JP5886974B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP5886974B2
JP5886974B2 JP2014536476A JP2014536476A JP5886974B2 JP 5886974 B2 JP5886974 B2 JP 5886974B2 JP 2014536476 A JP2014536476 A JP 2014536476A JP 2014536476 A JP2014536476 A JP 2014536476A JP 5886974 B2 JP5886974 B2 JP 5886974B2
Authority
JP
Japan
Prior art keywords
transistor
memory cell
gate voltage
signal line
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014536476A
Other languages
English (en)
Other versions
JPWO2014045372A1 (ja
Inventor
白水 信弘
信弘 白水
悟 半澤
悟 半澤
晃 小田部
晃 小田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5886974B2 publication Critical patent/JP5886974B2/ja
Publication of JPWO2014045372A1 publication Critical patent/JPWO2014045372A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0071Write using write potential applied to access device gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/75Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、半導体記憶装置に関する。
近年、微細化の限界に近付いているフラッシュメモリに代わるメモリとして、抵抗変化型メモリが研究されている。その1例として、抵抗変化型の記憶素子としてGeSbTeなどのカルコゲナイド(相変化材料)を用いた相変化メモリが盛んに研究されている。
相変化材料の状態は、印加した電流によって発生するジュール熱により、アモルファス状態または結晶状態に変化する。アモルファス状態においては材料の抵抗値が高く、結晶状態においては材料の抵抗値が低い。この抵抗値の変化を情報に対応付けることにより、記憶素子としての機能を発揮することができる。
相変化メモリに対する情報書き換え動作においては、書き込む情報に応じて印加電流が制御される。リセット動作、すなわちビット‘0’を書き込む動作においては、大電流を短時間流して相変化材料を溶解させた後、電流を急減させる。これにより相変化材料が急冷され、相変化材料は高抵抗のアモルファス状態へ変化する。一方、セット動作、すなわちビット‘1’を書き込む動作においては、相変化材料を結晶化状態に保持するのに十分な電流を長時間流すことにより、相変化材料は低抵抗の結晶状態へ変化する。情報読み出し動作においては、記憶素子の両端に一定の電位差を与えて、素子に流れる電流を測定することにより、素子の抵抗値を判別する。
相変化メモリは、記憶素子の形状を小さくすると、相変化材料の状態を変化させるために必要な電流が小さくなる。このため、原理上、高集積化を実現するための微細化および多層化に向いている。
下記特許文献1〜2には、微細化に加えて相変化メモリを高集積化する方法として、多層化に関する技術が記載されている。特許文献1には、カルコゲナイド材料からなる記録層とセル選択用のダイオードで構成されたメモリセルが、絶縁層を介して積層された構造が記載されている。特許文献2には、ゲート電極とゲート絶縁膜を複数層積層した積層体に貫通孔を形成し、貫通孔内にゲート絶縁膜、チャネルとなるシリコン層、記録層となるカルコゲナイド層を貫通孔の側面に形成することにより、セル選択用トランジスタと記録素子からなるメモリセルを高さ方向に複数積層する技術が記載されている。高さ方向にメモリセルの積層数を増加させることにより、メモリセルの面積密度を高め、高集積化を実現することができる。
特開2009−158020号公報 WO2011−074545号公報
上記特許文献1は、同文献の図3に示す回路図および図4に示す断面図に記載されているように、書き込み電流または読み出し電流の経路であるワード線とビット線との間には、基板に対する法線方向においてメモリセルが1つのみ接続されている。同文献では、ワード線/メモリセル/ビット線を含む層構造を積層することにより、メモリセルを多層化している。
一方、同文献においてワード線およびビット線と周辺回路を接続するためには、異なる層間を接続するコンタクト配線を、記憶素子が配置されている領域とは別に配置する必要がある。積層数が増加すると、これにともなってコンタクト配線を配置する領域も増加する。さらに、書き込み電流による電圧降下を低減するため、コンタクト配線を配置する領域の面積を確保して寄生抵抗を低減する必要がある。したがって、積層数を増加させても配線領域がこれにともなって増加するため、記憶素子の面積密度の増加分が十分ではないと考えられる。
上記特許文献2は、同文献2の図4に示す断面図および図5に示す回路図に記載されている通り、ワード線とビット線の間にメモリセルを複数積層しているため、メモリセルの積層数を増加させてもワード線とビット線の本数は増加しない。また、メモリセルを制御するゲート配線は情報を読み書きするための電流経路ではないため、寄生抵抗による電圧降下の影響は小さい。したがって多数のメモリセルを1つのゲート配線によって制御できるので、ゲート配線を配置する領域が小さくなり、メモリセルの積層数を増加させても周辺回路の面積増加分は小さい。したがって、記憶素子の面積密度を大幅に増加させることができる。
特許文献2に記載されている技術において、メモリセルの選択トランジスタを介してワード線とビット線の間を流れる電流は、選択トランジスタのON抵抗の影響を受けて電圧降下を生じさせるので、選択トランジスタのソース電位は層毎に異なる。したがって、メモリセルのゲート電圧が層に拠らず一定であると仮定すると、ゲート・ソース間電圧が層毎に異なることになる。これにより、メモリセルに情報を読み書きするための電流が層毎にばらつく。
記憶素子の特性がばらつくと、書き込み誤りや読み出し誤りを発生させる恐れがあるため、正常動作範囲に対してばらつきを考慮したマージンを確保する必要が生じる。これは半導体記憶素子の動作電圧を増加させることにつながるため、省電力の観点から望ましくない。
本発明は、上記のような課題に鑑みてなされたものであり、メモリセルを複数直列接続した半導体記憶装置において、記憶素子に供給される電流が層毎にばらつくことを抑えることを目的とする。
本発明に係る半導体記憶装置は、第1信号線と第2信号線の間に複数直列に接続されたメモリセルを備え、メモリセルが備える選択トランジスタのうちいずれか少なくとも2つ以上について、それぞれ異なるゲート電圧を供給する。
本発明に係る半導体記憶装置によれば、記憶素子に供給される電流の層毎のばらつきを抑えることができる。
上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかになるであろう。
実施形態1に係る半導体記憶装置のメモリ回路構成を示す図である。 メモリセル群4が4層のメモリセル3によって構成されている場合の動作原理を示す図である。 実施形態2に係る半導体記憶装置のメモリ回路構成を示す図である。 実施形態3に係る半導体記憶装置のメモリ回路構成を示す図である。 メモリセル群4が4層のメモリセル3によって構成されている場合の動作原理を示す図である。 実施形態4に係る半導体記憶装置のメモリ回路構成を示す図である。 実施形態5に係る半導体記憶装置のメモリ回路構成を示す図である。 実施形態6に係る半導体記憶装置のメモリ回路構成を示す図である。 電圧変換器6の回路例を示す図である。 電圧変換器6の別回路例を示す図である。 選択ゲートドライバ5の回路を示す図である。 選択ゲートドライバ5の別回路例を示す図である。 実施形態9における電圧変換器6の回路例を示す図である。 実施形態9における電圧変換器6の別回路例を示す図である。 半導体記憶装置のメモリセルアレイ部の構成を示す図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、特徴的な構成について説明した箇所は各実施形態に限定されるわけでなく、共通の構成をとる場合には同様の効果を得られることをあらかじめ述べておく。また、実施形態の各メモリセルを構成する回路素子は、特に制限しない場合、公知のCMOS(相補型MOSトランジスタ)等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。
<実施の形態1>
図1は、本発明の実施形態1に係る半導体記憶装置のメモリ回路構成を示す図である。メモリセル3は、相変化型記憶素子1と選択トランジスタ2を並列接続した構成を有し、選択トランジスタ2のドレインとソースに記憶素子1の両端子が接続される。メモリセル群4は、ワード線(電位VWLを有する信号線)とビット線(電位VBLを有する信号線)の間に複数のメモリセル3を直列接続した構成を有する。選択ゲートドライバ5は、各層のメモリセル3に対応してそれぞれ設けられており、電圧変換器6から入力電圧VINの供給を受けて各メモリセル3の選択トランジスタ2を駆動する。メモリセル群4は半導体記憶装置の半導体基板上に法線方向に積層して形成される。これにより、従来の半導体記憶装置と比べて面積あたりの記憶ビット数を増加させることができる。
図1においては省略したが、メモリセル群4は、半導体基板上に複数形成される。ワード線の電位VWLとビット線の電位VBLの間の電位差が生じることにより、1つのメモリセル群4が選択される。さらに選択ゲートドライバ5の制御端子S〜Sのいずれか1つの電位を変化させることにより、その層に対応する選択トランジスタ2のみがカットオフされ、その層においては電流が選択トランジスタ2ではなく記憶素子1を流れる。これにより、1つのメモリセルに対して選択的に情報を書込/消去/読込することができる。
図2は、メモリセル群4が4層のメモリセル3によって構成されている場合の動作原理を示す図である。図2(a)は記憶素子st1のメモリセルが選択されている状態を示し、図2(b)は記憶素子st4のメモリセルが選択されている状態を示す。なお、ワード線電位VWL>ビット線電位VBLとすることによって特定のメモリセル群4が選択されているものとする。
図2(a)の場合、記憶素子st1を有するメモリセルの選択トランジスタをオフにすることにより、記憶素子st1に電流が流れる経路が形成される。その他のメモリセルの選択トランジスタについては、ゲート端子にそれぞれ電圧VG2、VG3、VG4を印加して各選択トランジスタをONにし、記憶素子st2〜st4に電流が流れないようにする。同様に図2(b)の場合、記憶素子st4に対応するメモリセルの選択トランジスタをオフにし、その他のメモリセルの選択トランジスタについては、ゲート端子にそれぞれ電圧VG1、VG2、VG3を印加する。このような動作により、各記憶素子に電流Ist1、Ist4が流れ、メモリセルに対して選択的に情報を書き込み、または読み出すことができる。
記憶素子に大電流を短時間流すと記憶素子が高抵抗となりビット‘0’の状態に消去(リセット)され 、小電流を長時間流すと記憶素子が低抵抗となりビット‘1’の状態に書込(セット)される。記憶素子の状態を読み出すときは、ワード線とビット線の間に消去時/書込時よりも小さい電位差を与え、電流値の差により記憶素子の抵抗値の差異を検出しビット値を再生する。
各選択トランジスタはON抵抗を有するので、電流Ist1やIst4が流れるときに電圧降下が生じる。そのため、各トランジスタのソース電位は層毎に異なる。したがって、各層の選択トランジスタに対して供給するゲート電位VG1〜VG4が全て同じ値である場合、各層のゲート−ソース間電圧VGSは層毎に異なることになる。具体的には、VGS4が最も高く、ビット線に近づくにしたがって次第に低くなり、VGS1が最も低い。選択トランジスタのON抵抗はVGSに依拠するので、層毎にON抵抗がばらつき、その結果として各層の記憶素子に流れる電流が層毎に異なることになるので、書き込み誤差や読み込み誤差が生じる可能性が高くなってしまう。
そこで、電圧変換器6と選択ゲートドライバ5は、メモリセル毎に異なるゲート電位を供給し、各選択トランジスタのゲート−ソース間電圧VGSが同一となって各記憶素子に流れる電流が層毎に同じになるようにする。具体的には、電圧変換器6は入力電圧VDDに基づき各層に対応する電圧VIN1〜VINnを生成し、各層に対応する選択ゲートドライバ5にそれぞれ供給する。選択ゲートドライバ5は、メモリセルの選択/非選択を指示する論理信号をそれぞれ制御端子S〜Sから受け取り、これにしたがって各層の選択トランジスタに対してゲート電位Vを供給する。メモリセルを選択する場合はゲート電位を接地電位とし、選択しない場合は入力電圧VINをゲート電位として供給する。
<実施の形態1:まとめ>
以上のように、本実施形態1に係る半導体記憶装置は、各層のメモリセルの選択トランジスタに対してそれぞれ異なるゲート電圧を供給することにより、記憶素子に流れる電流の層毎のばらつきを低減することができる。
<実施の形態2>
図3は、本発明の実施形態2に係る半導体記憶装置のメモリ回路構成を示す図である。本実施形態2においては、m個のメモリセル群4が設けられている。図3において、記載の便宜上、ワード線/メモリセル群4/ビット線を含む回路構成を点線で囲み、各メモリセル群4を区別できるようにした。
各メモリセル群4は、ワード線とビット線の間に所定の電位差を選択的に生じさせることにより、選択することができる。例えば、ワード線を基板上のX方向に延伸し、ビット線を基板上のY方向に延伸し、両者が交差する位置に配置されたメモリセル群4を選択することができる。あるいは、いずれかの信号線とメモリセル群4との間に選択スイッチを設けることによっても同様の効果を発揮できる。
本実施形態2において、各メモリセル群4に含まれる選択トランジスタのうち同じ層に配置されているものは、その層に対応する選択ゲートドライバ5に対して並列接続されている。すなわち各選択ゲートドライバ5は、同じ層に配置されている選択トランジスタに対して共通のゲート電圧を供給する。これにより、電圧変換器6と選択ゲートドライバ5の回路占有面積および消費電力を小さく抑えることができるので、メモリセルの面積密度を向上させることに資する。
<実施の形態3>
図4は、本発明の実施形態3に係る半導体記憶装置のメモリ回路構成を示す図である。本実施形態3において、各選択ゲートドライバ5と対応する選択トランジスタを結ぶ信号線に対して並列に、コンデンサ7によって構成された遅延回路が設けられている。その他の構成は、実施形態1と同様である。
図5は、メモリセル群4が4層のメモリセル3によって構成されている場合の動作原理を示す図である。図5(a)は、コンデンサ7を設けていない場合におけるゲート電位VGの立ち下りと記憶素子電流Istの立ち上りの様子を示す。図5(b)は、コンデンサ7を設けた場合におけるゲート電圧VGの立ち下りと記憶素子電流Istの立ち上りの様子を示す。
ゲート電位VGを立ち下げるとき、ゲート端子の入力寄生容量、選択ゲートドライバ5の寄生容量、配線容量などによって定まる傾きでゲート電位VGが降下する。実施形態1で説明したように、本発明に係る半導体記憶装置は、各層にそれぞれ異なるゲート電位VGを供給するので、各ゲート電位VGが同じ傾きで降下すると、図5(a)に示すように立ち下がり時間がそれぞれ異なることになる。すなわち、最も低いゲート電位VG1で制御される電流Ist1が最も速く立ち上がり、最も高いゲート電位VG4で制御される電流Ist4が最も遅く立ち上がる。
相変化材料は、電流を供給する時間に応じてその状態が変化して情報を記憶するため、メモリセル毎に電流の立ち上がり時間が異なる場合、各層を同じように制御すると記憶素子の状態がメモリセル毎にばらつくことになり、ビット誤りが生じる可能性が高まる。
そこで本実施形態3では、コンデンサ7を設けて立ち下がりが速いゲート電位を遅延させることにより、各メモリセルに流れる電流の立ち上がり時間を揃えることにした。具体的には、最も速く立ち下がるゲート電位VG1に対応するコンデンサ7の容量を最も大きくし、以下上方に向かって容量を次第に小さくし、ゲート電位VG4に対応するコンデンサ7の容量を最も小さくする。これにより、図5(b)に示すように、各層のゲート電位VGが同じ遅延時間で立ち下がり、よって記憶素子に流れる電流も同じ遅延時間で立ち上がる。
<実施の形態3:まとめ>
以上のように、本実施形態3に係る半導体記憶装置は、ゲート電位の立ち下がりを遅延させる遅延回路を層毎に設けることにより、記憶素子に供給する電流の立ち上り時間を各層について揃えることができる。これにより、メモリセル毎に異なる電流が供給されることによって記憶素子の状態がばらつくことを抑えることができる。
なお、ゲート電位VGの立ち下がりを遅延させて記憶素子に流れる電流の立ち上がりを揃えることができれば、図4に示した以外の回路構成を採用することもできる。例えばコンデンサ7に代えてインダクタンスを用いることが考えられる。その他、ゲート電位の立ち下がり勾配は変更せず、選択ゲートドライバ5に入力する制御信号のタイミングを、制御回路側で遅延させるようにしてもよい。図5に示す例においては、ゲート電位VG1を立ち下げ始めるタイミングを最も遅くし、ゲート電位VG4を立ち下げ始めるタイミングを最も早くすればよい。
コンデンサ7やインダクタンスを設ける位置は特に限定されないが、電圧変換器6や選択ゲートドライバ5を実装する回路基板上に設けるのが最も簡易な実装であると考えられる。
<実施の形態4>
図6は、本発明の実施形態4に係る半導体記憶装置のメモリ回路構成を示す図である。本実施形態4においては、実施形態2で説明した回路構成において、実施形態3で説明したコンデンサ7を各層に配置した。これにより、電圧変換器6と選択ゲートドライバ5を共通化して回路面積を抑えつつ、ゲート電位の立ち下がり時間を各層について揃えることができる。
特に、選択ゲートドライバ5を複数のメモリセル群4について共通化して場合、信号線などの寄生容量が増大して層毎の遅延時間のばらつきが大きくなるので、実施形態3の図5で説明した課題が顕在化し易い。そこで、実施形態3で説明したコンデンサ7による遅延回路(あるいは同様の効果を発揮する回路構成)を導入することにより、実施形態2の効果を活かすことができる。
<実施の形態5>
図7は、本発明の実施形態5に係る半導体記憶装置のメモリ回路構成を示す図である。本実施形態5においては、メモリセル群4内の隣接する複数のメモリセル3をセットにして共通のゲート電圧を供給することとした。図7に示す例においては、選択ゲートドライバ5に供給する入力電圧VIN1〜VINkは出力端子VB1が出力する電圧をもって共有化し、これらに対応するゲート電圧VG1〜VGkは共通になっている。同様に入力電圧VINn−x〜VINnは出力端子VBjが出力する電圧をもって共通化し、これらに対応するゲート電圧VGn−x〜VGnは共通になっている。同一のゲート電位を用いるメモリセルの個数やセット数は任意でよい。
同一のゲート電位を用いるメモリセル3は、実施形態1で説明したようにゲート−ソース間電圧が層毎に異なることになるので、記憶素子に流れる電流が層毎にばらつく。ただしそのばらつきを許容できる範囲については、図7に示すように同一のゲート電位を用いても支障は生じないと考えられる。したがって、電圧変換器6の出力端子数を減らすことにより、電圧変換器6の回路占有面積と消費電力を低減することができる。
<実施の形態6>
図8は、本発明の実施形態6に係る半導体記憶装置のメモリ回路構成を示す図である。本実施形態6では、実施形態2で説明した回路構成の下で実施形態5と同様にメモリセル群4内の隣接する複数のメモリセル3をセットにして共通のゲート電圧を供給することとした。これにより、実施形態2と同様に電圧変換器6と選択ゲートドライバ5の回路占有面積および消費電力を小さく抑えつつ、さらに電圧変換器6の出力端子数を減らして電圧変換器6の回路占有面積と消費電力を低減することができる。
<実施の形態7>
本発明の実施形態7では、電圧変換器6の回路例について説明する。その他の構成については実施形態1〜6と同様である。
図9は、電圧変換器6の回路例を示す図である。図9に示す電圧変換器6は、複数のトランジスタ9と電流源8を備える。各トランジスタ9はそれぞれのゲート端子とドレイン端子を互いに接続したダイオード接続を構成しており、電流源8によって生じる電流に応じてドレイン−ソース間に一定の電圧を生じる。各トランジスタ9のソース電圧VINを出力端子に取り出すことにより、ほぼ一定間隔の電位差を有する複数の電圧を出力することができる。図9に示す回路例は、抵抗を用いて電位差を生成する方法と比べて占有面積が小さいという利点がある。また、電流源8は半導体集積回路において用いられる一般的な回路により実現できる。
図10は、電圧変換器6の別回路例を示す図である。図10に示す電圧変換器6は、複数の抵抗10と電流源8を備える。電流源8によって生じる電流に応じて各抵抗10の両端に一定の電圧を生じる。各抵抗10の両端電圧を出力端子に取り出すことにより、複数の異なる電圧を得ることができる。抵抗10を用いることにより、図9に示す回路と比べて出力電圧を自由に設計することができるので、ばらつきを低減し易い。
<実施の形態8>
本発明の実施形態8では、選択ゲートドライバ5の回路例について説明する。その他の構成については実施形態1〜7と同様である。
図11は、選択ゲートドライバ5の回路を示す図である。図11に示す選択ゲートドライバ5は、NMOS(N−channel Metal Oxide Semiconductor)トランジスタ11aおよび11bとインバータ12を備える。インバータ12は、制御電圧を反転してNMOSトラジスタ11aのゲート端子に入力する。NMOSトランジスタ11bのゲート端子には制御電圧が入力される。制御電圧がメモリセル選択を表す高電位のとき、NMODトランジスタ11aは非導通、NMOSトランジスタ11bは導通となり出力電圧は接地電圧となる。制御電圧がメモリセル非選択を表す低電位のとき、NMOSトランジスタ11aは導通、NMOSトランジスタ11bは非導通となり、出力電圧は入力電圧と同じとなる。この動作により、少ない素子数で選択ゲートドライバ5を実現できる。
図12は、選択ゲートドライバ5の別回路例を示す図である。図12に示す選択ゲートドライバ5は、NMOSトランジスタ11aおよび11b、インバータ12、PMOSトランジスタ13を備える。インバータ12は、制御電圧を反転してNMOSトラジスタ11aのゲート端子に入力する。PMOSトランジスタ13のゲート端子とNMOSトランジスタ11bのゲート端子には制御電圧が入力される。制御電圧がメモリセル選択を表す高電位のとき、NMOSトランジスタ11aとPMOSトランジスタは非導通、NMOSトランジスタは導通となり出力電圧は接地電圧となる。制御電圧がメモリセル非選択を表す低電位のとき、NMOSトランジスタ11aとPMOSトランジスタ13は導通、NMOSトランジスタ11bは非導通となり、出力電圧は入力電圧と同じとなる。PMOSトランジスタ13を新たに接続することにより、NMOSトランジスタ11aは閾値電圧よりも低い入力電圧において導通するので、図11に示す回路よりも広い範囲の出力電圧を提供することができる。
<実施の形態9>
メモリセル3の特性は、周囲温度に影響を受けて変動する。特に、選択トランジスタ2を導通させるために必要なゲート−ソース間電圧が温度に応じて変動し、記憶素子1に流れる電流に影響を与える。そこで本発明の実施形態9では、メモリセル3が備える選択トランジスタ2の温度に応じてゲート電位VGを調整することにより、記憶素子1に流れる電流が温度により変動することを抑制する構成例について説明する。その他の構成については実施形態1〜6、8と同様である。
図13は、本実施形態9における電圧変換器6の回路例を示す図である。本実施形態9において、電流源8に代えて出力電圧を制御することができる電流源14を設けた。電流源14の制御端子には、温度検知回路15が接続されている。温度検知回路15と電流源8は、半導体集積回路において一般的に知られているバンドギャップリファレンス(BGR)と同様の回路構成を用いることができる。例えば、温度検知回路15としてバンドギャップリファレンス回路を用い、電流源14としてバンドギャップリファレンス回路に接続されるカレントミラー回路を用いることができる。
図13に示す回路構成によれば、温度検知回路15を用いて選択トランジスタ2周辺の温度を検知し、その温度に応じて電流源14の出力電圧を調整することにより、電圧変換器6が出力する電圧VINを調整することができる。これにより、選択トランジスタ2を導通させるために必要なゲート−ソース間電圧に合わせて、記憶素子1に流れる電流を調整し、温度によらず一定の素子電流を供給することができる。
図14は、本実施形態9における電圧変換器6の別回路例を示す図である。図14に示す電圧変換器6は、図10で説明した回路構成における電流源8を電流源14に置き換えるとともに、その制御端子に温度検知回路15を接続した。図14に示す回路構成によれば、図13に示すダイオード接続されたトランジスタと比べて温度依存性の小さい抵抗を用いているため、温度によるばらつきをさらに抑制することができる。
<実施の形態10>
本発明の実施形態10では、本発明に係る半導体記憶装置のメモリセル3周辺の具体的な積層構造について説明する。ここでは、ワード線をプレート状に形成してメモリセル群4間で共有し、ビット線と選択トランジスタSttr.によっていずれかのメモリセル群4を選択する構成を例示する。
図15は、本発明に係る半導体記憶装置のメモリセルアレイ部の構成を示す図である。図15(a)は半導体記憶装置の一部の立体模式図、図15(b)は図15(a)のXZ断面図である。
電極103は、X方向に延伸し、メモリセル群4を含む相変化メモリチェインPCMCHAINをY方向において選択するビット線(選択電極)として動作する。電極103の下方には、選択トランジスタ2のゲート電極となるゲートポリシリコン層121p、122p、123p、124pと、絶縁膜111、112、113、114、115とが交互に積層された積層体が配置されている。積層体に形成されたZ方向の孔内には、相変化メモリチェインPCMCHAINが形成されている。選択トランジスタSTTr.は、ゲート電極181p、ゲート絶縁膜110、チャネル半導体層150pを有する。選択トランジスタSTTr.の周囲には、絶縁膜171、172、131が配置されている。プレート状の電極102は、選択トランジスタSTTr.の下部に配置されている。N型半導体層138pは、電極103とPCMCHIANを電気的に接続する。絶縁膜192は、電極103とPCMCHIANの間に形成されている。N型半導体層160pは、電極102とチャネル半導体層150pを電気的に接続する。積層体の孔内に形成されたPCMCHAINは、ゲート絶縁膜109、チャネル半導体層108p、相変化材料層107、絶縁膜191を有する。
図15において、X方向に延伸するビット線103、Y方向に延伸する選択トランジスタSttr.のゲート電極181pは、最小加工寸法をFとしてそれぞれ2Fピッチ、3Fピッチで形成することができる。すなわち、XY面内における投影面積6Fのメモリセルを形成することができる。
相変化材料層107としては、例えばGeSbTeなどのように、アモルファス状態における抵抗値と結晶状態における抵抗値が異なることを利用して情報を記憶する材料を用いることができる。高抵抗の状態であるアモルファス状態から低抵抗の状態である結晶状態に変化させる動作、すなわちセット動作は、アモルファス状態の相変化材料を結晶化温度以上に加熱し10−6秒程度以上保持して結晶状態にすることにより実施する。結晶状態の相変化材料は、融点以上の温度まで加熱し液体状態にした後、急速に冷却することにより、アモルファス状態にすることができる。
図15に示す構造例においては、4段のメモリセル3が形成されている。図15(b)の点線で囲む相変化メモリセルSMCが、メモリセル3に相当する。記憶素子1は、各層の相変化材料層107によって形成される。選択トランジスタ2は、貫通穴の側面に形成されたチャネル半導体層108pとゲートポリシリコン層121p〜124pによって形成される。
本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることもできる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の構成を追加・削除・置換することもできる。
1:記憶素子、2:選択トランジスタ、3:メモリセル、4:メモリセル群、5:選択ゲートドライバ、6:電圧変換器、7:コンデンサ、8:電流源、9:トランジスタ、10:抵抗、11a〜11b:NMOSトランジスタ、12:インバータ、13:PMOSトランジスタ、14:電流源、15:温度検知回路。

Claims (10)

  1. 第1および第2信号線と、
    トランジスタと抵抗変化素子を並列接続して構成され、前記抵抗変化素子の状態変化によって情報を記憶するメモリセルと、
    前記トランジスタにゲート電圧を供給するドライバ回路と、
    を備え、
    前記メモリセルは、前記第1および第2信号線の間に複数直列に接続されており、
    前記ドライバ回路は、各前記メモリセルが備える前記トランジスタのうちいずれか少なくとも2つ以上について、それぞれ異なるゲート電圧を供給し、
    前記ドライバ回路は、
    各前記メモリセルが備える前記トランジスタに供給するゲート電圧のうち、
    前記第1信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して最も低いゲート電圧を供給し、
    前記トランジスタが配置されている位置が前記第2信号線に近くなるにしたがって、前記トランジスタに対して供給するゲート電圧を次第に高くし、
    前記第2信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して最も高いゲート電圧を供給し、
    前記ドライバ回路は、全ての前記メモリセルが備える前記トランジスタについて、同じ立ち下がり時間でゲート電圧を立ち下げる
    ことを特徴とする半導体記憶装置。
  2. 請求項において、
    前記ドライバ回路は、
    各前記メモリセルが備える前記トランジスタに供給するゲート電圧のうち、
    前記第1信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給するゲート電圧を最も緩やかに立ち下げ、
    前記トランジスタが配置されている位置が前記第2信号線に近くなるにしたがって、前記トランジスタに対して供給するゲート電圧を立ち下げる勾配を次第に大きくし、
    前記第2信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給するゲート電圧を最も急峻に立ち下げる
    ことを特徴とする半導体記憶装置。
  3. 請求項において、
    前記ドライバ回路は、各前記メモリセルが備える前記トランジスタのうちいずれか少なくとも2つ以上との間において、前記ゲート電圧を遅延させる遅延回路を備え、
    前記遅延回路は、前記ドライバ回路が各前記トランジスタに対して供給するゲート電圧の立ち下がり時間が全て同じになるように構成されている
    ことを特徴とする半導体記憶装置。
  4. 請求項において、
    前記遅延回路は、
    各前記メモリセルが備える前記トランジスタに供給するゲート電圧のうち、
    前記第1信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給されるゲート電圧が最も緩やかに立ち下がり、
    前記トランジスタが配置されている位置が前記第2信号線に近くなるにしたがって、前記トランジスタに対して供給されるゲート電圧が立ち下がる勾配が次第に大きくなり、
    前記第2信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給されるゲート電圧が最も急峻に立ち下がる
    ように構成されていることを特徴とする半導体記憶装置。
  5. 請求項において、
    前記遅延回路は、
    各前記メモリセルが備える前記トランジスタのうちいずれか少なくとも2つ以上との間においてそれぞれ配置されたコンデンサを用いて構成されており、
    各前記コンデンサは、
    前記第1信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタとの間において配置されたものが最も容量が大きく、
    前記トランジスタが配置されている位置が前記第2信号線に近くなるにしたがって、前記トランジスタとの間に配置された前記コンデンサの容量が次第に小さくなり、
    前記第2信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタとの間において配置されたものが最も容量が小さい
    ように構成されていることを特徴とする半導体記憶装置。
  6. 請求項において、
    前記ドライバ回路は、
    各前記メモリセルが備える前記トランジスタに供給するゲート電圧のうち、
    前記第1信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給するゲート電圧を最も遅れて立ち下げ、
    前記トランジスタが配置されている位置が前記第2信号線に近くなるにしたがって、前記トランジスタに対して供給するゲート電圧を立ち下げ始めるタイミングを次第に早くし、
    前記第2信号線に最も近い位置に配置された前記メモリセルが備える前記トランジスタに対して供給するゲート電圧を最も先に立ち下げる
    ことを特徴とする半導体記憶装置。
  7. 請求項1において、
    前記ドライバ回路は、各前記メモリセルが備える前記トランジスタのうちいずれか少なくとも2つ以上について、それぞれ同じゲート電圧を供給する
    ことを特徴とする半導体記憶装置。
  8. 請求項1において、
    前記半導体記憶装置は、
    前記複数直列に接続されたメモリセルを有するメモリセル群を複数備え、
    前記ドライバ回路は、
    各前記メモリセル群内に含まれる前記メモリセルのうち、前記第1信号線または前記第2信号線から数えて同じ段に配置されているものに対しては、共通の前記ゲート電圧を供給するように接続されている
    ことを特徴とする半導体記憶装置。
  9. 請求項1において、
    前記半導体記憶装置は、前記トランジスタの温度を検知する温度検知回路を備え、
    前記ドライバ回路は、前記温度検知回路が検知した前記トランジスタの温度に応じて前記ゲート電圧を調整することにより、前記トランジスタの温度によらず一定の前記ゲート電圧を前記トランジスタに対して供給する
    ことを特徴とする半導体記憶装置。
  10. 請求項1において、
    前記メモリセルは、ゲート電極層を積層した積層体を貫通する貫通孔の側面に、抵抗変化材料層とチャネル層を形成することによって構成されている
    ことを特徴とする半導体記憶装置。
JP2014536476A 2012-09-20 2012-09-20 半導体記憶装置 Expired - Fee Related JP5886974B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074080 WO2014045372A1 (ja) 2012-09-20 2012-09-20 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP5886974B2 true JP5886974B2 (ja) 2016-03-16
JPWO2014045372A1 JPWO2014045372A1 (ja) 2016-08-18

Family

ID=50340728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536476A Expired - Fee Related JP5886974B2 (ja) 2012-09-20 2012-09-20 半導体記憶装置

Country Status (3)

Country Link
US (1) US9361978B2 (ja)
JP (1) JP5886974B2 (ja)
WO (1) WO2014045372A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985213B2 (en) 2019-05-29 2021-04-20 Samsung Electronics Co., Ltd. Nonvolatile memory device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585703B2 (en) 2019-12-02 2023-02-21 Globalfoundries Singapore Pte. Ltd. On-chip temperature sensing with non-volatile memory elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272975A (ja) * 2003-03-06 2004-09-30 Sharp Corp 不揮発性半導体記憶装置
JP2011114016A (ja) * 2009-11-24 2011-06-09 Toshiba Corp 半導体記憶装置
JP2012074542A (ja) * 2010-09-29 2012-04-12 Hitachi Ltd 不揮発性記憶装置およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063337B2 (ja) 2007-12-27 2012-10-31 株式会社日立製作所 半導体装置
JP5259270B2 (ja) * 2008-06-27 2013-08-07 ルネサスエレクトロニクス株式会社 半導体装置
US8238161B2 (en) * 2008-11-17 2012-08-07 Samsung Electronics Co., Ltd. Nonvolatile memory device
TWI492432B (zh) 2009-12-17 2015-07-11 Hitachi Ltd Semiconductor memory device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272975A (ja) * 2003-03-06 2004-09-30 Sharp Corp 不揮発性半導体記憶装置
JP2011114016A (ja) * 2009-11-24 2011-06-09 Toshiba Corp 半導体記憶装置
JP2012074542A (ja) * 2010-09-29 2012-04-12 Hitachi Ltd 不揮発性記憶装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985213B2 (en) 2019-05-29 2021-04-20 Samsung Electronics Co., Ltd. Nonvolatile memory device

Also Published As

Publication number Publication date
JPWO2014045372A1 (ja) 2016-08-18
US9361978B2 (en) 2016-06-07
WO2014045372A1 (ja) 2014-03-27
US20150221367A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US7274587B2 (en) Semiconductor memory element and semiconductor memory device
US7502252B2 (en) Nonvolatile semiconductor memory device and phase change memory device
US8054679B2 (en) Phase change memory device
US11972830B2 (en) Methods for accessing resistive change elements operable as antifuses
US20090097295A1 (en) Nonvolatile Semiconductor Memory Device
US8456884B2 (en) Semiconductor device
JPWO2004114315A1 (ja) 不揮発性メモリを駆動する方法
US10832771B2 (en) Semiconductor memory device
US8295070B2 (en) Resistance change memory
KR101964488B1 (ko) 전류 순응 회로들을 포함하는 장치들 및 방법들
US8526226B2 (en) Current control apparatus and phase change memory having the same
US9013917B2 (en) Semiconductor memory device
JP2015076556A (ja) メモリ装置、書込方法、読出方法
JP5886974B2 (ja) 半導体記憶装置
US9058856B2 (en) Semiconductor memory device
WO2010004652A1 (ja) 相変化メモリ、半導体装置及びrfidモジュール
US10734075B2 (en) Semiconductor storage device and method of reading data therefrom
KR101051166B1 (ko) 상 변화 메모리 장치
KR100609527B1 (ko) 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
US11386967B2 (en) Voltage generator and memory device including the same
US10734449B2 (en) Storage device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160212

R151 Written notification of patent or utility model registration

Ref document number: 5886974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees