JP5898424B2 - 有機発光装置の製造方法 - Google Patents

有機発光装置の製造方法 Download PDF

Info

Publication number
JP5898424B2
JP5898424B2 JP2011159024A JP2011159024A JP5898424B2 JP 5898424 B2 JP5898424 B2 JP 5898424B2 JP 2011159024 A JP2011159024 A JP 2011159024A JP 2011159024 A JP2011159024 A JP 2011159024A JP 5898424 B2 JP5898424 B2 JP 5898424B2
Authority
JP
Japan
Prior art keywords
group
formula
substituent
represented
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011159024A
Other languages
English (en)
Other versions
JP2012178328A (ja
Inventor
修一 佐々
修一 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011159024A priority Critical patent/JP5898424B2/ja
Publication of JP2012178328A publication Critical patent/JP2012178328A/ja
Application granted granted Critical
Publication of JP5898424B2 publication Critical patent/JP5898424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子を発光源として有する有機発光装置の製造方法に関する。
有機エレクトロルミネッセンス素子(以下、有機EL素子と記す場合もある)を発光源として有する有機発光装置は、支持基板と、該支持基板上に形成された1つ若しくは2つ以上の有機EL素子と、前記有機EL素子が封止されるように当該有機EL素子を介在させて前記支持基板に貼合された封止部材とを有する。前記構成において、支持基板上の1つ若しくは2つ以上の有機EL素子は、支持基板と封止部材とにより封止されて、外部環境から保護されている。
前記支持基板上に形成される有機EL素子は、単色の1つ若しくは2つ以上の有機EL素子である場合もあるし、RGB(赤緑青)の各色を発光する多数の有機EL素子である場合もある。前者の構成を有する有機発光装置は主に光源として使用され、後者の構成を有する有機発光装置は主にカラーディスプレイ装置として使用される。
上記有機発光装置を構成する有機EL素子は、陽極と陰極との間に有機発光性材料からなる発光層を薄膜形成した基本構成を有している。かかる基本構成を有する有機EL素子において、両極間に電圧を印加すると、陽極から正孔が注入され、陰極から電子が注入される。そして、正孔と電子が発光層において結合することによって発光が生じる。
通常、有機EL素子は、基本構成だけでは所期の特性を得ることが困難である。そのため、発光層に加えて、所定の有機層が設けられる。例えば所定の層として、正孔注入層、正孔輸送層、電子注入層、電子輸送層などが設けられる。
上記電子注入層は、従来、Ba、BaO、NaF、LiFなどの電子注入性材料を高真空中で蒸着することによって形成されている。これらの電子注入性材料は、大気中で不安定である。形成した電子注入層は大気環境下に置かれると、水分や酸素と容易に反応し、化学変化してしまう。この電子注入層の劣化は、有機発光装置におけるダークスポットの発生や寿命の低下の一因となっている。
上記電子注入層を有する有機発光装置の製造では上述の電子注入層の劣化を防ぐために、封止部材の貼合を真空雰囲気下において行っていた(例えば、特許文献1、特許文献2、特許文献3参照)。
しかしながら封止部材の貼合を真空雰囲気下において行う場合、封止部材を貼合する装置を含めて真空に保つ必要があり、装置が大型化するとともに、工程が複雑化する。これが有機発光装置のコストアップの原因となる。
特開2006−004707号公報 特開2007−149589号公報 特開2009−110785号公報
本発明の目的は真空雰囲気を導入することなく簡便に有機発光装置を製造することのできる、有機発光装置の製造方法を提供することにある。
本発明者らは、特定構造を有するイオン性ポリマーが優れた電子注入性を有するとともに、常圧程度の雰囲気中でも安定であり、溶媒に溶解して溶液とし、該溶液を成膜することにより常圧程度の雰囲気中で安定な電子注入層を得ることができることを知るに至った。本発明は、斯かる知見に基づいてなされたものである。本発明は、以下の構成を採用した有機発光装置の製造方法を提供する。
なお、本発明でいう「大気中」とは、本発明の目的から広義には、酸素及び水分の含有を許容する全ての雰囲気を意味する。より具体的には、一般的にいう常温、常圧の未調整の大気雰囲気を含み、さらに、該大気雰囲気に対して、酸素及び水分を含んだまま、温度、圧力、成分を調整した雰囲気が含まれる。調整雰囲気としては、「塗布」を含む本発明の製造方法が実施可能であることを条件として大気雰囲気に対して窒素、水素、酸素、二酸化炭素などの組成成分を調整する処理、これらの組成割合を調整する処理がなされており、浮遊微粒子、浮遊微生物にかかる清浄度が調整されていてもよく、さらには本発明の製造方法が実施できることを条件として温度、湿度、圧力などの環境条件が調整されていてもよい雰囲気が含まれ、その圧力は通常1013hPa±100hPaの常圧である。
また、以下の説明において、基板の厚み方向の一方を上方(または上)といい、基板の厚み方向の他方を下方(または下)という場合がある。この上下関係の表記は、説明の便宜上、設定したもので、必ずしも実際に有機EL素子が製造される工程および使用される状況に適用されるものではない。
[1]陽極と、発光層と、イオン性ポリマーを含む溶液を成膜してなる電子注入層と、陰極とを含んで構成される有機EL素子がその上に形成された支持基板を用意する工程と、
有機EL素子が封止されるように当該有機EL素子を介在させて前記支持基板と封止部材とを貼合する工程と、
を含む有機発光装置の製造方法。
[2]前記支持基板と前記封止部材とを貼合する工程を常圧の雰囲気中にて行う、前記[1]に記載の有機発光装置の製造方法。
[3]前記支持基板と前記封止部材とを貼合する工程では、接着部材として硬化性樹脂接着剤を用いる、前記[1]または[2]に記載の有機発光装置の製造方法。
[4]前記支持基板と前記封止部材とを貼合する工程では、接着部材としてフリットガラス封止剤を用いる、前記[1]〜[3]のいずれか一つに記載の有機発光装置の製造方法。
[5]前記支持基板として第1の帯状可撓性基材を用いるとともに、前記封止部材として第2の帯状可撓性基材を使用し、前記第1の帯状可撓性基材と前記第2の帯状可撓性基材とを、前記有機EL素子を介して当接させた状態で二つの貼り合わせロール間を通過させることにより第1の帯状可撓性基材と第2の帯状可撓性基材とを貼合する、前記[1]〜[4]のいずれか一つに記載の有機発光装置の製造方法。
[6]前記[1]〜[5]のいずれか一つに記載の有機発光装置の製造方法によって製造されうる有機発光装置。
本発明によれば、溶媒に溶解させた溶液を成膜することにより大気中で安定な電子注入層を形成することのできる電子注入性材料としてイオン性ポリマーを用いた、製造コストの低減が可能であって、封止工程を含む製造プロセスにおいて有機EL素子の性能劣化を防止することが可能な、有機発光装置の製造方法を提供することができる。
図1は、本発明にかかる有機発光装置の第1の実施形態を示す側断面構成図である。 図2は、図1のII−II線に沿う有機発光装置の平面構成図である。 図3は、本発明にかかる有機発光装置の第1の実施形態の変形例を示す側断面構成図である。 図4は、本発明にかかる有機発光装置の第2の実施形態を示す側断面構成図である。 図5は、本発明にかかる有機発光装置の第3の実施形態を示す側断面構成図である。 図6は、本発明に係る有機発光装置の第4の実施形態に用いる製造装置の一例を示す概略構成図である。
先に述べたように、本発明の有機発光装置の製造方法は、陽極と、発光層と、イオン性ポリマーを含む溶液を成膜してなる電子注入層と、陰極とを含んで構成される有機EL素子がその上に形成された支持基板を用意する工程と、有機EL素子が封止されるように当該有機EL素子を介在させて前記支持基板と封止部材とを貼合する工程とを含む。
上記構成の本発明の各要素について、以下に詳しく説明する。まず、溶媒に溶解させた溶液を成膜することにより常圧程度の雰囲気で安定な電子注入層を形成することのできる電子注入性材料であるイオン性ポリマーについて説明する。なおこのイオン性ポリマーは大気中でも安定である。次に、有機EL素子の構成について説明し、続いて、有機発光装置の製造方法について、詳しく説明する。
[イオン性ポリマー]
本発明において用い得るイオン性ポリマーとしては、例えば、下記式(1)で表される基及び下記式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を有する重合体が挙げられる。イオン性ポリマーの一形態としては、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を、全構造単位中、15〜100モル%有する重合体が挙げられる。
−(Q1n1−Y1(M1)a1(Z1)b1 (1)
(式(1)中、Q1は2価の有機基を表し、Y1は、−CO2 -、−SO3 -、−SO2 -、−PO3 2-又は−B(R3 -を表し、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、n1は0以上の整数を表し、a1は1以上の整数を表し、b1は0以上の整数を表し、ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択され、Raは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、Q1、M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい。)
−(Q2n2−Y2(M2)a2(Z2)b2 (2)
(式(2)中、Q2は2価の有機基を表し、Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン又はスルホニルカチオン又はヨードニウムカチオンを表し、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表し、ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択され、Rbは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、Q2、M2及びZ2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
本発明で用いられるイオン性ポリマーの一形態としては、さらに下記式(3)で表される基を有する重合体が挙げられる。イオン性ポリマーが式(3)で表される基を有する場合、式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよく、式(1)で表される基及び式(2)で表される基からなる群から選ばれる一種以上の基を含む構造単位と同一の構造単位内に含まれていてもよいし、異なる他の構造単位内に含まれていてもよい。さらに、イオン性ポリマーの一形態としては、式(1)で表される基、式(2)で表される基、及び式(3)で表される基のうち少なくとも1種を含む構造単位を、全構造単位中、15〜100モル%有する重合体が挙げられる。
−(Qn3−Y3 (3)
(式(3)中、Qは2価の有機基を表し、Y3は−CN又は式(4)〜(12)のいずれかで表される基を表し、n3は0以上の整数を表す。
−O−(R’O)a3−R’’ (4)
−S−(R’S)a4−R’’ (6)
−C(=O)−(R’−C(=O))a4−R’’ (7)
−C(=S)−(R’−C(=S))a4−R’’ (8)
−N[(R’)a4R’’ ]2 (9)
−C(=O)O−(R’−C(=O)O)a4−R’’ (10)
−C(=O)O−(R’O)a4−R’’ (11)
−NHC(=O)−(R’NHC(=O))a4−R’’ (12)
(式(4)〜(12)中、R’は置換基を有し又は有さない2価の炭化水素基を表し、R’’は水素原子、置換基を有し若しくは有さない1価の炭化水素基、−COOH、−SO3H、−OH、−SH、−NRc 2、−CN又は−C(=O)NRc 2を表し、R’’’は置換基を有し若しくは有さない3価の炭化水素基を表し、a3は1以上の整数を表し、a4は0以上の整数を表し、Rcは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、R’、R’’及びR’’’のおのおのは複数個ある場合、同一でも異なっていてもよい。)
イオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15〜100モル%含むことが好ましい。
(式(13)中、Rは式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表し、R1は複数個ある場合、同一でも異なっていてもよい。)
(式(14)中、R2は(1+m1+m2)価の有機基を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m1及びm2はそれぞれ独立に1以上の整数を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
(式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表し、R3は複数個ある場合、同一でも異なっていてもよい。
(式(16)中、R4は(1+m3+m4)価の有機基を表し、Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m3及びm4はそれぞれ独立に1以上の整数を表す。Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
(式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表し、R5及びR6のおのおのは複数個ある場合、同一でも異なっていてもよい。)
−R7−[(Q1n1−Y1(M1)a1(Z1)b1m5 (18)
(式(18)中、R7は直接結合又は(1+m5)価の有機基を表し、Q1、Y、M1、Z1、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表し、Q1、Y、M1、Z1、n1、a1及びb1のおのおのは複数個ある場合、同一でも異なっていてもよい。)
−R8−[(Qn3−Y3m6 (19)
(式(19)中、R8は単結合又は(1+m6)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
(式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表し、R9及びR10のおのおのは複数個ある場合、同一でも異なっていてもよい。)
−R11−[(Q2n2−Y2(M2)a2(Z2)b2m7 (21)
(式(21)中、R11は単結合又は(1+m7)価の有機基を表し、Q2、Y2、M2、Z2、n2、a2及びb2は前述と同じ意味を表し、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表し、Q2、Y2、M2、Z2、n2、a2及びb2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
−R12−[(Qn3−Y3m8 (22)
(式(22)中、R12は単結合又は(1+m8)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表し、Q、Y3及びn3、のおのおのは複数個ある場合、同一でも異なっていてもよい。)
前記イオン性ポリマー中の構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(3)で表される基を2種類以上含んでいてもよい。
−式(1)で表される基−
式(1)中、Q1で表される2価の有機基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,3−ブチレン基、1,4−ブチレン基、1,5−ペンチレン基、1,6−ヘキシレン基、1,9−ノニレン基、1,12−ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3−ブテニレン基、2−ブテニレン基、2−ペンテニレン基、2−ヘキセニレン基、2−ノネニレン基、2−ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2〜50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2〜50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3〜50の2価の環状飽和炭化水素基;1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,6−ナフチレン基、ビフェニル−4,4'−ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレンオキシ基;炭素原子を含む置換基を有するイミノ基;炭素原子を含む置換基を有するシリレン基が挙げられ、イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられ、前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。これらのうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。
以下、置換基について説明する。なお、「C〜C」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm〜nであることを表す。例えば、C〜Cアルキル基であれば、アルキル基の炭素原子数がm〜nであることを表し、C〜Cアルキルアリール基であれば、アルキル基の炭素原子数がm〜nであることを表し、アリール−C〜Cアルキル基であれば、アルキル基の炭素原子数がm〜nであることを表す。
アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。なお、C1〜C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。
アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルコキシ基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。また、該アルコキシ基には、メトキシメチルオキシ基、2−メトキシエチルオキシ基も含まれる。なお、C1〜C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。
アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキルチオ基としては、トリフルオロメチルチオ基等が挙げられる。
アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団であり、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基も含まれる。アリール基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリール基としては、フェニル基、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、ペンタフルオロフェニル基等が挙げられる。アリール基の中では、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。
前記アリール基のうち、C1〜C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec−ブトキシフェニル基、tert−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
前記アリール基のうち、C1〜C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
アリールオキシ基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリールオキシ基としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、C1〜C12アルコキシフェノキシ基及びC1〜C12アルキルフェノキシ基が好ましい。
前記アリールオキシ基のうち、C1〜C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、sec−ブトキシフェノキシ基、tert−ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2−エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7−ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
前記アリールオキシ基のうち、C1〜C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5−トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
アリールチオ基は、例えば、前述のアリール基に硫黄元素が結合した基である。アリールチオ基は、前記アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6〜60であり、6〜30であることが好ましい。アリールチオ基としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。
アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルキル基としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基等が挙げられる。
アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルコキシ基としては、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基等が挙げられる。
アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルキルチオ基としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基等が挙げられる。
アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が通常8〜60であり、8〜30であることが好ましい。アリールアルケニル基としては、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基等が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C2〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。なお、C2〜C12アルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基が挙げられる。
アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が通常8〜60であり、8〜30であることが好ましい。アリールアルキニル基としては、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基等が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。なお、C2〜C12アルキニル基としては、例えば、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、1−ペンチニル基、2−ペンチニル基、1−ヘキシニル基、2−ヘキシニル基、1−オクチニル基が挙げられる。
置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1〜60であり、2〜48が好ましい。置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基等が挙げられる。
置換シリル基としては、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1〜3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1〜60であり、3〜48が好ましい。なお、置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル−C1〜C12アルキル)シリル基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)シリル基、(C1〜C12アルキルフェニル−C1〜C12アルキル)シリル基、(1−ナフチル−C1〜C12アルキル)シリル基、(2−ナフチル−C1〜C12アルキル)シリル基、(フェニル−C1〜C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p−キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
アシル基は、炭素原子数が通常2〜20であり、2〜18であることが好ましい。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
アシルオキシ基は、炭素原子数が通常2〜20であり、2〜18であることが好ましい。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
イミン残基は、式:H−N=C<及び式:−N=CH−の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。このようなイミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常2〜20であり、2〜18が好ましい。イミン残基としては、例えば、一般式:−CRβ=N−Rγ又は一般式:−N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2〜18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。
(式中、Meはメチル基を示し、以下、同様である。)
アミド基は、炭素原子数が通常1〜20であり、2〜18であることが好ましい。アミド基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。
酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素原子数が通常4〜20であり、4〜18であることが好ましい。酸イミド基としては、以下の基が挙げられる。
1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3〜60であり、3〜20が好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような1価の複素環基としては、例えば、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられ、中でも、チエニル基、C1〜C12アルキルチエニル基、ピリジル基及びC1〜C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基、すなわち、式:−C(=O)OR(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換オキシカルボニル基は、炭素原子数が通常2〜60であり、2〜48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、上記炭素原子数には、前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。置換カルボキシル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。
式(1)中、Y1は、−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R 等の1価の基を表し、Y1としては、イオン性ポリマーの酸性度の観点からは−CO2 -、−SO2 -、−PO3 -が好ましく、−CO2 -がより好ましく、イオン性ポリマーの安定性の観点からは、−CO2 -、−SO3 -、−SO2 -又は−PO3 -が好ましい。
式(1)中、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられ、Li+、Na+、K+、Cs+、Ag+、Mg2+、Ca2+が好ましい。また、アンモニウムイオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、i−ブチル基、tert−ブチル基等の炭素原子数1〜10のアルキル基が挙げられる。
式(1)中、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
式(1)中、n1は0以上の整数を表し、原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。
式(1)中、a1は1以上の整数を表し、b1は0以上の整数を表す。
a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R であり、Mが1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、ZがF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1=b1+1を満たすように選択される。Y1が−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R -であり、M1が2価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=2×a1−1を満たすように選択される。Y1が−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R であり、M1が3価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=3×a1−1を満たすように選択される。Y1が−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R であり、M1が1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、Z1がSO4 2−又はHPO4 2−である場合には、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。
aは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Raとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1〜20のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられる。
前記式(1)で表される基としては、例えば、以下の基が挙げられる。
−式(2)で表される基−
式(2)中、Q2で表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられ、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記Q2で表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(2)中、Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン、又はヨードニウムカチオンを表す。
カルボカチオンとしては、例えば、
−C
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
アンモニウムカチオンとしては、例えば、
−N
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
ホスホニルカチオンとしては、例えば、
−P
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
スルホニルカチオンとしては、例えば、
−S
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
ヨードニウムカチオンとしては、例えば、
−I
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
式(2)中、Y2は、原料モノマーの合成の容易さ並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオンが好ましく、アンモニウムカチオンがより好ましい。
式(2)中、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。また、アンモニウムカチオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素原子数1〜10のアルキル基が挙げられる。
式(2)中、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
式(2)中、n2は0以上の整数を表し、好ましくは0から6の整数であり、より好ましくは0から2の整数である。
式(2)中、a2は1以上の整数を表し、b2は、0以上の整数を表す。
a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、M2がF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、a2=b2+1を満たすように選択され、Z2が2価の金属イオンであれば、a2=2×b2+1を満たすように選択され、Z2が3価の金属イオンであれば、a2=3×b2+1を満たすように選択される。M2がSO4 2-、HPO4 2-である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、b2=2×a2−1を満たすように選択され、Z2が3価の金属イオンであれば、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。
bは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rbとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1〜20のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられる。
前記式(2)で表される基としては、例えば、以下の基が挙げられる。
−式(3)で表される基−
式(3)中、Qで表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられ、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記Qで表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Qで表される2価の有機基としては、−(CH)−で表される基であることが好ましい。
n3は0以上の整数を表し、好ましくは0から20の整数であり、より好ましくは0から8の整数である。
式(3)中、Y3は−CN又は式(4)〜(12)のいずれかで表される基を表す。
式(4)〜(12)中、R’で表される2価の炭化水素基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,3−ブチレン基、1,4−ブチレン基、1,5−ペンチレン基、1,6−ヘキシレン基、1,9−ノニレン基、1,12−ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3−ブテニレン基、2−ブテニレン基、2−ペンテニレン基、2−ヘキセニレン基、2−ノネニレン基、2−ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2〜50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2〜50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3〜50の2価の環状飽和炭化水素基;1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,6−ナフチレン基、ビフェニル−4,4’−ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレンオキシ基等が挙げられる。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)〜(12)中、R’’で表される1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1−ナフチル基、2−ナフチル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(5)中、R’’’で表される3価の炭化水素基としては、メタントリイル基、エタントリイル基、1,2,3−プロパントリイル基、1,2,4−ブタントリイル基、1,2,5−ペンタントリイル基、1,3,5−ペンタントリイル基、1,2,6−ヘキサントリイル基、1,3,6−ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキルトリイル基;1,2,3−ベンゼントリイル基、1,2,4−ベンゼントリイル基、1,3,5−ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メタントリイル基、エタントリイル基、1,2,4−ベンゼントリイル基、1,3,5−ベンゼントリイル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)〜(12)中、Rcとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1−ナフチル基、2−ナフチル基が好ましい。
式(4)及び式(5)中、a3は1以上の整数を表し、3〜10の整数が好ましい。式(6)〜(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0〜30の整数が好ましく、3〜20の整数がより好ましい。式(7)〜(10)においては、a4は、0〜10の整数が好ましく、0〜5の整数がより好ましい。式(11)においては、a4は、0〜20の整数が好ましく、3〜20の整数がより好ましい。式(12)においては、a4は、0〜20の整数が好ましく、0〜10の整数がより好ましい。
3としては、原料モノマーの合成の容易さの観点からは、−CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、式(11)で表される基がより好ましく、以下の基が特に好ましい。
−イオン性ポリマー中の構造単位−
本発明に用いられるイオン性ポリマーは、前記式(13)で表される構造単位、前記式(15)で表される構造単位、前記式(17)で表される構造単位、前記式(20)で表される構造単位を有することが好ましく、前記構造単位を全構造単位中、15〜100モル%有するイオン性ポリマーであることがより好ましい。
・式(13)で表される構造単位
式(13)中、R1は式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表す。
式(14)で表される基は、Arに直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してArに結合していてもよい。
前記ArはR1以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar1が有するR1以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(13)中、n4は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(13)中のAr1で表される(2+n4)価の芳香族基としては、(2+n4)価の芳香族炭化水素基、(2+n4)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4)価の芳香族基が好ましい。該(2+n4)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n4)個除いた(2+n4)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基等が挙げられる。
単環式芳香環としては、例えば、以下の環が挙げられる。
縮合多環式芳香環としては、例えば、以下の環が挙げられる。
芳香環集合としては、例えば、以下の環が挙げられる。
有橋多環式芳香環としては、例えば、以下の環が挙げられる。
前記(2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜14、26〜29、37〜39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1〜6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。
式(14)中、R2で表される(1+m1+m2)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、アルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・式(15)で表される構造単位
式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表す。
式(16)で表される基は、Ar2に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr2に結合していてもよい。
前記Ar2はR3以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar2が有するR3以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(15)中、n5は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(15)中のAr2で表される(2+n5)価の芳香族基としては、(2+n5)価の芳香族炭化水素基、(2+n5)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n5)価の芳香族基が好ましい。該(2+n5)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n5)個除いた(2+n5)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜12で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜14、26〜29、37〜39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1〜6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。
式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。
式(16)中、R4で表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、アルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・式(17)で表される構造単位
式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表す。
式(18)で表される基及び式(19)で表される基は、Ar3に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr3に結合していてもよい。
前記Ar3はR5及びR6以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar3が有するR5及びR6以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(17)中、n6は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中、n7は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中のAr3で表される(2+n6+n7)価の芳香族基としては、(2+n6+n7)価の芳香族炭化水素基、(2+n6+n7)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n6+n7)価の芳香族基が好ましい。該(2+n6+n7)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜5、式7〜10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n6+n7)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜5、7〜10、13、14、26〜29、37〜39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。
式(18)中、Rは単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。
式(18)中、R7で表される(1+m5)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm5個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm5個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、アルコキシ基からm5個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(18)中、m5は1以上の整数を表し、ただし、R7が単結合のときm5は1を表す。
式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。
式(19)中、R8で表される(1+m6)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm6個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm6個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、アルコキシ基からm6個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(19)中、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表す。
・式(20)で表される構造単位
式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表す。
式(21)で表される基及び式(22)で表される基は、Ar4に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr4に結合していてもよい。
前記Ar4はR9及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar4が有するR9及びR10以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(20)中、n8は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中、n9は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中のAr4で表される(2+n8+n9)価の芳香族基としては、(2+n8+n9)価の芳香族炭化水素基、(2+n8+n9)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n8+n9)価の芳香族基が好ましい。該(2+n8+n9)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜5、式7〜10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n8+n9)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜5、7〜10、13、14、26〜29、37〜39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1〜6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。
式(21)中、R11は単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。
式(21)中、R11で表される(1+m7)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm7個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm7個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、アルコキシ基からm7個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(21)中、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表す。
式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。
式(22)中、R12で表される(1+m8)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm8個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm8個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、アルコキシ基からm8個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(22)中、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表す。
式(13)で表される構造単位の例
式(13)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(23)で表される構造単位、式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
(式(23)中、R13は(1+m9+m10)価の有機基を表し、R14は1価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m9及びm10はそれぞれ独立に1以上の整数を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(23)中、R13で表される(1+m9+m10)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、アルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。
式(23)中、R14で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から1個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(23)で表される構造単位としては、以下の構造単位が挙げられる。
(式(24)中、R13は(1+m11+m12)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m11及びm12はそれぞれ独立に1以上の整数を表し、R13、m11、m12、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(24)中、R13で表される(1+m11+m12)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、アルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。
式(24)で表される構造単位としては、以下の構造単位が挙げられる。
式(13)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(25)で表される構造単位が好ましい。
(式(25)中、R15は(1+m13+m14)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m13、m14及びm15はそれぞれ独立に1以上の整数を表し、R15、m13、m14、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(25)中、R15で表される(1+m13+m14)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、アルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。
式(25)で表される構造単位としては、以下の構造単位が挙げられる。
式(15)で表される構造単位の例
式(15)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(26)で表される構造単位、式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
(式(26)中、R16は(1+m16+m17)価の有機基を表し、R17は1価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(26)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(26)中、R17で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から1個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(26)で表される構造単位としては、以下の構造単位が挙げられる。
(式(27)中、R16は(1+m16+m17)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、R16、m16、m17、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(27)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(27)で表される構造単位としては、以下の構造単位が挙げられる。
式(15)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(28)で表される構造単位が好ましい。
(式(28)中、R18は(1+m18+m19)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m18、m19及びm20はそれぞれ独立に1以上の整数を表し、R18、m18、m19、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(28)中、R18で表される(1+m18+m19)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、アルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。
式(28)で表される構造単位としては、以下の構造単位が挙げられる。
式(17)で表される構造単位の例
式(17)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(29)で表される構造単位が好ましい。
(式(29)中、R19は単結合又は(1+m21)価の有機基を表し、R20は単結合又は(1+m22)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m21及びm22はそれぞれ独立に1以上の整数を表し、ただし、R19が単結合のときm21は1を表し、R20が単結合のときm22は1を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、アルコキシ基から(m21)個の水素原子を除いた基が好ましい。
式(29)中、R20で表される(1+m22)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、アルコキシ基から(m22)個の水素原子を除いた基が好ましい。
式(29)で表される構造単位としては、以下の構造単位が挙げられる。
式(17)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(30)で表される構造単位が好ましい。
(式(30)中、R21は単結合又は(1+m23)価の有機基を表し、R22は単結合又は(1+m24)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m23及びm24はそれぞれ独立に1以上の整数を表し、ただし、R21が単結合のときm23は1を表し、R22が単結合のときm24は1を表し、m25及びm26はそれぞれ独立に1以上の整数を表し、m23、m24、R21、R22、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(30)中、R21で表される(1+m23)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、アルコキシ基から(m23)個の水素原子を除いた基が好ましい。
式(30)中、R22で表される(1+m24)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、アルコキシ基から(m24)個の水素原子を除いた基が好ましい。
式(30)で表される構造単位としては、以下の構造単位が挙げられる。
式(20)で表される構造単位の例
式(20)で表される構造単位としては、得られる電子輸送性の観点からは、式(31)で表される構造単位が好ましい。
(式(31)中、R23は単結合又は(1+m27)価の有機基を表し、R24は単結合又は(1+m28)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m27及びm28はそれぞれ独立に1以上の整数を表し、ただし、R23が単結合のときm27は1を表し、R24が単結合のときm28は1を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(31)中、R23で表される(1+m27)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、アルコキシ基から(m27)個の水素原子を除いた基が好ましい。
式(31)中、R24で表される(1+m28)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、アルコキシ基から(m28)個の水素原子を除いた基が好ましい。
式(31)で表される構造単位としては、以下の構造単位が挙げられる。
式(20)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(32)で表される構造単位が好ましい。
(式(32)中、R25は単結合又は(1+m29)価の有機基を表し、R26は単結合又は(1+m30)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m29及びm30はそれぞれ独立に1以上の整数を表し、ただし、R25が単結合のときm29は1を表し、R26が単結合のときm30は1を表し、m31及びm32はそれぞれ独立に1以上の整数を表し、m29、m30、R25、R26、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(32)中、R25で表される(1+m29)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、アルコキシ基から(m29)個の水素原子を除いた基が好ましい。
式(32)中、R26で表される(1+m30)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、アルコキシ基から(m30)個の水素原子を除いた基が好ましい。
式(32)で表される構造単位としては、以下の構造単位が挙げられる。
・その他の構造単位
本発明に用いられるイオン性ポリマーは、さらに式(33)で表される1種以上の構造単位を有していてもよい。
(式(33)中、Ar5は置換基を有し若しくは有さない2価の芳香族基又は置換基を有し若しくは有さない2価の芳香族アミン残基を表し、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表し、m33及びm34はそれぞれ独立に0又は1を表し、m33及びm34の少なくとも1つは1である。)
式(33)中のAr5で表される2価の芳香族基としては、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。該2価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等の単環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環からなる群から選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を2個除いた2価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を2個除いた2価の基等が挙げられる。
前記縮合多環式芳香環において、縮合する単環式芳香環の数は、イオン性ポリマーの溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。前記有橋多環式芳香環において、橋かけされる芳香環の数は、イオン性ポリマーの溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。
前記単環式芳香環としては、例えば、以下の環が挙げられる。
前記縮合多環式芳香環としては、例えば、以下の環が挙げられる。
前記芳香環集合としては、例えば、以下の環が挙げられる。
前記有橋多環式芳香環としては、例えば、以下の環が挙げられる。
前記イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Ar5で表される2価の芳香族基は式45〜60、61〜71、77〜80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45〜50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。
上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。
式(33)中のAr5で表される2価の芳香族アミン残基としては、式(34)で表される基が挙げられる。
(式(34)中、Ar6、Ar7、Ar8及びAr9は、それぞれ独立に、置換基を有し若しくは有さないアリーレン基又は置換基を有し若しくは有さない2価の複素環基を表し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有し若しくは有さないアリール基又は置換基を有し若しくは有さない1価の複素環基を表し、n10及びm35は、それぞれ独立に、0又は1を表す。)
前記アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基等が挙げられる。該置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。
n10が0の場合、Ar6中の炭素原子とAr8中の炭素原子とが直接結合してもよく、−O−、−S−等の2価の基を介して結合していてもよい。
Ar10、Ar11、Ar12で表されるアリール基、1価の複素環基としては、前記で置換基として説明し例示したアリール基、1価の複素環基と同様である。
Ar6、Ar7、Ar8、Ar9で表されるアリーレン基としては、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団が挙げられ、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基などが挙げられる。アリーレン基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリーレン基の具体例としては、フェニレン基、ビフェニレン基、C1〜C17アルコキシフェニレン基、C1〜C17アルキルフェニレン基、1−ナフチレン基、2−ナフチレン基、1−アントラセニレン基、2−アントラセニレン基、9−アントラセニレン基が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、テトラフルオロフェニレン基等が挙げられる。アリール基の中では、フェニレン基、ビフェニレン基、C1〜C12アルコキシフェニレン基、C1〜C12アルキルフェニレン基が好ましい。
Ar6、Ar7、Ar8、Ar9で表される2価の複素環基としては、複素環式化合物から水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4〜60であり、4〜20が好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような2価の複素環基としては、例えば、チオフェンジイル基、C1〜C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C1〜C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、イソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C1〜C12アルキルチオフェンジイル基、ピリジンジイル基及びC1〜C12アルキルピリジンジイル基がより好ましい。
構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、さらに他の構造単位を有していてもよい。他の構造単位としては、フェニレン基、フルオレンジイル基等のアリーレン基等が挙げられる。なお、これらのイオン性ポリマーの中では、架橋基を含んでいるものが好ましい。
また、式(34)で表される2価の芳香族アミン残基としては、下記式101〜110で表される芳香族アミンから水素原子を2個除いた基が例示される。
式101〜110で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよく、該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(33)中、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表す。イミノ基、シリル基若しくはエテニレン基が有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基等の炭素原子数1〜20のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記イオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基、エチニレン基が好ましい。
前記イオン性ポリマーの電子受容性、正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。
式(33)で表される構造単位としては、前記イオン性ポリマーの電子受容性の観点からは、式(35)で表される構造単位が好ましい。
(式(35)中、Ar13は、置換基を有し若しくは有さないピリジンジイル基、置換基を有し若しくは有さないピラジンジイル基、置換基を有し若しくは有さないピリミジンジイル基、置換基を有し若しくは有さないピリダジンジイル基又は置換基を有し若しくは有さないトリアジンジイル基を表す。)
ピリジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピラジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリミジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリダジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
トリアジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・構造単位の割合
本発明に用いられるイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の合計の割合は、有機EL素子の発光効率の観点からは、末端の構造単位を除く該イオン性ポリマーに含まれる全構造単位中、30〜100モル%であることがより好ましい。
・末端の構造単位
なお、本発明に用いられるイオン性ポリマーの末端の構造単位(末端基)としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec−ブトキシフェニル基、tert−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル−C1〜C12アルキル)シリル基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)シリル基、(C1〜C12アルキルフェニル−C1〜C12アルキル)シリル基、(1−ナフチル−C1〜C12アルキル)シリル基、(2−ナフチル−C1〜C12アルキル)シリル基、(フェニル−C1〜C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p−キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。前記末端の構造単位が複数個存在する場合には、それらは同一でも異なっていてもよい。
−イオン性ポリマーの特性−
本発明で用いられるイオン性ポリマーは、好ましくは共役化合物である。本発明で用いられるイオン性ポリマーが共役化合物であるとは、該イオン性ポリマーが主鎖中に、多重結合(例えば、二重結合、三重結合)又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。該イオン性ポリマーは、共役化合物である場合、共役化合物の電子輸送性の観点から、
{(多重結合又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%で計算される比が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
また、本発明で用いられるイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。ここで、高分子化合物とは、ポリスチレン換算の数平均分子量が1×103以上である化合物をいう。また、本発明で用いられるイオン性ポリマーが共役高分子化合物であるとは、該イオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。
本発明に用いられるイオン性ポリマーの塗布による成膜性の観点から、該イオン性ポリマーのポリスチレン換算の数平均分子量が1×103〜1×108であることが好ましく、2×103〜1×107であることがより好ましく、3×103〜1×107であることがより好ましく、5×103〜1×107であることがさらに好ましい。また、イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×103〜5×107であることが好ましく、1×103〜1×107であることがより好ましく、1×103〜5×106であることがさらに好ましい。また、イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×103〜5×10であることが好ましく、1×103〜5×10であることがより好ましく、1×103〜3×10であることがさらに好ましい。本発明に用いられるイオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。
本発明に用いられるイオン性ポリマーの純度の観点から、末端構造単位を除く該イオン性ポリマー中に含まれる全構造単位の数(即ち、重合度)は1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることがさらに好ましい。
本発明に用いられるイオン性ポリマーの電子受容性、正孔受容性の観点からは、該イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーが、−5.0eV以上−2.0eV以下であることが好ましく、−4.5eV以上−2.0eV以下がより好ましい。また、同様の観点から、該イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーが、−6.0eV以上−3.0eV以下であることが好ましく、−5.5eV以上−3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。なお、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求める。一方、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求める。イオン化ポテンシャルの測定には光電子分光装置を用いる。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求める。
なお、本発明に用いられる重合体は、電界発光素子で用いられた場合、実質的に非発光性であることが好ましい。ここで、ある重合体が実質的に非発光性であるとは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。一方、重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量S0を計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S−S0)/S0×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合に、用いた重合体は実質的に非発光性であるものとし、(S−S0)/S0×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。
前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(23)で表される基のみからなるイオン性ポリマー、式(23)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(24)で表される基のみからなるイオン性ポリマー、式(24)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(25)で表される基のみからなるイオン性ポリマー、式(25)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(29)で表される基のみからなるイオン性ポリマー、式(29)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(30)で表される基のみからなるイオン性ポリマー、式(30)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100−p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
(式中、pは15〜100の数を表す。)
前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(26)で表される基のみからなるイオン性ポリマー、式(26)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(27)で表される基のみからなるイオン性ポリマー、式(27)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(28)で表される基のみからなるイオン性ポリマー、式(28)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(31)で表される基のみからなるイオン性ポリマー、式(31)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(32)で表される基のみからなるイオン性ポリマー、式(32)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100−p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
(式中、pは15〜100の数を表す。)
−イオン性ポリマーの製造方法−
次に、本発明に用いられるイオン性ポリマーを製造する方法について説明する。本発明に用いられるイオン性ポリマーを製造するための好適な方法としては、例えば、下記一般式(36)で表される化合物を原料の1つとして選択して用い、中でも、該一般式(36)中の−Aa−が式(13)で表される構造単位である化合物、該−Aa−が式(15)で表される構造単位である化合物、該−Aa−が式(17)で表される構造単位である化合物及び該−Aa−が式(20)で表される構造単位である化合物の少なくとも1種を必須の原料として含有させて、これを縮合重合させる方法を挙げることができる。
4−Aa−Y5 (36)
(式(36)中、Aaは式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位を表し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
また、本発明に用いられるイオン性ポリマー中に上記式(36)中の−Aa−で表される構造単位とともに、前記−Aa−以外の他の構造単位を含有させる場合には、前記−Aa−以外の他の構造単位となる、2個の縮合重合に関与する置換基を有する化合物を用い、これを前記式(36)で表される化合物とともに共存させて縮合重合させればよい。
このような他の構造単位を含有させるために用いられる2個の縮合重合可能な置換基を有する化合物としては、式(37)で表される化合物が例示される。このようにして、前記Y4−Aa−Y5で表される化合物に加えて、式(37)で表される化合物を縮合重合させることで、−Ab−で表される構造単位を更に有する本発明に用いられるイオン性ポリマーを製造することができる。
6−Ab−Y7 (37)
(式(37)中、Abは前記一般式(33)で表される構造単位又は一般式(35)で表される構造単位であり、Y6及びY7は、それぞれ独立に、縮合重合に関与する基を示す。)
このような縮合重合に関与する基(Y4、Y5、Y6及びY7)としては、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、−B(OH)2、ホルミル基、シアノ基、ビニル基等が挙げられる。
このような縮合重合に関与する基として選択され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
また、前記縮合重合に関与する基として選択され得るアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基が例示される。
前記縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。
また、前記縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。
さらに、前記縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
−CH2+Me2-、又は、−CH2+Ph2-
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)で表される基が例示される。
また、前記縮合重合に関与する基として選択され得るホスホニウムメチル基としては、下記式:
−CH2+Ph3-
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
また、前記縮合重合に関与する基として選択され得るホスホネートメチル基としては、下記式:
−CH2PO(ORd2
(式中、Rdはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。
さらに、前記縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
さらに、縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基が挙げられる。また、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、−B(OH)2等が挙げられ、酸化剤又は電気化学的に酸化重合する場合には、水素原子が挙げられる。
本発明に用いられるイオン性ポリマーを製造する際には、例えば、縮合重合に関与する基を複数有する前記一般式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリや適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法としては、例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、“オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407−411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の公知の方法を採用することができる。
また、本発明に用いられるイオン性ポリマーを製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。このような重合方法としては、該当するモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。このような重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。
本発明に用いられるイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物及びアリールスルホネート−アリールアルキルスルホネート化合物が挙げられる。
前記イオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、−B(OH)2、及びホウ酸エステル残基からなる群から選ばれる基を有し、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、−B(OH)2及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常 K/J は0.7〜1.2の範囲)である原料モノマーを用いて、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。
前記有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。イオン性ポリマーを製造する際には、このような有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。また、前記有機溶媒においては、前記脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。
このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ピリジン等のアミン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシド等のアミド類が例示される。これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。また、このような有機溶媒の中でも、反応性の観点からはエーテル類がより好ましく、テトラヒドロフラン、ジエチルエーテルが更に好ましく、反応速度の観点からはトルエン、キシレンが好ましい。
前記イオン性ポリマーを製造する際においては、原料モノマーを反応させるために、アルカリや適当な触媒を添加することが好ましい。このようなアルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。このようなアルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。また、前記アルカリ又は触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。
本発明に用いられるイオン性ポリマーにおいては、末端基に重合活性基がそのまま残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。このように安定な基で末端基が保護されている場合、本発明に用いられるイオン性ポリマーが共役化合物であるときには、該イオン性ポリマーの主鎖の共役構造と連続した共役結合を有していることが好ましく、その構造としては、例えば、炭素−炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。このような末端基を保護する安定な基としては、特開平9−45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。
式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、金属水酸化物、アルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。
式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、ハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、SbF5によるハロゲン引き抜き反応等が挙げられる。
本発明に用いられるイオン性ポリマーは電荷の注入性や輸送性に優れるため、高輝度で発光する素子が得られる。
イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。
このような溶液からの成膜に用いる溶媒としては、水を除くアルコール類、エーテル類、エステル類、二トリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、メタノール(12.9)、エタノール(11.2)、2−プロパノール(11.5)、1−ブタノール(9.9)、tert−ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2−エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2−ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、該混合溶媒の溶解度パラメーター(δm)は、δm1×φ12×φ2により求めることとする(δ1は溶媒1の溶解度パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解度パラメーター、φ2は溶媒2の体積分率である。)
イオン性ポリマーを含む層の膜厚としては、用いるイオン性ポリマーによって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよく、ピンホールが発生しない厚さが必要である。素子の駆動電圧を低くする観点からは、該膜厚は、1nm〜1μmであることが好ましく、2nm〜500nmであることがより好ましく、2nm〜200nmであることがさらに好ましい。発光層を保護する観点からは、該膜厚は、5nm〜1μmであることが好ましい。
上述した、本発明に用いるイオン性ポリマーの内、より好ましい数種の具体例について、それらの合成例および合成されたイオン性ポリマーを使用して作製された有機EL素子を実験例として以下に示す。
以下、実験例に基づいて本発明をより具体的に説明するが、本発明は以下の実験例に限定されるものではない。
重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC−8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。また、測定する試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入した。更に、GPCの移動相としてはテトラヒドロフランを用い、0.5mL/分の流速で流した。重合体の構造分析はVarian社製300MHzNMRスペクトロメータ−を用いた、H−NMR解析によって行った。また、測定は、20mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。重合体の最高占有分子軌道(HOMO)の軌道エネルギーは、重合体のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めた。一方、重合体の最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC−2)を用いた。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて重合体の吸収スペクトルを測定し、その吸収末端より求めた。
[参考例1]
2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物A)の合成
2,7−ジブロモ−9−フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18−クラウン−6(7.2g)をN、N−ジメチルホルムアミド(DMF)(670 mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物A)(51.2g)を得た。
[参考例2]
2,7−ビス(4,4,5,5−テトラメチル-1,3,2−ジオキサボロラン−2−イル)−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物B)の合成
窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7−ビス(4,4,5,5−テトラメチル-1,3,2−ジオキサボロラン−2−イル)−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物B)(11.7g)を得た。
[参考例3]
ポリ[9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン](重合体A)の合成
不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4−t−ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9−ビス[3−エトキシカルボニル−4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン](重合体A)の収量は520mgであった。
重合体Aのポリスチレン換算の数平均分子量は5.2×104であった。重合体Aは、式(A)で表される構造単位からなる。
[実験例1]
重合体Aセシウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。共役高分子化合物1は式(B)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物1のHOMOの軌道エネルギーは−5.5eV、LUMOの軌道エネルギーは−2.7eVであった。
[実験例2]
重合体Aカリウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。共役高分子化合物2は式(C)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物2のHOMOの軌道エネルギーは−5.5eV、LUMOの軌道エネルギーは−2.7eVであった。
[実験例3]
重合体Aナトリウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。共役高分子化合物3は式(D)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物3のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
[実験例4]
重合体Aアンモニウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。共役高分子化合物4は式(E)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物4のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
[参考例4]
2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体B)の合成
不活性雰囲気下、化合物A(0.52g)、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、トルエン(10mL)、及び2M炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50ml/蒸留水50mlを加えて水層を除去した。再び蒸留水50mlを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを加えて、不溶物をろ過して、有機溶媒を除去した。その後、得られた残渣を再びTHF10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体B)が524mg得られた。
重合体Bのポリスチレン換算の数平均分子量は、2.0×10であった。なお、重合体Bは、式(F)で表される。
[実験例5]
重合体Bセシウム塩の合成
重合体B(262mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。共役高分子化合物5は、式(G)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは−5.6eVであり、LUMOの軌道エネルギーは−2.6eVであった。
[参考例5]
重合体Cの合成
不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
重合体Cのポリスチレン換算の数平均分子量は3.6×104であった。重合体Cは、式(H)で表される構造単位からなる。
なお、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミンは、例えば特開2008−74917号公報に記載されている方法で合成することができる。
[実験例6]
重合体Cセシウム塩の合成
重合体C(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。共役高分子化合物6は式(I)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、95モル%である。)。共役高分子化合物6のHOMOの軌道エネルギーは−5.3eV、LUMOの軌道エネルギーは−2.6eVであった。
[参考例6]
重合体Dの合成
不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミン(0.038g)、3,7−ジブロモ−N−(4−n−ブチルフェニル)フェノキサジン(0.009g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
重合体Dのポリスチレン換算の数平均分子量は2.7×104であった。重合体Dは、式(J)で表される構造単位からなる。
なお、3,7−ジブロモ−N−(4−n−ブチルフェニル)フェノキサジンは、特開2007−70620号公報に記載の方法に基づいて(あるいは特開2004−137456号公報に記載の方法を参考にして)合成した。
[実験例7]
重合体Dセシウム塩の合成
重合体D(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは−5.3eV、LUMOの軌道エネルギーは−2.4eVであった。
[参考例7]
重合体Eの合成
不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3−ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
重合体Eのポリスチレン換算の数平均分子量は1.8×104であった。重合体Eは、式(L)で表される構造単位からなる。
[実験例8]
重合体Eセシウム塩の合成
重合体E(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。共役高分子化合物8は式(M)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物8のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.6eVであった。
[参考例8]
重合体Fの合成
不活性雰囲気下、化合物B(1.01g)、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Fの収量は343mgであった。
重合体Fのポリスチレン換算の数平均分子量は6.0×104であった。重合体Fは、式(N)で表される構造単位からなる。
[実験例9]
重合体Fセシウム塩の合成
重合体F(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、重合体F内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。共役高分子化合物9は式(O)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物9のHOMOの軌道エネルギーは−5.9eV、LUMOの軌道エネルギーは−2.8eVであった。
[参考例9]
不活性雰囲気下、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間過熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロワー蒸留(10mmTorr、180℃)することで、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エタノール(6.1g)を得た。
[参考例10]
不活性雰囲気下、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、テトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p−トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6M硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)p−トルエンスルホネート(11.8g)を得た。
[参考例11]
2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エトキシ]フェニル]−フルオレン(化合物C)の合成
2,7−ジブロモ−9−フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)p−トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18−クラウン−6(0.6g)をN、N−ジメチルホルムアミド(DMF)(100mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エトキシ]フェニル]−フルオレン(化合物C)(4.5g)を得た。
[参考例12]
重合体Gの合成
不活性雰囲気下、化合物C(1.0g)、4−t−ブチルフェニルブロミド(0.9mg)、2,2’−ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5−シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。
重合体Gのポリスチレン換算の数平均分子量は6.0×104であった。重合体Gは、式(P)で表される構造単位からなる。
[実験例10]
重合体Gセシウム塩の合成
重合体G(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95)mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。共役高分子化合物10は式(Q)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物10のHOMOの軌道エネルギーは−5.7eV、LUMOの軌道エネルギーは−2.9eVであった。
[参考例13]
1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成
不活性雰囲気下、3,5−ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間過熱攪拌した。放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間過熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
[参考例14]
重合体Hの合成
不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
重合体Hのポリスチレン換算の数平均分子量は3.6×104であった。重合体Hは、式(R)で表される構造単位からなる。
[実験例11]
重合体Hセシウム塩の合成
重合体H(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。共役高分子化合物11は式(S)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物11のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
[参考例15]
2,7−ジブロモ−9,9−ビス[3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]−5−メトキシカルボニルフェニル]フルオレン (化合物D)の合成 2,7−ジブロモ−9−フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18−クラウン−6(2.4g)をN、N−ジメチルホルムアミド(DMF)(500 mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]−5−メトキシカルボニルフェニル]フルオレン (化合物D)(20.5g)を得た。
[参考例16]
2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[5−メトキシカルボニル−3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体I)の合成
不活性雰囲気下、化合物D(0.70g)、2−(4,4,5,5−テトラメチル−1,2,3−ジオキサボラン−2−イル)−9,9−ジオクチルフルオレン (0.62g) 、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体I)を660mg得た。
重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。なお、2−(4,4,5,5−テトラメチル−1,2,3−ジオキサボラン−2−イル)−9,9−ジオクチルフルオレンは、例えばThe Journal of Physical Chemistry B 2000, 104,9118−9125に記載されている方法で合成することができる。
[実験例12]
重合体Iセシウム塩の合成
重合体I(236mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。共役高分子化合物12は、式(U)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物12のHOMOの軌道エネルギーは−5.6eVであり、LUMOの軌道エネルギーは−2.8eVであった。
[参考例17]
化合物Eの合成
窒素雰囲気下、2,7−ジブロモ−9−フルオレノン(92.0g、272mmol)、及びジエチルエーテル(3.7L)を混合して0℃に冷却し、1mol/Lヨウ化メチルマグネシウム−ジエチルエーテル溶液(0.5L、545mmol)を滴下して3時間撹拌した。反応混合物に塩化アンモニウム水溶液を加えて水層を除去し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物E(92.81g、262mmol、収率96%)を得た。
化合物Fの合成
窒素雰囲気下、化合物E(83.0g、234mmol)、p−トルエンスルホン酸一水和物(4.49g、23.6mmol)、及びクロロホルム(2.5L)を1時間還流し、反応混合物に塩化アンモニウム水溶液を加えて水層を除去した。有機層を無水硫酸ナトリウムで乾燥し減圧濃縮して、下記式で表される化合物F(73.6g、219mmol、収率93%)を得た。
化合物Gの合成
窒素雰囲気下、化合物F(70.0g、208mmol)、サリチル酸エチル(104g、625mmol)、メルカプト酢酸(4.20g、45.6mmol)、及びメタンスルホン酸(1214g)を70℃で8時間撹拌し、反応混合物を氷水に滴下して析出した固体をろ過して回収し、メタノールで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物G(52.14g、104mmol、収率50%)を得た。
化合物Hの合成
窒素雰囲気下、化合物G(41.2g、82.0mmol)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(75.8g、238mmol)、ジメチルホルムアミド(214g)、炭酸カリウム(54.4g、394mmol)、及び18−クラウン−6(4.68g、18mmol)を105℃で2時間撹拌し、反応混合物を水に加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物H(40.2g、62.0mmol、収率76%)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.37(3H),1.84(3H),3.36(3H),3.53(2H),3.58−3.79(6H),3.73(2H),4.12(2H),4.34(2H),6.80(1H),6.90(1H),7.28(2H),7.48(2H),7.58(2H),7.70(1H).
化合物Iの合成
窒素雰囲気下、化合物H(28.4g、43.8mmol)、ビス(ピナコラート)ジボロン(24.30g、95.7mol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(0.35g、0.4mmol)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.24g、0.4mmol)、酢酸カリウム(25.60g、260mmol)、及び1,4−ジオキサン(480mL)を120℃で17時間撹拌し、反応混合物をろ過して酢酸エチルで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーにより精製し、次いで再結晶して精製することにより、下記式で表される化合物I(18.22g、24.5mmol、収率56%)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.30−1.47(27H),1.88(3H),3.35(3H),3.53(2H),3.60−3.69(4H),3.73(2H),3.84(2H),4.10(2H),4.34(2H),6.74(1H),6.87(1H),7.58(2H),7.72−7.89(5H).
重合体Jの合成
アルゴン雰囲気下、化合物H(0.47g)、化合物I(0.48g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.6mg)、テトラブチルアンモニウムブロミド(6mg)、トルエン(6mL)、2mol/L炭酸ナトリウム水溶液(2mL)を105℃で6時間撹拌し、次いでフェニルボロン酸(35mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.65g)と水(13mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液をメタノールに滴下し、析出物をろ過により回収して乾燥させ、重合体J(0.57g)を得た。
重合体Jのポリスチレン換算の数平均分子量は2.0×104であった。重合体Jは、式(V)で表される構造単位からなる。
[実験例13]
重合体Jセシウム塩の合成
アルゴン雰囲気下、重合体J(0.20g)、THF(18mL)、メタノール(9mL)、水酸化セシウム一水和物(97mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(52mL)を加え65℃で6時間撹拌した。反応混合物を濃縮して乾燥し、得られた固体にメタノールを加えてろ過した。ろ液をイソプロパノールに滴下し、固体をろ過により回収して乾燥させることにより、重合体Jのセシウム塩(0.20g)を得た。得られた重合体Jのセシウム塩を共役高分子化合物13と呼ぶ。共役高分子化合物13は、式(W)で表される構造単位からなる。
共役高分子化合物13のHOMOの軌道エネルギーは−5.51eV、LUMOの軌道エネルギーは−2.64eVであった。
[参考例18]
化合物Jの合成
窒素気流下、2,7−ジブロモ−9,9−ビス(3,4−ジヒドロキシ)−フルオレン(138.4g)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(408.6g)、炭酸カリウム(358.5g)及びアセトニトリル(2.5L)を混合し、3時間加熱還流した。放冷後、反応混合物をろ別し、ろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物J(109.4g)を得た。
化合物Kの合成
窒素雰囲気下、化合物J(101.2g)、ビス(ピナコラート)ジボロン(53.1g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(3.7g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(5.4g)、酢酸カリウム(90.6g)及びジオキサン(900mL)を混合し、110℃に加熱し、8時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物K(51.4g)を得た。
重合体Kの合成
化合物K(0.715g)、化合物J(0.426g)、aliquot336(6.60mg)、ビス(トリフェニルホスフィン)ジクロロパラジウム(0.460mg)、2mol/L炭酸ナトリウム水溶液(10mL)及びトルエン(20mL)を加えて、105℃で5時間撹拌し、次いでフェニルボロン酸(32mg)を加え105℃で6時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.72g)と水(14mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液を濃縮し乾燥させ、濃縮物をトルエンに溶解させた。得られた溶液をメタノールに滴下し、析出物をろ過により回収して乾燥させることにより、重合体K(0.55g)を得た。
重合体Kのポリスチレン換算の数平均分子量は2.3×104であった。重合体Kは、式(X)で表される構造単位からなる。
[実験例14]
重合体Kセシウム塩の合成
アルゴン雰囲気下、重合体K(0.15g)、THF(20mL)、メタノール(10mL)、水酸化セシウム一水和物(103mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(20mL)を加え65℃で2時間撹拌した。反応混合物を濃縮して乾燥し、得られた固体にメタノールを加えてろ過した。ろ液を濃縮して乾燥し、得られた固体を水で洗浄した後、乾燥させることにより、重合体Kのセシウム塩(0.14g)を得た。得られた重合体Kのセシウム塩を共役高分子化合物14と呼ぶ。共役高分子化合物14は、式(Y)で表される構造単位からなる。
共役高分子化合物14のHOMOの軌道エネルギーは−5.56eV、LUMOの軌道エネルギーは−2.67eVであった。
[参考例19]
化合物Lの合成
窒素雰囲気下、5−ブロモ−2−ヒドロキシ安息香酸(92.85g)、エタノール(1140mL)、及び濃硫酸(45mL)を48時間還流し、減圧濃縮した後に酢酸エチル(1000mL)を加え、水及び10重量%炭酸ナトリウム水溶液で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物L(95.38g、収率91%)を得た。
化合物Mの合成
窒素雰囲気下、化合物L(95.0g)、ビス(ピナコラート)ジボロン(108.5g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(3.3g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(2.2g)、酢酸カリウム(117.2g)、及び1,4−ジオキサン(1.3L)を105℃で22時間撹拌し、反応混合物をろ過してジオキサン及びトルエンで洗浄した。ろ液を減圧濃縮して酢酸エチルを加え、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物M(90.1g、308mmol)を得た。
化合物Nの合成
窒素雰囲気下、1,5−ジヒドロキシナフタレン(15.0g)、トリエチルアミン(28.5g)、及びクロロホルム(150mL)を混合して0℃に冷却し、トリフルオロメタンスルホン酸無水物(68.7g)を滴下して1時間撹拌した。反応混合物に水、及びクロロホルムを加えて、水層を除去し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し減圧濃縮した。得られた固体を再結晶して精製することにより、下記式で表される化合物N(31.46g)を得た。下記式中、Tfはトリフルオロメチルスルホニル基を示す。
化合物Oの合成
窒素雰囲気下、化合物N(16.90g)、化合物M(23.30g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(4.60g)、リン酸カリウム(42.30g)、及び1,2−ジメトキシエタン(340mL)を80℃で14時間撹拌し、反応混合物をろ過してクロロホルム及びメタノールで洗浄した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物O(8.85g)を得た。
化合物Pの合成
窒素雰囲気下、化合物O(8.80g)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(12.52g)、ジメチルホルムアミド(380mL)、炭酸カリウム(13.32g)、及び18−クラウン−6(1.02g)を100℃で23時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物P(7.38g)を得た。
化合物Qの合成
窒素雰囲気下、化合物P(5.53g)、ビス(ピナコラート)ジボロン(11.25g)、(1,5−シクロオクタジエン)(メトキシ)イリジウム(I)二量体(0.15g、シグマアルドリッチ社製)、4,4’−ジ−tert−ブチル−2,2’−ジピリジル(0.12g、シグマアルドリッチ社製)、及び1,4−ジオキサン(300mL)を110℃で19時間撹拌し、反応混合物を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、次いで再結晶して精製することにより、下記式で表される化合物Q(5.81g)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.27−1.41(30H),3.39(6H),3.57(4H),3.66−3.75(8H),3.83(4H),3.99(4H),4.27−4.42(8H),7.13(2H),7.60(2H),7.76(2H),7.93(2H),8.30(2H).
重合体Lの合成
アルゴン雰囲気下、化合物J(0.53g)、化合物Q(0.43g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.3mg)、Aliquat336(5mg、シグマアルドリッチ社製)、トルエン(12mL)、2mol/L炭酸ナトリウム水溶液(1mL)を105℃で9時間撹拌し、次いでフェニルボロン酸(23mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.40g)と水(8mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液をメタノールに滴下し、析出物をろ過により回収して乾燥させることにより、重合体L(0.56g)を得た。
重合体Lのポリスチレン換算の数平均分子量は3.4×104であった。重合体Lは、式(Z)で表される構造単位からなる。
[実験例15]
重合体Lセシウム塩の合成
アルゴン雰囲気下、重合体L(0.25g)、THF(13mL)、メタノール(6mL)、水酸化セシウム一水和物(69mg)、及び水(1mL)を65℃で6時間撹拌し、反応混合物を濃縮してイソプロパノールに滴下し、固体をろ過により回収して乾燥させた。得られた固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し、固体をろ過により回収して乾燥させることにより、重合体Lのセシウム塩(0.19g)を得た。得られた重合体Lのセシウム塩を共役高分子化合物15と呼ぶ。共役高分子化合物15は、式(AA)で表される構造単位からなる。
共役高分子化合物15のHOMOの軌道エネルギーは−5.50eV、LUMOの軌道エネルギーは−2.65eVであった。
[実験例16]
メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。ガラス基板表面に成膜パターニングされたITO陰極(膜厚:45nm)上に、前記組成物を大気中でスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を常圧の不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。上記で得た共役高分子化合物1を含む層が形成された基板の共役高分子化合物1を含む層の上に、発光層形成用組成物を大気中でスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。
次に、上記で得た発光層が形成された基板の発光層の上に、正孔注入材料溶液を大気中でスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、正孔注入層が形成された基板を得た。ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。
上記で得た正孔注入層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAuを80nm成膜し、陽極を形成させて、積層構造体1を製造した。
上記で得た積層構造体1を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。
上記で得られた有機EL素子1に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。
[実験例17]
<両面発光型の有機EL素子の作製>
実験例16において、Auの膜厚を20nmとした以外は、実験例16と同様に操作し、両面発光型の有機EL素子2を得た。
上記で得られた両面発光型の有機EL素子2に15Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表2に示す。
表1および2で示すように、大気中において塗布プロセスでイオン性ポリマーを成膜し、電子注入層を形成した逆積層の有機EL素子が、発光することを確認した。
[実験例18]
厚みが50nmのITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、陽極に相当する。このITO薄膜上に、高分子化合物Aの懸濁液をスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けたガラス基板を、常圧の大気雰囲気中のホットプレート上で、170℃、15分間加熱し、溶媒を蒸発させた。その後、ガラス基板を室温まで自然冷却させ、高分子化合物Aを含む正孔注入層が形成されたガラス基板を得た。
つぎに、高分子化合物Bを0.8重量%の濃度でキシレンに溶解し、高分子化合物Bのキシレン溶液を得た。この高分子化合物Bのキシレン溶液を大気中においてスピンコート法によって上記正孔注入層上に塗布し、膜厚が20nmの正孔輸送層用の塗布膜を得た。この正孔輸送層用の塗布膜を設けたガラス基板を、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において、180℃、60分保持することによって正孔輸送層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に正孔注入層(高分子化合物Aを含む)とその上に積層された正孔輸送層(高分子化合物Bを含む)を有するガラス基板を得た。
つぎに、高分子化合物Cを1.3重量%の濃度でキシレンに溶解し、高分子化合物Cのキシレン溶液を得た。この高分子化合物Cのキシレン溶液を大気中においてスピンコート法によって上記正孔輸送層上に塗布し、膜厚が80nmの発光層用の塗布膜を得た。この発光層用の塗布膜を設けたガラス基板を、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された大気圧、窒素雰囲気中において、170℃、10分保持することによって発光層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、および発光層(高分子化合物Cを含む)が順次に積層されたガラス基板を得た。
つぎに、共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1のメタノール溶液を得た。この共役高分子化合物1のメタノール溶液を大気中においてスピンコート法により上記発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を得た。この電子注入層用の塗布膜を設けたガラス基板を、大気雰囲気中において130℃で10分間保持することによって電子注入用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、および電子注入層(共役高分子化合物1を含む)が順次に積層されたガラス基板を得た。
つぎに、上記ガラス基板の電子注入層の上に、1.0×10-4Pa以下にまで減圧した状態において、陰極材料としてアルミニウムを約100nm蒸着して陰極を形成した。つづいて、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、電子注入層(共役高分子化合物1を含む)、および陰極が順次に積層されたガラス基板の積層側を、封止用のガラス基板を用いて封止した。以上の操作により、有機EL素子3を得た。
[実験例19]
実験例19では、実験例18に対して電子注入層を形成する際の加熱温度のみを異ならせて、他は実験例18と同様にして有機EL素子を形成した。重複する説明を省略するため、以下では電子注入層の形成工程部分のみについて説明する。
共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1のメタノール溶液を得た。この共役高分子化合物1のメタノール溶液をスピンコート法により上記発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を得た。この電子注入層用の塗布膜を設けたガラス基板を、大気雰囲気中において170℃で10分間保持することによって電子注入層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、および電子注入層(共役高分子化合物1を含む)が順次に積層されたガラス基板を得た。
[実験例20]
実験例20では、実験例18に対して電子注入層を形成する際の加熱時間のみを異ならせて、他は実験例18と同様にして有機EL素子を形成した。重複する説明を省略するため、以下では電子注入層の形成工程部分のみについて説明する。
共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1のメタノール溶液を得た。この共役高分子化合物1のメタノール溶液をスピンコート法により上記発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を得た。この電子注入層用の塗布膜を設けたガラス基板を、大気雰囲気中において130℃で30分間保持することによって電子注入層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、および電子注入層(共役高分子化合物1を含む)が順次に積層されたガラス基板を得た。
[実験例21]
実験例21では、実験例18に対して電子注入層の形成する際の加熱時間および加熱時間のみを異ならせて、他は実験例18と同様にして有機EL素子を形成した。重複する説明を省略するため、以下では電子注入層の形成工程部分のみについて説明する。
共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1のメタノール溶液を得た。この共役高分子化合物1のメタノール溶液をスピンコート法により上記発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を得た。この電子注入層用の塗布膜を設けたガラス基板を、大気雰囲気中において150℃で30分間保持することによって電子注入層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、および電子注入層(共役高分子化合物1を含む)が順次に積層されたガラス基板を得た。
[実験例22]
実験例22では、実験例18に対して電子注入層の形成する際の雰囲気のみを異ならせて、他は実験例18と同様にして有機EL素子を形成した。重複する説明を省略するため、以下では電子注入層の形成工程部分のみについて説明する。
共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1のメタノール溶液を得た。この共役高分子化合物1のメタノール溶液をスピンコート法により上記発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を成膜した。この電子注入層用の塗布膜を設けたガラス基板を、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された大気圧の窒素雰囲気中において130℃で10分間保持することによって電子注入層用の塗布膜を乾燥した。その後、ガラス基板を室温まで自然冷却させた。以上の操作により、表面に、正孔注入層(高分子化合物Aを含む)、正孔輸送層(高分子化合物Bを含む)、発光層(高分子化合物Cを含む)、および電子注入層(共役高分子化合物1を含む)が順次に積層されたガラス基板を得た。
[輝度半減寿命の測定]
実験例18〜22において作製した各有機EL素子の輝度半減寿命を測定した。すなわち各有機EL素子を定電流駆動した際に、輝度が初期輝度の50%になるまでの時間(輝度半減寿命LT50)を測定した。なお定電流駆動を開始する際の初期輝度は5,000cd/m2とした。各有機EL素子の寿命比は、実験例22で作製した素子の輝度半減寿命を1.0として算出した。
測定結果を下記表に示す。
上記(表3)に示すとおり、窒素雰囲気中または大気中において電子注入層を形成した有機EL素子が発光することを確認した。さらに、電子注入層用の塗布膜を乾燥する際の雰囲気を大気(Air)中とした場合、窒素(N)雰囲気と比べて輝度半減寿命が向上することを確認した。
本発明の、有機EL素子を有する有機発光装置に用いられる上述のイオン性ポリマーは、電荷の注入性や輸送性に優れ、常圧程度の雰囲気中において安定であって、さらには大気中で安定であり、溶媒により容易に溶液とすることができ、大気中で塗布により成膜化することができる。したがって、該イオン性ポリマーを含む層を有機EL素子の電子注入層に用いた場合、製造コストの低減が可能であって、封止工程を含む製造プロセスにおいて有機EL素子の性能劣化を防止することが可能な、有機発光装置の製造方法を提供することができる。
[有機EL素子の構成]
まず、本発明の有機発光装置に用いる有機EL素子について説明する。本発明に用いる有機EL素子の構造としては、少なくとも一方が透明又は半透明である一対の陽極及び陰極からなる電極間に、少なくとも1つの発光層と、該発光層と前記陰極との間に電子注入層を有するものであり、発光層には低分子及び/又は高分子の有機発光材料が用いられ、電子注入層には、上述のイオン性ポリマーが用いられる。
有機EL素子において、陰極、陽極、発光層以外の層としては、陰極と発光の間に設けるもの、陽極と発光層の間に設けるものが挙げられる。
陰極と発光層の間に設けるものとしては、上記電子注入層の他に、電子輸送層、正孔ブロック層等が挙げられる。
例えば陰極と発光層の間に一層のみ設けた場合は電子注入層であり、陰極と発光層の間に二層以上設けた場合は陰極に接している層を電子注入層とし、それ以外の層は電子輸送層と称する。
電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、電子輸送層は、電子注入層又は陰極により近い電子輸送層からの電子注入を改善する機能を有する層である。
また、電子注入層、若しくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。
正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
陽極と発光層の間に設けるものとしては、正孔注入層、正孔輸送層、電子ブロック層等が挙げられる。
陽極と発光層の間に一層のみ設けた場合は正孔注入層であり、陽極と発光層の間に二層以上設けた場合は陽極に接している層を正孔注入層とし、それ以外の層は正孔輸送層と称する。正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層であり、正孔輸送層とは、正孔注入層又は陽極により近い正孔輸送層からの正孔注入を改善する機能を有する層である。また、正孔注入層、又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。
電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
また、本発明の有機発光装置に用いる有機EL素子としては、陰極と発光層の間に電子注入層を設けた構造に加えて、さらに、陰極と発光層との間に、電子輸送層を設けた有機EL素子、陽極と発光層との間に、正孔輸送層を設けた有機EL素子、陽極と発光層との間に、正孔輸送層と正孔注入層を設けた有機EL素子等が挙げられる。
例えば、具体的には、以下のa)〜f)の構造が例示される。
a)陽極/発光層/電子注入層/陰極
b)陽極/正孔注入層/発光層/電子注入層/陰極
c)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
e)陽極/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
積層する層の順番や数、及び各層の厚さについては、発光効率や、素子寿命、駆動電圧を勘案して適宜用いることができる。
本発明の有機発光装置の製造方法では、支持基板上に形成される有機EL素子は、例えば、上述のa)〜f)の構造のいずれかの構造を有し、かつ電子注入層が先に述べたイオン性ポリマーを含む溶液を成膜した層から構成される。
[有機発光装置の製造方法(第1の実施形態)]
次に、本発明に係る有機発光装置の製造方法の第1の実施形態を図1を参照しつつ説明する。
本発明に係る有機発光装置の製造方法は、陽極、発光層、イオン性ポリマーを含む溶液を成膜してなる電子注入層、及び陰極を含んで構成される有機EL素子2がその上に形成された支持基板1を用意する工程と、有機EL素子を介在させて、前記支持基板1と封止部材3とを貼合する工程とを含む。
上記支持基板1を用意する工程において、支持基板1上に形成される有機EL素子2の各層の積層順は、通常、陽極の積層から開始し、発光層、イオン性ポリマーを含む溶液を成膜してなる電子注入層などの有機層を順次に形成し、最後に陰極を形成する(以下、係る積層順を順積層と記す場合もある)。該積層順とは逆の積層順(以下、逆積層と記す場合もある)により有機EL素子2を支持基板1の上に形成することも可能である。どちらの積層順による有機EL素子2の形成プロセスにおいても、まず、陽極または陰極が電極としてパターン形成された支持基板1を準備する。その後、発光層、イオン性ポリマーを含む溶液を成膜してなる電子注入層などの有機層を順次に形成する。最後に、対極の陰極または陽極を積層する。
順積層により有機層を積層する場合では、陽極の上に直接または正孔注入層、正孔輸送層などの有機層を介して発光層を形成し、該発光層の上に直接または電子輸送層などを介して電子注入層を形成する。逆積層により有機層を積層する場合では、陰極の上に電子注入層を積層し、該電子注入層の上に直接または電子輸送層などを介して、発光層を形成し、該発光層の上に正孔輸送層、正孔注入層などの有機層を形成する。本発明においては、電子注入層以外の有機層は、従来公知の材料を用いて従来公知の方法によって形成することが可能であり、特に限定されない。
(電子注入層の形成方法)
電子注入層を形成する方法としては、例えば、前記イオン性ポリマーを含有する溶液を用いて成膜する方法を用いる。該溶液からの成膜方法は、イオン性ポリマーが常圧程度の雰囲気中、さらには大気中で安定であるので、特別な設備を用いずに、簡易に大気中にて行うことができる。溶液からの成膜方法を用いた場合、前記イオン性ポリマーを含有する溶液を塗布成膜し、成膜した薄膜(塗布膜)を固化することにより電子注入層を形成することができる。溶液を塗布成膜する工程は、常圧程度の雰囲気中、さらには大気中で行うことができ、工程の簡易さの観点からは、大気中で行うことが好ましい。また塗布膜の固化は、自然乾燥、光照射、常圧程度の雰囲気中での加熱乾燥、大気中での加熱乾燥、および真空乾燥などによって行うことができる。これらのなかでも、工程の簡易さの観点からは、常圧程度の雰囲気中での加熱乾燥、または大気中での加熱乾燥によって塗布膜の固化を行うことが好ましく、さらには素子寿命の長寿命化の観点からは大気中での加熱乾燥によって塗布膜の固化を行うことが好ましい。塗布膜を加熱乾燥によって固化する場合、その加熱温度は、加熱時間にもよるが、50℃〜250℃程度であり、60℃〜200℃が好ましい。また塗布膜を加熱乾燥によって固化する場合、その加熱時間は、加熱温度にもよるが、5分〜120分程度であり、10分〜60分が好ましい。
このような溶液からの成膜に用いる溶媒としては、上述の水を除く溶解度パラメーターが9.3以上の溶媒が好ましい。
溶液からの成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビア印刷法、グラビア印刷法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法を用いる。
電子注入層の膜厚としては、好ましくは、1nm〜1μmに調整する。
支持基板1の上に形成する有機EL素子2の個数は、図1では1つの場合を示しているが、目的に応じて、1つでもよいし、2つ以上の複数個であってもよい。また、有機EL素子2の発光色としては、目的に応じて、単色であってもよいし、多色カラーであってもよい。
上述のようにして、有機EL素子2がその上に形成された支持基板1を準備した後、図1に示すように、有機EL素子が封止されるように当該有機EL素子を介在させて、支持基板1と封止部材3とを対向させて配置し、接着部材4を用いて封止部材3と支持基板1とを貼合する。接着部材4は、有機EL素子2を囲むような形状及び寸法で、封止部材3に形成する。この接着部材4は、本実施形態では、封止部材3に形成するが、支持基板1に形成してもよい。
前記接着部材4としては、硬化性樹脂接着剤、フリットガラス封止剤を使用することができる。
硬化性樹脂接着剤としては、熱硬化性樹脂接着剤または光硬化性樹脂接着剤を使用することができる。
熱硬化性樹脂接着剤としては、エポキシ系接着剤、アクリレート系接着剤などを挙げることができる。
エポキシ系接着剤としては、ビスフェノールA型エポキシ樹脂接着剤、ビスフェノールF型エポキシ樹脂接着剤、およびフェノキシ樹脂接着剤などを挙げることができる。
アクリレート系接着剤としては、アクリル酸、メタクリル酸、エチルアクリレート、ブチルアクリレート、2−ヘキシルアクリレート、アクリルアミド、アクリロニトリル、ヒドロキシルアクリレートなどを主成分とし、該主成分に該主成分と共重合可能なモノマーを共重合したポリマーなどを挙げることができる。
光硬化性樹脂接着剤としては、ラジカル系接着剤、カチオン系接着剤などを挙げることができる。
ラジカル系接着剤としては、エポキシアクリレート接着剤、エステルアクリレート接着剤、およびエステルアクリレート接着剤などを挙げることができる。
カチオン系接着剤としては、エポキシ系樹脂接着剤、ビニルエーテル系樹脂接着剤などを挙げることができる。
フリットガラス封止剤としては、主にPbO−SnO−P系フリットガラス、Pb−B−Sn−Si−Al−O系フリットガラス、Sn−P−Pb−O−F系フリットガラスなどのフリットガラスと、有機質バインダーと、無機質吸湿剤とからなるフリットガラス封止剤を使用する。
フリットガラスとしては、具体的には、B・PbO、B・PbO・ZnO、B・SiO・PbO、B・SiO・ZnO、PbO・ZnO、PbO・SnO、Pb・SnO、P・ZnO・SnO、B・Biなどを使用することができる。
有機質バインダー(フリットガラス及び無機吸収剤を溶解または分散する溶媒または分散媒)としては、塩化ビニル系樹脂、フェノール系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、オレフィン系樹脂、フッ素樹脂、シリコーン系樹脂、セルロース系樹脂などを挙げることができる。
オレフィン系樹脂としては、テトラフルオロエチレンなどを挙げることができる。
アクリル系樹脂としては、ポリメチルアクリレートなどを挙げることができる。
無機質吸収剤としては、酸化カルシウム、酸化バリウム、酸化ストロンチウム、五酸化リン、合成ゼオライトなどを使用することができる。
(硬化性樹脂接剤を用いた貼合方法)
接着部材4として上記いずれかの硬化性樹脂接着剤を、封止部材3及び/又は支持基板1の対応する表面に塗布する。該塗布は、図2に示すように、貼合した後に有機EL素子2を囲むことができる形状及び寸法に調節して、行う。塗布した硬化性樹脂接着剤の溶剤を気化させて形状の安定化及び機械的強度を向上させた後に、支持基板1と封止部材3とを硬化性樹脂接着剤を介して当接させる。続いて、硬化性樹脂接着剤が熱硬化性樹脂接着剤である場合は、加熱することにより、硬化性樹脂接着剤が光硬化性樹脂接着剤である場合は、紫外線などの化学線を照射して、硬化性樹脂接着剤を硬化させる。以上の操作により、支持基板1上の有機EL素子2は、支持基板1と封止部材3と接着部材(硬化性樹脂接着剤)4とにより封止され、外部環境から保護される。
前記熱硬化性樹脂接着剤を硬化させるための加熱温度及び時間は、選択した熱硬化性樹脂接着剤に対して推奨されている公知の加熱温度及び時間にしたがって設定すればよい。
前記光硬化性樹脂接着剤を硬化させるための化学線の種類及び照射時間は、選択した光硬化性樹脂接着剤に対して推奨されている公知の化学線の種類及び照射時間にしたがって設定すればよい。
硬化性樹脂接着剤の塗布法としては、ディスペンサーを用いた塗布、スクリーン印刷などの印刷手段を用いた塗布を挙げることができる。
(フリットガラス封止剤を用いた貼合方法)
接着部材4としてフリットガラス封止剤を、封止部材3及び/又は支持基板1の対応する表面に塗布する。該塗布は、図2に示すように、貼合した後に有機EL素子2を囲むことができる形状及び寸法に調節して、行う。塗布したフリットガラス封止剤を仮ベークして溶剤を気化した後に、支持基板1と封止部材3とをフリットガラス封止剤を介して当接させる。続いて、フリットガラス封止剤にレーザー光を照射し、フリットガラス封止剤を一旦溶融させる。その後、フリットガラス封止剤を冷却し、フリットガラス封止剤を固化する。以上の操作により、支持基板1上の有機EL素子2は、支持基板1と封止部材3と接着部材(フリットガラス封止剤)4とにより封止され、外部環境から保護される。
フリットガラス封止剤の塗布法としては、ディスペンサーを用いた塗布、スクリーン印刷などの印刷手段を用いた塗布を挙げることができる。
フリットガラス封止剤を溶融するために用いるレーザー光としては、YAGレーザー、COレーザー、エキシマレーザーなどを使用することができる。レーザー光によるフリットガラス封止剤の溶融で重要なのは、各々のレーザー光の持つ波長の光が、接着部材4であるフリットガラス封止剤もしくは支持基板1及び/又は封止部材3に吸収されて、発生した熱によりフリットガラス封止剤が溶融することである。したがって、支持基板1、封止部材3、フリットガラス封止剤の材料選択と、レーザー光の選択を行う。例えば、所定波長のレーザー光をフリットガラス封止剤が吸収する場合では、フリットガラス封止剤自体が溶融する。所定波長のレーザー光を封止部材3が吸収する場合では、封止部材3が発熱し、その熱によりフリットガラス封止剤が溶融する。所定波長のレーザー光を支持基板1が吸収する場合では、支持基板1が発熱し、その熱によりフリットガラス封止剤が溶融する。したがって、レーザー光、フリットガラス封止剤、支持基板1、封止部材3の全ては、貼合プロセスの観点からは、特に限定されるものではない。
図1に示す第1の実施形態では、有機EL素子2が形成された支持基板1と封止部材3との間には、空間が形成されており、貼合プロセスを大気中で行った場合、前記空間には、大気雰囲気が残存する。なお貼合プロセスは窒素ガス雰囲気およびアルゴンガス雰囲気などの不活性ガス雰囲気において行ってもよい。従来の有機EL素子では、電子注入層が大気中で不安定な材料から構成されていたが、本発明では、有機EL素子の電子注入層は大気中で安定なイオン性ポリマーから構成されている。したがって、上記空間に大気雰囲気が残存していても有機EL素子2が劣化されることはない。しかしながら、有機EL素子2にとって、酸素および水分を可能な限り排除した環境が好ましいことに変わりはない。そのために、図3に示すように、有機EL素子2が形成された支持基板1と封止部材3との間の空間内にゲッター剤5を貼り付けることが望ましい。図3では、ゲッター剤5は、空間内の封止部材3の表面に貼り付けているが、空間内であれば、その他の場所に貼り付けてもよい。ゲッター剤5としては、乾燥剤、酸素吸収剤、及びこれらの複合剤が挙げられる。
上記乾燥剤としては、シリカゲル、ゼオライト、活性アルミナ、アルカリ金属酸化物、アルカリ土類金属酸化物などを使用することができる。
上記酸素吸収剤としては、ピロガール、亜ジチオン酸ナトリウムNaなどを使用することができる。
有機発光装置の内部を酸素および水分を可能な限り排除した環境とする点を考慮したより好ましい封止構造として、第2の実施形態及び第3の実施形態を、以下に説明する。
[有機発光装置の製造方法(第2の実施形態)]
有機EL素子2がその上に形成された支持基板1を準備した後、図4に示すように、有機EL素子2を覆うように接着部材6を支持基板1の全面に積層する。接着部材6としては、第1の実施形態で列挙した硬化性樹脂接着剤を使用することができるが、中でも気密性にも充填特性にも同時に優れた材料を選択することが好ましい。また、接着部材6は、有機EL素子2に直接接触して形成し、積層後、硬化させるプロセスを経るため、有機EL素子2に熱による損傷を与えない光硬化性樹脂接着剤を用いることがより好ましい。
硬化性樹脂接着剤の積層法としては、ディスペンサーを用いた塗布、スクリーン印刷などの印刷手段を用いた塗布を挙げることができる。
硬化性樹脂接着剤の積層後に、支持基板1上の硬化性樹脂接着剤層に封止部材3を当接させる。続いて、硬化性樹脂接着剤が熱硬化性樹脂接着剤である場合は、加熱することにより、硬化性樹脂接着剤が光硬化性樹脂接着剤である場合は、化学線を照射して、硬化性樹脂接着剤を硬化させる。以上の操作により、支持基板1上の有機EL素子2は、支持基板1と封止部材3と接着部材(硬化性樹脂接着剤)6とにより封止され、外部環境から保護される。
[有機発光装置の製造方法(第3の実施形態)]
有機EL素子2がその上に形成された支持基板1を準備した後、支持基板1上において有機EL素子を囲むように接着部材4aを支持基板4の外周縁に沿って形成する。
前記接着部材4aとしては、硬化性樹脂接着剤、フリットガラス封止剤を使用することができるが、中でも、より気密特性に優れた材料から構成することが好ましい。より好ましくは、接着部材4aはフリットガラス封止剤から構成することが望ましい。
接着部材4aは、第1の実施形態での場合と同様に、塗布形成し、その後、溶剤を気化させて形状の安定化と機械強度の向上を図る。
次に、接着部材4aで囲まれた領域に接着部材6aを充填する。この充填により有機EL素子2は接着部材6aによって全体が覆われる。前記接着部材6aとしては、第1の実施形態で列挙した硬化性樹脂接着剤を使用することができる。本実施例では、接着部材6aに用いる硬化性樹脂接着剤は、空間の充填が主目的であるため、充填特性を優先的に考慮して選択することが可能である。
上記接着部材4a、接着部材6aの形成方法としては、ディスペンサーを用いた塗布、スクリーン印刷などの印刷手段を用いた塗布を挙げることができる。
接着部材4a,6aを上述のようにして形成した後に、支持基板1上の接着部材4a,6aに封止部材3を当接させる。続いて、接着部材4a及び接着部材6aがともに熱硬化性樹脂接着剤である場合は、加熱することにより同時に硬化させ、接着部材4a及び接着部材6aがともに光硬化性樹脂接着剤である場合は、化学線を照射して同時に硬化させる。接着部材4aと接着部材6aとを異なる種類の材料から構成した場合は、いずれか一方を先に硬化させ、続いて残りの接着部材を硬化させる。それぞれの材料の硬化方法は、先に説明した第1の実施形態及び第2の実施形態での場合と同様である。
以上の操作により、支持基板1上の有機EL素子2は、支持基板1と封止部材3と接着部材(硬化性樹脂接着剤)4とにより封止され、外部環境から保護される。
[有機発光装置の製造方法(第4の実施形態)]
上記第1の実施形態、第2の実施形態、及び第3の実施形態は、支持基板1及び封止部材3が枚葉で提供される場合を前提とした実施形態であった。以下に説明する第4の実施形態では、前記支持基板として第1の帯状可撓性基材を用いるとともに、前記封止部材として第2の帯状可撓性基材を使用し、前記第1の帯状可撓性基材と前記第2の帯状可撓性基材とを、前記有機EL素子を介して当接させた状態で二つの貼り合わせロール間を通過させることにより第1の帯状可撓性基材と第2の帯状可撓性基材とを貼合する。封止部材にはバリア膜が表面に形成された第2の帯状可撓性基材を使用することが好ましく、以下では、バリア膜が表面に形成された第2の帯状可撓性基材を封止部材に使用した例について説明する。なおバリア膜にはたとえば酸化シリコンおよび窒化シリコンなどからなる薄膜を用いることができる。上記貼合プロセスによれば、多数の有機発光装置を連続して製造することができる。該貼合プロセスを以下に図6を参照して詳しく説明する。
図6は、上記貼合プロセスに好適に使用できる連続貼合装置の構成例を説明する概略的な図である。
図6に示されるように、連続貼合装置110は、第1巻き出しロール122及び第2巻き出しロール124を含む2本の巻き出しロール120と、第1貼り合わせロール132及び第2貼り合わせロール134の組である貼り合わせロール130と、貼り合わされたフィルム状構造体を巻き取る巻き取りロール140とを備えている。
前記第1巻き出しロール122には、第1の帯状可撓性基材12が巻き付けられている。該第1の帯状可撓性基材12の一方の表面には不図示の有機EL素子が所定の間隔を置いて複数形成されている。
また、第2巻き出しロール124には、不図示のバリア膜を表面に有する第2の帯状可撓性基材14が巻き付けられている。
第1巻き出しロール122と第2巻き出しロール124とは、互いに離間するように配置されている。貼り合わせロール130は、第1巻き出しロール122から巻き出された第1の帯状可撓性基材12及び第2巻き出しロール124から巻き出された第2の帯状可撓性基材14を貼り合わせることができるように配置されている。貼り合わせロール130は、例えば第1貼り合わせロール132を固定ロールとして固定し、第2貼り合わせロール134を可動ロールとして第1の帯状可撓性基材12と第2の帯状可撓性基材14とが当接する面同士が対向するように配置すればよい。
第1巻き出しロール122から貼り合わせロール130に至るまでの第1の帯状可撓性基材12の輸送経路近傍には、輸送途中の第1の帯状可撓性基材12の表面(有機EL素子形成側)に貼り合わせ用の接着部材90を第1の帯状可撓性基材12に塗布するための塗布装置152と、第1の帯状可撓性基材12に塗布された接着部材90に含まれる溶媒を気化させるための乾燥装置154とが設けられている。なお、第2巻き出しロール124から貼り合わせロール130に至るまでの第2の帯状可撓性基材14の輸送経路近傍に第2の帯状可撓性基材14の輸送を補助したり第2の帯状可撓性基材14の輸送方向を変えたりする1以上の補助ロール160などを設けてもよい。上記接着部材90は、先に説明した熱硬化性樹脂接着剤または光硬化性樹脂接剤から構成され、例えば、第1の実施形態で示した接着部材4と同様の形状、寸法で、帯状可撓性機材12に塗布される。
連続貼合装置110が備える巻き出しロール120、貼り合わせロール130、巻き取りロール140、処理装置150、補助ロール160は、従来公知の任意好適な構成を採用することができる。
(貼り合わせ工程)
第1巻き出しロール122に巻き付けられた第1の帯状可撓性基材12と、第2巻き出しロール24に巻き付けられた第2の帯状可撓性基材14とを巻き出し、第1貼り合わせロール132と、これと対向する第2貼り合わせロール134とにより第1の帯状可撓性基材12及び第2の帯状可撓性基材14を挟み込んで連続的に貼り合わせ、長尺のフィルム状構造体とする。該フィルム状構造体には、複数の有機発光装置10がフィルムの長手方向に所定の間隔を置いて形成されている。長尺のフィルム状構造体は、巻き取りロール40に連続的に巻き取られ、回収される。回収した後は、必要に応じて断裁してシート状有機発光装置10にして使用することが可能となっている。ロール状に回収されたフィルム状構造体中の有機EL素子は第1の帯状可撓性基材12と接着部材90と第2の帯状可撓性基材14とにより封止されているため、外気の影響を受けることがなく、大気中での保管が可能となっている。
以上の工程を仮に真空雰囲気中で行う場合、連続貼合装置110全体を真空雰囲気に保つ必要があり、その場合装置構成が複雑になるが、常圧程度の雰囲気中または大気中において上述の工程を行うことによって、簡易に有機発光装置を作製することができる。
1 支持基板
2 有機EL素子
3 封止部材
4,4a 接着部材
5 ゲッター剤
6,6a 接着部材
10 有機発光装置
12 第1の帯状可撓性基材(支持基板)
14 第2の帯状可撓性基材(封止部材)
90 接着部材
110 連続貼合装置
120 巻き出しロール
122 第1巻き出しロール
124 第2巻き出しロール
130 貼り合わせロール
132 第1貼り合わせロール
134 第2貼り合わせロール
140 巻き取りロール
150 処理装置
152 塗布装置
154 乾燥装置
160 補助ロール

Claims (5)

  1. 陽極と、発光層と、イオン性ポリマーを含む溶液を成膜してなる電子注入層と、陰極とを含んで構成される有機エレクトロルミネッセンス素子がその上に形成された支持基板を用意する工程と、
    有機エレクトロルミネッセンス素子が封止されるように当該有機エレクトロルミネッセンス素子を介在させて前記支持基板と封止部材とを貼合する工程と、
    を含む有機発光装置の製造方法であって、
    前記イオン性ポリマーが、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15〜100モル%含む、有機発光装置の製造方法。
    (式(13)中、Rは式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表し、R1は複数個ある場合、同一でも異なっていてもよい。
    (式(14)中、
    2は(1+m1+m2)価の有機基を表し、Q1は2価の有機基を表し、Y1は、−CO2 -、−SO3 -、−SO2 -、−PO3 2-又は−B(R3 -を表し、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、n1は0以上の整数を表し、a1は1以上の整数を表し、b1は0以上の整数を表し、ただし、a1及びb1は、−(Q1n1−Y1(M1)a1(Z1)b1で表される基の電荷が0となるように選択され、Raは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、Qは2価の有機基を表し、Y3は式(4)、(5)、(6)、(7)、(8)、(10)、(11)および(12)のいずれかで表される基を表し、n3は0以上の整数を表す。m1及びm2はそれぞれ独立に1以上の整数を表す。Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
    −O−(R’O)a3−R’’ (4)
    −S−(R’S)a4−R’’ (6)
    −C(=O)−(R’−C(=O))a4−R’’ (7)
    −C(=S)−(R’−C(=S))a4−R’’ (8)
    −C(=O)O−(R’−C(=O)O)a4−R’’ (10)
    −C(=O)O−(R’O)a4−R’’ (11)
    −NHC(=O)−(R’NHC(=O))a4−R’’ (12)
    (式(4)、(5)、(6)、(7)、(8)、(10)、(11)および(12)中、R’は置換基を有し又は有さない2価の炭化水素基を表し、R’’は水素原子、置換基を有し若しくは有さない1価の炭化水素基、−COOH、−SO3H、−OH、−SH、−NRc 2、−CN又は−C(=O)NRc 2を表し、R’’’は置換基を有し若しくは有さない3価の炭化水素基を表し、
    式(4)のa3は2以上の整数を表し、式(5)のa3は1以上の整数を表し、式(6)、(7)、(10)、(11)および(12)のa4は1以上の整数を表し、式(8)のa4は0以上の整数を表し、Rcは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、R’、R’’及びR’’’のおのおのは複数個ある場合、同一でも異なっていてもよい。)
    (式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表し、R3は複数個ある場合、同一でも異なっていてもよい。
    (式(16)中、R4は(1+m3+m4)価の有機基を表し、Q2は2価の有機基を表し、Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン又はヨードニウムカチオンを表し、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表し、ただし、a2及びb2は、−(Q2n2−Y2(M2)a2(Z2)b2で表される基の電荷が0となるように選択され、Rbは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表す。Q3、Y及びn3は前述と同じ意味を表し、m3及びm4はそれぞれ独立に1以上の整数を表す。Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
    (式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表し、R5及びR6のおのおのは複数個ある場合、同一でも異なっていてもよい。
    −R7−[(Q1n1−Y1(M1)a1(Z1)b1m5 (18)
    (式(18)中、R7は直接結合又は(1+m5)価の有機基を表し、Q1、Y、M1、Z1、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表し、Q1、Y、M1、Z1、n1、a1及びb1のおのおのは複数個ある場合、同一でも異なっていてもよい。)
    −R8−[(Qn3−Y3m6 (19)
    (式(19)中、R8は単結合又は(1+m6)価の有機基を表し、Q3、Y3及びn3は前述と同じ意味を表し、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
    (式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表し、R9及びR10のおのおのは複数個ある場合、同一でも異なっていてもよい。
    −R11−[(Q2n2−Y2(M2)a2(Z2)b2m7 (21)
    (式(21)中、R11は単結合又は(1+m7)価の有機基を表し、Q2、Y2、M2、Z2、n2、a2及びb2は前述と同じ意味を表し、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表し、Q2、Y2、M2、Z2、n2、a2及びb2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
    −R12−[(Qn3−Y3m8 (22)
    (式(22)中、R12は単結合又は(1+m8)価の有機基を表し、Q3、Y3及びn3は前述と同じ意味を表し、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
  2. 前記支持基板と前記封止部材とを貼合する工程を常圧の雰囲気中にて行う、請求項1項に記載の有機発光装置の製造方法。
  3. 前記支持基板と前記封止部材とを貼合する工程では、接着部材として硬化性樹脂接着剤を用いる、請求項1または2項に記載の有機発光装置の製造方法。
  4. 前記支持基板と前記封止部材とを貼合する工程では、接着部材としてフリットガラス封止剤を用いる、請求項1〜3のいずれか1項に記載の有機発光装置の製造方法。
  5. 前記支持基板として第1の帯状可撓性基材を用いるとともに、前記封止部材として第2の帯状可撓性基材を使用し、前記第1の帯状可撓性基材と前記第2の帯状可撓性基材とを、前記有機エレクトロルミネッセンス素子を介して当接させた状態で二つの貼り合わせロール間を通過させることにより第1の帯状可撓性基材と第2の帯状可撓性基材とを貼合する、請求項1〜4のいずれか1項に記載の有機発光装置の製造方法。
JP2011159024A 2010-07-21 2011-07-20 有機発光装置の製造方法 Active JP5898424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159024A JP5898424B2 (ja) 2010-07-21 2011-07-20 有機発光装置の製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010164233 2010-07-21
JP2010164233 2010-07-21
JP2011018107 2011-01-31
JP2011018107 2011-01-31
JP2011159024A JP5898424B2 (ja) 2010-07-21 2011-07-20 有機発光装置の製造方法

Publications (2)

Publication Number Publication Date
JP2012178328A JP2012178328A (ja) 2012-09-13
JP5898424B2 true JP5898424B2 (ja) 2016-04-06

Family

ID=45496845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159024A Active JP5898424B2 (ja) 2010-07-21 2011-07-20 有機発光装置の製造方法

Country Status (6)

Country Link
US (1) US8963422B2 (ja)
EP (1) EP2597932B1 (ja)
JP (1) JP5898424B2 (ja)
CN (1) CN103120021B (ja)
TW (1) TWI542059B (ja)
WO (1) WO2012011418A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963422B2 (en) * 2010-07-21 2015-02-24 Sumitomo Chemical Company, Limited Method for manufacturing organic light-emitting device and organic light-emitting device
CN103547611B (zh) 2011-03-25 2016-06-08 住友化学株式会社 高分子化合物和使用其形成的发光元件
US9306169B2 (en) 2011-03-28 2016-04-05 Sumitomo Chemical Company, Limited Electronic device, polymer compound, organic compound, and method of producing polymer compound
KR20150043080A (ko) * 2013-10-14 2015-04-22 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105633281B (zh) * 2016-01-06 2018-07-17 京东方科技集团股份有限公司 一种柔性显示面板及其封装方法、显示装置
KR102569733B1 (ko) * 2016-06-01 2023-08-23 삼성디스플레이 주식회사 유기 발광 소자 및 그 제조 방법
CN106601771A (zh) * 2016-12-09 2017-04-26 武汉华星光电技术有限公司 柔性基板及其制作方法
CN110235266B (zh) 2017-01-27 2021-04-02 住友化学株式会社 组合物和使用该组合物得到的发光元件
JP6834609B2 (ja) * 2017-03-07 2021-02-24 デクセリアルズ株式会社 画像表示装置の製造方法
CN107134537B (zh) * 2017-05-15 2019-02-22 福州大学 一种柔性器件封装方法
JP7207331B2 (ja) * 2018-01-24 2023-01-18 コニカミノルタ株式会社 発光性薄膜、発光性積層膜、有機エレクトロルミネッセンス素子、及びその製造方法
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子
JP2021170434A (ja) * 2020-04-14 2021-10-28 双葉電子工業株式会社 有機elデバイス
WO2024004124A1 (ja) * 2022-06-30 2024-01-04 シャープディスプレイテクノロジー株式会社 発光装置およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367064B2 (ja) 1995-02-01 2003-01-14 住友化学工業株式会社 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
US6195142B1 (en) 1995-12-28 2001-02-27 Matsushita Electrical Industrial Company, Ltd. Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
JPH10125463A (ja) 1995-12-28 1998-05-15 Matsushita Electric Ind Co Ltd 有機エレクトロルミネセンス素子、液晶照明装置、表示デバイス装置、および、有機エレクトロルミネセンス素子の製造方法
US6984461B2 (en) 2002-06-21 2006-01-10 Samsung Sdi Co., Ltd. Blue electroluminescent polymer and organic-electroluminescent device using the same
JP2006004707A (ja) 2004-06-16 2006-01-05 Seiko Epson Corp 封止装置、封止方法、有機el装置、および電子機器
JP5135732B2 (ja) 2005-08-12 2013-02-06 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
KR100685845B1 (ko) * 2005-10-21 2007-02-22 삼성에스디아이 주식회사 유기전계 발광표시장치 및 그 제조방법
JP5575353B2 (ja) 2005-11-30 2014-08-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
JP2007179783A (ja) * 2005-12-27 2007-07-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
US7800303B2 (en) 2006-11-07 2010-09-21 Corning Incorporated Seal for light emitting display device, method, and apparatus
US8093580B2 (en) * 2006-11-22 2012-01-10 Nec Corporation Semiconductor device and method of manufacturing the same
JP2009110785A (ja) 2007-10-30 2009-05-21 Toppan Printing Co Ltd 有機el素子パネル及びその製造方法
KR101626994B1 (ko) 2008-03-07 2016-06-03 스미또모 가가꾸 가부시끼가이샤 적층 구조체
JP2009245770A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP5093049B2 (ja) * 2008-10-27 2012-12-05 コニカミノルタホールディングス株式会社 有機エレクトロニクス素子、その製造方法、及び製造装置
WO2012011441A1 (ja) * 2010-07-21 2012-01-26 住友化学株式会社 有機エレクトロルミネッセンス素子の製造方法
JP5862086B2 (ja) * 2010-07-21 2016-02-16 住友化学株式会社 有機el素子の製造方法
US8963422B2 (en) * 2010-07-21 2015-02-24 Sumitomo Chemical Company, Limited Method for manufacturing organic light-emitting device and organic light-emitting device
KR101902034B1 (ko) * 2011-02-21 2018-09-27 스미또모 가가꾸 가부시키가이샤 유기 전계 발광 소자의 제조 방법

Also Published As

Publication number Publication date
TW201220569A (en) 2012-05-16
WO2012011418A1 (ja) 2012-01-26
US8963422B2 (en) 2015-02-24
TWI542059B (zh) 2016-07-11
CN103120021A (zh) 2013-05-22
EP2597932A4 (en) 2018-01-03
CN103120021B (zh) 2016-02-17
EP2597932A1 (en) 2013-05-29
JP2012178328A (ja) 2012-09-13
US20130112966A1 (en) 2013-05-09
EP2597932B1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP5898424B2 (ja) 有機発光装置の製造方法
JP5653122B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5862086B2 (ja) 有機el素子の製造方法
JP5982747B2 (ja) 有機el素子
JP5863307B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2012133381A1 (ja) 電子デバイス、高分子化合物
WO2012133462A1 (ja) 電子デバイス、高分子化合物
WO2012046736A1 (ja) 有機el装置及びその製造方法
WO2012114936A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5899635B2 (ja) 有機el素子
WO2012011456A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置
JP5750247B2 (ja) 有機薄膜トランジスタ及びその製造方法
WO2012070575A1 (ja) 発光装置及び発光装置の製造方法
WO2012011471A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350