEBSDパターンを利用し、回折パターンの発生点の結晶方位を連続的に測定する。
EBSDパターンの特徴は、得られる情報の深さが非常に浅いことである。その深さは、条件にもよるが、数十nmにすぎない。したがって、板面方向からEBSD測定を行うことで、ニッケル層の表面のNiのみの結晶方位を特定することが可能となる。さらに、EBSDパターンから逆極点図を求め、極密度を得ることができる。
図1A〜図1Cに、EBSD法によって得られた、本実施形態に係る鋼箔のニッケル層の集合組織(逆極点図)の一例を示す。図1A〜図1Cは、ND(板面の法線方向)、RD(圧延方向)、及びTD(圧延方向の直交方向)のそれぞれについて、結晶方位に統計的な偏りがない状態(いわゆるランダムな状態)の極密度を1として、集合組織の度合いを極密度の等高線で表示した図である。図1Aに、NDの逆極点図を示し、図1Bに、RDの逆極点図を示し、図1Cに、TDの逆極点図を示す。
図1A〜図1Cによれば、本実施形態に係る鋼箔が備えるニッケル層は特定の集合組織を有し、RDの<111>及び<001>方位の集積度が高いことがわかる。図1A〜図1C中に合わせて示した等高線のスケールを参照すると、RDの<111>方位の極密度は3.201〜4.040のスケールであり、RDの<001>方位の極密度は2.01〜2.537のスケールである。そのため、本実施形態に係る鋼箔のニッケル層は、RDの<111>方位の集積により特徴づけられることがわかる。NDについては、<101>から<001>、<111>を結んだ辺上にかけて(即ち、<101>から<112>にかけて)の集積が見られ、TDについては、<101>方位の集積が見られるが、等高線のスケールを参照すると、極密度はそれぞれ2.6に満たない。従って、NDおよびTDでは、特徴的な集合組織が形成されているとはいい難い。
また、本実施形態に係る鋼箔のニッケル層は、通常の粒界以外に亜粒界を持つ。通常、相対方位差(角度差)が15°以上である2つの結晶粒の境界(大角粒界)を粒界とみなすが、亜粒界とは、相対方位差(角度差)が15°に満たない2つの結晶粒の境界を示す。このような亜粒界は、ニッケル層の塑性加工によって導入される。
15°以下の亜粒界のうち、特に角度差が5°以下である亜粒界を、角度差が15°以上である大角粒界に対して一定以上の割合とすることで、有機電解液に含まれる腐食原因物質に対する耐腐食性が向上する。具体的には、ニッケル層が、相対方位差2°以上5°以下の2つの結晶の粒界である亜粒界と、相対方位差15°以上の2つの結晶の粒界である大角粒界とを持ち、亜粒界の長さである粒界長L5と、大角粒界の長さである粒界長L15との比L5/L15の平均値が1.0以上であると、耐腐食性が向上する。角度差5°以下の亜粒界および角度差15°以上の粒界の特定も、EBSD法により可能である。ただし、一般に、角度差2°未満の亜粒界の測定は誤差が大きくなるので、本実施形態では、角度差2°以上5°以下の亜粒界の割合を用いる。以下、本実施形態において、亜粒界とは相対方位差2°以上5°以下の、2つの結晶の粒界を示す。
図2A及び図2Bに、EBSD法によって得られた本実施形態に係る鋼箔のニッケル層における大角粒界または亜粒界の一例を示す。図2A、図2Bにおいて、紙面縦方向がRD、横方向がTDである。また、視野はRDが120μm、TDが100μmである。図2Aに、角度差15°以上の粒界として認識される大角粒界を示し、図2Bに、角度差2°以上5°以下の亜粒界を示す。
上述の通り、一般に、角度差2°未満の亜粒界の測定は誤差が大きくなるので、5°以下の亜粒界の測定は、角度差2°以上5°以下の亜粒界を測定することにより行っている。双晶関係にある粒界も、除去せずにそのまま示している。このような手法によって、角度差が5°以下の亜粒界長(L5)と、角度差が15°以上の粒界長(L15)とを、任意の5つ以上の視野内で、EBSD装置内の画像処理ソフトウェアを用いて計測して、“L5/L15”を算出し、各視野についての値を平均する。L5/L15の上限は、特に限定されないが、通常、5.0程度以上は得難い。従って、5.0がL5/L15の実質的な上限である。
本実施形態に係る鋼箔のニッケル層は、fcc構造を取るものであればよく、例えば、一部にFeが固溶したものでもよい。Feが固溶したニッケル層でも、上述の手法及び定義によって、極密度と、粒界及び亜粒界とを特定することが可能である。
本実施形態に係る鋼箔のニッケル層は、上述の集合組織及び所定の割合以上の亜粒界を有した上で、さらに、金属元素中90質量%以上のNiを含む上層部と、90質量%未満のNi、及びFeを含有する下層部と、を備える必要がある。上層部の表面はクロム系表面処理層に接し、下層部の下面は、圧延鋼箔に接している。
上層部のNi含有量が金属元素中90質量%以上であることにより、耐腐食性が向上する。これは、有機電解液に含まれる腐食原因物質によるニッケル層の腐食が抑制されるためであると考えられる。上層部のNi含有量が90%未満になると、相対的にニッケル層の表面におけるFe含有量が増えることになる。この場合、耐腐食性が低下し、その結果、基材と樹脂層との密着性が低下すると考えられる。上層部のNi含有量は、好ましくは95質量%以上であり、より好ましくは98質量%以上である。Ni含有量は、100%でもよい。
上層部は、再結晶焼鈍後のニッケルめっき層に対して圧延を行う際に、圧下率を調整することによって形成される。圧下率の調整が不調の場合は、ニッケル層全体にFeが拡散し、ニッケル層の最表面のニッケル濃度が金属元素中90%未満になる。
