WO2012114936A1 - 有機エレクトロルミネッセンス素子の製造方法 - Google Patents

有機エレクトロルミネッセンス素子の製造方法 Download PDF

Info

Publication number
WO2012114936A1
WO2012114936A1 PCT/JP2012/053366 JP2012053366W WO2012114936A1 WO 2012114936 A1 WO2012114936 A1 WO 2012114936A1 JP 2012053366 W JP2012053366 W JP 2012053366W WO 2012114936 A1 WO2012114936 A1 WO 2012114936A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
represented
groups
Prior art date
Application number
PCT/JP2012/053366
Other languages
English (en)
French (fr)
Inventor
修一 佐々
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP12749252.8A priority Critical patent/EP2680672B1/en
Priority to CN201280009655.4A priority patent/CN103385036B/zh
Priority to US14/000,327 priority patent/US9006008B2/en
Priority to KR1020137021712A priority patent/KR101902034B1/ko
Publication of WO2012114936A1 publication Critical patent/WO2012114936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element.
  • organic electroluminescence element (hereinafter also referred to as “organic EL element”) includes a pair of electrodes including an anode and a cathode, and a light emitting layer provided between the electrodes. When a voltage is applied between the electrodes, holes are injected from the anode and electrons are injected from the cathode. Light emission occurs when these holes and electrons are combined in the light emitting layer.
  • a predetermined layer may be further provided between the pair of electrodes.
  • an electron injection layer may be provided in order to improve the efficiency of electron injection from the cathode.
  • the electron injection layer is generally made of a material that is unstable in the air, such as Ba, BaO, NaF, or LiF. Therefore, the electron injection layer is generally formed in an environment cut off from the atmosphere, and is formed by, for example, a vacuum deposition method in a vacuum atmosphere.
  • the materials for the electron injection layer to which the coating method can be applied are limited.
  • the present inventors have found that in addition to the complex material, an ionic polymer can be used as a material for the electron injection layer.
  • ionic polymers are stable materials in the atmosphere.
  • an organic EL device in the course of manufacturing is left for a predetermined time without forming a layer (for example, a cathode) that covers the electron injection layer. It has been confirmed that the lifetime of the organic EL element is shortened.
  • the organic EL device being formed is wound around a roll and stored, and then a cathode is formed. There is. During this storage, there is a problem that the lifetime of the organic EL element is shortened.
  • an object of the present invention is to provide an organic EL element that can suppress a decrease in element lifetime of an organic EL element that is finally produced even if an organic EL element that is being manufactured and on which an electron injection layer is formed is stored. It is in providing the manufacturing method of.
  • the present invention provides the following [1] to [4].
  • [1] A method for producing an organic electroluminescence device comprising an anode, a light emitting layer, an electron injection layer, and a cathode in this order, (A) forming an anode; (B) forming a light emitting layer; (C) forming an electron injection layer; (D) forming a cathode, In the step (C), (i) a coating solution containing an ionic polymer is applied to form a thin film, (ii) the formed thin film is heated, and (iii) the manufacturing process obtained in (ii) is in progress
  • a method for producing an organic electroluminescent element comprising storing an organic electroluminescent element and then (iv) heating the thin film again.
  • step (C) at least one of the two heating steps (ii) and (iv) is performed in an atmosphere having a nitrogen volume ratio of 90% or less.
  • Manufacturing method of electroluminescent element [3] In the step (C), at least one of the two heating steps (ii) and (iv) is performed such that the volume ratio of nitrogen is 90% or less and the volume ratio of oxygen is 10% to 30%.
  • step (C) the organic electroluminescence according to any one of [1] to [4], wherein the storage of (iii) is performed in an atmosphere having a nitrogen volume ratio of 90% or less. Device manufacturing method.
  • the electron injection layer is heated again, thereby suppressing the decrease in the device lifetime of the finally produced organic EL device. be able to.
  • the present invention is a method of manufacturing an organic EL element including an anode, a light emitting layer, an electron injection layer, and a cathode in this order, (A) a step of forming an anode, (B) a step of forming a light emitting layer, (C) including a step of forming an electron injection layer and (D) a step of forming a cathode, wherein the step (C) forms a thin film by applying a coating solution containing (i) an ionic polymer, (Ii) The formed thin film is heated, (iii) the organic EL device in the middle of production obtained in (ii) is stored for a predetermined time, and (iv) the thin film is heated again.
  • This is a method for manufacturing an organic EL element.
  • the organic EL element includes a pair of electrodes including an anode and a cathode and a light emitting layer provided between the electrodes, and further includes an electron injection layer between the light emitting layer and the cathode.
  • the organic EL element may include a predetermined layer between a pair of electrodes as necessary. That is, in the organic EL element including the anode, the light emitting layer, the electron injection layer, and the cathode in this order, these layers may be arranged in contact with each other, but a predetermined layer may be interposed between the layers.
  • the predetermined layer include an organic layer made of an organic material, an inorganic layer made of an inorganic material, and a layer made of an organic material and an inorganic material.
  • Examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • Examples of the layer provided between the light emitting layer and the cathode include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the organic EL element is formed, for example, by sequentially laminating each component on a support substrate.
  • the order of lamination is not particularly limited.
  • the anode is first laminated, and further, the respective components are sequentially laminated up to the cathode, and the cathode is first laminated, and the respective components are sequentially laminated until the anode.
  • the order is listed. That is, the organic EL device manufacturing method of the present invention comprises (A) a step of forming an anode, (B) a step of forming a light emitting layer, (C) a step of forming an electron injection layer, and (D) a cathode.
  • an organic EL element may be formed by a laminating method. Specifically, when the organic EL element is divided into two members by a virtual plane perpendicular to the thickness direction, a first member in which a layer from the anode to the cut surface (“virtual plane”) is formed is prepared in advance.
  • a second member on which a layer from the cathode to the cut surface (“virtual plane”) is formed is prepared in advance, and the first member and the second member are bonded to each other at the cut surface (“virtual plane”).
  • an organic EL element may be formed.
  • FIG. 1 is a diagram schematically showing the configuration of the organic EL element of this embodiment.
  • An organic EL element 1 shown in FIG. 1 includes an anode 3, a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, an electron injection layer 7, and a cathode 8.
  • the organic EL element 1 can be formed by sequentially laminating an anode 3, a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, an electron injection layer 7 and a cathode 8 on a support substrate 2. .
  • the support substrate 2 is prepared.
  • the anode 3, the hole injection layer 4, the hole transport layer 5, and the light emitting layer 6 are sequentially laminated on the support substrate 2. That is, first, in the step of forming the anode (“step (A)”), the anode 3 is formed. Next, a hole injection layer 4 and a hole transport layer 5 are sequentially laminated on the anode 3. Further, in the step of forming the light emitting layer (“Step (B)”), the light emitting layer 6 is formed on the hole transport layer 5.
  • step (A) the step of forming the anode
  • Step (B) the step of forming the light emitting layer
  • Step (C) a coating liquid containing an ionic polymer is applied to form a thin film, (ii) the formed thin film is heated, and (iii) The organic EL element being manufactured in (ii) is stored for a predetermined time, and then (iv) the thin film is heated again.
  • a coating solution containing an ionic polymer is applied and formed on the light emitting layer 6 (“(i)”).
  • the ionic polymer and the liquid in which it is dissolved or dispersed will be described later.
  • Application of a coating solution containing an ionic polymer can be performed by selecting an optimal coating method from known coating methods in consideration of the shape of the organic EL element and the simplicity of the process.
  • coating methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing, An offset printing method, an inkjet printing method, etc. can be mentioned.
  • the formed thin film is heated (“(ii)”).
  • the solvent and the dispersion medium are removed, and a solidified thin film is formed.
  • coating the coating liquid containing an ionic polymer and forming a thin film may be described as the 1st heating.
  • a layer for example, a cathode 8 that covers the electron injection layer 7 is formed.
  • the organic EL element in the process of being formed with a thin film is stored for a predetermined time (“(iii)”).
  • “storage” in the present invention refers to “leaving” or “standing” an organic EL element being manufactured under predetermined conditions for a predetermined time.
  • a layer covering the electron injection layer 7 is formed.
  • the organic EL element being manufactured is temporarily wound on a take-up roll and stored, and then the layer that covers the electron injection layer 7 by a roll-to-roll method (this implementation) In some cases, the cathode 8) may be formed.
  • the present invention is applied to a method for manufacturing an organic EL element in which a step of storing the organic EL element in the process of being formed with a thin film for a predetermined time after the first heating is performed. Can do.
  • the manufacturing method of the organic EL element which has the process of storing the organic EL element in the middle of manufacturing for a predetermined time after performing the first heating is limited to the manufacturing method of the organic EL element using the roll-to-roll method. It is not done.
  • Storing the organic EL element during production can be performed in any atmosphere, for example, in a vacuum atmosphere or an inert gas atmosphere.
  • the pressure When storing in a vacuum atmosphere, the pressure is usually 0.01 Pa or less, preferably 0.001 Pa or less.
  • the lower limit of the pressure is not particularly required to be set, but is set in consideration of the simplicity of the process, for example, 0.00001 Pa.
  • examples of the inert gas include nitrogen gas and argon gas.
  • an organic EL element being manufactured is stored in a vacuum atmosphere or an inert gas atmosphere, the apparatus used for storage becomes complicated, and the manufacturing process of the organic EL element becomes complicated. Therefore, from the viewpoint of simplification of the manufacturing process, it is preferable to store the organic EL element during the manufacturing in an atmosphere having a nitrogen volume ratio of 90% or less.
  • the storage of the organic EL device in the middle of manufacturing is performed in such a way that the volume ratio of nitrogen is 60% to 90%, the volume ratio of oxygen is 10% to 40%, and the volume ratio of water vapor is 0.00. It is preferably performed in an atmosphere of 0001% to 0.01%, a pressure of 10 kPa to 1000 kPa, and a temperature of 5 ° C. to 100 ° C. Further, the volume ratio of nitrogen is 70% to 90%, and the volume ratio of oxygen is 10%. It is preferable to carry out in an atmosphere of ⁇ 30%, a volume ratio of water vapor of 0.002% to 0.005%, a pressure of 80 kPa to 120 kPa, and a temperature of 20 ° C to 30 ° C.
  • the time for storing the organic EL element during manufacture may be set in consideration of the process and the degree of deterioration of the thin film.
  • the time for storing the organic EL device during the production is, for example, 10 minutes to 60 minutes, and preferably 5 minutes to 20 minutes.
  • the deterioration of the thin film that occurs during storage may be promoted compared to when it is stored in a vacuum atmosphere or an inert gas atmosphere.
  • the thin film is deteriorated during storage by the second heating described later, it is possible to suppress a decrease in the element life of the finally produced organic EL element.
  • the thin film is heated again (“(iv)”).
  • the heating performed for the first time after storing an organic EL element may be described as the second heating.
  • the element lifetime of the organic EL element can be improved as compared with the case where the cathode is formed without performing the second heating after storage.
  • the heating temperature during the first heating and the second heating is about 50 ° C. to 250 ° C., preferably 60 ° C. to 200 ° C., depending on the heating time. Further, although the heating time depends on the heating temperature, it is about 5 to 120 minutes, preferably 10 to 60 minutes.
  • the first and / or second heating can be performed in an arbitrary atmosphere, for example, in a vacuum atmosphere or an inert gas atmosphere.
  • the pressure When heating in a vacuum atmosphere, the pressure is usually 0.01 Pa or less, preferably 0.001 Pa or less.
  • the lower limit of the pressure is not particularly required to be set, but is set in consideration of the simplicity of the process and is, for example, 10 ⁇ 5 Pa.
  • examples of the inert gas include nitrogen gas and argon gas.
  • the apparatus used for a heating becomes complicated, and also the manufacturing process of an organic EL element becomes complicated. Therefore, from the viewpoint of simplification of the manufacturing process, in the step of forming the electron injection layer, two heating operations (ie, “(ii)” and “(iv It is preferable to perform at least one heating in an atmosphere in which the volume ratio of nitrogen is 90% or less.
  • At least one heating is performed in an atmosphere in which the volume ratio of nitrogen is 90% or less and the volume ratio of oxygen is 10% to 30%. It is preferable to carry out in the inside.
  • the first and / or second heating is performed with a nitrogen volume ratio of 60% to 90%, an oxygen volume ratio of 10% to 30%, and a water vapor volume ratio of 0. It is preferably carried out in an atmosphere of .0001% to 0.01%, a pressure of 10 kPa to 1000 kPa, and a temperature of 60 ° C. to 200 ° C., a nitrogen volume ratio of 70% to 90%, and an oxygen volume ratio of 10% to It is more preferable to carry out in an atmosphere of 30%, a volume ratio of water vapor of 0.002% to 0.005%, a pressure of 80 kPa to 120 kPa, and a temperature of 50 ° C. to 250 ° C. From the viewpoint of simplifying the manufacturing process, it is more preferable to perform both the first and second heating under these conditions.
  • the cathode 8 is formed on the electron injection layer 7 in the step of forming the cathode (“step (D)”).
  • step (D) the step of forming a layer (the cathode 8 in this embodiment) that covers the electron injection layer 7 is preferably performed as soon as possible after the second heating.
  • the time until the step of forming the layer covering the electron injection layer 7 (the cathode 8 in this embodiment) is 60 minutes or less, for example, preferably 10 minutes or less, preferably 5 minutes. The following is more preferable.
  • the third heating is performed. It is preferable to form a layer (the cathode 8 in this embodiment) that covers the electron injection layer 7 as soon as possible.
  • the organic EL element can be formed by sequentially laminating each component of the organic EL element.
  • the organic EL element is usually sealed after it is formed.
  • the sealing can be performed by bonding the support substrate 2 and the sealing member with a predetermined adhesive via the organic EL element 1. This sealing can be performed, for example, in the same atmosphere as when storing an organic EL element being manufactured.
  • the organic EL device manufacturing method of the present invention is, for example, a method of forming one or a plurality of organic EL devices on a predetermined support substrate by a single wafer method, or one or a plurality of organic EL devices on a predetermined support substrate by a roll-to-roll method.
  • This method is applied to the method of forming the organic EL element or the method of forming a part of the layer on the support substrate by the roll-to-roll method and then cutting the support substrate to form the remaining layer in a single wafer type Further, it can be applied to a laminating method using these.
  • the layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • an electron injection layer a layer in contact with the cathode
  • a layer excluding this electron injection layer is referred to as an electron transport layer.
  • the electron injection layer has a function of improving the electron injection efficiency from the cathode.
  • the electron transport layer has a function of improving electron injection from the layer in contact with the surface on the cathode side.
  • the hole blocking layer has a function of blocking hole transport. In the case where the electron injection layer and / or the electron transport layer have a function of blocking hole transport, these layers may also serve as the hole blocking layer.
  • Examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the layer in contact with the anode is called the hole injection layer, and the layers other than the hole injection layer are the hole transport layer. That's it.
  • the hole injection layer has a function of improving the hole injection efficiency from the anode.
  • the hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side.
  • the electron blocking layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
  • the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
  • a) Anode / hole injection layer / light emitting layer / electron injection layer / cathode b) Anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode c) Anode / hole injection layer / hole transport Layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode e) anode / light emitting layer / electron injection layer / cathode f) Anode / light-emitting layer / electron transport layer / electron injection layer / cathode (Here, the symbol “/” indicates that the layers sandwiching the symbol “/” are stacked adjacent to each other. The same applies hereinafter.)
  • the organic EL element of this embodiment may have two or more light emitting layers.
  • structural unit A when the laminate sandwiched between the anode and the cathode is referred to as “structural unit A”, the configuration of an organic EL element having two light emitting layers is obtained.
  • the layer structure shown in the following g) can be given. Note that the two (structural unit A) layer configurations may be the same or different.
  • (Structural unit B) x represents a stacked body in which the structural unit B is stacked in x stages.
  • a plurality of (the structural unit B) may have the same or different layer structure.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include a thin film made of vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, or the like.
  • the organic EL element may be covered with a sealing member such as a sealing film and a sealing plate for hermetically sealing the element.
  • the configuration of the organic EL element includes (1) bottom emission type, (2) top emission type, and (3) double-sided emission type.
  • the bottom emission type organic EL element emits light to the outside through a support substrate.
  • the top emission type organic EL element emits light to the outside from the side opposite to the support substrate.
  • the double-sided light emitting organic EL element emits light to the outside from both the support substrate side and the opposite side of the support substrate.
  • the present invention can be applied to any of bottom emission type, top emission type, and double-sided emission type organic EL elements.
  • the electrode disposed near the support substrate is made of an electrode exhibiting light transmittance.
  • the electrode arranged apart from the support substrate is composed of an electrode that normally reflects light.
  • an electrode arranged near the support substrate is constituted by an electrode that reflects normal light.
  • both the anode and the cathode are constituted by electrodes that exhibit optical transparency.
  • a substrate that is not chemically changed in the process of manufacturing the organic EL element is suitably used.
  • glass, plastic, a polymer film, a silicon plate, and a laminate thereof are used.
  • a drive substrate in which a drive circuit for driving the organic EL element is formed in advance may be used as the support substrate.
  • a substrate exhibiting light transmittance is used as the support substrate.
  • an electrode exhibiting optical transparency is used for the anode.
  • the electrode exhibiting optical transparency for example, a thin film of metal oxide, metal sulfide, metal or the like can be used.
  • a thin film having high electric conductivity and high light transmittance is preferably used.
  • a thin film made of indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used.
  • ITO, IZO Or a thin film made of tin oxide is preferably used.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • the organic transparent conductive film can be produced by applying an organic conductive material such as polythiophene.
  • the film thickness of the anode is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • hole injection material constituting the hole injection layer
  • metal oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, and amorphous carbon.
  • polyaniline and polythiophene derivatives examples include metal oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, and amorphous carbon.
  • polyaniline and polythiophene derivatives include metal oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, and amorphous carbon.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • a hole injection layer can be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution. Solidification of the coating film can be performed by natural drying, heat drying, vacuum drying, or the like, and can also be performed by irradiating predetermined light.
  • Solvents used for film formation from solution include, for example, chlorinated solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone.
  • chlorinated solvents such as chloroform, methylene chloride and dichloroethane
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketones such as acetone and methyl ethyl ketone.
  • water-based solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate, and water.
  • the film thickness of the hole injection layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • Hole transport layer examples of the hole transport material constituting the hole transport layer include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amines in side chains or main chains, pyrazoline derivatives, arylamine derivatives, stilbene derivatives. , Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) Or the derivative
  • guide_body etc. can be mentioned.
  • hole transport materials include polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof, polythiophene or a derivative thereof, poly Polymeric hole transport materials such as arylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and polyvinylcarbazole or derivatives thereof are more preferred. , Polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
  • Examples of the method for forming the hole transport layer include film formation from a solution containing a hole transport material.
  • a hole transport layer can be formed by coating a film containing a hole transport material by a predetermined coating method and solidifying the solution.
  • the film may be formed using a solution in which a polymer binder is further mixed.
  • Solvents used for film formation from solution include, for example, chlorine solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketones such as acetone and methyl ethyl ketone.
  • Examples thereof include ester solvents such as system solvents, ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those having low absorption with respect to visible light are suitably used.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the film thickness of the hole transport layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm. .
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. For example, a dopant is added in order to improve luminous efficiency and change the emission wavelength.
  • the organic substance contained in the light emitting layer may be a low molecular compound or a high molecular compound.
  • a polymer compound having generally higher solubility in a solvent than a low molecular compound can be suitably used in the coating method. Therefore, the light-emitting layer preferably contains a polymer compound, and preferably contains a compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 as the polymer compound.
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals (Tb, Eu, Dy, etc.) or central metals such as Al, Zn, Be, Ir, Pt, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structures, etc.
  • the metal complex which has these ligands can be mentioned.
  • metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, phenanthroline
  • metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, phenanthroline
  • europium complexes include europium complexes.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-mentioned dye materials and metal complex light emitting materials. Can be mentioned.
  • examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives. .
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • Dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is usually about 2 nm to 200 nm.
  • the light emitting layer is formed, for example, by film formation from a solution.
  • the light emitting layer is formed, for example, by applying a solution containing a light emitting material by a predetermined application method and further solidifying the solution.
  • Examples of the solvent used for film formation from a solution include the same solvents as those used for forming a hole injection layer from the above solution.
  • Examples of the electron transport material constituting the electron transport layer include oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthraquinodimethane or derivatives thereof. , Fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, and the like.
  • Examples of the method for forming the electron transport layer include a vapor deposition method and a film formation method from a solution.
  • a polymer binder may be used in combination.
  • the electron injection layer includes an ionic polymer.
  • an ionic polymer constituting the electron injection layer for example, a structural unit containing one or more groups selected from the group consisting of a group represented by the following formula (1) and a group represented by the following formula (2) The polymer which has is mentioned.
  • Q 1 represents a divalent organic group
  • Y 1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R a ) 3
  • M 1 represents a metal cation or an ammonium cation which may have a substituent
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 -, BF 4 - or PF 6 - represents,
  • Q 2 represents a divalent organic group
  • Y 2 represents a carbocation, an ammonium cation, a phosphonium cation, a sulfonium cation, or an iodonium cation
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I -, OH -, R b SO 3 -, R b COO -, ClO -, ClO 2 -, ClO 3 -, ClO 4 -, SCN -, CN -, NO 3 -, SO 4 2-, HSO 4 - , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇
  • Z 2 represents a metal cation or an optionally substituted ammonium cation
  • n2 represents 0 A2
  • a polymer having a group represented by the following formula (3) can be mentioned.
  • the group represented by the formula (3) may be contained in the structural unit of the ionic polymer, and is represented by the formula (1). And may be contained in the same structural unit as the structural unit containing one or more groups selected from the group consisting of the group represented by formula (2), or may be contained in another different structural unit. It may be.
  • a structural unit containing at least one of a group represented by the formula (1), a group represented by the formula (2), and a group represented by the formula (3) Is a polymer having 15 to 100 mol% of all structural units.
  • Q 3 represents a divalent organic group
  • Y 3 represents —CN or a group represented by any one of formulas (4) to (12)
  • n3 represents 0 or more. Represents an integer.
  • R ′ represents a divalent hydrocarbon group which may have a substituent
  • R ′′ represents a hydrogen atom or a monovalent which may have a substituent
  • the ionic polymer is composed of a structural unit represented by formula (13), a structural unit represented by formula (15), a structural unit represented by formula (17), and a structural unit represented by formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group is contained in all the structural units.
  • R 1 is a monovalent group including a group represented by Formula (14), and Ar 1 may have a substituent other than R 1 (2 + n4) fragrance.
  • n4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
  • R 2 is (1 + m1 + m2) valent organic group
  • Q 1, Q 3, Y 1, M 1, Z 1, Y 3, n1, a1, b1 and n3 mentioned above means the same M1 and m2 each independently represents an integer of 1 or more, and when Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are plural, May be the same or different.
  • R 3 is a monovalent group containing a group represented by the formula (16), and Ar 2 may have a substituent other than R 3 (2 + n5) fragrance.
  • R 3 represents an integer of 1 or more, and when there are a plurality of R 3 s , they may be the same or different.
  • R 4 represents a (1 + m3 + m4) -valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • M3 and m4 each independently represents an integer greater than or equal to 1. When there are a plurality of Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3, May be the same or different.
  • R 5 is a monovalent group containing a group represented by formula (18)
  • R 6 is a monovalent group containing a group represented by formula (19)
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group optionally having a substituent other than R 5 and R 6 , n6 and n7 each independently represents an integer of 1 or more, and each of R 5 and R 6 May be the same or different when there are multiple.
  • R 8 represents a single bond or a (1 + m6) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m6 represents an integer of 1 or more, provided that R 8 is a single group.
  • M6 represents 1 when bonded, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • R 9 is a monovalent group including a group represented by Formula (21)
  • R 10 is a monovalent group including a group represented by Formula (22)
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group optionally having a substituent other than R 9 and R 10
  • n8 and n9 each independently represents an integer of 1 or more, and each of R 9 and R 10 May be the same or different when there are multiple.
  • R 11 represents a single bond or a (1 + m7) -valent organic group
  • Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 represent the same meaning as described above
  • m 7 represents Represents an integer of 1 or more, provided that when R 11 is a single bond, m7 represents 1, and when there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 , they are the same or different.
  • R 12 represents a single bond or a (1 + m8) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m8 represents an integer of 1 or more, provided that R 12 is a single group.
  • M8 represents 1 when bonded, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • the structural unit in the ionic polymer may contain two or more groups represented by the formula (1), may contain two or more groups represented by the formula (2), Two or more groups represented by 3) may be included.
  • examples of the divalent organic group represented by Q 1 include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, 3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, at least one of these groups
  • a divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms which may have a substituent, including a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexene group, and an ethynylene group.
  • the number of carbon atoms that may have a substituent such as a xylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a substituent such as a 4,4′-diyl group, a group obtained by substituting at least one hydrogen atom of these groups with a substituent
  • Oxy A substituent such as an ethyleneoxy group, a propyleneoxy group, a butyleneoxy
  • an alkyleneoxy group having 1 to 50 carbon atoms, an imino group having a substituent containing a carbon atom, and a silylene group having a substituent containing a carbon atom is preferable.
  • substituents examples include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituent.
  • Amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, hydroxy group, carboxyl group, substituted carboxyl group, cyano group and A nitro group etc. are mentioned. When a plurality of the substituents are present, they may be the same or different. Of these, substituents other than amino groups, silyl groups, halogen atoms, hydroxy groups, and nitro groups contain carbon atoms.
  • C m to C n (m, n is a positive integer satisfying m ⁇ n) means that the organic group described immediately after this term has m to n carbon atoms.
  • a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms
  • a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n.
  • n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, and nonyl.
  • the hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • Examples of the fluorine atom-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
  • the alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent.
  • the alkoxy group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • Examples of alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, lauryloxy group and the like.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • Examples of the fluorine atom-substituted alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • Examples of the C 1 to C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent.
  • the alkylthio group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group Group, nonylthio group, decylthio group, laurylthio group and the like.
  • a hydrogen atom in the alkylthio group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkylthio group examples include a trifluoromethylthio group.
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the aryl group has a group having a benzene ring, a group having a condensed ring, two or more independent benzene rings or condensed rings bonded via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group). Also included are
  • the aryl group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • aryl group examples include a phenyl group, a C 1 -C 12 alkoxyphenyl group, a C 1 -C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and a 9-anthracenyl group. Groups and the like.
  • a hydrogen atom in the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a pentafluorophenyl group.
  • aryl groups a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are preferable.
  • examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, and a sec-butoxyphenyl group.
  • Tert-butoxyphenyl group pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3 , 7-dimethyloctyloxyphenyl group, lauryloxyphenyl group and the like.