図3Aには、金属元素中90質量%以上のNiを有する上層部を備えたニッケル層の、深さ方向の金属元素分析結果を示す。また、図3Bには、90質量%以上のNiを有する上層部を備えないニッケル層の深さ方向の金属元素分析結果を示す。図3A及び図3Bは、アルゴンプラズマによってニッケル層を1μmの深さまでエッチングしつつ、グロー放電発光分析による元素分析を行った結果を示している。図3Aに示すニッケル層は、表面から深さ0.1μmまでの範囲において、Ni含有量が金属元素中で90質量%を超えており、Fe含有量は10質量%未満になっていることがわかる。一方、図3Bに示すニッケル層は、最高でもNi含有量が80質量%未満になっていることがわかる。図3A及び図3Bとも、深さ0.4μmを超えたあたりからNi含有量がほぼ0%になっているが、これは、この0.4μmより深い部分は圧延鋼板になっているためである。従って、図3Aに示すニッケル層においては、深さ0.1μmまでのNi含有量が90%以上の領域が上層部であり、深さ0.1〜0.4μmの範囲が、Ni含有量が90%未満の下層部である。図3Bに示すニッケル層は、Niの最高濃度が80%未満であり、上層部となる領域が存在しないことになる。
また、ニッケル層は、金属元素中90質量%未満のNiと、Feとを含有する下層部を備える必要がある。下層部に含まれるFeは、主として圧延鋼箔から拡散したものである。下層部が存在することにより、ニッケル層と圧延鋼箔との密着強度が向上し、有機電解液に含まれる腐食原因物質によって圧延鋼箔とニッケル層とが剥離することを抑制できる。
上層部の厚みは0.005μm以上であることが望ましい。上層部の厚みが0.005μm未満であると、十分な耐腐食性が得られない。望ましくは上層部の厚みが0.02μm以上である。厚みの上限は耐電解液性の観点からは特に制限する理由はない。しかしながら、厚くするためにはめっき時のNi付着量を多くする必要があったり、非常にパス数の多い圧延が必要であったりする。したがって、経済的な観点からも0.5μm以下が望ましい。
また、下層部の厚みは0.02μm以上であることが望ましい。下層部は、ニッケル層と圧延鋼箔との密着性に寄与するので、薄すぎると密着性が確保できない。望ましくは0.1μm以上である。上限は上層部同様に経済的な観点から、5μm以下が望ましい。
本実施形態に係る鋼箔のニッケル層は、付着量が0.3g/m以上であることが望ましい。付着量を0.3g/m以上とすることにより、有機電解液に含まれる腐食原因物質に対する耐腐食性を向上できる。付着量が0.3g/m未満であると、有機電解液に含まれる腐食原因物質に対する耐腐食性が十分に得られない。また、EBSD法による集合組織の特定も難しくなる。ここで、本実施形態におけるニッケル層の付着量とは、JIS H8501に規定される蛍光X線式試験方法により測定する値であり、より詳細にはニッケル層表面から蛍光X線式試験方法により、NiのKα蛍光X線強度を測定し、Niの付着量として換算した値を意味する。
蛍光X線強度を付着量に換算するための検量線は、Ni層を形成させていない基材と同種の鋼板をNi付着量0の標準試験材とし、同じ鋼材に純Niを所定量付着させたNiめっき鋼板を測定して作成した検量線を用いる。厳密には、純Niを付着させた標準試験材による検量線で、地鉄のFeと合金化しているNiとを含む材料のNi付着量を測定すると、実際のNi付着量より、低めに測定されてしまう。しかしながら、本実施形態に係る鋼箔においては、箔圧延により通常の鋼材のめっきより薄い表面層にしかNiが分布していないので、合金化の影響がわずかである。また、目的とする耐腐食性のためには、一定量以上の付着量が望ましく、かつ、最表面のNi濃度が高いことが望まれることから、このようにして測定したNi付着量でニッケル層の付着量を規定することで、耐腐食性をより確実に確保できるので、本実施形態においては、上述の通り規定する。
ニッケル層の付着量の上限は特に制限されないが、コストを考慮すると、5g/m以下が好ましい。このような少量のニッケル層であっても有意な効果が得られる。
従来技術において集合組織が制御されていないニッケルめっき層を適用する場合、その付着量を、最低でも9g/m程度以上としなければ、有機電解液に含まれる腐食原因物質に対する耐腐食性の改善効果が望めない。しかも、従来技術による改善効果は本願発明による改善効果より小さい。従来技術では、ニッケル層の付着量の増加とともに、僅かな改善効果しか得られず、90g/m程度まで増加させた場合であっても、本実施形態に係る鋼箔と同等の顕著な改善効果は得られない。本実施形態では、ニッケル層が特定の集合組織からなり、かつ、ニッケル層の表層に金属元素中90質量%以上のニッケルを含む部分があるので、非水電解液に対する耐腐食性が飛躍的に向上し、耐電解液性が向上する。
<クロム系表面処理層>
本実施形態に係る蓄電デバイス容器用鋼箔は、ニッケル層の表面にクロム系表面処理層を備える。クロム系表面処理層は、その厚みを2nm以上200nm以下とすることが好ましく、5nm以上60nm以下とすることがより好ましく、8nm以上40nm以下とすることがさらに好ましい。クロム系表面処理層は、少なくとも片面に形成されていればよいが、両面に形成されていても構わない。
クロム系表面処理層の厚みが均一に2nm未満、もしくは厚みが不均一で部分的に2nm未満、もしくはピンホールがある場合、蓄電デバイス用容器の素材として用いるために、本実施形態に係る鋼箔のクロム系表面処理層の表面にポリオレフィン系樹脂層を形成した際、非水電解液中でのポリオレフィン系樹脂層と基材との密着力が不十分になって剥離の原因となる場合がある。また、クロム系表面処理層の厚みが200nmよりも厚いと、蓄電デバイス容器用鋼箔を加工したときにクロム系表面処理層に割れが発生して電解液中でのポリオレフィン系樹脂層と基材との密着力が不十分となって剥離の原因となる可能性がある。また、クロム系表面処理層が必要以上に厚いと、環境負荷が大きいクロメートやクロム系化合物の使用量が多くなるというデメリットもある。
クロム系表面処理層の厚みは、クロム系表面処理層の表層からArイオンなどを照射してスパッタリングしながら、一定時間ごとにXPS分析(X線光電子分光分析)により元素の存在状態を調査することで測定する。具体的には、XPS分析の結果、Ni元素が検出されるまでの表層からのスパッタリング深さを、クロム系表面処理層の厚みとする。スパッタリング深さは、シリカのスパッタリング速度で換算した深さを用いる。表面にポリオレフィン系樹脂層がある場合は鋭利な刃物で表面を斜めに切断し、その断面をXPS分析する。
<ポリオレフィン系樹脂層>
本実施形態に係る鋼箔は、クロム系表面処理層の表面に、さらに、ポリオレフィン系樹脂層を備えてもよい。
ポリオレフィン系樹脂層としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、架橋型ポリエチレン、ポリプロピレン又はこれらの2種類以上の混合物を例示できる。
ポリオレフィン系樹脂層は、単層でも複層でも構わない。また、ポリオレフィン系樹脂層の上に、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド等の樹脂を被覆して複数層にしてもよい。
ポリオレフィン系樹脂層の好ましい厚みの範囲は0.5〜200μmであり、より好ましくは15〜100μmである。また、ポリオレフィン系樹脂層の上層にポリオレフィン、ポリエステル、ポリアミド、ポリイミドを積層する場合であっても、積層された全層厚みの範囲は0.5〜200μmが好ましく、より好ましくは15〜100μmである。全層厚みが0.5μm未満では、非水電解液に含まれる腐食原因物質の透過防止が十分に得られない場合がある。また、全層厚みが200μmより厚いと加工性が悪くなる場合がある等、2次電池容器用部材として不適切であり、経済メリットも発現し難い(コストが割高となってしまう)。
本実施形態に係る鋼箔の引張強度は、600〜1200MPaが望ましい。蓄電デバイス容器用鋼箔の引張強度が600MPa未満である場合、充放電に伴う活物質の膨張収縮により、蓄電デバイス用容器として用いた場合に鋼箔が変形する場合がある。蓄電デバイス容器用鋼箔の引張強度が1200MPaを越えると、鋼箔の取り扱いが難しくなる。
ここで、引張強度は、常温においてJIS Z2241に規定される金属材料の引張試験方法の中で、薄板材料の評価に用いられる方法に準拠した方法で測定する。ただし、鋼箔の場合、端面の粗度の影響が非常に大きいので、試験片の作製の際、端面の表面仕上げの粗度をなるべく小さくする必要がある。そのため、箔の引張試験においては、JIS 13B号に準拠した試験片を、端面の粗度がRaで0.2μm以下となるように加工した後、引張試験に供する。粗度を調整する方法は限定されないが、本実施形態においては、対象の鋼箔を1mm程度の厚みの薄鋼板で両側から挟んで固定し、端面をフライス仕上げする方法で試験片を作製した。
本実施形態に係る鋼箔の基材の厚さは100μm以下であることがより望ましい。これは、電池を小型化、及び軽量化していくうえで、容器も薄いものが望まれているからである。下限は、特に限定されないが、コスト、又は厚さの均一性を考えると、鋼箔の厚さを5μm以上とすることが望ましい。
次に、本実施形態に係る蓄電デバイス用容器について説明する。
本実施形態に係る蓄電デバイス用容器は、クロム系表面処理層の表面にさらにポリオレフィン系樹脂層を有する本実施形態に係る蓄電デバイス用鋼箔からなる。具体的には、ポリオレフィン系樹脂層を有する本実施形態に係る蓄電デバイス用鋼箔を、例えば図6の符号21に示すような形状に公知の方法で成形することによって得られる。成形によって化学成分や組織は変化しないので、本実施形態に係る蓄電デバイス用容器の化学成分や組織は、本実施形態に係る蓄電デバイス用鋼箔と同等である。
次に、本実施形態に係る蓄電デバイスについて説明する。
本実施形態に係る蓄電デバイスは、蓄電デバイス用容器を備える。例えば図6に示すように、蓄電デバイス用容器21の内部に、少なくとも電解液に浸した正極及び負極と電池を構成する部材とを納め、正極と接続した正極リード22、負極と接続した負極リード23等をさらに設けることによって得られる。
次に、本実施形態に係る蓄電デバイス容器用鋼箔の製造方法について説明する。本実施形態に係る蓄電デバイス容器用鋼箔の製造方法は、図4に示すように、鋼板にニッケルめっきを施すニッケルめっき工程と、ニッケルめっき工程の後にニッケルの再結晶焼鈍を行う再結晶焼鈍工程と、鋼板に冷間圧延を施して箔とする冷間圧延工程と、クロム系表面処理工程とを備えている。このような工程を経ることによって、本実施形態の特定の集合組織を有するニッケル層を有する箔を製造できる。また、冷間圧延工程の後に、再焼鈍工程にて再度の焼鈍を行い、箔強度(鋼箔の引張強度)を調整することができる。更に、クロム系表面処理工程後に、ポリオレフィン樹脂層の形成工程を備えてもよい。
各工程の好ましい条件について説明する。
(ニッケルめっき工程)
まず、ニッケル層を備える本実施形態に係る鋼箔を得るために、公知の方法で得られた鋼板にニッケルめっきを施す。この際の鋼板は、冷延ままの冷延鋼板であっても、焼鈍後の冷延鋼板であってもよい。ニッケルめっきの形成方法は、特に限定されないが、コストの点で、電気めっき法が好ましい。電気めっきで用いるめっき浴は、特に限定されないが、製造コスト又は付着量制御性の観点から、硫酸ニッケル、塩化ニッケル、ほう酸からなるWatt浴が好適である。Watt浴としては、例えば、硫酸ニッケル:200〜400g/l、塩化ニッケル:20〜100g/l、ほう酸:5〜50g/lを含むWatt浴を用いることができる。
ニッケルめっき工程にて鋼板に施されるニッケルめっき層の付着量は1g/m以上であることが望ましい。1g/m未満であると、後の冷間圧延により被覆率が低下し、有機電解液に含まれる腐食原因物質に対する耐腐食性が低下する場合がある。また、後の冷間圧延により、鋼箔におけるニッケル層の付着量が0.3g/mを下回る場合がある。上限は、特に限定する必要はないが、コストの観点から、通常、40g/m以下が好ましい。冷間圧延前のニッケルめっき層の付着量は、より好ましくは10〜30g/mである。しかしながら、冷間圧延前のニッケルめっき層の付着量が40g/mを上回っても、金属組織および特性に関し、望ましい鋼箔を得ることができる。
(再結晶焼鈍工程)
ニッケルめっき工程にてニッケルめっき層を形成した鋼板(ニッケルめっき鋼板)に対し、再結晶が起こるように焼鈍を行う。ここで、再結晶とは(1)ニッケルめっき前の原板が未焼鈍板であった場合には、鋼板及びニッケルめっき層双方の再結晶を意味し、(2)ニッケルめっき前の原板が焼鈍板であった場合には、ニッケルめっき層の再結晶を意味する。すなわち、少なくともニッケルめっき層が再結晶するように焼鈍を行う。ニッケルめっき層及び鋼板の再結晶温度を比較すると、通常、ニッケルめっき層の再結晶温度の方が低い。これは、ニッケルめっき工程にてニッケルめっき層に導入される歪が再結晶の駆動力となるからである。
再結晶したかどうかは、組織観察、又は硬度変化の測定によって確認することができる。例えば、ニッケルめっき層は、電気めっきにより生成したままの状態ではビッカース硬度(HV)が250〜300程度であるが、焼鈍により再結晶が生じると、ビッカース硬度(HV)が200以下に低下する。適正な焼鈍条件は、温度と時間との積で決定される。すなわち高温であれば相対的に短時間、低温であれば相対的に長時間の焼鈍が必要である。具体的な焼鈍法としては、箱型焼鈍と連続焼鈍とがある。
箱型焼鈍は、設備特性上、短時間の処理は不可能である。従って、箱型焼鈍の場合、数時間〜数日の長時間処理を行うのが通常である。箱型焼鈍の際の板温度は低め、具体的には500〜700℃に設定される場合が多い。連続焼鈍は、生産性を向上させるために短時間で処理を行うことが好ましい。従って、連続焼鈍の場合、数秒〜数分の短時間処理が行われる場合が多い。連続焼鈍の場合の板温度は高め、具体的には700〜900℃に設定される場合が多い。再結晶焼鈍工程では、再結晶がおこるように適宜温度及び時間を制御すれば、箱型焼鈍、連続焼鈍のいずれで行ってもよい。適正な条件で再結晶焼鈍が行われなかった場合、続く冷間圧延工程にてニッケルめっきの剥離が生じやすくなり、また、<111>方位が圧延方向に平行である集合組織を得ることができない。加えて、L5/L15の平均値が1.0を下回る場合がある。
(冷間圧延工程)
再結晶焼鈍工程後のニッケルめっき鋼板に冷間圧延を施し鋼箔を製造する。この際、鋼箔の厚みは、100μm以下が好ましく、20μm以下がより好ましい。焼鈍後の冷間圧延において、後述の通り各パスでの圧延率を制御することにより、金属元素中90%以上のニッケルを有する上層部及びFeと90%未満のニッケルとを有する下層部と備え、<111>方位が圧延方向に平行である集合組織を有し、L5/L15の平均値が1.0以上であるニッケル層を有する圧延鋼箔が得られる。
冷間圧延の最終パスまでの累積圧延率(総累積圧延率)は70%以上、好ましくは90%以上である。ここで、累積圧延率とは、最初の圧延パスの入口板厚に対する当該パスまでの累積圧下量(最初のパス前の入口板厚と該当するパス後の出口板厚との差)の百分率である。最終パスまでの累積圧延率が小さいと、所望のNi集合組織が得られない。また、箔強度が600MPaを下回る場合がある。さらに、L5/L15の平均値が1.0を下回る場合がある。最終パスまでの累積圧延率の上限は、特に限定されないが、通常の圧延能力では98%程度が限界である。
また、冷間圧延は、複数回のパスで行う。ニッケル層に上層部と下層部とを形成するためには、最終パスまでの累積圧延率に加えて、各圧延パスにおける圧下率を制御する必要がある。具体的には、圧延パスの回数を少なくとも7パス以上とし、1回目の圧延パスの圧下率を30%以下とし、4回目の圧延パスまでの(4回目の圧延パスも含む)累積圧延率を70%以下とし、最終パスの2つ前の圧延パスまでの累積圧延率と最終パスまでの累積圧延率との差を5%以下にする。
また、圧延パスの回数を少なくとも7パス以上とすることで、1回の圧延パス当たりの圧下率を小さくすることが好ましい。また、1回目の圧延パスの圧下率を30%以下とし、4回目の圧延パスまでの累積圧延率を70%以下とすることで、圧延パスにおける前半の累積圧延率が大きくなりすぎないようにする。更に、最終パスの2つ前の圧延パスまでの累積圧延率と最終パスまでの累積圧延率との差を5%以下にすることで、後半は前半よりも圧下率を抑えて圧延を行う。このように各圧延パスにおける圧下率を制御することで、純Niをニッケル層の最表面に残すとともに、ニッケル層に上層部と下層部とを形成できる。上記の条件を外すと、ニッケル層を前半の圧延パスで一気に潰すことになり、ニッケル層に上層部と下層部とを形成できなくなる。
本実施形態に係る製造方法の冷間圧延は、製造コストの低減のために、圧延パス数を少なくする集電箔の製造方法とは、反対の考え方に基づいている。
(再焼鈍工程)
上記圧延の後に、再度、焼鈍を行って箔強度を調整することも可能である(再焼鈍工程)。ただし、再焼鈍工程における焼鈍の温度が高すぎると、ニッケル層の集合組織が崩れる場合がある。従って、再焼鈍を行う場合でも、焼鈍温度は600℃以下とする必要がある。再焼鈍を行った場合、箔強度が上述した好ましい範囲(600〜1200MPa)を下回る場合があるが、これにより電解液に対する耐腐食性が損なわれることはない。
(クロム系表面処理工程)
冷間圧延後の鋼箔に対してクロム系表面処理を行い、ニッケル層の表面にクロム系表面処理層を形成する。クロム系表面処理には、3価クロム処理やクロメート処理などが含まれる。
具体的なクロム系表面処理の方法としては、酸化クロムを主成分とする水溶液や酸化クロムとりん酸を主成分とする水溶液等を塗布する方法、又は電解クロメート処理する方法が例示できる。その他にも、従来公知のクロム系表面処理方法として酸化クロムとポリアクリル酸とを主成分とする水溶液を塗布して加熱及び乾燥する方法等も例示できる。しかしながら、これらに限定されるものではない。
(ポリオレフィン樹脂層の形成工程)
クロム系表面処理工程後の鋼箔に、ポリオレフィン樹脂層を形成してもよい。ポリオレフィン樹脂層は、熱ラミネート法によって積層すればよい。
このようにして製造された蓄電デバイス容器用鋼箔は、更にプレス成形等を経て、蓄電デバイス用容器に加工される。そして、蓄電デバイス用容器に電極を挿入し、有機電解液等の非水電解液を注液することで、蓄電デバイスが製造される。例えば、電極としてリチウムイオンを吸蔵放出可能な正極及び負極を用い、電解液としてリチウム塩を含む有機電解液を用いることで、リチウムイオン二次電池を製造できる。また、活性炭からなる電極と有機電解液との組み合わせによって、キャパシタを製造できる。
次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
(実施例1〜24、26、27及び比較例3、比較例6〜10)
表1に示す成分組成の冷延鋼板(未焼鈍材)に対して、脱脂及び酸洗の後、電気めっき法により、ニッケルめっきを行った。
ニッケルめっきでは、硫酸ニッケル:320g/l、塩化ニッケル:70g/l、ほう酸:40g/lを含むめっき浴を用い、浴温度:65℃、電流密度:20A/dmにて、種々の付着量のニッケルめっき層を形成した。次いで、5%H(残部N)雰囲気で、所定の温度及び時間で連続焼鈍処理を行った。その後、所定の累積圧延率で冷間圧延を行い、箔を製造した。原板の厚さ、蛍光X線分析装置を用いて測定したニッケルめっき層の付着量(Niめっき量)、焼鈍条件、及び総累積圧延率、得られた箔の厚みを表2に示す。
表3は、総累積圧延率(最終パスまでの累積圧延率)がそれぞれの場合の、各圧延パスまでの累積圧延率を表す圧下パターンを示す表である。例えば、実施例1は、累積圧延率が98%で圧下パターンA9であるので、表3の圧下パターンA9に示すように合計で17パスを行ったことを示している。
(実施例25)
表1に示す成分組成Al−kの冷延鋼板に、5%H(残部N)雰囲気で、保持温度750℃かつ保持時間60secの連続焼鈍を施し、次いで、ニッケルめっき、加熱処理、及び冷間圧延を行って、鋼箔を製造した。ニッケルめっきの条件は、実施例1〜24、26及び27のめっき条件と同じである。めっき後の加熱処理(焼鈍)は、5%H(残部N)雰囲気で、保持温度600℃かつ保持時間60secで行った。原板の厚さ、蛍光X線分析装置を用いて測定したニッケルめっき層の付着量、焼鈍条件、及び総累積圧延率、得られた箔の厚みを表2に示す。
(比較例1)
表1に示す成分組成Al−kの冷延鋼板(未焼鈍材)を使用し、5%H(残部N)雰囲気で、所定の温度及び時間で連続焼鈍処理を行った。その後、所定の累積圧延率で冷間圧延を行い、箔を製造した。ニッケルめっきは行わなかった。
(比較例2)
表1に示す成分組成Al−kの冷延鋼板(未焼鈍材)を使用し、先の例と同条件で、ニッケルめっきを行い、その後、5%H(残部N)雰囲気で、所定の温度及び時間で連続焼鈍処理を行った。焼鈍後の冷間圧延は行わなかった。
(比較例4)
表1に示す成分組成Al−kの冷延鋼板を、5%H(残部N)雰囲気で、保持温度750℃かつ保持時間60secの連続焼鈍処理を行い、次いで、ニッケルめっきと累積圧延率が60%の冷間圧延とを行って、箔を製造した。めっき浴は、先の条件の浴に、光沢添加剤として、サッカリン:2g/lと、2ブチン1,4ジオール:0.2g/lとを添加したものを用いた。他のめっき条件は、先のめっき条件と同じである。比較例4では、冷間圧延中に一部のNiめっきが剥離した。そのため、ニッケル層のNi濃度やNi状態を測定できなかった。
(比較例5)
表1に示す成分組成Al−kの20μm箔を使用し、箔にニッケルめっきを行った。即ち、比較例5のニッケルめっきには、再結晶焼鈍および冷間圧延のいずれも行われていない。ニッケルめっきの条件は、先のめっき条件と同じである。
これらの鋼箔について、ニッケル(Ni)層の付着量、表面から所定の深さまでのNi濃度、RD方向の<111>方位の極密度、大角粒界の長さL15に対する亜粒界の長さL5の割合、耐電解液性を評価した。それぞれの評価方法は以下の通りである。
(評価方法)
ニッケル層の付着量:
鋼板のNiめっき付着量の測定と同様の方法で、蛍光X線分析装置を用いてニッケル層の付着量を測定した。具体的には、1辺が35mmの正方形のサンプルを切り出し、株式会社リガクの蛍光X線分析装置ZSX−100eを使用して、マスク径30mmφで、ニッケル層表面からNiのKα蛍光X線強度を測定した。これを、同じ鋼材及びその鋼材に対して純Niめっきを付着させた標準材を測定して作成した検量線によりNiの付着量に換算し、ニッケル層の付着量とした。
Ni濃度:
アルゴンスプラズマによってニッケル層を1μmの深さまでエッチングし、グロー放電発光分析によってNi濃度を分析した。深さ方向に測定した範囲のうち、ニッケル層の表面側においてNi濃度が90%以上の領域を上層とした。また、ニッケル層のうち、上層よりも鋼箔側であってNi濃度が90%未満になる領域を下層とした。結果を表4に示す。ニッケル層の表面側においてNi濃度が90%未満であった場合は、上層の欄に「90未満」と表記した。この場合は、本発明のニッケル層の上層部を有しないことを意味する。
極密度及び亜粒界の割合:
EBSD法によって、極密度及び亜粒界の割合を測定した。具体的には、供試材に前処理(アセトン超音波脱脂)を施した後、SEM/EBSD試料台にセットし、RD方向:120μmかつTD方向:100μmの領域に対して、0.2μm間隔にて、方位測定を行った。測定には、ショットキー型熱電子銃を搭載したFE−SEM(日立製SU−70)を用い、加速電圧は25kVに設定した。EBSD法による分析を行うためのソフトとして、TSLソリューションズ製OIMシステムv5.31を使用した。
RDの逆極点図から、ランダムな状態の極密度を1として、<111>方位の極密度を求めた。ここでの<111>方位の極密度とは、<111>から5°以内の範囲における最大の極密度の値である。
上記と同様の方法により、角度差(相対方位差)が2°以上5°以下の2つの結晶粒の粒界である亜粒界の長さ(亜粒界長(L5))、及び角度差が15°以上の2つの結晶粒の粒界である大角粒界の長さ(粒界長(L15))を計測し、その比L5/L15を求めた。
耐電解液性:
実施例1〜27及び比較例1〜7の鋼箔に対し、クロム系表面処理層を形成した。クロム系表面処理は、無水クロム酸25g/L、硫酸3g/L、硝酸4g/Lからなる常温の浴に、適宜りん酸、塩酸、ふっ化アンモニウム等を加えて用い、陰極電流密度25A/dmで電解クロメート処理層を形成した。該クロメート処理層の厚みは、処理時間を調整して10nmとした。膜厚と処理時間が比例せず、通電量や推定反応量等では膜厚を制御できないため、XPS分析(PHI社製Quantum2000型、X線源はAlKα(1486.7eV)単色化、X線出力は15kV 1.6mA)によりクロメート処理層の厚さを直接測定し、制御した。本実施例、及び比較例において、クロメート処理は片面にのみ行った。
次に、クロメート処理層の上に、厚さ30μmのポリプロピレンフィルムをラミネートした。
そして、ポリプロピレンフィルムをラミネートした鋼箔を5mm×40mmに切り出した試験片を各例について10本ずつ作製し、半分の5本の試験片については、蓋を用いて密閉できるポリプロピレン製の瓶の中で電解液に完全に浸漬し、80℃で7日間保持した。電解液浸漬をしていない試験片5本と、電解液浸漬した5本の試験片の全数に対し、JIS K 6854−2に準拠した180°ピール試験を実施し、ポリプロピレンフィルムの密着強度を測定した。浸漬した試験片の密着強度の平均を浸漬していない試験片の密着強度の平均で割って百分率にしたものを低下率として、耐電解液性の指標とした。低下率が低いほど耐電解液性が高いことを示す。
本試験における比較例2(ニッケルめっきまま)の低下率は概ね50%である。本実施例では、比較例2を基準として、低下率が30%より小さいものを比較例2より大幅に良いとしてS(Superior)、30〜45%未満のものを比較例2より良いとしてEx(Excellent)、45〜50%未満のものを比較例2より良いが「Ex」よりも劣るとしてG(GOOD)、50〜60%未満のものを比較例2と同等としてP(POOR)、60%以上のものを比較例2よりも不良としてB(BAD)とした。電解液は、六ふっ化りん酸リチウム(LiPF)をエチレンカーボネートとジエチルカーボネートとを1:1に混合した溶媒で1mol/Lの濃度に希釈したものを用いた。結果を表4に示す。
表4に示すように、本発明の実施例は、良好な耐電解液性を示した。一方、比較例は、耐電解液性が劣る結果となった。
表4に示す実施例1〜27及び比較例6、7のニッケル層の集合組織は、RDの<111>及び<001>方位の集積度が高く、RDの<111>方位の極密度が3.0以上であった。また、NDについては、<101>から<112>にかけて集積が見られ、TDについては<101>方位の集積が見られたが、極密度はそれぞれ2に満たなかった。よって、これらの実施例及び比較例では、<111>方位が圧延方向に平行である集合組織からなるニッケル層であった。更に、実施例1〜27においては、ニッケル層においてNi濃度が90%以上である上層と、Ni濃度が90%未満である下層を有していた。このため、実施例1〜27は、良好な耐電解液性を示したものと考えられる。比較例6、7は、ニッケル層の表面におけるNi濃度が90%未満であり、Ni濃度が90%以上の領域が存在しなかったため、耐電解液性が低かったと考えられる。
比較例2〜5は、RDの<111>及び<001>方位の集積度が低く、RDの<111>方位の極密度が3.0未満であり、<111>方位が圧延方向に平行になっているとはいえないものであった。このため、耐電解液性が低かったものと考えられる。
本発明によれば、高強度を有する圧延鋼箔において、ポリオレフィン樹脂層を表面に形成した蓄電デバイス用容器にした場合に、電解液中でも基材と樹脂層との密着力を維持し、良好な耐腐食性を有する蓄電デバイス容器用鋼箔を安価に提供できる。また、この蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器及び蓄電デバイス用容器を備える蓄電デバイスを提供できる。そのため、産業上の利用性が高い。
1 ニッケルめっき工程
2 再結晶焼鈍工程
3 冷間圧延工程
4 クロム系表面処理工程
5 再焼鈍工程
6 ポリオレフィン系樹脂層の形成工程
11 基材
12 圧延鋼箔
13 ニッケルめっき層
14 クロム系表面処理層
15 ポリオレフィン系樹脂層
20 蓄電デバイス
21 蓄電デバイス用容器
22 正極リード
23 負極リード

Claims (8)

  1. 圧延鋼箔と、
    前記圧延鋼箔の表面に形成されたニッケル層と、
    前記ニッケル層の表面に形成されたクロム系表面処理層と、
    を備え、
    前記ニッケル層は、前記クロム系表面処理層に接してかつ金属元素中90質量%以上のNiを含む上層部と、前記圧延鋼箔に接してかつ金属元素中90質量%未満のNiと、Feとを含有する下層部と、を備え、
    前記ニッケル層における圧延方向の逆極点図の<111>極密度が3.0以上6.0以下であり、
    前記ニッケル層が、相対方位差2°以上5°以下の2つの結晶の粒界である亜粒界と、相対方位差15°以上の2つの結晶の粒界である大角粒界と、を持ち、前記亜粒界の長さである粒界長L5と、前記大角粒界の長さである粒界長L15との比L5/L15の平均値が1.0以上である
    ことを特徴とする蓄電デバイス容器用鋼箔。
  2. 前記ニッケル層の付着量が0.3g/m以上であることを特徴とする請求項1に記載の蓄電デバイス容器用鋼箔。
  3. さらに、前記クロム系表面処理層の表面に形成されたポリオレフィン系樹脂層を有することを特徴とする請求項1または2に記載の蓄電デバイス容器用鋼箔。
  4. 請求項3に記載の蓄電デバイス容器用鋼箔からなる蓄電デバイス用容器。
  5. 請求項4に記載の蓄電デバイス用容器を備えた蓄電デバイス。
  6. 鋼板にニッケルめっきを行って前記鋼板上にニッケルめっき層を形成し、ニッケルめっき鋼板を得るニッケルめっき工程と、
    前記ニッケルめっき鋼板に、前記ニッケルめっき層が再結晶するように焼鈍を行う再結晶焼鈍工程と、
    前記ニッケルめっき鋼板に、冷間圧延を施して、鋼箔を得る冷間圧延工程と、
    前記鋼箔に対してクロム系表面処理を行うクロム系表面処理工程と、
    を有し、
    前記冷間圧延工程では、圧延パスの回数を少なくとも7パス以上とし、1回目の圧延パスの圧下率を30%以下とし、4回目の圧延パスまでの累積圧延率を70%以下とし、最終パスの2つ前の圧延パスまでの累積圧延率と最終パスまでの累積圧延率との差を5%以下とし、前記最終パスまでの累積圧延率を70%以上とする
    ことを特徴とする蓄電デバイス容器用鋼箔の製造方法。
  7. 前記ニッケルめっき工程において、ニッケルめっき層の付着量を1g/m以上とすることを特徴とする請求項6に記載の蓄電デバイス容器用鋼箔の製造方法。
  8. さらに、前記クロム系表面処理工程後の前記鋼箔の表面に、ポリオレフィン樹脂層を形成するポリオレフィン樹脂層の形成工程を含むことを特徴とする請求項6または7に記載の蓄電デバイス容器用鋼箔の製造方法。
JP2015557677A 2014-07-22 2015-07-22 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法 Active JP5908194B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014149248 2014-07-22
JP2014149248 2014-07-22
PCT/JP2015/070821 WO2016013575A1 (ja) 2014-07-22 2015-07-22 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法

Publications (2)

Publication Number Publication Date
JP5908194B1 true JP5908194B1 (ja) 2016-04-26
JPWO2016013575A1 JPWO2016013575A1 (ja) 2017-04-27

Family

ID=55163099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015557677A Active JP5908194B1 (ja) 2014-07-22 2015-07-22 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法

Country Status (6)

Country Link
US (1) US10205135B2 (ja)
JP (1) JP5908194B1 (ja)
KR (1) KR102366582B1 (ja)
CN (1) CN106536779B (ja)
TW (1) TWI582243B (ja)
WO (1) WO2016013575A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913440B2 (ja) 2016-04-13 2021-08-04 東洋鋼鈑株式会社 電池容器用金属板およびこの電池容器用金属板の製造方法
KR102416183B1 (ko) 2018-04-13 2022-07-05 닛폰세이테츠 가부시키가이샤 Ni 확산 도금 강판 및 Ni 확산 도금 강판의 제조 방법
KR102428145B1 (ko) * 2018-04-13 2022-08-02 닛폰세이테츠 가부시키가이샤 Ni 확산 도금 강판 및 Ni 확산 도금 강판의 제조 방법
KR20210049087A (ko) 2018-08-31 2021-05-04 도요 고한 가부시키가이샤 전지 용기용 금속판 및 이 전지 용기용 금속판의 제조 방법
KR20210092271A (ko) * 2018-12-27 2021-07-23 닛폰세이테츠 가부시키가이샤 Ni 도금 강판 및 Ni 도금 강판의 제조 방법
CN115362580A (zh) * 2020-03-31 2022-11-18 日铁化学材料株式会社 镍氢二次电池集电体用镀Ni钢箔、镍氢二次电池集电体、以及镍氢二次电池
JP7475931B2 (ja) 2020-03-31 2024-04-30 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
JP7474096B2 (ja) 2020-03-31 2024-04-24 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池
KR102477435B1 (ko) * 2020-12-09 2022-12-15 주식회사 티씨씨스틸 가공성이 우수한 니켈 도금 열처리 강판 및 이의 제조방법
JP2022127529A (ja) 2021-02-19 2022-08-31 東洋鋼鈑株式会社 電池容器用鋼箔及びそれにより製造されるパウチ型電池容器
US11746434B2 (en) 2021-07-21 2023-09-05 Battelle Energy Alliance, Llc Methods of forming a metal coated article
JP2023164192A (ja) * 2022-04-29 2023-11-10 東洋鋼鈑株式会社 表面処理鋼箔及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140018A (ja) * 2004-11-11 2006-06-01 Toyo Kohan Co Ltd リチウム電池のケース用鋼板、リチウム電池のケース用表面処理鋼板、電池ケースおよびリチウム電池
WO2007072604A1 (ja) * 2005-12-20 2007-06-28 Nippon Steel Materials Co., Ltd. 樹脂被覆ステンレス鋼箔、容器及び2次電池
JP2013170308A (ja) * 2012-02-22 2013-09-02 Nippon Steel & Sumitomo Metal Corp プレス成形性に優れたリチウムイオン電池ケース用表面処理鋼板及びその製造方法
WO2013157600A1 (ja) * 2012-04-19 2013-10-24 新日鐵住金株式会社 鋼箔及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496090B2 (ja) * 1999-06-14 2004-02-09 日本製箔株式会社 二次電池用外装材料及びその製造方法
JP4216611B2 (ja) * 2003-01-17 2009-01-28 新日本製鐵株式会社 電池缶用Niメッキ鋼板
JP5453884B2 (ja) 2008-04-03 2014-03-26 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法
CN202191628U (zh) 2011-08-02 2012-04-18 陕西坚瑞消防股份有限公司 一种气溶胶灭火装置的控制启动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140018A (ja) * 2004-11-11 2006-06-01 Toyo Kohan Co Ltd リチウム電池のケース用鋼板、リチウム電池のケース用表面処理鋼板、電池ケースおよびリチウム電池
WO2007072604A1 (ja) * 2005-12-20 2007-06-28 Nippon Steel Materials Co., Ltd. 樹脂被覆ステンレス鋼箔、容器及び2次電池
JP2013170308A (ja) * 2012-02-22 2013-09-02 Nippon Steel & Sumitomo Metal Corp プレス成形性に優れたリチウムイオン電池ケース用表面処理鋼板及びその製造方法
WO2013157600A1 (ja) * 2012-04-19 2013-10-24 新日鐵住金株式会社 鋼箔及びその製造方法

Also Published As

Publication number Publication date
WO2016013575A1 (ja) 2016-01-28
CN106536779A (zh) 2017-03-22
TW201610177A (zh) 2016-03-16
US10205135B2 (en) 2019-02-12
TWI582243B (zh) 2017-05-11
KR20170034894A (ko) 2017-03-29
KR102366582B1 (ko) 2022-02-23
US20170170436A1 (en) 2017-06-15
JPWO2016013575A1 (ja) 2017-04-27
CN106536779B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
JP5908194B1 (ja) 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
JP5909606B1 (ja) 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
KR101989219B1 (ko) 강박 및 그 제조 방법
US20120009464A1 (en) Material for metal case of secondary battery using non-aqueous electrolyte, metal case, secondary battery, and producing method of material for metal case
KR20200111805A (ko) 전지 용기용 표면 처리 강판 및 전지 용기용 표면 처리 강판의 제조 방법
JP2013143314A (ja) リチウムイオン二次電池の負極用防錆金属シート、負極及びその製法並びに電池
WO2017179492A1 (ja) 電池容器用金属板およびこの電池容器用金属板の製造方法
JPWO2020045627A1 (ja) 電池容器用金属板およびこの電池容器用金属板の製造方法
WO2020204018A1 (ja) アルカリ二次電池用表面処理板およびその製造方法
CN113544882A (zh) 碱性二次电池用表面处理板及其制造方法
JP5668709B2 (ja) プレス成形性に優れたリチウムイオン電池ケース用表面処理鋼板及びその製造方法
TWI594482B (zh) 蓄電裝置容器用鋼箔、蓄電裝置用容器及蓄電裝置
JP2020167163A (ja) アルカリ二次電池用表面処理板およびその製造方法
WO2000039861A1 (en) Clad metal plate for battery case, battery case and battery using the battery case
WO2019021909A1 (ja) 電池外筒缶用鋼板、電池外筒缶および電池

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5908194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250