  • examples of the C 1 -C 12 alkylphenyl group include a methylphenyl group, an ethylphenyl group, a dimethylphenyl group, a propylphenyl group, a mesityl group, a methylethylphenyl group, an isopropylphenyl group, a butylphenyl group, Examples thereof include isobutylphenyl group, t-butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group and the like.
  • the aryloxy group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferred.
  • examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, a sec-butoxyphenoxy group.
  • examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, Isopropylphenoxy group, butylphenoxy group, isobutylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group Group, dodecylphenoxy group and the like.
  • the arylthio group is, for example, a group in which a sulfur atom is bonded to the aforementioned aryl group.
  • the arylthio group may have a substituent on the aromatic ring of the aryl group.
  • the arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group.
  • the arylalkyl group may have a substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkyl group examples include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, -Naphthyl-C 1 -C 12 alkyl group, 2-naphthyl-C 1 -C 12 alkyl group and the like.
  • the arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group.
  • the arylalkoxy group may have a substituent.
  • the arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms.
  • arylalkoxy group examples include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, -Naphthyl-C 1 -C 12 alkoxy group, 2-naphthyl-C 1 -C 12 alkoxy group and the like.
  • the arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group.
  • the arylalkylthio group may have a substituent.
  • the arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkylthio group examples include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, -Naphthyl-C 1 -C 12 alkylthio group, 2-naphthyl-C 1 -C 12 alkylthio group and the like.
  • the arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group.
  • the arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • Examples of arylalkenyl groups include phenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkylphenyl -C 2 -C 12 alkenyl groups, 1 -Naphthyl-C 2 -C 12 alkenyl group, 2-naphthyl-C 2 -C 12 alkenyl group, etc.
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group C 1 -C 12 alkylphenyl A —C 2 -C 12 alkenyl group is preferred.
  • Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
  • the arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group.
  • the arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • arylalkynyl group for example, a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, -Naphthyl-C 2 -C 12 alkynyl group, 2-naphthyl-C 2 -C 12 alkynyl group, etc.
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group C 1 -C 12 alkylphenyl A —C 2 -C 12 alkynyl group is preferred.
  • Examples of the C 2 to C 12 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
  • the substituted amino group at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group.
  • the amino group formed is preferred.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is usually 1 to 60 excluding the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 2 to 48 are preferred.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, sec-butyl.
  • the substituted silyl group at least one hydrogen atom in the silyl group is substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Silyl group formed.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted silyl group is usually 1 to 60 without including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 3 to 48 are preferred.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, tert-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethyl group.
  • Silyl group heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, lauryldimethylsilyl group, (phenyl-C 1 -C 12 alkyl) silyl group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) silyl group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) silyl group, (1-naphthyl) -C 1 ⁇ C 12 A Kill) silyl group, (2-naphthyl -C 1 ⁇ C 12 alkyl) silyl group, (phenyl -C 1 ⁇ C 12 alkyl) dimethyl silyl group,
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, pivaloyloxy group, benzoyloxy group, trifluoroacetyloxy group, pentafluorobenzoyloxy group and the like.
  • the imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN ⁇ C ⁇ and the formula: —N ⁇ CH—.
  • imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. It is done.
  • the number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18.
  • Examples of the imine residue include a general formula: —CR ⁇ ⁇ N—R ⁇ or a general formula: —N ⁇ C (R ⁇ ) 2 (where R ⁇ is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl) A group, an arylalkenyl group, or an arylalkynyl group, and R ⁇ independently represents an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, provided that two R ⁇ are present.
  • Two R ⁇ are bonded to each other to form a divalent group, for example, an alkylene group having 2 to 18 carbon atoms such as an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc. As a ring may be formed.).
  • the imine residue include the following groups.
  • the amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms.
  • Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, a ditriamide group.
  • a fluoroacetamide group, a dipentafluorobenzamide group, etc. are mentioned.
  • the acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide, and usually has 4 to 20 carbon atoms and preferably 4 to 18 carbon atoms.
  • Examples of the acid imide group include the following groups.
  • the monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the monovalent heterocyclic group may have a substituent.
  • the monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms.
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of such monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, Examples include a pyrazinyl group, a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group, and among them, a thienyl group, a C 1 to C 12 alkylthienyl group, a pyridyl group, and a C 1 to C 12 alkylpyridyl group are preferable.
  • the monovalent heterocyclic group is preferably a monovalent aromatic hetero
  • the substituted carboxyl group means a group in which a hydrogen atom in the carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group. That is, the substituted carboxyl group is a group represented by the formula: —C ( ⁇ O) OR * (wherein R * is an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group).
  • the substituted carboxyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group, or monovalent heterocyclic group may have.
  • the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, Hexyloxycarbonyl group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, do
  • Y 1 represents a monovalent group such as —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 — .
  • Y 1 is preferably —CO 2 ⁇ , —SO 2 ⁇ or —PO 3 — , more preferably —CO 2 — from the viewpoint of the acidity of the ionic polymer. From the viewpoint of the stability of the ionic polymer, —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 — is preferable.
  • M 1 represents a metal cation or an ammonium cation which may have a substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable.
  • Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb , Sn, Ti, V, W, Y, Yb, Zn, Zr, and the like, and Li + , Na + , K + , Cs + , Ag + , Mg 2+ , and Ca 2+ are preferable.
  • Examples of the substituent that the ammonium ion may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an i-butyl group, a tert-butyl group, etc. 10 alkyl groups are mentioned.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n1 represents an integer of 0 or more, and is preferably an integer of 0 to 8, more preferably an integer of 0 to 2, from the viewpoint of synthesis of raw material monomers.
  • a1 represents an integer of 1 or more
  • b1 represents an integer of 0 or more.
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 has a monovalent metal cation or substituent.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ ,
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 ——
  • M 1 is a divalent metal cation
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 is a trivalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
  • R a represents an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted aryl group having 6 to 50 carbon atoms.
  • substituents that these groups may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R a for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl Group, decyl group, lauryl group and the like carbon atoms of 1-20 carbon atoms, such as phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group Examples thereof include aryl groups of 6 to 30.
  • Examples of the group represented by the formula (1) include the following groups.
  • the divalent organic group represented by Q 2 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. From the viewpoint of ease of synthesis of the raw material monomer, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the groups mentioned as examples of the divalent organic group represented by Q 2 may have a substituent.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Y 2 represents a carbocation, an ammonium cation, a phosphonium cation, a sulfonium cation, or an iodonium cation.
  • the carbocation for example, -C + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • ammonium cations include: -N + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Examples of phosphonium cations include: -P + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • sulfonium cation for example, -S + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • iodonium cation for example, -I + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Y 2 represents a carbocation, an ammonium cation, a phosphonium cation, a sulfonium cation from the viewpoint of the ease of synthesis of the raw material monomer and the stability of the raw material monomer and the ionic polymer to air, moisture or heat. Are preferred, and ammonium cations are more preferred.
  • Z 2 represents a metal cation or an ammonium cation which may have a substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable.
  • Examples of the substituent that the ammonium cation may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group and the like having 1 to 10 carbon atoms.
  • An alkyl group is mentioned.
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n2 represents an integer of 0 or more, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
  • a2 represents an integer of 1 or more
  • b2 represents an integer of 0 or more.
  • a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero.
  • a2 is preferably an integer of 1 to 3, more preferably 1 or 2.
  • R b represents an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted aryl group having 6 to 50 carbon atoms.
  • substituents that these groups may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R b is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl Group, decyl group, lauryl group and the like carbon atoms of 1-20 carbon atoms, such as phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group Examples thereof include aryl groups of 6 to 30.
  • Examples of the group represented by the formula (2) include the following groups.
  • examples of the divalent organic group represented by Q 3 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. From the viewpoint of ease of synthesis of the raw material monomer, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the group mentioned as an example of the divalent organic group represented by Q 3 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above.
  • a substituent is mentioned. When a plurality of substituents are present, they may be the same or different.
  • the divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
  • N3 represents an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
  • Y 3 represents —CN or a group represented by any one of formulas (4) to (12).
  • examples of the divalent hydrocarbon group represented by R ′ include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2- Butylene, 1,3-butylene, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, 1,9-nonylene, 1,12-dodecylene, among these groups
  • a divalent saturated hydrocarbon group having 1 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; ethenylene group, propenylene group, 3-butenylene A substituent such as a group, a 2-butenylene group, a 2-pentenylene group, a 2-hexenylene group, a 2-nonenylene group, a 2-dodecenylene group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • 2 carbon atoms which may have a group A divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms which may have a substituent, including a 50 alkenylene group and an ethynylene group; a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, Carbons that may have a substituent such as a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R ′′ for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • An optionally substituted alkyl group having 1 to 20 carbon atoms phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, And an aryl group having 6 to 30 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in the group is substituted with a substituent.
  • a substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • examples of the trivalent hydrocarbon group represented by R ′ ′′ include a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, a 1,2,4-butanetriyl group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, An alkyltriyl group having 1 to 20 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; 1,2,3-benzenetriyl group, 1, 2,4-benzenetriyl group, 1,3,5-benzenetriyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • Examples thereof include an aryl group having 6 to 30 carbon atoms. From the viewpoint of solubility of the ionic polymer, a methanetriyl group, an ethanetriyl group, a 1,2,4-benzenetriyl group, and a 1,3,5-benzenetriyl group are preferable.
  • the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R c is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer.
  • a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable.
  • a4 represents an integer of 0 or more.
  • a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
  • Y 3 is —CN, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (10), from the viewpoint of ease of synthesis of the raw material monomer.
  • a group represented by the formula (11) is preferable, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (11) are more preferable, and the following groups are particularly preferable: preferable.
  • the ionic polymer used in the present invention includes a structural unit represented by the formula (13), a structural unit represented by the formula (15), a structural unit represented by the formula (17), and the formula ( It is preferable to have one or more structural units selected from the group consisting of the structural units represented by 20), and it is more preferable to have the structural units in an amount of 15 to 100 mol% in all the structural units.
  • R 1 is a monovalent group containing a group represented by formula (14), and Ar 1 has a substituent other than R 1.
  • the group represented by the formula (14) may be directly bonded to Ar 1 .
  • the group represented by the formula (14) is a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, Carbons which may have a substituent such as a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • Ar 1 may have a substituent other than R 1 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 1 possessed by Ar 1 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
  • n4 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group. Or a (2 + n4) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms. Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, and a furan.
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the (2 + n4) -valent aromatic group includes (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred. More preferred is a group in which (2 + n4) hydrogen atoms have been removed from the ring formed.
  • examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which (m1 + m2) hydrogen atoms are removed from an alkyl group, a group in which (m1 + m2) hydrogen atoms are removed from an aryl group, and (m1 + m2) from an alkoxy group A group in which a hydrogen atom is removed is preferable.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • R 3 is a monovalent group including a group represented by formula (16), and Ar 2 has a substituent other than R 3.
  • the group represented by the formula (16) may be directly bonded to Ar 2 .
  • the group represented by the formula (16) is a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, Carbons that may have a substituent such as a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • Ar 2 may have a substituent other than R 3 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 3 in Ar 2 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
  • n5 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in the formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group. Or a (2 + n5) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, and a furan.
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n5) -valent aromatic group includes (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring represented by formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and a group represented by formula 1, 37, or 41 is preferred. And more preferably a group in which (2 + n5) hydrogen atoms have been removed from the ring.
  • n3 and m4 each independently represent an integer of 1 or more.
  • examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • R 5 is a monovalent group including a group represented by formula (18)
  • R 6 is a group represented by formula (19).
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group optionally having a substituent other than R 5 and R 6 , and n6 and n7 are each independently an integer of 1 or more Represents.
  • the group represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3 .
  • the group represented by the formula (18) and the group represented by the formula (19) are methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group.
  • Ar 3 may have a substituent other than R 5 and R 6 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 5 and R 6 possessed by Ar 3 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
  • n6 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • n7 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in the formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group, a (2 + n6 + n7) -valent aromatic heterocyclic group, and a carbon atom. Or a (2 + n6 + n7) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, and an imidazole.
  • two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring are A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from an aromatic ring assembly formed by a bond, an ethenylene group or an ethynylene group; adjacent to the condensed polycyclic aromatic ring or the aromatic ring assembly (2 + n6 + n7) -valent
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n6 + n7) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer.
  • a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is preferred, and a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferred, represented by formula 1, 38 or 42
  • a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is more preferable.
  • R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
  • examples of the (1 + m5) -valent organic group represented by R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing m5 hydrogen atoms from an alkyl group, a group obtained by removing m5 hydrogen atoms from an aryl group, and a group obtained by removing m5 hydrogen atoms from an alkoxy group Is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m5 represents an integer of 1 or more, provided that m5 represents 1 when R 7 is a single bond.
  • R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
  • examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which a hydrogen atom is removed methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclo Having a substituent such as a hexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • a group obtained by removing m6 hydrogen atoms from an alkyl group, a group obtained by removing m6 hydrogen atoms from an aryl group, and a group obtained by removing m6 hydrogen atoms from an alkoxy group Is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m6 represents an integer of 1 or more, provided that m6 represents 1 when R 8 is a single bond.
  • R 9 is a monovalent group including a group represented by formula (21), and R 10 is a group represented by formula (22).
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group optionally having a substituent other than R 9 and R 10 , and n8 and n9 are each independently an integer of 1 or more Represents.
  • the group represented by the formula (21) and the group represented by the formula (22) may be directly bonded to Ar 4 .
  • the group represented by the formula (21) and the group represented by the formula (22) are a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, and a cyclopropylene group.
  • Ar 4 may have a substituent other than R 9 and R 10 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 9 and R 10 possessed by Ar 4 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
  • n8 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • n9 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group. Or a (2 + n8 + n9) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, and an imidazole.
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n8 + n9) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer.
  • a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferable.
  • R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
  • examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing m7 hydrogen atoms from an alkyl group, a group obtained by removing m7 hydrogen atoms from an aryl group, and a group obtained by removing m7 hydrogen atoms from an alkoxy group Is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m7 represents an integer of 1 or more, provided that m7 represents 1 when R 11 is a single bond.
  • R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
  • examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent
  • a group in which a hydrogen atom is removed methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexane Having a substituent such as a hexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • a group obtained by removing m8 hydrogen atoms from an alkyl group, a group obtained by removing m8 hydrogen atoms from an aryl group, and a group obtained by removing m8 hydrogen atoms from an alkoxy group Is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m8 represents an integer of 1 or more, provided that m8 represents 1 when R 12 is a single bond.
  • Examples of the structural unit represented by the formula (13) As the structural unit represented by the formula (13), from the viewpoint of the electron transport property of the obtained ionic polymer, the structural unit represented by the formula (23), The structural unit represented by Formula (24) is preferable, and the structural unit represented by Formula (24) is more preferable.
  • R 13 represents a (1 + m9 + m10) valent organic group
  • R 14 represents a monovalent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1, and n3 represent the same meaning as described above
  • m9 and m10 each independently represent an integer of 1 or more
  • b1 and n3 represent the same meaning as described above
  • m9 and m10 each independently represent an integer of 1 or more
  • b1 and n3 When there are a plurality of b1 and n3, they may be the same or different.
  • examples of the (1 + m9 + m10) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • Examples of the structural unit represented by the formula (23) include the following structural units.
  • R 13 represents a (1 + m11 + m12) valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above.
  • M11 and m12 each independently represents an integer of 1 or more, and R 13 , m 11, m 12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 (If there are several, each may be the same or different.)
  • examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group a group obtained by removing (m11 + m12) hydrogen atoms from an aryl group, and (m11 + m12) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (24) include the following structural units.
  • the structural unit represented by the formula (13) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 15 represents a (1 + m13 + m14) valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above.
  • the stands, m13, m14 and m15 represent each independently an integer of 1 or more, R 15, m13, m14, Q 1, Q 3, Y 1, M 1, Z 1, Y 3, n1, a1, b1 and If there are multiple n3s, they may be the same or different.
  • examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group a group obtained by removing (m13 + m14) hydrogen atoms from an aryl group, and (m13 + m14) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (25) include the following structural units.
  • Examples of the structural unit represented by the formula (15) As the structural unit represented by the formula (15), from the viewpoint of the electron transport property of the obtained ionic polymer, the structural unit represented by the formula (26), The structural unit represented by Formula (27) is preferable, and the structural unit represented by Formula (27) is more preferable.
  • R 16 represents a (1 + m16 + m17) valent organic group
  • R 17 represents a monovalent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2 , a2, b2 and n3 represent the same as defined above
  • Q 2, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2 , B2 and n3 may be the same or different when there is a plurality.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and (m16 + m17) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • Examples of the structural unit represented by the formula (26) include the following structural units.
  • R 16 represents a (1 + m16 + m17) valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and (m16 + m17) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (27) include the following structural units.
  • the structural unit represented by the formula (28) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 18 represents a (1 + m18 + m19) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • M18, m19 and m20 each independently represents an integer of 1 or more, and R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 and If there are multiple n3s, they may be the same or different.
  • examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m18 + m19) hydrogen atoms from the alkyl group a group obtained by removing (m18 + m19) hydrogen atoms from the aryl group, and (m18 + m19) groups obtained from the alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (28) include the following structural units.
  • the structural unit represented by the formula (17) As the structural unit represented by the formula (17), from the viewpoint of the electron transport property of the obtained ionic polymer, the structural unit represented by the formula (29) is preferable.
  • R 19 represents a single bond or a (1 + m21) -valent organic group
  • R 20 represents a single bond or a (1 + m22) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m21 and m22 independently, provided that when R 19 is a single bond m21 represents 1 , R 20 is a single bond, m22 represents 1 , and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 each have the same or different May be.
  • examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • the structural unit represented by the formula (17) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 21 represents a single bond or a (1 + m23) -valent organic group
  • R 22 represents a single bond or a (1 + m24) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m23 and m24 independently, provided that when R 21 is a single bond m23 represents 1 , R 22 is a single bond, m24 represents 1, m25 and m26 each independently represents an integer of 1 or more, m23, m24, R 21 , R 22 , Q 1 , Q 3 , Y 1 , M 1 , When there are a plurality of Z 1 , Y 3 , n1, a1, b1, and n3, they may be the same or different.
  • examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • Examples of the structural unit represented by the formula (30) include the following structural units.
  • Example of Structural Unit Represented by Formula (20) As the structural unit represented by Formula (20), the structural unit represented by Formula (31) is preferable from the viewpoint of the electron transport property obtained.
  • R 23 represents a single bond or a (1 + m27) -valent organic group
  • R 24 represents a single bond or a (1 + m28) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above
  • m 27 and m 28 each independently represent an integer of 1 or more, provided that m 27 represents 1 when R 23 is a single bond.
  • m28 represents 1, and when Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are plural, they are the same or different May be.
  • examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m27) hydrogen atoms from an optionally substituted alkoxy group having 1 to 50 carbon atoms; (m27) hydrogen atoms from an amino group having a substituent containing a carbon atom A group in which (m27) hydrogen atoms have been removed from a silyl group having a substituent containing a carbon atom.
  • a group obtained by removing (m27) hydrogen atoms from an alkyl group a group obtained by removing (m27) hydrogen atoms from an aryl group, and (m27) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m28) hydrogen atoms from an optionally substituted alkoxy group having 1 to 50 carbon atoms; (m28) hydrogen atoms from an amino group having a substituent containing a carbon atom A group in which (m28) hydrogen atoms have been removed from a silyl group having a substituent containing a carbon atom.
  • a group obtained by removing (m28) hydrogen atoms from an alkyl group a group obtained by removing (m28) hydrogen atoms from an aryl group, and (m28) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (31) include the following structural units.
  • the structural unit represented by the formula (20) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 25 represents a single bond or a (1 + m29) -valent organic group
  • R 26 represents a single bond or a (1 + m30) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above
  • m 29 and m 30 each independently represent an integer of 1 or more, provided that m 29 represents 1 when R 25 is a single bond.
  • R 26 is a single bond
  • m30 represents 1, m31 and m32 each independently represents an integer of 1 or more
  • Z 2 , Y 3 , n 2, a 2, b 2 and n 3 they may be the same or different.
  • examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m29) hydrogen atoms from an alkyl group a group obtained by removing (m29) hydrogen atoms from an aryl group, and (m29) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m30) hydrogen atoms from an alkyl group a group obtained by removing (m30) hydrogen atoms from an aryl group, and (m30) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (32) include the following structural units.
  • the ionic polymer used for this invention may have 1 or more types of structural units further represented by Formula (33).
  • Ar 5 represents a divalent aromatic group which may have a substituent or a divalent aromatic amine residue which may have a substituent
  • X ′ represents a substituent.
  • m33 and m34 are each independently 0 or 1 and at least one of m33 and m34 is 1.
  • Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, A divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring such as a pyrrole ring, a thiophene ring, a pyrazole ring, an imidazole ring, an oxazole ring, an oxadiazole ring, or an azadiazole ring; consisting of the monocyclic aromatic ring A divalent group obtained by removing two hydrogen atoms from a condensed polycyclic aromatic ring condensed with two or more selected from
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • the number of aromatic rings to be connected is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2 from the viewpoint of solubility.
  • the number of aromatic rings to be bridged is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, A divalent group obtained by removing two hydrogen atoms from the ring represented by 91, 92, 93 or 96 is preferred, and the ring represented by the formula 45 to 50, 59, 60, 77, 80, 91, 92 or 96 A divalent group in which two hydrogen atoms are removed from is more preferable.
  • the above divalent aromatic group may have a substituent.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above.
  • Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently an arylene group which may have a substituent or a divalent heterocyclic ring which may have a substituent.
  • Ar 10 , Ar 11 and Ar 12 each independently represents an aryl group which may have a substituent or a monovalent heterocyclic group which may have a substituent, and n10 and m35 independently represents 0 or 1.
  • Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, and an aryl group.
  • the substituent is vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group) , A group having a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a group containing a structure of a siloxane derivative.
  • the carbon atom in Ar 6 and the carbon atom in Ar 8 may be directly bonded, or may be bonded through a divalent group such as —O— or —S—. .
  • the aryl group and monovalent heterocyclic group represented by Ar 10 , Ar 11 and Ar 12 are the same as the aryl group and monovalent heterocyclic group described and exemplified above as the substituent.
  • Examples of the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the arylene group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • the arylene group include a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, and a 2-anthracenylene group. Group, 9-anthracenylene group.
  • a hydrogen atom in the arylene group may be substituted with a fluorine atom.
  • the fluorine atom-substituted arylene group include a tetrafluorophenylene group.
  • a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
  • Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms.
  • the number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of such a divalent heterocyclic group include a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyrrole diyl group, a furandiyl group, a pyridinediyl group, a C 1 -C 12 alkylpyridine diyl group, and a pyridazine.
  • diyl group a pyrimidine-diyl group, a pyrazinediyl group, a triazine-diyl group, pyrrolidinediyl group, piperidine-diyl group, quinolinediyl group, and isoquinoline-diyl group, among others, a thiophene-diyl group, C 1 ⁇ C 12 alkyl thiophenediyl group, pyridinediyl More preferred are groups and C 1 -C 12 alkylpyridinediyl groups.
  • the ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit.
  • other structural units include arylene groups such as a phenylene group and a fluorenediyl group. Of these ionic polymers, those containing a crosslinking group are preferred.
  • examples of the divalent aromatic amine residue represented by the formula (34) include groups obtained by removing two hydrogen atoms from the aromatic amine represented by the following formulas 101 to 110.
  • the aromatic amines represented by Formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above, and when a plurality of substituents are present, they may be the same or different.
  • X ′ represents an imino group which may have a substituent, a silylene group which may have a substituent, an ethenylene group which may have a substituent, or an ethynylene group.
  • substituents that the imino group, the silylene group, or the ethenylene group may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a pentyl group.
  • alkyl group having 1 to 20 carbon atoms such as a group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group; phenyl group, Examples thereof include aryl groups having 6 to 30 carbon atoms such as 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group and 9-anthracenyl group. When a plurality of substituents are present, they may be the same or different.
  • X ′ is preferably an imino group, an ethenylene group or an ethynylene group.
  • m33 is preferably 1 and m34 is preferably 0.
  • the structural unit represented by the formula (33) is preferable from the viewpoint of electron acceptability of the ionic polymer.
  • Ar 13 is a pyridinediyl group which may have a substituent, a pyrazinediyl group which may have a substituent, a pyrimidinediyl group which may have a substituent, a substituted group.
  • Examples of the substituent that the pyridinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the pyrazinediyl group may have include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the pyrimidinediyl group may have include the same substituents as the substituents exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyridazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the triazinediyl group may have include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the total proportion of the structural units represented by the formula (20) is 30 to 100 mol% in all the structural units contained in the ionic polymer excluding the terminal structural unit. It is more preferable that
  • terminal structural unit (terminal group) of the ionic polymer used in the present invention is, for example, a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec -Butyl group, tert-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, Butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group
  • the ionic polymer used in the present invention is preferably a conjugated compound.
  • the ionic polymer used in the present invention is a conjugated compound when the ionic polymer has a multiple bond (for example, double bond, triple bond) or a nitrogen atom, oxygen atom, etc. in the main chain. It means that the pair includes a region that is continuous with one single bond.
  • the ionic polymer is a conjugated compound, from the viewpoint of electron transport properties of the conjugated compound, ⁇ (The number of atoms on the main chain contained in a region where multiple bonds or unshared electron pairs of nitrogen atoms, oxygen atoms, etc.
  • the ionic polymer used in the present invention is preferably a polymer compound, more preferably a conjugated polymer compound.
  • the polymer compound means a compound having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more.
  • the ionic polymer used in the present invention being a conjugated polymer compound means that the ionic polymer is a conjugated compound and a polymer compound.
  • the number average molecular weight in terms of polystyrene of the ionic polymer is 1 ⁇ 10 3 ⁇ 1 ⁇ 10 8, 2 ⁇ 10 3 ⁇ It is more preferably 1 ⁇ 10 7 , more preferably 3 ⁇ 10 3 to 1 ⁇ 10 7 , and even more preferably 5 ⁇ 10 3 to 1 ⁇ 10 7 .
  • the weight average molecular weight in terms of polystyrene is preferably 1 ⁇ 10 3 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 3 to 1 ⁇ 10 7.
  • the number average molecular weight in terms of polystyrene is 1 ⁇ 10 3 ⁇ 5 ⁇ 10 5, more preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 4, More preferably, it is 1 ⁇ 10 3 to 3 ⁇ 10 3 .
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer used in the present invention can be determined using, for example, gel permeation chromatography (GPC).
  • the number of all structural units (ie, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably 1 or more and 20 or less. It is more preferably 10 or less and more preferably 1 or more and 5 or less.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is ⁇ 5.0 eV or more and ⁇ 2.0 eV or less. It is preferable that it is -4.5 eV or more and -2.0 eV or less.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably from -6.0 eV to -3.0 eV, more preferably from -5.5 eV to -3.0 eV. Is more preferable.
  • the orbital energy of HOMO is lower than that of LUMO.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. .
  • a photoelectron spectrometer is used to measure the ionization potential.
  • the energy difference between HOMO and LUMO is obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
  • the polymer used in the present invention is preferably substantially non-luminescent when used in an electroluminescent device.
  • the fact that a certain polymer is substantially non-luminous means as follows. First, an electroluminescent element A having a layer containing a certain polymer is produced. On the other hand, the electroluminescent element 2 which does not have the layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer. Next, a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum.
  • the wavelength ⁇ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained.
  • the emission spectrum at the wavelength ⁇ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating the wavelength.
  • the emission intensity at the wavelength ⁇ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength.
  • the polymer When the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent device 2 having no polymer-containing layer, the polymer When the increase in the normalized light emission amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-light-emitting, and (S ⁇ S 0 ) / S The value calculated by 0 ⁇ 100 is preferably 15% or less, and more preferably 10% or less.
  • Examples of the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3) include an ionic polymer composed only of the group represented by the formula (23); And one group selected from the group consisting of the groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed.
  • An ionic polymer comprising the above group; an ionic polymer comprising only the group represented by formula (24); the group represented by formula (24) and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the ring represented by 101 to 110; comprising only a group represented by formula (25)
  • An ionic polymer comprising only a group represented by the formula (29); a group represented by the formula (29) and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, 101 to An ionic poly
  • Examples of the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • Examples of the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3) include an ionic polymer consisting only of the group represented by the formula (26); And one group selected from the group consisting of the groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed.
  • An ionic polymer comprising the above group; an ionic polymer comprising only the group represented by formula (27); a group represented by formula (27) and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the ring represented by 101 to 110; consisting of only a group represented by formula (28)
  • An ionic polymer comprising only a group represented by the formula (31); a group represented by the formula (31) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, 101 to An i
  • Examples of the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • a method for producing the ionic polymer used in the present invention will be described.
  • a suitable method for producing the ionic polymer used in the present invention for example, a compound represented by the following general formula (36) is selected and used as one of raw materials, and this is subjected to condensation polymerization. Can be mentioned.
  • a compound in which -A a- in the general formula (36) is a structural unit represented by the formula (13), a compound in which the -A a -is a structural unit represented by the formula (15), -A a - by containing as essential ingredients at least one compound is a structural unit is represented by the formula (20) - a compound is a structural unit represented by the formula (17) and said -A a And a method of subjecting it to condensation polymerization.
  • Y 4 -A a -Y 5 (36) (In Formula (36), A a is represented by Formula (3) and one or more groups selected from the group consisting of the group represented by Formula (1) and the group represented by Formula (2).
  • a repeating unit containing a group of at least species is represented, and Y 4 and Y 5 each independently represent a group involved in condensation polymerization.)
  • the ionic polymer used in the present invention may contain another structural unit other than the above-mentioned —A a —.
  • a compound having two substituents involved in the condensation polymerization which is another structural unit other than the above-mentioned -A a- , is used together with the compound represented by the formula (36).
  • the condensation polymerization may be performed.
  • Examples of the compound having two condensation-polymerizable substituents used to contain such other structural units include compounds represented by the formula (37).
  • the structural unit represented by -A b- is obtained by condensation polymerization of the compound represented by Formula (37).
  • the ionic polymer used in the present invention can be produced.
  • Y 6 -A b -Y 7 (37) (In the formula (37), Ab is a structural unit represented by the general formula (33) or a structural unit represented by the general formula (35), and Y 6 and Y 7 are each independently a condensation polymerization. Represents a group involved in
  • Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in such condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, and a boric acid ester residue.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • aryl sulfonate group include a benzene sulfonate group and p-toluene sulfonate group. Examples are groups.
  • examples of the boric acid ester residue that can be selected as a group involved in the condensation polymerization include groups represented by the following formulae.
  • the sulfonium methyl group that can be selected as a group involved in the condensation polymerization includes the following formula: -CH 2 S + Me 2 E - , or, -CH 2 S + Ph 2 E - (Wherein E represents a halogen atom, Ph represents a phenyl group, and the same shall apply hereinafter).
  • Examples of the phosphonium methyl group that can be selected as the group involved in the condensation polymerization include the following formula: -CH 2 P + Ph 3 E - (Wherein E represents a halogen atom).
  • the phosphonate methyl group that can be selected as the group involved in the condensation polymerization is represented by the following formula: —CH 2 PO (OR d ) 2 (Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group).
  • examples of the monohalogenated methyl group that can be selected as the group involved in the condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
  • a group suitable as a group involved in the condensation polymerization varies depending on the type of polymerization reaction.
  • a zero-valent nickel complex such as a Yamamoto coupling reaction
  • alkyl sulfonate groups examples include alkyl sulfonate groups.
  • a nickel catalyst or palladium catalyst such as Suzuki coupling reaction
  • an alkyl sulfonate group, a halogen atom, a boric acid ester residue, —B (OH) 2 and the like can be mentioned.
  • oxidative polymerization a hydrogen atom is exemplified.
  • the compound (monomer) represented by the general formula (36) or (37) having a plurality of groups involved in condensation polymerization may be used.
  • Such polymerization methods include, for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”.
  • a polymerization method for example, a method in which a corresponding monomer is polymerized by a Suzuki coupling reaction; a method in which a corresponding monomer is polymerized by a Grignard reaction; a method in which a corresponding monomer is polymerized by a Ni (0) complex; Examples include a method of polymerizing the corresponding monomer with an oxidizing agent such as FeCl 3 ; a method of electrochemically polymerizing the corresponding monomer; a method of decomposing an intermediate polymer having an appropriate leaving group, and the like.
  • a polymerization method using a Suzuki coupling reaction a polymerization method using a Grignard reaction, and a polymerization method using a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
  • One aspect of a preferred method for producing the ionic polymer used in the present invention is a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group as a group involved in condensation polymerization.
  • This is a method for producing an ionic polymer by condensation polymerization in the presence of a nickel zero-valent complex using a starting material monomer.
  • Examples of the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • dihalogenated compounds bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • a group involved in condensation polymerization includes a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and a boric acid ester residue.
  • the organic solvent although it varies depending on the compound and reaction used, it is generally preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • organic solvents examples include saturated hydrocarbons such as pentane, hexane, heptane, octane, and cyclohexane; unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, Halogenated saturated hydrocarbons such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane; Halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene; Methanol, ethanol, propanol, isopropanol, butanol Alcohols such as tert-butyl alcohol; carboxylic acids such as formic acid, acetic acid and propionic acid
  • organic solvents may be used alone or in combination of two or more.
  • ethers are more preferable from the viewpoint of reactivity, and tetrahydrofuran and diethyl ether are more preferable. From the viewpoint of reaction rate, toluene and xylene are preferable.
  • an alkali or a suitable catalyst in order to react the raw material monomers. What is necessary is just to select such an alkali or a catalyst according to the superposition
  • Such an alkali or catalyst is preferably one that is sufficiently dissolved in the solvent used in the reaction.
  • the alkali or catalyst solution is slowly added while stirring the reaction liquid under an inert atmosphere such as argon or nitrogen, or the reaction liquid is added to the alkali or catalyst solution. The method of adding slowly is illustrated.
  • the terminal group is protected with a stable group. May be.
  • the stable group protecting such a terminal group may have a conjugated bond continuous with the conjugated structure of the main chain of the ionic polymer. preferable.
  • the structure include a structure in which an aryl group or a heterocyclic group is bonded via a carbon-carbon bond.
  • Examples of such a stable group for protecting the end group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
  • an ionic polymer having no cation is polymerized in the first step, and then from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing a cation is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include a hydrolysis reaction with a metal hydroxide, an alkyl ammonium hydroxide, or the like.
  • an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing this is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include quaternary ammonium salification reaction of amine using alkyl halide, halogen abstraction reaction with SbF 5 and the like.
  • the ionic polymer used in the present invention is excellent in charge injection and transportability, an element that emits light with high brightness can be obtained.
  • Examples of a method for forming a layer containing an ionic polymer include a method of forming a film using a solution containing an ionic polymer.
  • Examples of the solvent used for film formation from such a solution include alcohols (excluding water), ethers, esters, nitrile compounds, nitro compounds, alkyl halides, aryl halides, and thiols.
  • the solvents such as sulfides, sulfoxides, thioketones, amides and carboxylic acids, those having a solubility parameter of 9.3 or more are preferable.
  • Examples of the solvent include methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1- Butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) ), Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and a mixed solvent thereof.
  • the film thickness of the electron injection layer the optimum value varies depending on the ionic polymer to be used, so that the drive voltage and the light emission efficiency may be selected to be appropriate values, and a thickness that does not cause pinholes is required.
  • the film thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm.
  • the film thickness is preferably 5 nm to 1 ⁇ m.
  • a material for the cathode As a material for the cathode, a material having high electrical conductivity is preferable. Moreover, in the organic EL element of the structure which takes out light from an anode side, in order to reflect the light from a light emitting layer to an anode side with a cathode, the material with a high visible light reflectance is preferable as a material of a cathode.
  • gold, silver, platinum, copper, aluminum, manganese, titanium, cobalt, nickel, tungsten, tin alone or an alloy containing one or more, graphite, or a graphite intercalation compound is used.
  • a conductive metal oxide, a conductive resin, a mixture of a resin and a conductive filler, or the like can be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • the conductive resin include 3,4-polyethylenedioxythiophene / polystyrene sulfonic acid. And so on.
  • a conductive resin can be used as the resin.
  • metal fine particles, conductive wires, and the like can be used as a material for the conductive filler.
  • Au, Ag, Al, or the like can be used.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the film thickness of the cathode may be appropriately designed in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • a coating method can be used in the case of using ink in which a conductive filler and a resin are dispersed in a dispersion medium.
  • An ionic polymer was produced, and an organic EL device was produced using the ionic polymer for an electron injection layer.
  • the resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 18-crown-6 (7 2 g) was dissolved in N, N-dimethylformamide (DMF) (670 mL) and the solution was transferred to a flask and stirred at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour.
  • DMF N, N-dimethylformamide
  • the number average molecular weight in terms of polystyrene of the polymer A was 5.2 ⁇ 10 4 .
  • the polymer A consists of a repeating unit represented by the formula (A).
  • Conjugated polymer compound 1 is composed of a repeating unit represented by formula (B) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) ” is 100 mol%.
  • the conjugated polymer compound 1 had a HOMO orbital energy of ⁇ 5.5 eV and a LUMO orbital energy of ⁇ 2.7 eV.
  • Conjugated polymer compound 2 is composed of a repeating unit represented by formula (C) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 2 had a HOMO orbital energy of ⁇ 5.5 eV and a LUMO orbital energy of ⁇ 2.7 eV.
  • Conjugated polymer compound 3 is composed of a repeating unit represented by formula (D) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 3 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the conjugated polymer compound 4 is composed of a repeating unit represented by the formula (E) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 ml of ethyl acetate / 50 ml of distilled water were added, and the aqueous layer was removed. After adding 50 ml of distilled water again to remove the aqueous layer, magnesium sulfate was added as a desiccant, and the insoluble matter was filtered to remove the organic solvent.
  • the number average molecular weight in terms of polystyrene of the polymer B was 2.0 ⁇ 10 3 .
  • the polymer B is represented by the formula (F).
  • the obtained polymer B cesium salt is referred to as a conjugated polymer compound 5.
  • the conjugated polymer compound 5 is represented by the formula (G) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units).
  • the conjugated polymer compound 5 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer C was 526 mg.
  • the number average molecular weight in terms of polystyrene of the polymer C was 3.6 ⁇ 10 4 .
  • the polymer C consists of a repeating unit represented by the formula (H).
  • N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74917. It can be synthesized by the method described in the publication.
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer C had completely disappeared.
  • the obtained cesium salt of polymer C is referred to as conjugated polymer compound 6.
  • the conjugated polymer compound 6 is composed of a repeating unit represented by the formula (I) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 95 mol%.).
  • the conjugated polymer compound 6 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer D was 590 mg.
  • the number average molecular weight in terms of polystyrene of the polymer D was 2.7 ⁇ 10 4 .
  • the polymer D consists of a repeating unit represented by the formula (J). 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine is based on the method described in JP-A-2007-70620 (or the method described in JP-A-2004-137456 is referred to). Synthesized).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 90 mol%.)
  • the conjugated polymer compound 7 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.4 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 293 mg.
  • the number average molecular weight in terms of polystyrene of the polymer E was 1.8 ⁇ 10 4 .
  • the polymer E consists of a repeating unit represented by the formula (L).
  • Conjugated polymer compound 8 is composed of a repeating unit represented by formula (M) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 75 mol%.)
  • the conjugated polymer compound 8 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 343 mg.
  • the polystyrene equivalent number average molecular weight of the polymer F was 6.0 ⁇ 10 4 .
  • the polymer F consists of a repeating unit represented by the formula (N).
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (130 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared.
  • the resulting cesium salt of polymer F is referred to as conjugated polymer compound 9.
  • the conjugated polymer compound 9 is composed of a repeating unit represented by the formula (O) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 75 mol%.)
  • the conjugated polymer compound 9 had a HOMO orbital energy of ⁇ 5.9 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the resulting precipitate was collected by filtration and redissolved in tetrahydrofuran.
  • the solution was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration.
  • the precipitate was redissolved in tetrahydrofuran and added dropwise to a mixed solution of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration.
  • the collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg).
  • the number average molecular weight in terms of polystyrene of the polymer G was 6.0 ⁇ 10 4 .
  • the polymer G consists of a repeating unit represented by the formula (P).
  • the conjugated polymer compound 10 is composed of a repeating unit represented by the formula (Q) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 10 had a HOMO orbital energy of ⁇ 5.7 eV and a LUMO orbital energy of ⁇ 2.9 eV.
  • the obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. The mixture was mixed and stirred at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
  • Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
  • the number average molecular weight in terms of polystyrene of the polymer H was 3.6 ⁇ 10 4 .
  • the polymer H consists of a repeating unit represented by the formula (R).
  • conjugated polymer compound 11 is composed of a repeating unit represented by the formula (S) ("selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 11 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the resulting solid (16.3 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (60.3 g), potassium carbonate (48.6 g), and 18-crown-6 (2 4 g) was dissolved in N, N-dimethylformamide (DMF) (500 mL) and the solution was transferred to a flask and stirred at 110 ° C. for 15 hours. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour.
  • DMF N, N-dimethylformamide
  • the number average molecular weight in terms of polystyrene of the polymer I was 2.0 ⁇ 10 3 .
  • the polymer I is represented by the formula (T).
  • 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is, for example, The Journal of Physical Chemistry B 2000, 104, 9118- It can be synthesized by the method described in 9125.
  • the obtained polymer I cesium salt is referred to as a conjugated polymer compound 12.
  • the conjugated polymer compound 12 is represented by the formula (U) (“one type selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the conjugated polymer compound 12 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the number average molecular weight in terms of polystyrene of the polymer J was 2.0 ⁇ 10 4 .
  • the polymer J consists of a structural unit represented by the formula (V).
  • the HOMO orbital energy of the conjugated polymer compound 13 was ⁇ 5.51 eV, and the LUMO orbital energy was ⁇ 2.64 eV.
  • the number average molecular weight in terms of polystyrene of the polymer K was 2.3 ⁇ 10 4 .
  • the polymer K consists of a structural unit represented by the formula (X).
  • the orbital energy of HOMO of the conjugated polymer compound 14 was ⁇ 5.56 eV, and the orbital energy of LUMO was ⁇ 2.67 eV.
  • the number average molecular weight in terms of polystyrene of the polymer L was 3.4 ⁇ 10 4 .
  • the polymer L consists of a structural unit represented by the formula (Z).
  • the orbital energy of HOMO of the conjugated polymer compound 15 was ⁇ 5.50 eV, and the orbital energy of LUMO was ⁇ 2.65 eV.
  • Example 16 Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1.
  • the composition was applied by spin coating in the air on an ITO cathode (film thickness: 45 nm) patterned on the surface of a glass substrate to obtain a coating film having a film thickness of 10 nm.
  • the substrate provided with this coating film is heated in an inert atmosphere (under a nitrogen atmosphere) at normal pressure and 130 ° C. for 10 minutes to evaporate the solvent, and then naturally cooled to room temperature. A substrate on which an injection layer was formed was obtained.
  • a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material.
  • the composition for forming a light emitting layer was applied on the electron injection layer containing the conjugated polymer compound 1 obtained above by a spin coating method in the air to obtain a coating film having a thickness of 80 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at normal pressure and 130 ° C. for 15 minutes to evaporate the solvent, and then naturally cooled to room temperature to obtain a substrate on which the light emitting layer was formed. Obtained.
  • the hole injection material solution was applied in the air by a spin coating method to obtain a coating film having a thickness of 60 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at normal pressure and 130 ° C. for 15 minutes to evaporate the solvent, and then naturally cooled to room temperature to form a hole injection layer.
  • a substrate was obtained.
  • PEDOT PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid, product name: “Baytron”) manufactured by Starck Vitec Co., Ltd. was used as the hole injection material solution.
  • the substrate having the hole injection layer formed as described above is inserted into a vacuum apparatus, Au is deposited on the hole injection layer by a vacuum evaporation method to 80 nm, and an anode is formed, whereby the laminated structure 1 is manufactured. did.
  • the laminated structure 1 obtained above was taken out from the vacuum device, and sealed with sealing glass and a two-component mixed epoxy resin in an inert gas atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
  • a forward voltage of 10 V was applied to the organic EL device 1 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 1.
  • Example 17 ⁇ Production of Double-sided Light Emitting Organic EL Device>
  • Experimental Example 16 except for changing the film thickness of Au to 20 nm, the same operation as in Experimental Example 16 was performed to obtain a double-sided light emitting organic EL element 2.
  • a forward voltage of 15 V was applied to the double-sided light emitting organic EL element 2 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 2.
  • Example 1 A glass substrate on which an ITO thin film was formed was prepared.
  • the ITO thin film is formed by sputtering and has a thickness of 50 nm and corresponds to the anode.
  • the suspension of the polymer compound A was applied by spin coating to form a coating film for a hole injection layer having a thickness of 60 nm.
  • This thin film was dried on a hot plate at 170 ° C. for 15 minutes to form a hole injection layer.
  • the hole injection layer was formed in the air atmosphere.
  • the polymer compound B was dissolved in xylene at a concentration of 0.8% by weight to obtain a xylene solution containing the polymer compound B.
  • This xylene solution was applied on the hole injection layer in the atmosphere by a spin coating method to form a coating film for a hole transport layer having a thickness of 20 nm.
  • the coating film was dried by holding it at 180 ° C. for 60 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume to obtain a hole transport layer.
  • the polymer compound C was dissolved in xylene at a concentration of 1.3% by weight to obtain a xylene solution containing the polymer compound C.
  • This xylene solution was applied on the hole transport layer in the air by a spin coating method to form a coating film for a light emitting layer having a thickness of 80 nm.
  • the coating film was dried at 170 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure, thereby obtaining a light emitting layer.
  • the conjugated polymer compound 1 was dissolved in methanol at a concentration of 0.2% by weight to obtain a methanol solution containing the conjugated polymer compound 1.
  • This methanol solution was applied onto the light emitting layer by spin coating in the atmosphere to form a coating film for an electron injection layer having a thickness of 6 nm. Subsequently, the coating film was heated by holding at 130 ° C. for 10 minutes in the air atmosphere (first heating).
  • the organic EL element being manufactured after the first heating was stored in the atmosphere for 90 minutes at room temperature. Thereafter, the coating film was heated by holding at 130 ° C. for 10 minutes in the air atmosphere (second heating) to obtain an electron injection layer.
  • Example 2 the organic EL element was formed in the same manner as in Example 1 except that only the second heating condition was different from that in Example 1. In order to omit redundant description, only the second heating condition will be described below.
  • the second heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to a volume ratio of 10 ppm or less at a pressure of about normal pressure.
  • Example 3 the organic EL element was formed in the same manner as in Example 1 except that only the first heating condition was different from that in Example 1. In order to omit redundant description, only the first heating condition will be described below.
  • the first heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure.
  • Example 4 the organic EL element was formed in the same manner as in Example 1 except that only the first and second heating conditions were different from those in Example 1. In order to omit redundant description, only the conditions for the first and second heating will be described below.
  • the first heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure.
  • the second heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to a volume ratio of 10 ppm or less at a pressure of about normal pressure.
  • Comparative Example 1 In Comparative Example 1, an organic EL element was formed in the same manner as in Example 1 except that the second time from Example 1 was omitted. That is, the first heating was performed, and after storing for 90 minutes in the atmosphere, the cathode was formed without performing the second heating.
  • the luminance half-life was improved 1.5 times or 1.4 times compared to the case where the second heating was not performed. Moreover, even when the first heating and / or the second heating is performed in the air atmosphere, the luminance half-life is as high as when the first heating and / or the second heating is performed in the nitrogen atmosphere. It was confirmed to improve.
  • Example 5 A glass substrate on which an ITO thin film was formed was prepared.
  • the ITO thin film is formed by sputtering and has a thickness of 50 nm and corresponds to the anode.
  • the suspension of the polymer compound A was applied by spin coating to form a coating film for a hole injection layer having a thickness of 60 nm.
  • This thin film was dried on a hot plate at 170 ° C. for 15 minutes to form a hole injection layer.
  • the hole injection layer was formed in the air atmosphere.
  • the polymer compound B was dissolved in xylene at a concentration of 0.8% by weight to obtain a xylene solution containing the polymer compound B.
  • This xylene solution was applied on the hole injection layer in the atmosphere by a spin coating method to form a coating film for a hole transport layer having a thickness of 20 nm.
  • the coating film was dried by holding it at 180 ° C. for 60 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume to obtain a hole transport layer.
  • the polymer compound C was dissolved in xylene at a concentration of 1.3% by weight to obtain a xylene solution containing the polymer compound C.
  • This xylene solution was applied on the hole transport layer in the air by a spin coating method to form a coating film for a light emitting layer having a thickness of 80 nm.
  • the coating film was dried at 170 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure, thereby obtaining a light emitting layer.
  • the conjugated polymer compound 13 was dissolved in methanol at a concentration of 0.2% by weight to obtain a methanol solution containing the conjugated polymer compound 13.
  • This methanol solution was applied onto the light emitting layer by spin coating in the atmosphere to form a coating film for an electron injection layer having a thickness of 6 nm.
  • the coating film was heated by holding at 130 ° C. for 10 minutes in the air atmosphere (first heating).
  • the organic EL element being manufactured after the first heating was stored in the atmosphere for 90 minutes at room temperature. Thereafter, the coating film was heated by holding at 130 ° C. for 10 minutes in the air atmosphere (second heating) to obtain an electron injection layer.
  • Example 6 the organic EL element was formed in the same manner as in Example 5 except that only the second heating condition was different from that in Example 5. In order to omit redundant description, only the second heating condition will be described below.
  • the second heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to a volume ratio of 10 ppm or less at a pressure of about normal pressure.
  • Example 7 the organic EL element was formed in the same manner as in Example 5 except that only the first heating condition was different from that in Example 5. In order to omit redundant description, only the first heating condition will be described below.
  • the first heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure.
  • Example 8 an organic EL element was formed in the same manner as in Example 5 except that only the first and second heating conditions were different from those in Example 5. In order to omit redundant description, only the conditions for the first and second heating will be described below.
  • the first heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure.
  • the second heating was performed by holding at 130 ° C. for 10 minutes in a nitrogen atmosphere in which the oxygen concentration and the water concentration were each controlled to 10 ppm or less by volume at a pressure of about normal pressure.
  • Comparative Example 2 In Comparative Example 2, an organic EL element was formed in the same manner as in Example 5 except that the second time from Example 5 was omitted. That is, the first heating was performed and the cathode was formed without performing the second heating after storing in the atmosphere for 90 minutes.
  • the luminance half-life was improved from 1.2 times to 1.4 times compared to the case where the second heating was not performed. Moreover, even when the first heating and / or the second heating is performed in an air atmosphere, the luminance half-life is improved in the same manner as when the first heating and / or the second heating is performed in a nitrogen atmosphere. Confirmed to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極、発光層、電子注入層、および陰極をこの順に含む有機EL素子の製造方法であって、(A)陽極を形成する工程と、(B)発光層を形成する工程と、(C)電子注入層を形成する工程と、(D)陰極を形成する工程とを含み、前記工程(C)は、(i)イオン性ポリマーを含む塗布液を塗布して薄膜を形成し、(ii)形成した薄膜を加熱した後に、(iii)前記(ii)で得た製造途中の有機エレクトロルミネッセンス素子を保管し、その後、(iv)前記薄膜をふたたび加熱してなる、有機EL素子の製造方法。

Description

有機エレクトロルミネッセンス素子の製造方法
 本発明は有機エレクトロルミネッセンス素子の製造方法に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)は、陽極および陰極からなる一対の電極と、この電極間に設けられる発光層とを含んで構成される。電極間に電圧を印加すると、陽極から正孔が注入されるとともに、陰極から電子が注入される。これら正孔と電子とが発光層で結合することにより発光が生じる。
 一対の電極間には、発光層に加えて所定の層がさらに設けられることがある。たとえば陰極からの電子の注入効率を向上させるために、電子注入層を設けることがある。
 電子注入層は一般にBa、BaO、NaF、LiFなどの大気中で不安定な材料によって構成される。そのため電子注入層は、一般に大気から遮断された環境で形成され、たとえば真空雰囲気中において真空蒸着法によって形成される。
 しかしながら真空蒸着法などは、種々存在する薄膜の形成方法のなかでも、薄膜の形成工程が比較的複雑化する。そのため、電子注入層の形成工程の簡易化を目的として、塗布法で電子注入層を形成する方法が検討されている。塗布法で電子注入層を形成するためには、大気中で比較的安定な材料の開発が必要である。このような電子注入層の材料としてたとえば錯体材料が提案されており、この錯体材料を塗布法によって成膜し、電子注入層を形成する有機EL素子の製造方法が提案されている(たとえば特許文献1参照)。
特開2005-79064号公報
 現在のところ塗布法を適用することが可能な電子注入層の材料は限られている。これについて本発明者等は、上記錯体材料の他に、イオン性ポリマーを電子注入層の材料として用いることができることを見出した。
 たしかにイオン性ポリマーは大気中で安定な材料ではある。しかしながら、イオン性ポリマーを含む電子注入層を形成した後に、この電子注入層を覆う層(たとえば陰極)を形成することなく、製造途中の有機EL素子を所定の時間放置すると、最終的に作製される有機EL素子の寿命が短くなるということが確認された。たとえばロール・ツー・ロール法を用いて有機EL素子を作製する場合、電子注入層を形成したのちに、形成途中の有機EL素子をいったんロールに巻き取って保管し、その後、陰極を形成することがある。この保管のさいに、有機EL素子の寿命が短くなるという問題がある。
 したがって本発明の目的は、電子注入層が形成された製造途中の有機EL素子を保管したとしても、最終的に作製される有機EL素子の素子寿命の低下を抑制することが可能な有機EL素子の製造方法を提供することにある。
 本発明は、以下の[1]~[4]を提供する。
 [1] 陽極、発光層、電子注入層、および陰極をこの順に含む有機エレクトロルミネッセンス素子の製造方法であって、
 (A)陽極を形成する工程と、
 (B)発光層を形成する工程と、
 (C)電子注入層を形成する工程と、
 (D)陰極を形成する工程とを含み、
 前記工程(C)は、(i)イオン性ポリマーを含む塗布液を塗布して薄膜を形成し、(ii)形成した薄膜を加熱し、(iii)前記(ii)で得られた製造途中の有機エレクトロルミネッセンス素子を保管し、その後、(iv)前記薄膜をふたたび加熱してなる、有機エレクトロルミネッセンス素子の製造方法。
 [2] 前記工程(C)では、前記(ii)及び(iv)の2回の加熱のうち、少なくとも一方を、窒素の体積比が90%以下の雰囲気中でおこなう、[1]記載の有機エレクトロルミネッセンス素子の製造方法。
 [3] 前記工程(C)では、前記(ii)及び(iv)の2回の加熱のうち、少なくとも一方を、窒素の体積比が90%以下、かつ酸素の体積比が10%~30%の雰囲気中でおこなう、[1]記載の有機エレクトロルミネッセンス素子の製造方法。
 [4] 前記工程(C)では、前記(iii)の保管を、窒素の体積比が90%以下の雰囲気中でおこなう、[1]~[4]のいずれか1つに記載の有機エレクトロルミネッセンス素子の製造方法。
 本発明によれば、電子注入層が形成された製造途中の有機EL素子を保管した後にふたたび電子注入層を加熱することによって、最終的に作製される有機EL素子の素子寿命の低下を抑制することができる。
本実施形態の有機EL素子の構成を模式的に示す図である。
 1  有機EL素子
 2  支持基板
 3  陽極
 4  正孔注入層
 5  正孔輸送層
 6  発光層
 7  電子注入層
 8  陰極
 本発明は、陽極、発光層、電子注入層、および陰極をこの順に含む有機EL素子の製造方法であって、(A)陽極を形成する工程と、(B)発光層を形成する工程と、(C)電子注入層を形成する工程と、(D)陰極を形成する工程とを含み、前記工程(C)は、(i)イオン性ポリマーを含む塗布液を塗布して薄膜を形成し、(ii)形成した薄膜を加熱し、(iii)前記(ii)で得た製造途中の有機EL素子を所定の時間保管し、その後、(iv)前記薄膜をふたたび加熱してなることを特徴とする、有機EL素子の製造方法である。
 有機EL素子は、陽極および陰極からなる一対の電極と、この電極間に設けられる発光層とを備え、さらに発光層と陰極との間に電子注入層を備える。また有機EL素子は、発光層および電子注入層に加えて、必要に応じて一対の電極間に所定の層を備えてもよい。すなわち陽極、発光層、電子注入層、および陰極をこの順で含む有機EL素子は、これら各層が互いに接して配置されていてもよいが、各層の間に所定の層が介在していてもよい。この所定の層としては、たとえば、有機物からなる有機層、無機物からなる無機層、有機物と無機物とからなる層などが挙げられる。
 陽極と発光層との間に設けられる層としては、たとえば、正孔注入層、正孔輸送層、電子ブロック層などがあげられる。また発光層と陰極との間に設けられる層としては、たとえば、電子注入層、電子輸送層、正孔ブロック層などがあげられる。
 有機EL素子はたとえば各構成要素を支持基板に順次積層することによって形成される。その積層順はとくに限定されず、たとえば陽極を最初に積層し、さらに陰極まで各構成要素を順次積層する積層順、および、陰極を最初に積層し、さらに陽極まで各構成要素を順次積層する積層順が挙げられる。すなわち本発明の有機EL素子の製造方法は、(A)陽極を形成する工程と、(B)発光層を形成する工程と、(C)電子注入層を形成する工程と、(D)陰極を形成する工程とを含むが、工程(A)から始めて、工程(B)、工程(C)および工程(D)の順に各工程をおこなってもよく、逆に工程(D)から始めて、工程(C)、工程(B)および工程(A)の順に各工程をおこなってもよい。さらにはラミネート法によって有機EL素子を形成してもよい。具体的には有機EL素子を厚み方向に垂直な仮想平面で2つの部材に区切るときに、陽極から切断面(「仮想平面」)までの層が形成された第1の部材をあらかじめ用意するとともに、陰極から切断面(「仮想平面」)までの層が形成された第2の部材をあらかじめ用意し、これら第1の部材と第2の部材とを切断面(「仮想平面」)で貼り合せることによって有機EL素子を形成してもよい。
 図1は本実施形態の有機EL素子の構成を模式的に示す図である。図1に示す有機EL素子1は、陽極3、正孔注入層4、正孔輸送層5、発光層6、電子注入層7および陰極8から構成される。この有機EL素子1は、支持基板2上に、陽極3、正孔注入層4、正孔輸送層5、発光層6、電子注入層7および陰極8を順次積層することによって形成することができる。
 以下、本実施形態の有機EL素子の製造方法について、図1に示す有機EL素子1の製造方法に則して説明する。
 まず支持基板2を用意する。つぎに、この支持基板2上に、陽極3、正孔注入層4、正孔輸送層5、発光層6を順次積層する。すなわちまず陽極を形成する工程(「工程(A)」)において、陽極3を形成する。つぎにこの陽極3上に正孔注入層4、正孔輸送層5を順次積層する。さらに発光層を形成する工程(「工程(B)」)において、発光層6を正孔輸送層5上に形成する。これらの各部材を構成する材料およびその形成方法については後述する。
 つぎに電子注入層7を形成する。電子注入層7を形成する工程(「工程(C)」)では、(i)イオン性ポリマーを含む塗布液を塗布して薄膜を形成し、(ii)形成した薄膜を加熱し、(iii)前記(ii)で得た製造途中の有機EL素子を所定の時間保管し、その後、(iv)前記薄膜をふたたび加熱する。
 すなわち、まずイオン性ポリマーを含む塗布液を発光層6上に塗布成膜する(「(i)」)。イオン性ポリマーおよびこれを溶解または分散する液体については後述する。
 イオン性ポリマーを含む塗布液の塗布は、有機EL素子の形状や工程の簡易さなどを勘案して適宜公知の塗布法のなかから最適な塗布法を選択し、これを用いおこなうことができる。塗布法としてはたとえばスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法などを挙げることができる。
 イオン性ポリマーを含む塗布液を塗布して薄膜を形成したのち、本実施形態ではこの形成した薄膜を加熱する(「(ii)」)。これによって溶媒や分散媒が除去され、固化された薄膜が形成される。以下ではイオン性ポリマーを含む塗布液を塗布して薄膜を形成したのちに初めておこなう加熱を1回目の加熱と記載することがある。
 一般的な有機EL素子の製造方法では、1回目の加熱をおこなった後に、つづいて、電子注入層7を覆う層(たとえば陰極8)を形成する。これに対し、本実施形態では、1回目の加熱をおこなった後に、薄膜の形成された製造途中の有機EL素子を所定の時間保管する(「(iii)」)。ここで、本発明において「保管」とは、製造途中の有機EL素子を所定の時間、所定の条件下に「放置」あるいは「静置」することをいう。たとえばロール・ツー・ロール法を用いて有機EL素子を作製する場合に、1回目の加熱をおこなった後に、つづいて、電子注入層7を覆う層(本実施形態では陰極8)を形成するのではなく、1回目の加熱をおこなった後に、いったん巻き取りロールに製造途中の有機EL素子を巻き取って保管し、その後、さらにロール・ツー・ロール法によって電子注入層7を覆う層(本実施形態では陰極8)を形成する場合がある。このように、1回目の加熱をおこなった後に、薄膜の形成された製造途中の有機EL素子を所定の時間保管する工程が設けられている有機EL素子の製造方法に、本発明は適用することができる。なお1回目の加熱をおこなった後に、製造途中の有機EL素子を所定の時間保管する工程を有する有機EL素子の製造方法は、ロール・ツー・ロール法を用いた有機EL素子の製造方法に限られるわけではない。
 製造途中の有機EL素子の保管は、任意の雰囲気でおこなうことができ、たとえば真空雰囲気中、不活性ガス雰囲気中においておこなうことができる。
 真空雰囲気中で保管する場合は、その圧力は通常0.01Pa以下であり、0.001Pa以下が好ましい。なお圧力の下限はとくに設定する必要はないが、工程の簡易さなどを勘案して設定され、たとば0.00001Paである。
 また不活性ガス雰囲気中で保管する場合は、不活性ガスとしては、たとえば窒素ガス、アルゴンガスなどをあげることができる。
 このように真空雰囲気中または不活性ガス雰囲気中で製造途中の有機EL素子を保管した場合、保管中に生じる薄膜の劣化を抑制することができる。
 なお真空雰囲気中または不活性ガス雰囲気中で製造途中の有機EL素子を保管する場合、保管のために使用される装置が複雑化し、ひいては有機EL素子の製造工程が複雑化する。よって、製造工程の簡易化の観点からは、製造途中の有機EL素子の保管は、窒素の体積比が90%以下の雰囲気中でおこなうことが好ましい。
 また製造工程の簡易化の観点からは、製造途中の有機EL素子の保管は、窒素の体積比が60%~90%、酸素の体積比が10%~40%、水蒸気の体積比が0.0001%~0.01%、圧力が10kPa~1000kPa、温度が5℃~100℃の雰囲気中でおこなうことが好ましく、さらには窒素の体積比が70%~90%、酸素の体積比が10%~30%、水蒸気の体積比が0.002%~0.005%、圧力が80kPa~120kPa、温度が20℃~30℃の雰囲気中でおこなうことが好ましい。
 とくに製造工程の簡易化の観点からは、製造途中の有機EL素子の保管は、大気中でおこなうことが好ましい。
 また製造途中の有機EL素子を保管する時間は、工程および薄膜の劣化の程度などを勘案して設定してよい。製造途中の有機EL素子を保管する時間は、たとえば10分~60分であり、5分~20分が好ましい。
 以上のような条件で製造途中の有機EL素子を保管した場合、真空雰囲気中または不活性ガス雰囲気中で保管した場合に比べて、保管中に生じる薄膜の劣化が促進されることもありうる。しかしながら、後述する2回目の加熱によって、たとえ保管中に薄膜が劣化されたとしても、最終的に作製される有機EL素子の素子寿命の低下を抑制することができる。
 製造途中の有機EL素子を保管した後に、本実施形態では、薄膜をふたたび加熱する(「(iv)」)。
以下では、有機EL素子を保管した後に初めておこなう加熱を2回目の加熱と記載することがある。
 このように2回目の加熱をおこなうことによって、保管後に2回目の加熱をおこなうことなく陰極を形成した場合に比べて、有機EL素子の素子寿命を向上することができる。
 1回目の加熱および2回目の加熱のさいの加熱温度は、加熱時間にもよるが50℃~250℃程度であり、60℃~200℃が好ましい。また加熱時間は、加熱温度にもよるが、5分~120分程度であり、10分~60分が好ましい。
 1回目及び/又は2回目の加熱は任意の雰囲気でおこなうことができ、たとえば真空雰囲気中、不活性ガス雰囲気中においておこなうことができる。
 真空雰囲気中で加熱する場合は、その圧力は通常0.01Pa以下であり、0.001Pa以下が好ましい。なお圧力の下限はとくに設定する必要はないが、工程の簡易さなどを勘案して設定され、たとえば10-5Paである。
 また不活性ガス雰囲気中で加熱する場合は、不活性ガスとしては、たとえば窒素ガス、アルゴンガスなどをあげることができる。
 なお真空雰囲気中または不活性ガス雰囲気中で1回目及び/又は2回目の加熱をおこなう場合、加熱のために使用される装置が複雑化し、ひいては有機EL素子の製造工程が複雑化する。よって、製造工程の簡易化の観点からは、電子注入層を形成する工程では、前記製造途中の有機EL素子の保管の前後におこなう2回の加熱(すなわち、「(ii)」および「(iv)」の加熱)のうち、少なくとも1回の加熱を、窒素の体積比が90%以下の雰囲気中でおこなうことが好ましい。
 また前記製造途中の有機EL素子の保管の前後におこなう2回の加熱のうち、少なくとも1回の加熱を、窒素の体積比が90%以下、かつ酸素の体積比が10%~30%の雰囲気中でおこなうことが好ましい。
 また製造工程の簡易化の観点からは、1回目及び/又は2回目の加熱は、窒素の体積比が60%~90%、酸素の体積比が10%~30%、水蒸気の体積比が0.0001%~0.01%、圧力が10kPa~1000kPa、温度が60℃~200℃の雰囲気中でおこなうことが好ましく、窒素の体積比が70%~90%、酸素の体積比が10%~30%、水蒸気の体積比が0.002%~0.005%、圧力が80kPa~120kPa、温度が50℃~250℃の雰囲気中でおこなうことがより好ましい。製造工程の簡易化の観点からは、1回目および2回目の加熱の両方を、これらの条件でおこなうことがさらに好ましい。
 さらに製造工程の簡易化の観点からは、1回目及び/又は2回目の加熱は、大気雰囲気中でおこなうことが好ましく、1回目及び2回目の加熱の両方を大気雰囲気中でおこなうことがより好ましい。
 素子寿命の観点からは薄膜の加熱は不活性ガス雰囲気中でおこなう方が好ましいと考えられてきた。しかしながら、イオン性ポリマーを含む電子注入層を形成する場合には、以下の実施例からも示されるように、たとえ大気中で薄膜を加熱したとしても、2回目の加熱をおこなう限り、不活性ガス雰囲気中で薄膜を加熱した場合と同程度の素子寿命を達成することができる。
 2回目の加熱をおこなったのち、本実施形態では陰極を形成する工程(「工程(D)」)において、陰極8を電子注入層7上に形成する。2回目の加熱をおこなったのちに、電子注入層7を覆う層(本実施形態では陰極8)を形成する工程は、2回目の加熱をおこなったのち、可及的速やかにおこなうことが好ましい。2回目の加熱をおこなったのち、電子注入層7を覆う層(本実施形態では陰極8)を形成する工程を開始するまでの時間はたとえば60分以下であり、10分以下が好ましく、5分以下がさらに好ましい。
 なお2回目の加熱をおこなったのちに、電子注入層7を覆う層(本実施形態では陰極8)を形成するまでに長い時間が経過した場合には、さらに3回目の加熱をおこなったのちに、可及的速やかに電子注入層7を覆う層(本実施形態では陰極8)を形成することが好ましい。
 以上のように有機EL素子の各構成要素を順次積層することによって有機EL素子を形成することができる。
 なお有機EL素子は形成された後に通常は封止される。たとえば有機EL素子1を介して、支持基板2と封止部材とを所定の接着剤によって貼合することによって封止をおこなうことができる。この封止は、たとえば製造途中の有機EL素子を保管するさいの雰囲気と同じ雰囲気中でおこなうことができる。
 本発明の有機EL素子の製造方法は、たとえば枚葉式で所定の支持基板上に1または複数の有機EL素子を形成する方法、ロール・ツー・ロール法によって所定の支持基板上に1または複数の有機EL素子を形成する方法、またはロール・ツー・ロール法によって一部の層を支持基板上に形成したのちに、支持基板を裁断して枚葉式で残部の層を形成する方法に適用することができ、さらにはこれらを用いたラミネート法に適用することもできる。
 以下では有機EL素子の層構成、各層の材料および各層の形成方法について説明する。
 前述したように陽極および陰極の間には、発光層および電子注入層のみならず、発光層および電子注入層とは異なる所定の層をさらに設けてよい。陰極と発光層との間に設けられる層としては、たとえば電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層の両方が設けられる場合、陰極に接する層を電子注入層といい、この電子注入層を除く層を電子輸送層という。
 電子注入層は、陰極からの電子注入効率を改善する機能を有する。電子輸送層は陰極側の表面に接する層からの電子注入を改善する機能を有する。正孔ブロック層は、正孔の輸送を堰き止める機能を有する。なお電子注入層、及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。
 陽極と発光層との間に設けられる層としては、たとえば正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。陽極と発光層との間に、正孔注入層と正孔輸送層の両方が設けられる場合、陽極に接する層を正孔注入層といい、この正孔注入層を除く層を正孔輸送層という。
 正孔注入層は陽極からの正孔注入効率を改善する機能を有する。正孔輸送層は陽極側の表面に接する層からの正孔注入を改善する機能を有する。電子ブロック層は電子の輸送を堰き止める機能を有する。なお正孔注入層及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。
 なお電子注入層および正孔注入層を総称して電荷注入層ということがあり、電子輸送層および正孔輸送層を総称して電荷輸送層ということがある。
 本実施形態の有機EL素子のとりうる層構成の一例を以下に示す。
a)陽極/正孔注入層/発光層/電子注入層/陰極
b)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
c)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
d)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
e)陽極/発光層/電子注入層/陰極
f)陽極/発光層/電子輸送層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。)
 本実施形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)~f)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構成単位A」とすると、2層の発光層を有する有機EL素子の構成として、下記g)に示す層構成をあげることができる。なお2つある(構成単位A)の層構成は互いに同じでも、異なっていてもよい。
g)陽極/(構成単位A)/電荷発生層/(構成単位A)/陰極
 また「(構成単位A)/電荷発生層」を「構成単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記f)に示す層構成を挙げることができる。
h)陽極/(構成単位B)x/(構成単位A)/陰極
 なお記号「x」は2以上の整数を表し、(構成単位B)xは、構成単位Bがx段積層された積層体を表す。また複数ある(構成単位B)の層構成は同じでもそれぞれ異なっていてもよい。
 ここで電荷発生層とは電界を印加することにより正孔と電子を発生する層である。電荷発生層としてはたとえば酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。
 なお有機EL素子は、素子を気密に封止するための封止膜および封止板などの封止部材で覆われていてもよい。
 有機EL素子の構成には、(1)ボトムエミッション型、(2)トップエミッション型、および(3)両面発光型がある。ボトムエミッション型の有機EL素子は支持基板を通して光を外界に出射する。トップエミッション型の有機EL素子は、支持基板とは反対側から光を外界に出射する。両面発光型の有機EL素子は、支持基板側および支持基板とは反対側の両方から光を外界に出射する。本発明はボトムエミッション型、トップエミッション型、および両面発光型の有機EL素子のいずれであっても適用することができる。
 ボトムエミッション型の有機EL素子では、陽極および陰極のうちの支持基板寄りに配置される電極を通って光が外界に出射するため、支持基板寄りに配置される電極は光透過性を示す電極によって構成され、逆に支持基板から離間して配置される電極は通常光を反射する電極によって構成される。またトップエミッション型の有機EL素子では、陽極および陰極のうちの支持基板から離間して配置される電極を通って光が外界に出射するため、支持基板から離間して配置される電極が光透過性を示す電極によって構成され、逆に支持基板寄りに配置される電極は通常光を反射する電極によって構成される。また両面発光型の有機EL素子では、陽極および陰極の両方が、光透過性を示す電極によって構成される。
 <支持基板>
 支持基板は、有機EL素子を製造する工程において化学的に変化しないものが好適に用いられ、たとえばガラス、プラスチック、高分子フィルム、およびシリコン板、並びにこれらを積層したものなどが用いられる。なお有機EL素子を駆動する駆動回路が予め形成されている駆動用基板を支持基板として用いてもよい。支持基板を通して光が出射する構成のボトムエミッション型または両面発光型の有機EL素子を支持基板に搭載する場合、支持基板には光透過性を示す基板が用いられる。
 <陽極>
 発光層から放射される光が陽極を通って外に出射する構成の有機EL素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、たとえば金属酸化物、金属硫化物および金属などの薄膜を用いることができる。中でも、電気伝導度および光透過率の高い薄膜が好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。陽極の作製方法としては、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。有機の透明導電膜は、ポリチオフェンなどの有機導電材料を塗布法により作製することができる。
 陽極の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、たとえば酸化バナジウム、酸化モリブデン、酸化ルテニウムおよび酸化アルミニウムなどの金属酸化物や、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系、アモルファスカーボン、ポリアニリンおよびポリチオフェン誘導体などを挙げることができる。
 正孔注入層の成膜方法としては、たとえば正孔注入材料を含む溶液からの成膜を挙げることができる。たとえば所定の塗布法によって正孔注入材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔注入層を形成することができる。塗布膜の固化は、自然乾燥、加熱乾燥、真空乾燥などによっておこなうことができ、さらには所定の光を照射することによってもおこなうことができる。
 溶液からの成膜に用いられる溶媒としては、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水を挙げることができる。
 正孔注入層の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、たとえばポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
 これらのなかで正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
 正孔輸送層の成膜方法としては、たとえば正孔輸送材料を含む溶液からの成膜を挙げることができる。たとえば所定の塗布法によって正孔輸送材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔輸送層を形成することができる。低分子の正孔輸送材料の場合には、高分子バインダーをさらに混合した溶液を用いて成膜してもよい。
 溶液からの成膜に用いられる溶媒としては、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒などを挙げることができる。
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられる。高分子バインダーとしては、たとえばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。
 正孔輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。たとえば発光効率の向上や、発光波長を変化させるためにドーパントは加えられる。なお発光層に含まれる有機物は、低分子化合物でも高分子化合物でもよい。低分子化合物よりも溶媒への溶解性が一般的に高い高分子化合物は塗布法に好適に用いることができる。よって、発光層は高分子化合物を含むことが好ましく、高分子化合物としてポリスチレン換算の数平均分子量が10~10の化合物を含むことが好ましい。発光層を構成する発光材料としては、たとえば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
 (色素系材料)
 色素系材料としては、たとえば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
 (金属錯体系材料)
 金属錯体系材料としては、たとえば希土類金属(Tb、Eu、Dyなど)またはAl、Zn、Be、Ir、Ptなどの中心金属と、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などの配位子とを有する金属錯体を挙げることができる。たとえばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
 (高分子系材料)
 高分子系材料としては、たとえばポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
 上記発光性材料のうち、青色に発光する材料としては、たとえばジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
 また、緑色に発光する材料としては、たとえばキナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
 また、赤色に発光する材料としては、たとえばクマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
 (ドーパント材料)
 ドーパント材料としては、たとえばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。
 なお、このような発光層の厚さは、通常約2nm~200nmである。
 発光層は、たとえば溶液からの成膜によって形成される。発光層は、たとえば発光材料を含む溶液を所定の塗布法によって塗布し、さらにこれを固化することによって形成される。溶液からの成膜に用いる溶媒としては、前述の溶液から正孔注入層を成膜するさいに用いられる溶媒と同様の溶媒を挙げることができる。
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、たとえばオキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
 電子輸送層の成膜法としては、たとえば蒸着法および溶液からの成膜法などをあげることができる。なお溶液から成膜する場合には高分子バインダーを併用してもよい。
 電子輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、たとえば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 <電子注入層>
 電子注入層はイオン性ポリマーを含んで構成される。電子注入層を構成するイオン性ポリマーとしては、例えば、下記式(1)で表される基及び下記式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を有する重合体が挙げられる。イオン性ポリマーの一形態としては、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。
-(Q1n1-Y1(M1)a1(Z1)b1  (1)
(式(1)中、Q1は2価の有機基を表し、Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(R-を表し、M1は金属カチオン又は置換基を有していてもよいアンモニウムカチオンを表し、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、n1は0以上の整数を表し、a1は1以上の整数を表し、b1は0以上の整数を表し、ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択され、Raは置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基を表し、Q1は複数個ある場合、同一でも異なっていてもよく、M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい。)
 なお、「M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい」とは、「Mは複数個ある場合、同一でも異なっていてもよく、Zは複数個ある場合、同一でも異なっていてもよい」の意を表す。
-(Q2n2-Y2(M2)a2(Z2)b2  (2)
(式(2)中、Q2は2価の有機基を表し、Y2はカルボカチオン、アンモニウムカチオン、ホスホニウムカチオン又はスルホニウムカチオン又はヨードニウムカチオンを表し、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、Z2は金属カチオン又は置換基を有していてもよいアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表し、ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択され、Rbは置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基を表し、Q2、M2及びZ2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 本発明で用いられるイオン性ポリマーの一形態としては、さらに下記式(3)で表される基を有する重合体が挙げられる。イオン性ポリマーが式(3)で表される基を有する場合、式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよく、式(1)で表される基及び式(2)で表される基からなる群から選ばれる一種以上の基を含む構造単位と同一の構造単位内に含まれていてもよいし、異なる他の構造単位内に含まれていてもよい。さらに、イオン性ポリマーの一形態としては、式(1)で表される基、式(2)で表される基、及び式(3)で表される基のうち少なくとも1種を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。
  -(Qn3-Y3   (3)
(式(3)中、Qは2価の有機基を表し、Y3は-CN又は式(4)~(12)のいずれか1つで表される基を表し、n3は0以上の整数を表す。
  -O-(R’O)a3-R’’ (4)
Figure JPOXMLDOC01-appb-C000001
  -S-(R’S)a4-R’’ (6)
  -C(=O)-(R’-C(=O))a4-R’’ (7)
  -C(=S)-(R’-C(=S))a4-R’’ (8)
  -N{(R’)a4R’’}2 (9)
  -C(=O)O-(R’-C(=O)O)a4-R’’ (10)
  -C(=O)O-(R’O)a4-R’’ (11)
  -NHC(=O)-(R’NHC(=O))a4-R’’ (12)
(式(4)~(12)中、R’は置換基を有していてもよい2価の炭化水素基を表し、R’’は水素原子、置換基を有していてもよい1価の炭化水素基、-COOH、-SO3H、-OH、-SH、-NRc 2、-CN又は-C(=O)NRc 2を表し、R’’’は置換基を有していてもよい3価の炭化水素基を表し、a3は1以上の整数を表し、a4は0以上の整数を表し、Rcは置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基を表し、R’、R’’及びR’’’のおのおのは複数個ある場合、同一でも異なっていてもよい。))
 イオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15~100モル%含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(13)中、Rは式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有していてもよい(2+n4)価の芳香族基を表し、n4は1以上の整数を表し、R1は複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000003
(式(14)中、R2は(1+m1+m2)価の有機基を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m1及びm2はそれぞれ独立に1以上の整数を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure JPOXMLDOC01-appb-C000004
(式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有していてもよい(2+n5)価の芳香族基を表し、n5は1以上の整数を表し、R3は複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
(式(16)中、R4は(1+m3+m4)価の有機基を表し、Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m3及びm4はそれぞれ独立に1以上の整数を表す。Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure JPOXMLDOC01-appb-C000006
(式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有していてもよい(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表し、R5及びR6のおのおのは複数個ある場合、同一でも異なっていてもよい。

-R7-{(Q1n1-Y1(M1)a1(Z1)b1}m5  (18)
(式(18)中、R7は直接結合又は(1+m5)価の有機基を表し、Q1、Y、M1、Z1、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表し、Q1、Y、M1、Z1、n1、a1及びb1のおのおのは複数個ある場合、同一でも異なっていてもよい。)

-R8-{(Qn3-Y3m6  (19)
(式(19)中、R8は単結合又は(1+m6)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure JPOXMLDOC01-appb-C000007
(式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有していてもよい(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表し、R9及びR10のおのおのは複数個ある場合、同一でも異なっていてもよい。

-R11-{(Q2n2-Y2(M2)a2(Z2)b2}m7  (21)
(式(21)中、R11は単結合又は(1+m7)価の有機基を表し、Q2、Y2、M2、Z2、n2、a2及びb2は前述と同じ意味を表し、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表し、Q2、Y2、M2、Z2、n2、a2及びb2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
-R12-{(Qn3-Y3}m8  (22)
(式(22)中、R12は単結合又は(1+m8)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表し、Q、Y3及びn3、のおのおのは複数個ある場合、同一でも異なっていてもよい。))
 前記イオン性ポリマー中の構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(3)で表される基を2種類以上含んでいてもよい。
 -式(1)で表される基-
 式(1)中、Q1で表される2価の有機基としては、たとえばメチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数2~50のアルケニレン基、及び、エチニレン基を含む、置換基を有していてもよい炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4'-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレンオキシ基;炭素原子を含む置換基を有するイミノ基;炭素原子を含む置換基を有するシリレン基が挙げられる。イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
 前記置換基としては、たとえばアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。これらのうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。
 以下、置換基について説明する。なお、「C~C」(m、nはm<nを満たす正の整数である)という用語は、この用語の直後に記載された有機基の炭素原子数がm~nであることを表す。例えば、C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表し、C~Cアルキルアリール基であれば、アルキル基の炭素原子数がm~nであることを表し、アリール-C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表す。
 アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1~20であり、1~10が好ましい。アルキル基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキル基としては、たとえばトリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。なお、C1~C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。
 アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1~20であり、1~10が好ましい。アルコキシ基としては、たとえばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルコキシ基としては、たとえばトリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。また、該アルコキシ基には、メトキシメチルオキシ基、2-メトキシエチルオキシ基も含まれる。なお、C1~C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。
 アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1~20であり、1~10が好ましい。アルキルチオ基としては、たとえばメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキルチオ基としては、たとえばトリフルオロメチルチオ基等が挙げられる。
 アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。アリール基には、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基も含まれる。アリール基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリール基としては、たとえばフェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、たとえばペンタフルオロフェニル基等が挙げられる。アリール基の中では、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基が好ましい。
 前記アリール基のうち、C1~C12アルコキシフェニル基としては、たとえばメトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
 前記アリール基のうち、C1~C12アルキルフェニル基としては、たとえばメチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
 アリールオキシ基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリールオキシ基としては、たとえばフェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、C1~C12アルコキシフェノキシ基及びC1~C12アルキルフェノキシ基が好ましい。
 前記アリールオキシ基のうち、C1~C12アルコキシフェノキシ基としては、たとえばメトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、sec-ブトキシフェノキシ基、tert-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
 前記アリールオキシ基のうち、C1~C12アルキルフェノキシ基としては、たとえばメチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、sec-ブチルフェノキシ基、tert-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
 アリールチオ基は、例えば、前述のアリール基に硫黄原子が結合した基である。アリールチオ基は、前記アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6~60であり、6~30であることが好ましい。アリールチオ基としては、たとえばフェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。
 アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキル基としては、たとえばフェニル-C1~C12アルキル基、C1~C12アルコキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基、2-ナフチル-C1~C12アルキル基等が挙げられる。
 アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルコキシ基としては、たとえばフェニル-C1~C12アルコキシ基、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基、1-ナフチル-C1~C12アルコキシ基、2-ナフチル-C1~C12アルコキシ基等が挙げられる。
 アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキルチオ基としては、たとえばフェニル-C1~C12アルキルチオ基、C1~C12アルコキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基、2-ナフチル-C1~C12アルキルチオ基等が挙げられる。
 アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルケニル基としては、たとえばフェニル-C2~C12アルケニル基、C1~C12アルコキシフェニル-C2~C12アルケニル基、C1~C12アルキルフェニル-C2~C12アルケニル基、1-ナフチル-C2~C12アルケニル基、2-ナフチル-C2~C12アルケニル基等が挙げられ、C1~C12アルコキシフェニル-C2~C12アルケニル基、C1~C12アルキルフェニル-C2~C12アルケニル基が好ましい。なお、C2~C12アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基が挙げられる。
 アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルキニル基としては、たとえばフェニル-C2~C12アルキニル基、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基、1-ナフチル-C2~C12アルキニル基、2-ナフチル-C2~C12アルキニル基等が挙げられ、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基が好ましい。なお、C2~C12アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基が挙げられる。
 置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、2~48が好ましい。置換アミノ基としては、たとえばメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基等が挙げられる。
 置換シリル基としては、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1~3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、3~48が好ましい。なお、置換シリル基としては、たとえばトリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
 ハロゲン原子としては、たとえばフッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 アシル基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシル基としては、たとえばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
 アシルオキシ基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシルオキシ基としては、たとえばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
 イミン残基は、式:H-N=C<及び式:-N=CH-の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。このようなイミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常2~20であり、2~18が好ましい。イミン残基としては、例えば、一般式:-CRβ=N-Rγ又は一般式:-N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2~18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中、Meはメチル基を示し、以下、同様である。)
 アミド基は、炭素原子数が通常1~20であり、2~18であることが好ましい。アミド基としては、たとえばホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。
 酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素原子数が通常4~20であり、4~18であることが好ましい。酸イミド基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。
ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3~60であり、3~20が好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような1価の複素環基としては、例えば、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられ、中でも、チエニル基、C1~C12アルキルチエニル基、ピリジル基及びC1~C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
 置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基をいう。すなわち、置換カルボキシル基とは、式:-C(=O)OR*(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換カルボキシル基は、炭素原子数が通常2~60であり、2~48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、上記炭素原子数には、前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。置換カルボキシル基としては、たとえばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。
 式(1)中、Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R 等の1価の基を表す。Y1としては、イオン性ポリマーの酸性度の観点からは-CO2 -、-SO2 -、-PO3 -が好ましく、-CO2 -がより好ましい。イオン性ポリマーの安定性の観点からは、-CO2 -、-SO3 -、-SO2 -又は-PO3 -が好ましい。
 式(1)中、M1は金属カチオン又は置換基を有していてもよいアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、たとえばLi、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられ、Li+、Na+、K+、Cs+、Ag+、Mg2+、Ca2+が好ましい。また、アンモニウムイオンが有していてもよい置換基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、tert-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。
 式(1)中、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
 式(1)中、n1は0以上の整数を表し、原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。
 式(1)中、a1は1以上の整数を表し、b1は0以上の整数を表す。
 a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、Mが1価の金属カチオン又は置換基を有していてもよいアンモニウムカチオンであり、ZがF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1=b1+1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R --であり、M1が2価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=2×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、M1が3価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=3×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、M1が1価の金属カチオン又は置換基を有していてもよいアンモニウムカチオンであり、Z1がSO4 2-又はHPO4 2-である場合には、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。
 Raは置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基を表す。これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Raとしては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。
 前記式(1)で表される基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 -式(2)で表される基-
 式(2)中、Q2で表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられる。原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
 前記Q2で表される2価の有機基の例として挙げた基は置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(2)中、Y2はカルボカチオン、アンモニウムカチオン、ホスホニウムカチオン、スルホニウムカチオン、又はヨードニウムカチオンを表す。
 カルボカチオンとしては、例えば、
-C
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 アンモニウムカチオンとしては、例えば、
-N
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ホスホニウムカチオンとしては、例えば、
-P
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 スルホニウムカチオンとしては、例えば、
-S
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ヨードニウムカチオンとしては、例えば、
-I
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 式(2)中、Y2は、原料モノマーの合成の容易さ、並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、カルボカチオン、アンモニウムカチオン、ホスホニウムカチオン、スルホニウムカチオンが好ましく、アンモニウムカチオンがより好ましい。
 式(2)中、Z2は金属カチオン又は置換基を有していてもよいアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、たとえばLi、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。また、アンモニウムカチオンが有していてもよい置換基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。
 式(2)中、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
 式(2)中、n2は0以上の整数を表し、好ましくは0から6の整数であり、より好ましくは0から2の整数である。
 式(2)中、a2は1以上の整数を表し、b2は、0以上の整数を表す。
 a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、M2がF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合、Z2が1価の金属イオン又は置換基を有していてもよいアンモニウムイオンであれば、a2=b2+1を満たすように選択され、Z2が2価の金属イオンであれば、a2=2×b2+1を満たすように選択され、Z2が3価の金属イオンであれば、a2=3×b2+1を満たすように選択される。M2がSO4 2-、HPO4 2-である場合、Z2が1価の金属イオン又は置換基を有していてもよいアンモニウムイオンであれば、b2=2×a2-1を満たすように選択され、Z2が3価の金属イオンであれば、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。
 Rbは置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基を表す。これらの基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rbとしては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。
 前記式(2)で表される基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 -式(3)で表される基-
 式(3)中、Qで表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられる。原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
 前記Qで表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記Qで表される2価の有機基としては、-(CH)-で表される基であることが好ましい。
 n3は0以上の整数を表し、好ましくは0から20の整数であり、より好ましくは0から8の整数である。
 式(3)中、Y3は-CN又は式(4)~(12)のいずれか1つで表される基を表す。
 式(4)~(12)中、R’で表される2価の炭化水素基としては、たとえばメチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数2~50のアルケニレン基、及び、エチニレン基を含む、置換基を有していてもよい炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレンオキシ基等が挙げられる。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(4)~(12)中、R’’で表される1価の炭化水素基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(5)中、R’’’で表される3価の炭化水素基としては、たとえばメタントリイル基、エタントリイル基、1,2,3-プロパントリイル基、1,2,4-ブタントリイル基、1,2,5-ペンタントリイル基、1,3,5-ペンタントリイル基、1,2,6-ヘキサントリイル基、1,3,6-ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキルトリイル基;1,2,3-ベンゼントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メタントリイル基、エタントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(4)~(12)中、Rcとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。
 式(4)及び式(5)中、a3は1以上の整数を表し、3~10の整数が好ましい。式(6)~(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0~30の整数が好ましく、3~20の整数がより好ましい。式(7)~(10)においては、a4は、0~10の整数が好ましく、0~5の整数がより好ましい。式(11)においては、a4は、0~20の整数が好ましく、3~20の整数がより好ましい。式(12)においては、a4は、0~20の整数が好ましく、0~10の整数がより好ましい。
 Y3としては、原料モノマーの合成の容易さの観点からは、-CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、式(11)で表される基がより好ましく、以下の基が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 -イオン性ポリマー中の構造単位-
 本発明に用いられるイオン性ポリマーは、前記式(13)で表される構造単位、前記式(15)で表される構造単位、前記式(17)で表される構造単位、および前記式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を有することが好ましく、前記構造単位を全構造単位中、15~100モル%有することがより好ましい。
  ・式(13)で表される構造単位
 式(13)中、R1は式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有していてもよい(2+n4)価の芳香族基を表し、n4は1以上の整数を表す。
 式(14)で表される基は、Arに直接結合していてもよい。あるいは、式(14)で表される基は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のオキシアルキレン基;置換基を有していてもよいイミノ基;置換基を有していてもよいシリレン基;置換基を有していてもよいエテニレン基;エチニレン基;置換基を有していてもよいメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介して、Arに結合していてもよい。
 前記ArはR1以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記Ar1が有するR1以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
 式(13)中、n4は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(13)中のAr1で表される(2+n4)価の芳香族基としては、(2+n4)価の芳香族炭化水素基、(2+n4)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4)価の芳香族基が好ましい。該(2+n4)価の芳香族基としては、たとえばベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n4)個除いた(2+n4)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基等が挙げられる。
 単環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 芳香環集合としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 前記(2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。
 式(14)中、R2で表される(1+m1+m2)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、アルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
  ・式(15)で表される構造単位
 式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有していてもよい(2+n5)価の芳香族基を表し、n5は1以上の整数を表す。
 式(16)で表される基は、Ar2に直接結合していてもよい。あるいは、式(16)で表される基は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のオキシアルキレン基;置換基を有していてもよいイミノ基;置換基を有していてもよいシリレン基;置換基を有していてもよいエテニレン基;エチニレン基;置換基を有していてもよいメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介して、Ar2に結合していてもよい。
 前記Ar2はR3以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記Ar2が有するR3以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
 式(15)中、n5は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(15)中のAr2で表される(2+n5)価の芳香族基としては、(2+n5)価の芳香族炭化水素基、(2+n5)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n5)価の芳香族基が好ましい。該(2+n5)価の芳香族基としては、たとえばベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n5)個除いた(2+n5)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基等が挙げられる。
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~12で表される環が挙げられる。
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
 前記(2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。
 式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。
 式(16)中、R4で表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、アルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
  ・式(17)で表される構造単位
 式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有していてもよい(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表す。
 式(18)で表される基及び式(19)で表される基は、Ar3に直接結合していてもよい。あるいは、式(18)で表される基及び式(19)で表される基は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のオキシアルキレン基;置換基を有していてもよいイミノ基;置換基を有していてもよいシリレン基;置換基を有していてもよいエテニレン基;エチニレン基;置換基を有していてもよいメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介して、Ar3に結合していてもよい。
 前記Ar3はR5及びR6以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記Ar3が有するR5及びR6以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
 式(17)中、n6は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(17)中、n7は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(17)中のAr3で表される(2+n6+n7)価の芳香族基としては、(2+n6+n7)価の芳香族炭化水素基、(2+n6+n7)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n6+n7)価の芳香族基が好ましい。該(2+n6+n7)価の芳香族基としては、たとえばベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基等が挙げられる。
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
 前記(2+n6+n7)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。
 式(18)中、Rは単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。
 式(18)中、R7で表される(1+m5)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm5個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm5個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、アルコキシ基からm5個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(18)中、m5は1以上の整数を表し、ただし、R7が単結合のときm5は1を表す。
 式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。
 式(19)中、R8で表される(1+m6)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm6個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm6個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、アルコキシ基からm6個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(19)中、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表す。
  ・式(20)で表される構造単位
 式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有していてもよい(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表す。
 式(21)で表される基及び式(22)で表される基は、Ar4に直接結合していてもよい。あるいは、式(21)で表される基及び式(22)で表される基は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のオキシアルキレン基;置換基を有していてもよいイミノ基;置換基を有していてもよいシリレン基;置換基を有していてもよいエテニレン基;エチニレン基;置換基を有していてもよいメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介して、Ar4に結合していてもよい。
 前記Ar4はR9及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記Ar4が有するR9及びR10以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
 式(20)中、n8は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(20)中、n9は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
 式(20)中のAr4で表される(2+n8+n9)価の芳香族基としては、(2+n8+n9)価の芳香族炭化水素基、(2+n8+n9)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n8+n9)価の芳香族基が好ましい。該(2+n8+n9)価の芳香族基としては、たとえばベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基等が挙げられる。
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
 前記(2+n8+n9)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1~6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。
 式(21)中、R11は単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。
 式(21)中、R11で表される(1+m7)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm7個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm7個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、アルコキシ基からm7個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(21)中、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表す。
 式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。
 式(22)中、R12で表される(1+m8)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm8個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm8個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、アルコキシ基からm8個の水素原子を除いた基が好ましい。
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(22)中、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表す。
 式(13)で表される構造単位の例
 式(13)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(23)で表される構造単位、式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
Figure JPOXMLDOC01-appb-C000018
(式(23)中、R13は(1+m9+m10)価の有機基を表し、R14は1価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m9及びm10はそれぞれ独立に1以上の整数を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(23)中、R13で表される(1+m9+m10)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、アルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。
 式(23)中、R14で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基;炭素原子を含む置換基を有するアミノ基;炭素原子を含む置換基を有するシリル基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基、アリール基、アルコキシ基が好ましい。
 式(23)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式(24)中、R13は(1+m11+m12)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m11及びm12はそれぞれ独立に1以上の整数を表し、R13、m11、m12、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(24)中、R13で表される(1+m11+m12)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、アルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。
 式(24)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式(13)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(25)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000025
(式(25)中、R15は(1+m13+m14)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m13、m14及びm15はそれぞれ独立に1以上の整数を表し、R15、m13、m14、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(25)中、R15で表される(1+m13+m14)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、アルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。
 式(25)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式(15)で表される構造単位の例
 式(15)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(26)で表される構造単位、式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
Figure JPOXMLDOC01-appb-C000027
(式(26)中、R16は(1+m16+m17)価の有機基を表し、R17は1価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(26)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
 式(26)中、R17で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基;炭素原子を含む置換基を有するアミノ基;炭素原子を含む置換基を有するシリル基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基、アリール基、アルコキシ基が好ましい。
 式(26)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(式(27)中、R16は(1+m16+m17)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、R16、m16、m17、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(27)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
 式(27)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 式(15)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(28)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000033
(式(28)中、R18は(1+m18+m19)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m18、m19及びm20はそれぞれ独立に1以上の整数を表し、R18、m18、m19、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(28)中、R18で表される(1+m18+m19)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、アルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。
 式(28)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 式(17)で表される構造単位の例
 式(17)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(29)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(29)中、R19は単結合又は(1+m21)価の有機基を表し、R20は単結合又は(1+m22)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m21及びm22はそれぞれ独立に1以上の整数を表し、ただし、R19が単結合のときm21は1を表し、R20が単結合のときm22は1を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、アルコキシ基から(m21)個の水素原子を除いた基が好ましい。
 式(29)中、R20で表される(1+m22)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、アルコキシ基から(m22)個の水素原子を除いた基が好ましい。
 式(29)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 式(17)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(30)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000037
(式(30)中、R21は単結合又は(1+m23)価の有機基を表し、R22は単結合又は(1+m24)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m23及びm24はそれぞれ独立に1以上の整数を表し、ただし、R21が単結合のときm23は1を表し、R22が単結合のときm24は1を表し、m25及びm26はそれぞれ独立に1以上の整数を表し、m23、m24、R21、R22、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(30)中、R21で表される(1+m23)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、アルコキシ基から(m23)個の水素原子を除いた基が好ましい。
 式(30)中、R22で表される(1+m24)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、アルコキシ基から(m24)個の水素原子を除いた基が好ましい。
 式(30)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 式(20)で表される構造単位の例
 式(20)で表される構造単位としては、得られる電子輸送性の観点からは、式(31)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000039
(式(31)中、R23は単結合又は(1+m27)価の有機基を表し、R24は単結合又は(1+m28)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m27及びm28はそれぞれ独立に1以上の整数を表し、ただし、R23が単結合のときm27は1を表し、R24が単結合のときm28は1を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(31)中、R23で表される(1+m27)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、アルコキシ基から(m27)個の水素原子を除いた基が好ましい。
 式(31)中、R24で表される(1+m28)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、アルコキシ基から(m28)個の水素原子を除いた基が好ましい。
 式(31)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 式(20)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(32)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000041
(式(32)中、R25は単結合又は(1+m29)価の有機基を表し、R26は単結合又は(1+m30)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m29及びm30はそれぞれ独立に1以上の整数を表し、ただし、R25が単結合のときm29は1を表し、R26が単結合のときm30は1を表し、m31及びm32はそれぞれ独立に1以上の整数を表し、m29、m30、R25、R26、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
 式(32)中、R25で表される(1+m29)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、アルコキシ基から(m29)個の水素原子を除いた基が好ましい。
 式(32)中、R26で表される(1+m30)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、アルコキシ基から(m30)個の水素原子を除いた基が好ましい。
 式(32)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000042
  ・その他の構造単位
 本発明に用いられるイオン性ポリマーは、さらに式(33)で表される1種以上の構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000043
(式(33)中、Ar5は置換基を有していてもよい2価の芳香族基又は置換基を有していてもよい2価の芳香族アミン残基を表し、X’は置換基を有していてもよいイミノ基、置換基を有していてもよいシリレン基、置換基を有していてもよいエテニレン基、又はエチニレン基を表し、m33及びm34はそれぞれ独立に0又は1を表し、m33及びm34の少なくとも1つは1である。)
 式(33)中のAr5で表される2価の芳香族基としては、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。該2価の芳香族基としては、たとえばベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等の単環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環からなる群から選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を2個除いた2価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を2個除いた2価の基等が挙げられる。
 前記縮合多環式芳香環において、縮合する単環式芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。前記有橋多環式芳香環において、橋かけされる芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。
 前記単環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 前記縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000045
 前記芳香環集合としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000046
 前記有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000047
 前記イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Ar5で表される2価の芳香族基は式45~60、61~71、77~80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45~50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。
 上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。
 式(33)中のAr5で表される2価の芳香族アミン残基としては、式(34)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000048
(式(34)中、Ar6、Ar7、Ar8及びAr9は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよい2価の複素環基を表し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基を表し、n10及びm35は、それぞれ独立に、0又は1を表す。)
 前記アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基としては、たとえばハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基等が挙げられる。該置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。
 n10が0の場合、Ar6中の炭素原子とAr8中の炭素原子とが直接結合してもよく、-O-、-S-等の2価の基を介して結合していてもよい。
 Ar10、Ar11、Ar12で表されるアリール基、1価の複素環基としては、前記で置換基として説明し例示したアリール基、1価の複素環基と同様である。
 Ar6、Ar7、Ar8、Ar9で表されるアリーレン基としては、たとえば芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団が挙げられ、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基などが挙げられる。アリーレン基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリーレン基の具体例としては、フェニレン基、ビフェニレン基、C1~C17アルコキシフェニレン基、C1~C17アルキルフェニレン基、1-ナフチレン基、2-ナフチレン基、1-アントラセニレン基、2-アントラセニレン基、9-アントラセニレン基が挙げられる。前記アリーレン基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリーレン基としては、テトラフルオロフェニレン基等が挙げられる。アリーレン基の中では、フェニレン基、ビフェニレン基、C1~C12アルコキシフェニレン基、C1~C12アルキルフェニレン基が好ましい。
 Ar6、Ar7、Ar8、Ar9で表される2価の複素環基としては、たとえば複素環式化合物から水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4~60であり、4~20が好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような2価の複素環基としては、例えば、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C1~C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、イソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピリジンジイル基及びC1~C12アルキルピリジンジイル基がより好ましい。
 構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、さらに他の構造単位を有していてもよい。他の構造単位としては、フェニレン基、フルオレンジイル基等のアリーレン基等が挙げられる。なお、これらのイオン性ポリマーの中では、架橋基を含んでいるものが好ましい。
 また、式(34)で表される2価の芳香族アミン残基としては、下記式101~110で表される芳香族アミンから水素原子を2個除いた基が例示される。
Figure JPOXMLDOC01-appb-C000049
 式101~110で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよい。該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 式(33)中、X’は置換基を有していてもよいイミノ基、置換基を有していてもよいシリレン基、置換基を有していてもよいエテニレン基、又はエチニレン基を表す。イミノ基、シリレン基若しくはエテニレン基が有していてもよい置換基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基等の炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 前記イオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基、エチニレン基が好ましい。
 前記イオン性ポリマーの電子受容性、正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。
 式(33)で表される構造単位としては、前記イオン性ポリマーの電子受容性の観点からは、式(35)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000050
(式(35)中、Ar13は、置換基を有していてもよいピリジンジイル基、置換基を有していてもよいピラジンジイル基、置換基を有していてもよいピリミジンジイル基、置換基を有していてもよいピリダジンジイル基又は置換基を有していてもよいトリアジンジイル基を表す。)
 ピリジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピラジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピリミジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピリダジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 トリアジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
  ・構造単位の割合
 本発明に用いられるイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の合計の割合は、有機EL素子の発光効率の観点からは、末端の構造単位を除く該イオン性ポリマーに含まれる全構造単位中、30~100モル%であることがより好ましい。
  ・末端の構造単位
 なお、本発明に用いられるイオン性ポリマーの末端の構造単位(末端基)としては、たとえば水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。前記末端の構造単位が複数個存在する場合には、それらは同一でも異なっていてもよい。
 -イオン性ポリマーの特性-
 本発明で用いられるイオン性ポリマーは、好ましくは共役化合物である。本発明で用いられるイオン性ポリマーが共役化合物であるとは、該イオン性ポリマーが主鎖中に、多重結合(例えば、二重結合、三重結合)又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。該イオン性ポリマーは、共役化合物である場合、共役化合物の電子輸送性の観点から、
 {(多重結合又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%で計算される比が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
 また、本発明で用いられるイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。ここで、高分子化合物とは、ポリスチレン換算の数平均分子量が1×103以上である化合物をいう。また、本発明で用いられるイオン性ポリマーが共役高分子化合物であるとは、該イオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。
 本発明に用いられるイオン性ポリマーの塗布による成膜性の観点から、該イオン性ポリマーのポリスチレン換算の数平均分子量が1×103~1×108であることが好ましく、2×103~1×107であることがより好ましく、3×103~1×107であることがより好ましく、5×103~1×107であることがさらに好ましい。また、イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×103~5×107であることが好ましく、1×103~1×107であることがより好ましく、1×103~5×106であることがさらに好ましい。また、イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×103~5×10であることが好ましく、1×103~5×10であることがより好ましく、1×103~3×10であることがさらに好ましい。本発明に用いられるイオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。
 本発明に用いられるイオン性ポリマーの純度の観点から、末端構造単位を除く該イオン性ポリマー中に含まれる全構造単位の数(即ち、重合度)は1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることがさらに好ましい。
 本発明に用いられるイオン性ポリマーの電子受容性、正孔受容性の観点からは、該イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーが、-5.0eV以上-2.0eV以下であることが好ましく、-4.5eV以上-2.0eV以下がより好ましい。また、同様の観点から、該イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーが、-6.0eV以上-3.0eV以下であることが好ましく、-5.5eV以上-3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。なお、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求める。一方、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求める。イオン化ポテンシャルの測定には光電子分光装置を用いる。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求める。
 なお、本発明に用いられる重合体は、電界発光素子で用いられた場合、実質的に非発光性であることが好ましい。ここで、ある重合体が実質的に非発光性であるとは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。一方、重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量S0を計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S-S0)/S0×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合に、用いた重合体は実質的に非発光性であるものとし、(S-S0)/S0×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。
 前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、たとえば式(23)で表される基のみからなるイオン性ポリマー;式(23)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(24)で表される基のみからなるイオン性ポリマー;式(24)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(25)で表される基のみからなるイオン性ポリマー;式(25)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(29)で表される基のみからなるイオン性ポリマー;式(29)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(30)で表される基のみからなるイオン性ポリマー;式(30)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
 前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、たとえば以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式中、pは15~100の数を表す。)
 前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、たとえば式(26)で表される基のみからなるイオン性ポリマー;式(26)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(27)で表される基のみからなるイオン性ポリマー;式(27)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(28)で表される基のみからなるイオン性ポリマー;式(28)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(31)で表される基のみからなるイオン性ポリマー;式(31)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(32)で表される基のみからなるイオン性ポリマー;式(32)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される環から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
 前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、たとえば以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(式中、pは15~100の数を表す。)
 -イオン性ポリマーの製造方法-
 次に、本発明に用いられるイオン性ポリマーを製造する方法について説明する。本発明に用いられるイオン性ポリマーを製造するための好適な方法としては、例えば、下記一般式(36)で表される化合物を原料の1つとして選択して用い、これを縮合重合させる方法を挙げることができる。中でも、該一般式(36)中の-Aa-が式(13)で表される構造単位である化合物、該-Aa-が式(15)で表される構造単位である化合物、該-Aa-が式(17)で表される構造単位である化合物及び該-Aa-が式(20)で表される構造単位である化合物の少なくとも1種を必須の原料として含有させて、これを縮合重合させる方法を挙げることができる。

  Y4-Aa-Y5   (36)
(式(36)中、Aaは式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位を表し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
 また、本発明に用いられるイオン性ポリマー中に上記式(36)中の-Aa-で表される構造単位とともに、前記-Aa-以外の他の構造単位を含有させてもよい。この場合には、前記-Aa-以外の他の構造単位となる、2個の縮合重合に関与する置換基を有する化合物を用い、これを前記式(36)で表される化合物とともに共存させて縮合重合させればよい。
 このような他の構造単位を含有させるために用いられる2個の縮合重合可能な置換基を有する化合物としては、式(37)で表される化合物が例示される。このようにして、前記Y4-Aa-Y5で表される化合物に加えて、式(37)で表される化合物を縮合重合させることで、-Ab-で表される構造単位を更に有する本発明に用いられるイオン性ポリマーを製造することができる。

  Y6-Ab-Y7    (37)
(式(37)中、Abは前記一般式(33)で表される構造単位又は一般式(35)で表される構造単位であり、Y6及びY7は、それぞれ独立に、縮合重合に関与する基を示す。)
 このような縮合重合に関与する基(Y4、Y5、Y6及びY7)としては、たとえば水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、-B(OH)2、ホルミル基、シアノ基、ビニル基等が挙げられる。
 このような縮合重合に関与する基として選択され得るハロゲン原子としては、たとえばフッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 また、前記縮合重合に関与する基として選択され得るアルキルスルホネート基としては、たとえばメタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p-トルエンスルホネート基が例示される。
 前記縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。
 また、前記縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000063
 さらに、前記縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
  -CH2+Me2-、又は、-CH2+Ph2-
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)で表される基が例示される。
 また、前記縮合重合に関与する基として選択され得るホスホニウムメチル基としては、下記式:
  -CH2+Ph3-
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
 また、前記縮合重合に関与する基として選択され得るホスホネートメチル基としては、下記式:
  -CH2PO(ORd2
 (式中、Rdはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。
 さらに、前記縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
 縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基が挙げられる。また、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、-B(OH)2等が挙げられ、酸化剤又は電気化学的に酸化重合する場合には、水素原子が挙げられる。
 本発明に用いられるイオン性ポリマーを製造する際には、例えば、縮合重合に関与する基を複数有する前記一般式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリや適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法としては、例えば、”オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、”オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の公知の方法を採用することができる。
 また、本発明に用いられるイオン性ポリマーを製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。このような重合方法としては、たとえば該当するモノマーを、Suzukiカップリング反応により重合する方法;該当するモノマーを、Grignard反応により重合する方法;該当するモノマーを、Ni(0)錯体により重合する方法;該当するモノマーを、FeCl3等の酸化剤により重合する方法;該当するモノマーを、電気化学的に酸化重合する方法;適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。このような重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。
 本発明に用いられるイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン-アルキルスルホネート化合物、ハロゲン-アリールスルホネート化合物、ハロゲン-アリールアルキルスルホネート化合物、アルキルスルホネート-アリールスルホネート化合物、アルキルスルホネート-アリールアルキルスルホネート化合物及びアリールスルホネート-アリールアルキルスルホネート化合物が挙げられる。
 前記イオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、-B(OH)2、及びホウ酸エステル残基からなる群から選ばれる基を有し、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、-B(OH)2及びホウ酸エステル残基のモル数の合計(K)との比が実質的に1(通常、K/Jは0.7~1.2の範囲)である原料モノマーを用いて、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。
 前記有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。イオン性ポリマーを製造する際には、このような有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。また、前記有機溶媒においては、前記脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。
 このような有機溶媒としては、たとえばペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素;四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブチルアルコール等のアルコール類;蟻酸、酢酸、プロピオン酸等のカルボン酸類;ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類;トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン等のアミン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルモルホリンオキシド等のアミド類が挙げられる。これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。また、このような有機溶媒の中でも、反応性の観点からはエーテル類がより好ましく、テトラヒドロフラン、ジエチルエーテルが更に好ましい。反応速度の観点からはトルエン、キシレンが好ましい。
 前記イオン性ポリマーを製造する際においては、原料モノマーを反応させるために、アルカリや適当な触媒を添加することが好ましい。このようなアルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。このようなアルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。また、前記アルカリ又は触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。
 本発明に用いられるイオン性ポリマーにおいては、末端基に重合活性基がそのまま残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。本発明に用いられるイオン性ポリマーが共役化合物であるときには、このような末端基を保護する安定な基は、該イオン性ポリマーの主鎖の共役構造と連続した共役結合を有していることが好ましい。その構造としては、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。このような末端基を保護する安定な基としては、たとえば特開平9-45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。
 式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、たとえば金属水酸化物、アルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。
 式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、たとえばハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、SbF5によるハロゲン引き抜き反応等が挙げられる。
 本発明に用いられるイオン性ポリマーは電荷の注入性や輸送性に優れるため、高輝度で発光する素子が得られる。
 イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。
 このような溶液からの成膜に用いる溶媒としては、たとえばアルコール類(水を除く)、エーテル類、エステル類、二トリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、t-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、該混合溶媒の溶解度パラメーター(δm)は、δm1×φ12×φ2により求めることとする(δ1は溶媒1の溶解度パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解度パラメーター、φ2は溶媒2の体積分率である。)
 電子注入層の膜厚としては、用いるイオン性ポリマーによって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよく、ピンホールが発生しない厚さが必要である。素子の駆動電圧を低くする観点からは、該膜厚は、1nm~1μmであることが好ましく、2nm~500nmであることがより好ましく、2nm~200nmであることがさらに好ましい。発光層を保護する観点からは、該膜厚は、5nm~1μmであることが好ましい。
 <陰極>
 陰極の材料としては、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層からの光を陰極で陽極側に反射するために、陰極の材料としては可視光反射率の高い材料が好ましい。陰極には、金、銀、白金、銅、アルミニウム、マンガン、チタン、コバルト、ニッケル、タングステン、錫の単体もしくは1種以上を含む合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。また、陰極としては導電性金属酸化物、導電性樹脂、および樹脂と導電性フィラーの混合物などを用いることができる。具体的には、導電性金属酸化物として、たとえば酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができ、導電性樹脂として、たとえば3,4-ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸などを挙げることができる。樹脂と導電性フィラーとからなる薄膜の場合、樹脂には導電性樹脂を使用することができる。また導電性フィラーとしては、金属微粒子や導電性ワイヤーなどを使用することができる。導電性フィラーの材料としては、AuやAg、Alなどを使用することができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。
 陰極の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設計してよく、たとえば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極の作製方法としては、たとえば真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。陰極の作製方法として、導電性フィラーおよび樹脂を分散媒に分散させたインキを用いる場合、塗布法を用いることができる。
 イオン性ポリマーを作製するとともに、このイオン性ポリマーを電子注入層に使用して有機EL素子を作製した。
 [参考例1]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)の合成
 2,7-ジブロモ-9-フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18-クラウン-6(7.2g)をN、N-ジメチルホルムアミド(DMF)(670mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)(51.2g)を得た。
Figure JPOXMLDOC01-appb-C000064
 [参考例2]
 2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)の合成
 窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)(11.7g)を得た。
Figure JPOXMLDOC01-appb-C000065
 [参考例3]
 ポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A)の合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4-tert-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9-ビス[3-エトキシカルボニル-4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A(BSAFEGP))の収量は520mgであった。
 重合体Aのポリスチレン換算の数平均分子量は5.2×104であった。重合体Aは、式(A)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000066
 [実験例1]
 重合体Aセシウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。共役高分子化合物1は式(B)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物1のHOMOの軌道エネルギーは-5.5eVであり、LUMOの軌道エネルギーは-2.7eVであった。
Figure JPOXMLDOC01-appb-C000067
 [実験例2]
 重合体Aカリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。共役高分子化合物2は式(C)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物2のHOMOの軌道エネルギーは-5.5eVであり、LUMOの軌道エネルギーは-2.7eVであった。
Figure JPOXMLDOC01-appb-C000068
 [実験例3]
 重合体Aナトリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。共役高分子化合物3は式(D)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物3のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000069
 [実験例4]
 重合体Aアンモニウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。共役高分子化合物4は式(E)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。)。共役高分子化合物4のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000070
 [参考例4]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)の合成
 不活性雰囲気下、化合物A(0.52g)、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、トルエン(10mL)、及び2mol/L炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50ml/蒸留水50mlを加えて水層を除去した。再び蒸留水50mlを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを加えて、不溶物をろ過して、有機溶媒を除去した。その後、得られた残渣を再びテトラヒドロフラン(THF)10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水溶液2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)が524mg得られた。
 重合体Bのポリスチレン換算の数平均分子量は、2.0×10であった。なお、重合体Bは、式(F)で表される。
Figure JPOXMLDOC01-appb-C000071
 [実験例5]
 重合体Bセシウム塩の合成
 重合体B(262mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。共役高分子化合物5は、式(G)で表される(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000072
 [参考例5]
 重合体Cの合成
 不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-tert-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
 重合体Cのポリスチレン換算の数平均分子量は3.6×104であった。重合体Cは、式(H)で表される繰り返し単位からなる。
 なお、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-tert-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミンは、例えば特開2008-74917号公報に記載されている方法で合成することができる。
Figure JPOXMLDOC01-appb-C000073
 [実験例6]
 重合体Cセシウム塩の合成
 重合体C(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。共役高分子化合物6は式(I)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、95モル%である。)。共役高分子化合物6のHOMOの軌道エネルギーは-5.3eVであり、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000074
 [参考例6]
 重合体Dの合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-tert-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(0.038g)、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジン 0.009g、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
 重合体Dのポリスチレン換算の数平均分子量は2.7×104であった。重合体Dは、式(J)で表される繰り返し単位からなる。
 なお、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジンは、特開2007-70620号に記載の方法に基づいて(あるいは特開2004-137456号公報に記載の方法を参考にして)合成した。
Figure JPOXMLDOC01-appb-C000075
 [実験例7]
 重合体Dセシウム塩の合成
 重合体D(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは-5.3eVであり、LUMOの軌道エネルギーは-2.4eVであった。
Figure JPOXMLDOC01-appb-C000076
 [参考例7]
 重合体Eの合成
 不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3-ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
 重合体Eのポリスチレン換算の数平均分子量は1.8×104であった。重合体Eは、式(L)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000077
 [実験例8]
 重合体Eセシウム塩の合成
 重合体E(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。共役高分子化合物8は式(M)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。)。共役高分子化合物8のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000078
 [参考例8]
 重合体Fの合成
 不活性雰囲気下、化合物B(1.01g)、1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は343mgであった。
 重合体Fのポリスチレン換算の数平均分子量は6.0×104であった。重合体Fは、式(N)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000079
 [実験例9]
 重合体Fセシウム塩の合成
 重合体F(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。共役高分子化合物9は式(O)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。)。共役高分子化合物9のHOMOの軌道エネルギーは-5.9eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000080
 [参考例9]
 不活性雰囲気下、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間加熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロール蒸留(10mmTorr、180℃)することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(6.1g)を得た。
 [参考例10]
 不活性雰囲気下、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、テトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p-トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6mol/L硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(11.8g)を得た。
 [参考例11]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)の合成
 2,7-ジブロモ-9-フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18-クラウン-6(0.6g)をN、N-ジメチルホルムアミド(DMF)(100mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)(4.5g)を得た。
Figure JPOXMLDOC01-appb-C000081
 [参考例12]
 重合体Gの合成
 不活性雰囲気下、化合物C(1.0g)、4-tert-ブチルフェニルブロミド(0.9mg)、2,2‘-ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5-シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。
 重合体Gのポリスチレン換算の数平均分子量は6.0×104であった。重合体Gは、式(P)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000082
 [実験例10]
 重合体Gセシウム塩の合成
 重合体G(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95)mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。共役高分子化合物10は式(Q)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物10のHOMOの軌道エネルギーは-5.7eVであり、LUMOの軌道エネルギーは-2.9eVであった。
Figure JPOXMLDOC01-appb-C000083
 [参考例13]
 1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成
 不活性雰囲気下、3,5-ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間加熱攪拌した。放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間加熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
 [参考例14]
 重合体Hの合成
 不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2mol/L炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
 重合体Hのポリスチレン換算の数平均分子量は3.6×104であった。重合体Hは、式(R)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000084
 [実験例11]
 重合体Hセシウム塩の合成
 重合体H(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。共役高分子化合物11は式(S)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物11のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000085
 [参考例15]
 2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン(化合物D)の合成 2,7-ジブロモ-9-フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18-クラウン-6(2.4g)をN、N-ジメチルホルムアミド(DMF)(500mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン(化合物D)(20.5g)を得た。
 [参考例16]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[5-メトキシカルボニル-3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)の合成
 不活性雰囲気下、化合物D(0.70g)、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレン(0.62g)、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水溶液5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[5-メトキシカルボニル-3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)を660mg得た。
 重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。なお、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレンは、例えばThe Journal of Physical Chemistry B 2000, 104, 9118-9125に記載されている方法で合成することができる。
Figure JPOXMLDOC01-appb-C000086
 [実験例12]
 重合体Iセシウム塩の合成
 重合体I(236mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。共役高分子化合物12は、式(U)で表される(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物12のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000087
 [参考例17]
 化合物Eの合成
 窒素雰囲気下、2,7-ジブロモ-9-フルオレノン(92.0g、272mmol)、及びジエチルエーテル(3.7L)を混合して0℃に冷却し、1mol/Lヨウ化メチルマグネシウム-ジエチルエーテル溶液(0.5L、545mmol)を滴下して3時間撹拌した。反応混合物に塩化アンモニウム水溶液を加えて水層を除去し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、下記式で表される化合物E(92.81g、262mmol、収率96%)を得た。
Figure JPOXMLDOC01-appb-C000088
 化合物Fの合成
 窒素雰囲気下、化合物E(83.0g、234mmol)、p-トルエンスルホン酸一水和物(4.49g、23.6mmol)、及びクロロホルム(2.5L)を混合して1時間還流し、反応混合物に塩化アンモニウム水溶液を加えて水層を除去した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮し、下記式で表される化合物F(73.6g、219mmol、収率93%)を得た。
Figure JPOXMLDOC01-appb-C000089
 化合物Gの合成
 窒素雰囲気下、化合物F(70.0g、208mmol)、サリチル酸エチル(104g、625mmol)、メルカプト酢酸(4.20g、45.6mmol)、及びメタンスルホン酸(1214g)を混合して70℃で8時間撹拌した。得られた反応混合物を氷水に滴下して析出した固体をろ過して回収し、メタノールで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、下記式で表される化合物G(52.14g、104mmol、収率50%)を得た。
Figure JPOXMLDOC01-appb-C000090
 化合物Hの合成
 窒素雰囲気下、化合物G(41.2g、82.0mmol)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(75.8g、238mmol)、ジメチルホルムアミド(214g)、炭酸カリウム(54.4g、394mmol)、及び18-クラウン-6(4.68g、18mmol)を混合して105℃で2時間撹拌した。得られた反応混合物を水に加え、酢酸エチルで抽出した。得られた有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、下記式で表される化合物H(40.2g、62.0mmol、収率76%)を得た。得られた化合物Hについて行われたH NMRの結果を以下に示す。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.37(3H),1.84(3H),3.36(3H),3.53(2H),3.58-3.79(6H),3.73(2H),4.12(2H),4.34(2H),6.80(1H),6.90(1H),7.28(2H),7.48(2H),7.58(2H),7.70(1H).
Figure JPOXMLDOC01-appb-C000091
 化合物Iの合成
 窒素雰囲気下、化合物H(28.4g、43.8mmol)、ビス(ピナコラト)ジボロン(24.30g、95.7mol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(0.35g、0.4mmol)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.24g、0.4mmol)、酢酸カリウム(25.60g、260mmol)、及び1,4-ジオキサン(480mL)を混合して120℃で17時間撹拌した。得られた反応混合物をろ過して酢酸エチルで洗浄した。得られたろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶して精製することにより、下記式で表される化合物I(18.22g、24.5mmol、収率56%)を得た。得られた化合物Iについて行われたH NMRの結果を以下に示す。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.30-1.47(27H),1.88(3H),3.35(3H),3.53(2H),3.60-3.69(4H),3.73(2H),3.84(2H),4.10(2H),4.34(2H),6.74(1H),6.87(1H),7.58(2H),7.72-7.89(5H).
Figure JPOXMLDOC01-appb-C000092
 重合体Jの合成
 アルゴン雰囲気下、化合物H(0.47g)、化合物I(0.48g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.6mg)、テトラブチルアンモニウムブロミド(6mg)、トルエン(6mL)、及び2mol/L炭酸ナトリウム水溶液(2mL)を混合して105℃で6時間撹拌し、次いでフェニルボロン酸(35mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.65g)と水(13mL)とを加えて80℃で2時間撹拌した。得られた混合物をメタノールに滴下し、析出物をろ過して回収し、乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナクロマトグラフィー、及びシリカゲルクロマトグラフィーにより精製した。溶出液をメタノールに滴下し、析出物をろ過して回収し、乾燥させて重合体J(0.57g)を得た。
 重合体Jのポリスチレン換算の数平均分子量は2.0×104であった。重合体Jは、式(V)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000093
 [実験例13]
 重合体Jセシウム塩の合成
 アルゴン雰囲気下、重合体J(0.20g)、THF(18mL)、メタノール(9mL)、水酸化セシウム一水和物(97mg)、及び水(1mL)を混合し、65℃で2時間撹拌し、次いでメタノール(52mL)を加え、65℃で6時間撹拌した。反応混合物を濃縮して乾燥させ、固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し、固体をろ過して回収し、乾燥させて重合体Jセシウム塩(0.20g)を得た。得られた重合体Jセシウム塩を共役高分子化合物13と呼ぶ。共役高分子化合物13は、式(W)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000094
 共役高分子化合物13のHOMOの軌道エネルギーは-5.51eVであり、LUMOの軌道エネルギーは-2.64eVであった。
 [参考例18]
 化合物Jの合成
 窒素気流下、2,7-ジブロモ-9,9-ビス(3,4-ジヒドロキシ)-フルオレン(138.4g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(408.6g)、炭酸カリウム(358.5g)及びアセトニトリル(2.5L)を混合し、3時間加熱還流した。放冷後、反応混合物をろ別し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、下記式で表される化合物J(109.4g)を得た。
Figure JPOXMLDOC01-appb-C000095
 化合物Kの合成
 窒素雰囲気下、化合物J(101.2g)、ビス(ピナコラト)ジボロン(53.1g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(3.7g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(5.4g)、酢酸カリウム(90.6g)及びジオキサン(900mL)を混合し、110℃に加熱し、8時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製して化合物K(51.4g)を得た。
Figure JPOXMLDOC01-appb-C000096
 重合体Kの合成
 化合物K(0.715g)、化合物J(0.426g)、aliquot336(6.60mg)、ビス(トリフェニルホスフィン)ジクロロパラジウム(0.460mg)、2mol/L炭酸ナトリウム水溶液(10mL)、及びトルエン(20mL)を混合し、105℃で攪拌した。得られた混合物にトルエン(20mL)を加え、105℃でさらに5時間撹拌し、次いでフェニルボロン酸(32mg)を加え、105℃で6時間撹拌した。その後、反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.72g)と水(14mL)とを加えて80℃で2時間撹拌した。得られた混合物をメタノールに滴下し析出物をろ過して回収し、乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナクロマトグラフィー、及びシリカゲルクロマトグラフィーにより精製し、溶出液を濃縮し乾燥させた。濃縮物をトルエンに溶解させてメタノールに滴下し、析出物をろ過して回収し、乾燥させて重合体K(0.55g)を得た。
 重合体Kのポリスチレン換算の数平均分子量は2.3×104であった。重合体Kは、式(X)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000097
 [実験例14]
 重合体Kセシウム塩の合成
 アルゴン雰囲気下、重合体K(0.15g)、THF(20mL)、メタノール(10mL)、水酸化セシウム一水和物(103mg)、及び水(1mL)を混合し、65℃で2時間撹拌した。得られた混合物にメタノール(20mL)を加え、65℃で2時間撹拌した。その後、反応混合物を濃縮して乾燥し、得られた固体にメタノールを加えてろ過した。得られたろ液を濃縮して乾燥させ、得られた固体を水で洗浄した後、乾燥させることで、重合体Kのセシウム塩(0.14g)を得た。得られた重合体Kのセシウム塩を共役高分子化合物14と呼ぶ。共役高分子化合物14は、式(Y)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000098
 共役高分子化合物14のHOMOの軌道エネルギーは-5.56eVであり、LUMOの軌道エネルギーは-2.67eVであった。
 [参考例19]
 化合物Lの合成
 窒素雰囲気下、5-ブロモ-2-ヒドロキシ安息香酸(92.85g)、エタノール(1140mL)、及び濃硫酸(45mL)を混合し、48時間還流し、減圧濃縮した。得られた濃縮物に酢酸エチル(1000mL)を加え、水及び10重量%炭酸ナトリウム水溶液で有機層を洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させ、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、下記式で表される化合物L(95.38g、収率91%)を得た。
Figure JPOXMLDOC01-appb-C000099
 化合物Mの合成
 窒素雰囲気下、化合物L(95.0g)、ビス(ピナコラト)ジボロン(108.5g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(3.3g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(2.2g)、酢酸カリウム(117.2g)、及び1,4-ジオキサン(1.3L)を混合し、105℃で22時間撹拌した。反応混合物をろ過してジオキサン及びトルエンで洗浄した。ろ液を減圧濃縮して酢酸エチルを加え、飽和食塩水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させて減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、下記式で表される化合物M(90.1g、308mmol)を得た。
Figure JPOXMLDOC01-appb-C000100
 化合物Nの合成
 窒素雰囲気下、1,5-ジヒドロキシナフタレン(15.0g)、トリエチルアミン(28.5g)、及びクロロホルム(150mL)を混合して0℃に冷却し、トリフルオロメタンスルホン酸無水物(68.7g)を滴下して1時間撹拌した。反応混合物に水及びクロロホルムを加えて水層を除去し、有機層を水で洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥させて減圧濃縮した。得られた固体を再結晶して精製することにより、下記式で表される化合物N(31.46g)を得た。下記式中、Tfはトリフルオロメチルスルホニル基を示す。
Figure JPOXMLDOC01-appb-C000101
 化合物Oの合成
 窒素雰囲気下、化合物N(16.90g)、化合物M(23.30g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(4.60g)、リン酸カリウム(42.30g)、及び1,2-ジメトキシエタン(340mL)を混合し、80℃で14時間撹拌した。得られた反応混合物をろ過してクロロホルム及びメタノールで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、下記式で表される化合物O(8.85g)を得た。
Figure JPOXMLDOC01-appb-C000102
 化合物Pの合成
 窒素雰囲気下、化合物O(8.80g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(12.52g)、ジメチルホルムアミド(380mL)、炭酸カリウム(13.32g)、及び18-クラウン-6(1.02g)を混合し、100℃で23時間撹拌した。得られた反応混合物を水に加え酢酸エチルで抽出した。得られた有機層を塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させて減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、下記式で表される化合物P(7.38g)を得た。
Figure JPOXMLDOC01-appb-C000103
 化合物Qの合成
 窒素雰囲気下、化合物P(5.53g)、ビス(ピナコラト)ジボロン(11.25g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I)二量体(0.15g、シグマアルドリッチ社製)、4,4’-ジ-tert-ブチル-2,2’-ジピリジル(0.12g、シグマアルドリッチ社製)、及び1,4-ジオキサン(300mL)を混合して110℃で19時間撹拌し、反応混合物を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶して精製することにより、下記式で表される化合物Q(5.81g)を得た。得られた化合物Qについて行われたH NMRの結果を以下に示す。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.27-1.41(30H),3.39(6H),3.57(4H),3.66-3.75(8H),3.83(4H),3.99(4H),4.27-4.42(8H),7.13(2H),7.60(2H),7.76(2H),7.93(2H),8.30(2H).
Figure JPOXMLDOC01-appb-C000104
 重合体Lの合成
 アルゴン雰囲気下、化合物J(0.53g)、化合物Q(0.43g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.3mg)、Aliquat336(5mg、シグマアルドリッチ社製)、トルエン(12mL)、2mol/L炭酸ナトリウム水溶液(1mL)を混合し、105℃で9時間撹拌した。得られた混合物にフェニルボロン酸(23mg)を加え105℃で14時間撹拌した。その後、反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.40g)と水(8mL)とを加えて80℃で2時間撹拌し、得られた混合物をメタノールに滴下し析出物をろ過して回収し、乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナクロマトグラフィー、及びシリカゲルクロマトグラフィーにより精製した。得られた溶出液をメタノールに滴下し、析出物をろ過して回収し、乾燥させて重合体L(0.56g)を得た。
 重合体Lのポリスチレン換算の数平均分子量は3.4×104であった。重合体Lは、式(Z)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000105
 [実験例15]
 重合体Lセシウム塩の合成
 アルゴン雰囲気下、重合体L(0.25g)、THF(13mL)、メタノール(6mL)、水酸化セシウム一水和物(69mg)、及び水(1mL)を混合し、65℃で6時間撹拌した。得られた反応混合物を濃縮してイソプロパノールに滴下し、得られた固体をろ過して回収し、乾燥させた。得られた固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下した。析出した固体をろ過して回収し、乾燥させて重合体Lのセシウム塩(0.19g)を得た。得られた重合体Lのセシウム塩を共役高分子化合物15と呼ぶ。共役高分子化合物15は、式(AA)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000106
 共役高分子化合物15のHOMOの軌道エネルギーは-5.50eVであり、LUMOの軌道エネルギーは-2.65eVであった。
 [実験例16]
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。ガラス基板表面に成膜パターニングされたITO陰極(膜厚:45nm)上に、前記組成物を大気中でスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、常圧、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
 次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。該発光層形成用組成物を、上記で得た共役高分子化合物1を含む電子注入層の上に、大気中でスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、常圧、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。
 次に、上記で得た発光層の上に、正孔注入材料溶液を大気中でスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、常圧、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、正孔注入層が形成された基板を得た。ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。
 上記で得た正孔注入層が形成された基板を真空装置内に挿入し、真空蒸着法によって正孔注入層の上にAuを80nm蒸着し、陽極を形成させて、積層構造体1を製造した。
 上記で得た積層構造体1を真空装置より取り出し、不活性ガス雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。
 上記で得られた有機EL素子1に10Vの順方向電圧を印加し、発光輝度と発光効率とを測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000107
 [実験例17]
 <両面発光型の有機EL素子の作製>
 実験例16において、Auの膜厚を20nmとした以外は、実験例16と同様に操作し、両面発光型の有機EL素子2を得た。
 上記で得られた両面発光型の有機EL素子2に15Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000108
 表1および表2に示すように、大気中において塗布法でイオン性ポリマーを成膜し、電子注入層を形成した有機EL素子が、発光することを確認した。
 <有機EL素子の作製>
 [実施例1]
 ITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであって、その厚みは50nmであり、陽極に相当する。このITO薄膜上に、高分子化合物Aの懸濁液をスピンコート法により塗布成膜し、厚みが60nmの正孔注入層用の塗布膜を形成した。この薄膜をホットプレート上で170℃、15分間乾燥することによって正孔注入層を形成した。なお正孔注入層は大気雰囲気中において形成した。
 つぎに、高分子化合物Bを0.8重量%の濃度でキシレンに溶解し、高分子化合物Bをを含むキシレン溶液をえた。このキシレン溶液を大気中においてスピンコート法によって正孔注入層上に塗布し、膜厚が20nmの正孔輸送層用の塗布膜を成膜した。つづいて、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において180℃、60分間保持することによって塗布膜を乾燥し、正孔輸送層をえた。
 つぎに高分子化合物Cを1.3重量%の濃度でキシレンに溶解し、高分子化合物Cを含むキシレン溶液をえた。このキシレン溶液を大気中においてスピンコート法によって正孔輸送層上に塗布し、膜厚が80nmの発光層用の塗布膜を成膜した。つづいて、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において170℃、10分間保持することによって塗布膜を乾燥し、発光層をえた。
 つぎに共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物1を含むメタノール溶液をえた。このメタノール溶液を大気中においてスピンコート法により発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を成膜した。つづいて、大気雰囲気中において130℃で10分間保持することによって塗布膜を加熱した(1回目の加熱)。
 1回目の加熱を終えた製造途中の有機EL素子を大気中、室温で90分間保管した。その後、大気雰囲気中において130℃で10分間保持することによって塗布膜を加熱し(2回目の加熱)、電子注入層をえた。
 つづいて、1.0×10-4Pa以下にまで減圧した状態において、陰極としてアルミニウムを約100nm蒸着した。蒸着後、接着部材を介してガラス基板を貼り合せ、封止をおこない、有機EL素子を作製した。
 [実施例2]
 実施例2では、実施例1とは2回目の加熱の条件のみを異ならせて、他は実施例1と同様に有機EL素子を形成した。重複する説明を省略するため、以下では2回目の加熱条件のみについて説明する。
 2回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [実施例3]
 実施例3では、実施例1とは1回目の加熱の条件のみを異ならせて、他は実施例1と同様に有機EL素子を形成した。重複する説明を省略するため、以下では1回目の加熱の条件のみについて説明する。
 1回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [実施例4]
 実施例4では、実施例1とは1回目および2回目の加熱の条件のみを異ならせて、他は実施例1と同様に有機EL素子を形成した。重複する説明を省略するため、以下では1回目および2回目の加熱の条件のみについて説明する。
 1回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 2回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [比較例1]
 比較例1では、実施例1とは2回目を省略したこと以外は実施例1と同様に有機EL素子を形成した。すなわち1回目の加熱をおこない、大気中で90分間保管したのちに、2回目の加熱をおこなうことなく陰極を形成した。
 [輝度半減寿命の測定]
 実施例1~4および比較例1において作製した各有機EL素子の輝度半減寿命を測定した。すなわち各有機EL素子を定電流駆動したさいに、輝度が初期輝度の50%になるまでの時間(輝度半減寿命LT50)を測定した。なお定電流駆動を開始するさいの初期輝度は5,000cd/m2とした。各有機EL素子の寿命比は、比較例1で作製した素子の輝度半減寿命を1.0として算出した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000109
 表3に示すように、2回目の加熱をおこなうことによって、2回目の加熱をおこなわない場合に比べて、輝度半減寿命が1.5倍または1.4倍向上した。しかも、1回目の加熱及び/又は2回目の加熱を大気雰囲気中でおこなった場合でも、1回目の加熱及び/又は2回目の加熱を窒素雰囲気中でおこなった場合と同程度に輝度半減寿命が向上することが確認された。
 [実施例5]
 ITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであって、その厚みは50nmであり、陽極に相当する。このITO薄膜上に、高分子化合物Aの懸濁液をスピンコート法により塗布成膜し、厚みが60nmの正孔注入層用の塗布膜を形成した。この薄膜をホットプレート上で170℃、15分間乾燥することによって正孔注入層を形成した。なお正孔注入層は大気雰囲気中において形成した。
 つぎに、高分子化合物Bを0.8重量%の濃度でキシレンに溶解し、高分子化合物Bをを含むキシレン溶液をえた。このキシレン溶液を大気中においてスピンコート法によって正孔注入層上に塗布し、膜厚が20nmの正孔輸送層用の塗布膜を成膜した。つづいて、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において180℃、60分間保持することによって塗布膜を乾燥し、正孔輸送層をえた。
 つぎに高分子化合物Cを1.3重量%の濃度でキシレンに溶解し、高分子化合物Cを含むキシレン溶液をえた。このキシレン溶液を大気中においてスピンコート法によって正孔輸送層上に塗布し、膜厚が80nmの発光層用の塗布膜を成膜した。つづいて、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において170℃、10分間保持することによって塗布膜を乾燥し、発光層をえた。
 つぎに共役高分子化合物13を0.2重量%の濃度でメタノールに溶解し、共役高分子化合物13を含むメタノール溶液をえた。このメタノール溶液を大気中においてスピンコート法により発光層上に塗布し、膜厚が6nmの電子注入層用の塗布膜を成膜した。つづいて、大気雰囲気中において130℃で10分間保持することによって塗布膜を加熱した(1回目の加熱)。
 1回目の加熱を終えた製造途中の有機EL素子を大気中、室温で90分間保管した。その後、大気雰囲気中において130℃で10分間保持することによって塗布膜を加熱し(2回目の加熱)、電子注入層をえた。
 つづいて、1.0×10-4Pa以下にまで減圧した状態において、陰極としてアルミニウムを約100nm蒸着した。蒸着後、接着部材を介してガラス基板を貼り合せ、封止をおこない、有機EL素子を作製した。
 [実施例6]
 実施例6では、実施例5とは2回目の加熱の条件のみを異ならせて、他は実施例5と同様に有機EL素子を形成した。重複する説明を省略するため、以下では2回目の加熱条件のみについて説明する。
 2回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [実施例7]
 実施例7では、実施例5とは1回目の加熱の条件のみを異ならせて、他は実施例5と同様に有機EL素子を形成した。重複する説明を省略するため、以下では1回目の加熱の条件のみについて説明する。
 1回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [実施例8]
 実施例8では、実施例5とは1回目および2回目の加熱の条件のみを異ならせて、他は実施例5と同様に有機EL素子を形成した。重複する説明を省略するため、以下では1回目および2回目の加熱の条件のみについて説明する。
 1回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 2回目の加熱は、常圧程度の圧力において、酸素濃度および水分濃度がそれぞれ体積比で10ppm以下に制御された窒素雰囲気中において130℃で10分間保持することによっておこなった。
 [比較例2]
 比較例2では、実施例5とは2回目を省略したこと以外は実施例5と同様に有機EL素子を形成した。すなわち1回目の加熱をおこない、大気中で90分間保管したのちに、2回目の加熱をおこなうことなく陰極を形成した。
 [輝度半減寿命の測定]
 実施例5~8および比較例2において作製した各有機EL素子の輝度半減寿命を測定した。すなわち各有機EL素子を定電流駆動したさいに、輝度が初期輝度の50%になるまでの時間(輝度半減寿命LT50)を測定した。なお定電流駆動を開始するさいの初期輝度は5,000cd/m2とした。各有機EL素子の寿命比は、比較例2で作製した素子の輝度半減寿命を1.0として算出した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000110
 表4に示すように、2回目の加熱をおこなうことによって、2回目の加熱をおこなわない場合に比べて、輝度半減寿命が1.2倍から1.4倍向上した。しかも、1回目の加熱及び/又は2回目の加熱を大気雰囲気中でおこなった場合でも、1回目の加熱及び/又は2回目の加熱を窒素雰囲気中でおこなった場合と同様に輝度半減寿命が向上することが確認された。

Claims (4)

  1.  陽極、発光層、電子注入層、および陰極をこの順に含む有機エレクトロルミネッセンス素子の製造方法であって、
     (A)陽極を形成する工程と、
     (B)発光層を形成する工程と、
     (C)電子注入層を形成する工程と、
     (D)陰極を形成する工程とを含み、
     前記工程(C)は、(i)イオン性ポリマーを含む塗布液を塗布して薄膜を形成し、(ii)形成した薄膜を加熱し、(iii)前記(ii)で得られた製造途中の有機エレクトロルミネッセンス素子を保管し、その後、(iv)前記薄膜をふたたび加熱してなる、有機エレクトロルミネッセンス素子の製造方法。
  2.  前記工程(C)では、前記(ii)及び(iv)の2回の加熱のうち、少なくとも一方を、窒素の体積比が90%以下の雰囲気中でおこなう、請求項1記載の有機エレクトロルミネッセンス素子の製造方法。
  3.  前記工程(C)では、前記(ii)及び(iv)の2回の加熱のうち、少なくとも一方を、窒素の体積比が90%以下、かつ酸素の体積比が10%~30%の雰囲気中でおこなう、請求項1記載の有機エレクトロルミネッセンス素子の製造方法。
  4.  前記工程(C)では、前記(iii)の保管を、窒素の体積比が90%以下の雰囲気中でおこなう、請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
PCT/JP2012/053366 2011-02-21 2012-02-14 有機エレクトロルミネッセンス素子の製造方法 WO2012114936A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12749252.8A EP2680672B1 (en) 2011-02-21 2012-02-14 Method for producing organic electroluminescent element
CN201280009655.4A CN103385036B (zh) 2011-02-21 2012-02-14 有机电致发光元件的制造方法
US14/000,327 US9006008B2 (en) 2011-02-21 2012-02-14 Method for manufacturing organic electroluminescent element
KR1020137021712A KR101902034B1 (ko) 2011-02-21 2012-02-14 유기 전계 발광 소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011034209 2011-02-21
JP2011-034209 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012114936A1 true WO2012114936A1 (ja) 2012-08-30

Family

ID=46720718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053366 WO2012114936A1 (ja) 2011-02-21 2012-02-14 有機エレクトロルミネッセンス素子の製造方法

Country Status (7)

Country Link
US (1) US9006008B2 (ja)
EP (1) EP2680672B1 (ja)
JP (1) JP2012190788A (ja)
KR (1) KR101902034B1 (ja)
CN (1) CN103385036B (ja)
TW (1) TWI568055B (ja)
WO (1) WO2012114936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963422B2 (en) * 2010-07-21 2015-02-24 Sumitomo Chemical Company, Limited Method for manufacturing organic light-emitting device and organic light-emitting device
JP6388152B2 (ja) * 2014-08-07 2018-09-12 パナソニックIpマネジメント株式会社 コネクタおよび当該コネクタに用いられるヘッダならびにソケット
GB2605405B (en) * 2021-03-30 2024-04-03 Sumitomo Chemical Co Polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137456A (ja) 2002-06-21 2004-05-13 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
JP2005079064A (ja) 2003-09-03 2005-03-24 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
JP2007070620A (ja) 2005-08-12 2007-03-22 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2008074917A (ja) 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2009245878A (ja) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp 有機電界発光素子、及びその製造方法、並びに有機エレクトロルミネッセンスディスプレイ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095429A (ko) * 2000-03-30 2001-11-07 윤덕용 단일 이온 전도체를 전자 혹은 정공 주입층으로 이용하는유기/고분자 전기 발광 소자
JP2008201819A (ja) * 2007-02-16 2008-09-04 Sumitomo Chemical Co Ltd 膜およびそれを用いた有機半導体デバイス
JP5470944B2 (ja) * 2009-03-19 2014-04-16 住友化学株式会社 芳香族化合物とそれを用いてなる電子素子
KR20120102489A (ko) * 2009-04-10 2012-09-18 스미또모 가가꾸 가부시키가이샤 금속 복합체 및 그의 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137456A (ja) 2002-06-21 2004-05-13 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
JP2005079064A (ja) 2003-09-03 2005-03-24 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
JP2007070620A (ja) 2005-08-12 2007-03-22 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2008074917A (ja) 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2009245878A (ja) * 2008-03-31 2009-10-22 Mitsubishi Chemicals Corp 有機電界発光素子、及びその製造方法、並びに有機エレクトロルミネッセンスディスプレイ

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Organic Reactions", vol. 14, 1965, JOHN WILEY & SONS, INC., pages: 270 - 490
"Organic Syntheses, Collective", vol. VI, 1988, JOHN WILEY & SONS, INC., pages: 407 - 411
CHEMICAL REVIEW, vol. 95, 1995, pages 2457
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 576, 1999, pages 147
MACROMOLECULAR CHEMISTRY, MACROMOLECULAR SYMPOSIUM, vol. 12, 1987, pages 229
See also references of EP2680672A4
THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 104, 2000, pages 9118 - 9125

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子

Also Published As

Publication number Publication date
US9006008B2 (en) 2015-04-14
CN103385036B (zh) 2017-02-08
JP2012190788A (ja) 2012-10-04
TWI568055B (zh) 2017-01-21
KR101902034B1 (ko) 2018-09-27
EP2680672B1 (en) 2021-03-31
EP2680672A4 (en) 2017-07-05
US20130323871A1 (en) 2013-12-05
TW201240186A (en) 2012-10-01
CN103385036A (zh) 2013-11-06
EP2680672A1 (en) 2014-01-01
KR20140012976A (ko) 2014-02-04

Similar Documents

Publication Publication Date Title
JP5653122B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5862086B2 (ja) 有機el素子の製造方法
JP5898424B2 (ja) 有機発光装置の製造方法
WO2012133465A1 (ja) 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
WO2012133381A1 (ja) 電子デバイス、高分子化合物
WO2012133462A1 (ja) 電子デバイス、高分子化合物
JP5863307B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2012046736A1 (ja) 有機el装置及びその製造方法
JP5982747B2 (ja) 有機el素子
WO2012114936A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5899635B2 (ja) 有機el素子
WO2012011456A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置
WO2012070575A1 (ja) 発光装置及び発光装置の製造方法
JP5750247B2 (ja) 有機薄膜トランジスタ及びその製造方法
WO2012011471A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012749252

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137021712

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE