JP5876147B2 - 複合トルク型回転電機 - Google Patents
複合トルク型回転電機 Download PDFInfo
- Publication number
- JP5876147B2 JP5876147B2 JP2014518113A JP2014518113A JP5876147B2 JP 5876147 B2 JP5876147 B2 JP 5876147B2 JP 2014518113 A JP2014518113 A JP 2014518113A JP 2014518113 A JP2014518113 A JP 2014518113A JP 5876147 B2 JP5876147 B2 JP 5876147B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- slit
- axis
- rotor
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000001875 compounds Chemical class 0.000 title description 2
- 230000004907 flux Effects 0.000 claims description 90
- 230000002093 peripheral effect Effects 0.000 claims description 77
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 35
- 239000002131 composite material Substances 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 19
- 239000000696 magnetic material Substances 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000010349 pulsation Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000005672 electromagnetic field Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
本発明は、フェライト磁石等の低残留磁束密度の永久磁石を用いた複合トルク型回転電機に関する。
永久磁石を回転子に埋設した同期電動機において、永久磁石による磁極中心軸をd軸と呼び、d軸に対し電気的,磁気的に直交する軸をq軸と呼ぶ。従来構造として、d軸方向に複数個の永久磁石を埋設した例が知られている(例えば、特許文献1参照)。また、リラクタンストルクを併合した永久磁石型回転電機の構造として特許文献2が知られている。さらに、特許文献3には、大きなリラクタンストルクを得ながら永久磁石の個数を低減して構成の簡略化を図った永久磁石式回転機の回転子が示されている。
複合トルク型回転電機は、固定子の電機子巻線で生成される電機子磁束によるリラクタンストルクと、永久磁石の磁石磁束によるマグネットトルクを併合することにより高トルク化を実現する。
特許文献1に示される従来構造は、d軸方向に複数個の永久磁石を埋設している。しかしながら、永久磁石を埋設する構造のため、永久磁石の外周側となる回転子の外周部の全域にわたり鉄心が存在し、この鉄心部分に固定子の電機子巻線で生成される閉ループの電機子磁束の空間高調波が、容易に流入する構造となっている。この閉ループの空間高調波は、リラクタンストルクにほとんど寄与しないが、固定子および回転子の鉄心を通過することにより鉄心の磁気飽和傾向を増大させるため、結局リラクタンストルクに寄与する有効な磁束量が十分に得られていなかった。
また、リラクタンス効果をより増大させる目的で、磁束が一方のq軸方向より容易に流入するように、永久磁石間を大幅に開口した構造となっている(特許文献1、図2)。そして、この一方のq軸方向より流入した磁束は、d軸上の内周側に埋設されている永久磁石のさらに内周側を通過し、他方のq軸方向より流出する。しかし、この経路は磁路が長くなるため磁気抵抗が増大し、これに伴い磁気損失が増大するという問題があった。
更に、q軸方向の鉄心部の永久磁石間を大幅に開口させてスペースを必要とするため、永久磁石の寸法、および配置に制約を受けて多極化が困難となり、多極化のためには回転子の体格を大きくする必要があった。また、q軸方向の鉄心部の永久磁石間を大幅に開口させることにより、d軸の複数個の永久磁石の夫々の寸法を縮小する必要があり、マグネットトルクを十分に得られなかった。
特許文献2の従来構造は、リラクタンストルクを併合した永久磁石型回転電機の構造として、代表的な構造である。この構造でのリラクタンストルクは、永久磁石より外周側の鉄心部で発生する。該鉄心部における磁気飽和を緩和するため、永久磁石をより内周側に寄せて配置して鉄心部の寸法を大きくしているが、この場合、永久磁石の回転子の周方向の長さが短縮され、マグネットトルクが減少することになる。
永久磁石を用いた回転電機では、マグネットトルクの増大や永久減磁の回避のために、特に回転子外周側に位置する永久磁石にはネオジム磁石が用いられるが、希土類金属であるネオジムやディスプロシムの入手性は非常に悪く、また非常に高価である。一方、フェライト磁石は、入手性が良く安価であるが、低磁力であるためマグネットトルクが低く、また低保持力のため容易に永久減磁するという問題があった。
特許文献3には、大きなリラクタンストルクを得ながら、永久磁石の個数を低減して構成の簡略化を図った永久磁石式回転機の回転子が示されている。しかしながら、固定子からの磁束の磁路が、外周側に位置する永久磁石の長手方向の端部と径方向に位置する永久磁石との間を通って、台形状の内側を経て、その永久磁石の長手方向の他の端部と隣に位置する永久磁石との間を抜ける経路をとることになる、と記載されているように、固定子からの磁束が台形状の内側をショートカットすることになる。このため、台形状の内側の鉄心部で磁束の飽和が起きやすく、磁気抵抗が増加する。
本発明は、上記の課題に鑑みてなされたもので、固定子の電機子巻線で生成される電機子磁束を複数のスリットからなる整流手段で整流することにより、フェライト磁石等の低残留磁束密度の永久磁石を用いた複合トルク型回転電機の高トルク化を図ったものである。
上記目的を達成するために、本発明の複合トルク型回転電機は、一定間隔で周方向の複数箇所に電機子巻線が配置される固定子と、
電磁鋼板を積層した円筒状の鉄心からなる回転子と、
d軸上であって、前記回転子の外周部に周方向に複数配置される第1の永久磁石と、
d軸上であって、前記回転子の内周側において、前記外周側の永久磁石と対向して複数配置される第2の永久磁石と、
q軸上であって、前記回転子の径方向に長手方向に延伸する第3の永久磁石と、
複数の前記第1の永久磁石の周方向の中間であって、前記第3の永久磁石の外周側に設けられる空隙部とを備え、
前記第1の永久磁石と前記第2の永久磁石との間の径方向の距離が、前記第1の永久磁石と前記空隙部との間の周方向距離より大であり、
前記第1の永久磁石と前記空隙部との間に複数のスリットからなる整流手段を備えたことを特徴とする。
電磁鋼板を積層した円筒状の鉄心からなる回転子と、
d軸上であって、前記回転子の外周部に周方向に複数配置される第1の永久磁石と、
d軸上であって、前記回転子の内周側において、前記外周側の永久磁石と対向して複数配置される第2の永久磁石と、
q軸上であって、前記回転子の径方向に長手方向に延伸する第3の永久磁石と、
複数の前記第1の永久磁石の周方向の中間であって、前記第3の永久磁石の外周側に設けられる空隙部とを備え、
前記第1の永久磁石と前記第2の永久磁石との間の径方向の距離が、前記第1の永久磁石と前記空隙部との間の周方向距離より大であり、
前記第1の永久磁石と前記空隙部との間に複数のスリットからなる整流手段を備えたことを特徴とする。
また、上記に記載の複合トルク型回転電機において、前記複数のスリットは、スリット間の間隔が、外周側の間隔より内周側の間隔の方が長いことを特徴とする。
また、上記に記載の複合トルク型回転電機において、前記複数のスリットは、前記第1の永久磁石に近い第1のスリットがq軸と平行であり、q軸に最も近い第2のスリットがd軸と平行であることを特徴とする。
また、上記に記載の複合トルク型回転電機において、前記第1のスリットと前記第2のスリットとの間に配設されるスリットが前記第1のスリットの中心軸と前記第2のスリットの中心軸との交点を中心として振り分けられていることを特徴とする。
また、上記に記載の複合トルク型回転電機において、前記第1のスリットと前記第2のスリットとの間に配設されるスリットが前記第1のスリットの中心軸と前記第2のスリットの中心軸との交点を中心とし、均等な角度で振り分けられていることを特徴とする。
また、上記に記載の複合トルク型回転電機において、前記複数のスリットの内部に非磁性体が封入されていることを特徴とする。
本発明によれば、フェライト磁石等の低残留磁束密度の永久磁石を用いた永久磁石回転電機において、電機子磁束によるリラクタンストルクと永久磁石によるマグネットトルクの複合トルクの高トルク化を実現することができる。
本発明の実施形態は、下記の(a)〜(f)の各構成から得られるそれぞれの作用を考慮している。
(a)回転子のd軸上の外周側に、固定子のティースに配置される電機子巻線で生成される電機子磁束の流入出を遮断する、磁束遮断手段の役割をする永久磁石を配置する。
(b)内周側に隣接磁極間での磁束短絡の防止および磁路の整流の役割をする矩形形状の永久磁石を配置する。
(c)回転子のq軸上に、隣接磁極との短絡磁束防止の役割をする永久磁石を配置する。
(d)この永久磁石の外周側端部に、内周側が長辺,外周側が短辺である台形形状の空隙を形成する。
(e)回転子のd軸上の外周側に位置する永久磁石と、q軸上の永久磁石および台形形状の空隙との間は、固定子から回転子に磁束が容易に流入するよう間隔が広く設けられている。
(f)上記間隔が広く設けられている部分の鉄心に、複数のスリットからなる整流手段を形成する。
(a)回転子のd軸上の外周側に、固定子のティースに配置される電機子巻線で生成される電機子磁束の流入出を遮断する、磁束遮断手段の役割をする永久磁石を配置する。
(b)内周側に隣接磁極間での磁束短絡の防止および磁路の整流の役割をする矩形形状の永久磁石を配置する。
(c)回転子のq軸上に、隣接磁極との短絡磁束防止の役割をする永久磁石を配置する。
(d)この永久磁石の外周側端部に、内周側が長辺,外周側が短辺である台形形状の空隙を形成する。
(e)回転子のd軸上の外周側に位置する永久磁石と、q軸上の永久磁石および台形形状の空隙との間は、固定子から回転子に磁束が容易に流入するよう間隔が広く設けられている。
(f)上記間隔が広く設けられている部分の鉄心に、複数のスリットからなる整流手段を形成する。
上記の各構成を必要に応じて採用することにより、高トルク化を図った回転電機を得ることができる。例えば、回転子の内部において、永久磁石で磁極の縁を囲むように永久磁石を配置することにより、より多くの磁石磁束を得ることができるため、マグネットトルクを最大限に利用することができる。
また、回転子のd軸の外周側に位置する永久磁石,q軸の外周側に位置する台形形状の空隙、およびその間に形成される複数のスリットにより、回転子鉄心の外周側の全周領域において、電機子磁束の空間高調波を遮断することが可能となり、固定子および回転子における磁気飽和傾向を抑制することが可能となるため、トルクに有効な磁束量を増幅させることができ、高トルク化が可能となる。
また、フェライト磁石等の低残留磁束密度の永久磁石を使用して高トルク化を行なう場合、リラクタンストルクをより多く利用することが必要となる。リラクタンス型の回転電機の場合、d軸方向とq軸方向とで磁気的な粗密差を拡大させることで、リラクタンストルクを増大させることができるが、この磁気的な粗密差により1周期当りのトルク脈動は一般的には増大する。
本実施態様では、上記スリット群により、磁束が整流されるため、リラクタンストルクの増大化と同時に、トルク脈動の抑制が可能である。また、q軸上の永久磁石の外周側端部に位置する空隙形状を台形形状とすることにより、固定子のティースから流入する磁束を整流することができるため、前述のスリット群と同様の効果が得られる。
また、磁束はd軸上の外周側および内周側に位置する永久磁石と、q軸上に位置する永久磁石とにより囲まれる広い面積の鉄心部を通過するので、磁気抵抗を小さくでき、磁束の磁路は短くなり磁気損失は減少する。また、磁束が該鉄心部を通過する構造とすれば、q軸に沿う永久磁石の配置、および周方向の厚さの制約は緩和されるため、多極化が容易となる。
以下、本発明の実施例の詳細な構造を図面を用いて説明する。なお、本実施例の説明において、特に記載しない限りは、永久磁石は低残留磁束密度のものであり、具体的にはフェライト磁石と称されるものを示している。
(実施例1)
まず、図1〜図2を用いて実施例1の構造を説明する。図1は、複合トルク型回転電機の径方向の断面図であり、図2は、回転子構造の要部拡大図である。なお、図2には、d軸(永久磁石による磁極中心軸)、及び、d軸に対し電磁気的に直交するq軸を、それぞれ一点鎖線で示している。
まず、図1〜図2を用いて実施例1の構造を説明する。図1は、複合トルク型回転電機の径方向の断面図であり、図2は、回転子構造の要部拡大図である。なお、図2には、d軸(永久磁石による磁極中心軸)、及び、d軸に対し電磁気的に直交するq軸を、それぞれ一点鎖線で示している。
本実施例の複合トルク型回転電機は、8極の電機子巻線を有する固定子1と、円筒形の回転子3により構成されている。回転子3の鉄心は、積層された円形の電磁鋼板より構成されており、1つの磁極に3つ以上のフェライト磁石からなる永久磁石が埋設されている。固定子1には内側周方向に渡って複数のティース4が形成されており、各ティース4に電機子巻線2が巻回配置される構造となっている。
図2により回転子3の構造を説明する。回転子3の外周側には、周方向を長手方向とする永久磁石21(第1の永久磁石)が配置されている。この外周側の永久磁石21は、d軸上の外周側に形成された略矩形形状の永久磁石挿入用空洞部11に埋設され、接着剤もしくは樹脂製ゴムで固定されており、d軸に平行となる方向に磁化されている。また、永久磁石挿入用空洞部11は永久磁石21より周方向に長く形成され、永久磁石21の両端部に略三角形状もしくは略台形形状の空隙31が形成されている。
また、回転子3には、q軸に沿って延伸するように永久磁石22(第3の永久磁石)が配置される。この永久磁石22は、q軸上に形成された略矩形形状の永久磁石挿入用空洞部12に埋設され、接着剤もしくは樹脂製ゴムで固定されている。永久磁石22は、q軸に直交する方向に磁化されており、永久磁石21の外周側の面がN極である場合は、その永久磁石21が埋設されているd軸を向く面がN極となるように配置される。これと逆に、永久磁石22が、永久磁石21の外周側の面がS極である場合は、その永久磁石21が埋設されているd軸を向く面がS極となるように配置される。永久磁石22の外周側の端部には台形形状の空隙42が形成されており、内周側の端部には、三角形状もしくは台形形状の空隙32が形成されている。
さらに、回転子3において、永久磁石21より内周側に、周方向を長手方向とする永久磁石23(第2の永久磁石)が配置されている。この内周側の永久磁石23は、d軸の内周側に形成された矩形形状の永久磁石挿入用空洞部13に埋設され、接着剤もしくは樹脂製ゴムで固定されている。永久磁石23は、d軸に平行となる方向に磁化されており、永久磁石21の外周側の面がN極である場合は、永久磁石23の外周側の面はN極となるように配置され、永久磁石21の外周側の面がS極である場合は、永久磁石23の外周側の面はS極となるように配置されている。
上述のように配置することにより、前記永久磁石21〜23は、回転子3上において、台形の各辺上に位置するような配置となる。回転子のd軸上の外周側に位置する永久磁石21と、q軸上の永久磁石22および台形形状の空隙42との間隔Aは、固定子からの電機子磁束を回転子に容易に流入する長さに設定され、前記永久磁石21と23との距離をBとしたとき、距離Aに対して距離Bは大きく設定され、固定子1からの電機子磁束を回転子3に容易に流入させることができる。なお、Aは第1の永久磁石と空隙部との間の周方向距離、Bは第1の永久磁石と第2の永久磁石との間の径方向の距離を示している。
それぞれの永久磁石21〜23の磁化方向については、図2に一例を図示している。すなわち、本実施例では永久磁石21及び永久磁石23は外周側がN極となり、内周側がS極となるように磁化されており、永久磁石22はN極が対向するように磁化されている。
永久磁石22の外周側に位置する台形形状の空隙42と永久磁石21との間の鉄心部には、複数のスリット51a〜51dでスリット群(スリット部)51を構成している。本実施例には4本のスリットが示されているがこれに限らない。これら台形形状の空隙42およびスリット群51は非磁性体(非磁性体部)であり、永久磁石21とともに磁束遮断部を構成する。
スリット群51は、回転子3の外周側に配置されており、より好ましくは、永久磁石21の内周側の角部と台形形状の空隙42の外周側辺の中心とを結ぶ直線よりも外周側に形成されている。このスリット群51を構成する各スリット51a〜51dは、回転子3の周方向に幅細で、径方向に延伸する細長い形状であり、これらが周方向に間隔をおいて複数設けられている。これら各スリット51a〜51dは互いに平行に配置しても良いが、好ましくは、スリット間の幅が、外周側の間隔が狭く、内周側の間隔が広くなるように放射状に配置するのが良い。
上記放射状の配置は、より好ましい形態として、図3に示すようなスリット群51としている。すなわち、永久磁石21に最も近い第1のスリット51aは、q軸と平行になるように形成され、q軸に最も近い第2のスリット51dはd軸と平行になるように形成されている。第1のスリットと第2のスリットとの間に配設されるスリット51b,51cは、第1のスリット51aの中心軸と第2のスリット51dの中心軸との交点55を中心とした角度を、略均等な角度に振り分けた角度に設定することで放射状に配置されている。
また、夫々のスリットの長さは、d軸側のスリットからq軸側のスリットに掛けて、一定の割合で短くなっている。すなわち、スリット51aが最も長く、スリット51dが最も短く、この間のスリット51b、51cが順に短く形成されている。スリット群51の周方向位置については、永久磁石21と台形形状の空隙42との間の略中央に形成されている。各スリットの内部は、空気や樹脂などの非磁性体が封入され、非磁性体の封入では鉄心の強度を高めることができる。
以上説明したような構造を採用することにより、次の作用が期待できる。その第一は、回転子3の外周部分の構造による作用である。本実施例では、回転子の外周側に永久磁石21が配置され、永久磁石21の長手方向両端部には空隙31が設けられている。また、これに隣り合ってスリット群51が存在し、さらに、スリット群51に隣り合って空隙42が存在する。その次に、スリット群51、空隙31、永久磁石21、とこれらが周方向全体に渡って繰り返し存在する。このため、固定子巻線2の周囲のティース4に生じる閉ループの空間高調波(磁束)が、回転子3の外周部の構造によって遮蔽される作用が得られることになる。
そして第二の作用は、固定子巻線2によって発生する電機子磁束のスリット群51による整流手段(案内手段)としての作用である。すなわち、スリット間の幅が、外周側の間隔が狭く、内周側の間隔が広くなるように放射状に配置されることにより、スリット群51を通過するとき、磁束が整流された後、放射状に広がるように案内され、永久磁石21と永久磁石23で挟まれる広い面積の鉄心部72全体に拡散しながら流れる。また、スリット51aが最も長く形成されているため、このスリットの両側の鉄心を通過する磁束をこのスリット51aに沿った方向でより遠くへ案内し、これによって磁束は鉄心部72でショートカットすることなく、全体に拡散するように案内される。
以下、図面を用いてこれらの2つの作用を説明する。
図4に、電機子磁束の空間高調波の概念図を示す。電機子巻線2に通電すると、電機子巻線2の周りに閉ループの電機子磁束が生じる。この電機子磁束には、固定子1の一方のティースより回転子3に流入し、他方の直近のティースより流入する、1スロット周りで閉ループを成す磁束が存在する。これが電機子磁束の空間高調波61であり、出力トルクとは周期が異なるため、出力トルクには寄与しない。しかしながら、鉄心中に磁束が存在するため、固定子1および回転子3の鉄心部における磁気飽和傾向は増進する。すなわち、空間高調波61は、電動機の回転には何ら寄与しないにも関わらず磁気飽和を招くため、トルクに寄与する有効な磁束量が十分に得られなくなり、これを抑制することが必要となる。
図4は、本実施例の構造ではないが、電機子磁束の空間高調波61(図中に実線矢印で示す)は、複数箇所において発生している。また、図4において、中央に位置する電機子巻線2の周りに発生する空間高調波(図中に破線矢印62で示す)は永久磁石21によって遮断されている。
図5に、本実施例における空間高調波の流れの概念図を示す。電機子磁束の空間高調波は、鉄心などの磁性体中を容易に通過するが、通過する磁路上に空気や樹脂などの非磁性体を設けると、これによって遮断される。本実施例では、永久磁石21、スリット群51、台形形状の空隙42を回転子の外周側に配置することにより、空間高調波を遮断している。
また、前述したように、空間高調波は隣接のティースで閉ループを構成する。このため、永久磁石21と台形形状の空隙42の間隔、永久磁石21とスリット群51の間隔、スリット群51と台形形状の空隙42の間隔、およびスリット同士の間隔を、固定子1の隣接するティース間隔(ティースピッチ)よりも狭めることで、効率良く空間高調波61を遮断することができる。換言すれば、回転子3の外周側に配置される永久磁石、あるいは、空隙のような非磁性体の部分(本実施例では空隙31、空隙42、スリット51a〜51d)の配置を次のようにすることで、空間高調波の遮断を可能としている。
永久磁石と非磁性体部との距離、永久磁石とスリット部との間の距離、スリット部と前記空隙との間の距離、スリット同士間の距離Xn(ここで、Xnはn番目の距離で、図ではnの最大が6の例を示す。)を、固定子1のティース4の間隔Y(ティース間隔は一定であるためYとする。)より小さく(Xn<Y)設定する。このように構成すれば、電機子磁束の空間高調波が永久磁石あるいは非磁性体を必ず通過するので、確実に遮断され空間高調波を抑制できる。
図6(a)〜(c)に、回転子3の任意角度における固定子のティース4との位置関係を示す。前述にあるように、少なくともティースの間隔Yよりも間隔Xnを狭めることにより、運転時に固定子のティースと回転子の位置関係が変化しても、空間高調波の磁路上には永久磁石21,スリット群51,台形形状の空隙42が存在するため、どの位置においても空間高調波を遮断することができる。
すなわち、永久磁石21,空隙42,スリット群51は、回転子外周側の周方向に順々に配列され、夫々がトルクに寄与しない電機子巻線周りに発生する各空間高調波を抑制する作用を果たしている。永久磁石部,空隙部,スリット部(スリット群)は、磁束遮蔽部として機能し、これが周方向に延在することで、不要な磁束をカットしている。図6(a)〜(c)に破線62で示されるように、回転子3の回転位置によらず、空間高調波が効果的に遮断されていることが理解できる。
図7により、電動機の電機子磁束の回転子での流れについて述べる。本実施例における回転子3全体における電機子磁束の流れ(実線矢印)を示す図である。固定子1の電機子巻線2より生成される電機子磁束は、d軸方向の流入出が永久磁石21により遮断される。一方、q軸方向については、台形形状の空隙42と永久磁石22で分断されて、電機子磁束が回転子3内に流入する。具体的には、スリット群51の外周側より流入し、永久磁石21と永久磁石23とで挟まれる広い面積の鉄心部72を通過し、他方のスリット群51の外周側より流出する。このように、電機子磁束を分断した状態で流入させることにより、永久磁石21と永久磁石23とで挟まれる広い面積の鉄心部72では磁気飽和することなく、通過する電機子磁束を増大させることができ、磁気抵抗を低減してリラクタンストルクを増大させることができる。
次に永久磁石による磁束を説明する。図8は、永久磁石の磁石磁束の流れを示す図である。d軸上の外周側に位置する永久磁石21の磁化方向を電機子磁束に対向するように配置することにより、磁気的な粗密の格差が拡大し突極性は増大するため、リラクタンストルクを増大させることができる。また、永久磁石22,23の夫々の磁極を向かい合わせることにより、磁石磁束を収束されるため、マグネットトルクを増大することができる。
図9は、本実施例の電磁界解析による磁束分布を示す図であり、上述したスリット群51の作用を説明するための概念図である。リラクタンストルクを積極的に利用して高出力化を図るに当たり、本実施例がスリット群51を備えていることは既に述べた(図1〜図2参照)。このスリット群51が、回転子3と固定子1の間を流出入する磁束の流れを整えて案内する整流手段(案内手段)の作用があることが確認できる。
一般に、磁束は短ループを成すようにその内周側に集中するため、通常は内周側の鉄心部での磁気飽和傾向は増進することになる。本実施例では、スリット群51によって磁束が永久磁石21と永久磁石23とで挟まれる鉄心部72の全体に拡散する流れに整流するように、内周側のスリット間隔が外周側のスリット間隔より大となる形状となっている。磁束は固定子1から回転子3に流入する際に、台形形状の空隙42と永久磁石22により分断され、分断された夫々の磁束70はスリット群51を通過して放射状に広がって、回転子3の広く形成された鉄心部72の全体に拡散される。このことにより鉄心部72での磁気飽和傾向を抑制することができ、回転子全体として磁気抵抗が少なくすることができる効果がある。スリット群51より拡散された磁束71は、他方のスリット群51を通過し回転子より流出するが、一方のスリット群51を通過する際に拡散された磁束は、他方のスリット群51で整流されて集約されるため、突極性が損なわれることはない。
図9に示されるように、永久磁石21と永久磁石23間の距離Bが広く、磁束の流路となる鉄心部72が幅広に形成されている一方、磁束の流出入側、すなわち、永久磁石21の端部と台形形状の空隙42との距離Aが、永久磁石21と永久磁石23間の距離Bより狭いため、流入時にスリット群51の狭小な部分から幅広な部分へと流れて磁束を拡散させ、流出時に磁束を集約するため、効果的に磁束の流れを整えることができる(距離A、距離Bは図2参照)。また、これに加え、前述したスリット群51による磁束の整流作用により、一層効果的に磁束の流れを整えることができる。
前記した磁束の整流作用の検証として、3つの例について電磁界解析を行った。以下、各例の構造と結果を説明する。
図10は、電磁界解析による比較・検討モデルの例を示す図である。図10(a)のケース1は、既に述べた本実施例の構造である。図10(b)のケース2は、永久磁石21と台形形状の空隙42との間に形成される全てのスリットが、q軸と平行に形成されており、また径方向の長さが同一である例である。図10(c)のケース3は、スリット群51がなく、また永久磁石22の外周側の空隙43の形状を矩形とした比較例である。
図11に、図10の各ケースにおける電磁界解析による平均出力トルクおよびトルク脈動の判定表(a)と、(b)〜(d)にその時のトルク波形を示す。平均出力トルクついては、ケース1とケース2で十分なトルクが得られているが、ケース3ではケース1もしくはケース2と比較して5%程度低下する。
トルク脈動については、ケース1が最良で5%程度であり、ケース2では10%以下である。ケース3では20%以上となっている。リラクタンストルクを利用したリラクタンス型の回転電機において、トルク脈動は20%程度が一般的であることからすれば、ケース1およびケース2に形成されているスリット群51、および台形形状の空隙42が非常に効果的であることが分かる。
以上説明したように、永久磁石21,スリット群51,台形形状の空隙42は、空間高調波の抑制に寄与するように設け、この構成によって周方向に流れる磁束をカットすることが有効である(図4〜図6参照)。一方、回転子鉄心内に流入する磁束の整流を意図した形状であることが効果的であることから(図8〜図10参照)、本実施例の夫々のスリットは次のような構成とすることが望ましいといえる。
(1)径方向に沿う方向に長く延伸すること。
(2)回転子の外周側から内周側に向かい、拡がるような配置とすること。
(1)では、磁束の整流作用に大きく寄与することが確認でき(図10、図11のケース1、ケース2参照)、トルク脈動の低減効果も十分に得られる構造となっている。また、(2)のようなスリット配置とすることで、トルク脈動を更に低減することが可能であり(図10、図11のケース1参照)、より好適な構成を実現することができる。
(1)径方向に沿う方向に長く延伸すること。
(2)回転子の外周側から内周側に向かい、拡がるような配置とすること。
(1)では、磁束の整流作用に大きく寄与することが確認でき(図10、図11のケース1、ケース2参照)、トルク脈動の低減効果も十分に得られる構造となっている。また、(2)のようなスリット配置とすることで、トルク脈動を更に低減することが可能であり(図10、図11のケース1参照)、より好適な構成を実現することができる。
以上の本実施例の構造の利点をまとめると次のようになる。電機子電流により生じるリラクタンストルクと、フェライト磁石等の低残留磁束密度の永久磁石によるマグネットトルクとの双方を有効利用することにより、低残留磁束密度の永久磁石での高トルク化が実現できる。
具体的には、d軸上の外周側に永久磁石を埋設し、q軸上の永久磁石とその外周側端部に台形形状の空隙を形成し、d軸上の外周側の永久磁石と台形形状の空隙との間にスリット群を形成し、夫々の周方向の間隔を固定子の隣接するティース間距離よりも狭めて配置することにより、出力トルクに寄与しない電機子磁束の空間高調波を遮断することができ、固定子および回転子の鉄心部における磁気飽和を抑制することができる。つまり、出力トルクに寄与する磁束の量を増幅させることができるため、出力トルクが増大する。
また、q軸上の永久磁石および台形形状の空隙により、磁束が分断されるため、回転子の鉄心部における磁気飽和は緩和される。つまり、上記同様に、出力トルクに寄与する磁束の量を増幅することができるため、出力トルクを増大させることが可能である。
更に、回転子の外周側から内周側に拡がり、d軸からq軸に掛けて一定の割合で短くなるスリット群を設けることにより、リラクタンストルクを利用する際に増大するトルク脈動を大幅に抑制させることができる。
(実施例2)
次に上記の実施例とは異なる例を説明する。図12は、本発明の実施例2に係る複合トルク型回転電機の径方向の断面図であり、図13はその要部拡大図である。図12、図13に示す複合トルク型回転電機は、8極の電機子巻線を有する固定子1と、円筒形の回転子3より構成されている。本実施例構造の回転子3の鉄心は、積層された円形の電磁鋼板より構成されており、1つの磁極に3つ以上の永久磁石が埋設されている。実施例1の永久磁石21に代えてスリット群52が設けられている。
次に上記の実施例とは異なる例を説明する。図12は、本発明の実施例2に係る複合トルク型回転電機の径方向の断面図であり、図13はその要部拡大図である。図12、図13に示す複合トルク型回転電機は、8極の電機子巻線を有する固定子1と、円筒形の回転子3より構成されている。本実施例構造の回転子3の鉄心は、積層された円形の電磁鋼板より構成されており、1つの磁極に3つ以上の永久磁石が埋設されている。実施例1の永久磁石21に代えてスリット群52が設けられている。
永久磁石22は、q軸上に矩形形状の空隙12に埋設され、接着剤もしくは樹脂製ゴムで固定されている。永久磁石22の外周側の端部には台形形状の空隙42が形成されている。内周側の端部には、略三角形状もしくは略台形形状の空隙32が設けられている。
永久磁石23は、d軸上の内周側に矩形形状の空隙13に埋設され、接着剤もしくは樹脂製ゴムで固定されている。永久磁石23は、d軸に対し平行となる方向に磁化されており、永久磁石22のd軸を向く面がN極である場合は、永久磁石23の外周側の面はN極となるように配置され、永久磁石22のd軸を向く面がS極である場合は、永久磁石23の外周側の面はS極となるように配置されている。
スリット群52と永久磁石22の外周側に位置する台形形状の空隙42との間の鉄心部には、複数のスリットによるスリット群51が形成されている。本実施例2においても、実施例1と同様に4本のスリットが示されているが、これに限らないことは自明である。
スリット群52に最も近いスリット51aは、q軸(近接しているq軸)と平行になるように形成され、q軸に最も近いスリット51dは、d軸と平行になるように形成されており、スリット51b,51cは、スリット51aの中心軸とスリット51dの中心軸との交点を中心とし、略均等な角度で振り分けられている(図3参照)。スリット群51における夫々のスリットの長さは、d軸側のスリットからq軸側のスリットに掛けて、一定の割合で短くなっている。スリット群51の周方向位置については、スリット群52と台形の空隙42との間の略中央に形成されている。各スリットの内部は、空気や樹脂などの非磁性体が封入されている。
d軸上の外径側に形成されるスリット群52は、複数の平行なスリットで構成され、実施例1の永久磁石21と同様に磁気遮蔽部を構成し、固定子1の電機子巻線2で生成される電機子磁束の空間高調波61を遮断する作用を成し、実施例1に示される構造と同様の効果が得られる。
1…固定子、2…電機子巻線、3…回転子、4…ティース、11…永久磁石挿入用空洞部、12…永久磁石挿入用空洞部、13…永久磁石挿入用空洞部、21…第1の永久磁石、21、42、51、52…磁気遮蔽部、22…第3の永久磁石、23…第2の永久磁石、31、32、33…空隙、42…台形形状の空隙、51…スリット部(スリット群)、整流手段、51a…第1のスリット、51d…第2のスリット、52…スリット群、61…電機子磁束の空間高調波、62…遮断された電機子磁束の空間高調波、72…鉄心部、A…第1の永久磁石と空隙部との間の周方向距離、B…第1の永久磁石と第2の永久磁石との間の径方向の距離、Xn…永久磁石と非磁性体部との距離、永久磁石とスリット部との間の距離、スリット部と前記空隙との間の距離、スリット同士間の距離、Y…ティースの間隔(ティース間の距離)。
Claims (8)
- 一定間隔で周方向の複数箇所に電機子巻線が配置される固定子と、
電磁鋼板を積層した円筒状の鉄心からなる回転子と、
d軸上であって、前記回転子の外周部に周方向に複数配置される第1の永久磁石と、
d軸上であって、前記回転子の内周側において、前記第1の永久磁石と対向して複数配置される第2の永久磁石と、
q軸上であって、前記回転子の径方向に長手方向に延伸する第3の永久磁石と、
複数の前記第1の永久磁石の周方向の中間であって、前記第3の永久磁石の外周側に設けられる空隙部と、
前記第1の永久磁石と前記空隙部との間に複数のスリットを有する整流手段と、を備え、
前記第1の永久磁石と前記第2の永久磁石との間の径方向の距離が、前記第1の永久磁石と前記空隙部との間の周方向距離より大であり、
複数の前記スリットの長さは、前記第1の磁石に近い一方のスリットが他方のスリットよりも長いものである
ことを特徴とする複合トルク型回転電機。 - 前記複数のスリットは、スリット間の間隔が、外周側の間隔より内周側の間隔の方が長いことを特徴とする請求項1に記載の複合トルク型回転電機。
- 前記複数のスリットは、前記第1の永久磁石に近い第1のスリットがq軸と平行であり、q軸に最も近い第2のスリットがd軸と平行であることを特徴とする請求項2に記載の複合トルク型回転電機。
- 前記第1のスリットと前記第2のスリットとの間に配設されるスリットが前記第1のスリットの中心軸と前記第2のスリットの中心軸との交点を中心として振り分けられていることを特徴とする請求項3に記載の複合トルク型回転電機。
- 複数の前記スリットは、前記回転子の中心に向けて広がって配置されるものであることを特徴とする請求項1に記載の複合トルク型回転電機。
- 前記第1のスリットと前記第2のスリットとの間に配設されるスリットが前記第1のスリットの中心軸と前記第2のスリットの中心軸との交点を中心とし、均等な角度で振り分けられていることを特徴とする請求項5に記載の複合トルク型回転電機。
- 前記複数のスリットの内部に非磁性体が封入されていることを特徴とする請求項1〜6のいずれかに記載の複合トルク型回転電機。
- 複数の前記スリット部は、q軸とd軸との間を通る磁束にそって径方向に延伸するものであることを特徴とする請求項1に記載の複合トルク型回転電機。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/063673 WO2013179376A1 (ja) | 2012-05-28 | 2012-05-28 | 複合トルク型回転電機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013179376A1 JPWO2013179376A1 (ja) | 2016-01-14 |
JP5876147B2 true JP5876147B2 (ja) | 2016-03-02 |
Family
ID=49672630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014518113A Expired - Fee Related JP5876147B2 (ja) | 2012-05-28 | 2012-05-28 | 複合トルク型回転電機 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9806571B2 (ja) |
JP (1) | JP5876147B2 (ja) |
CN (1) | CN104115369B (ja) |
DE (1) | DE112012005688T5 (ja) |
TW (1) | TWI477036B (ja) |
WO (1) | WO2013179376A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2843342C (en) | 2011-08-16 | 2019-05-21 | Corning Cable Systems Llc | Preconnectorized cable assemblies for indoor/outdoor applications |
WO2014179376A2 (en) | 2013-05-02 | 2014-11-06 | Corning Optical Communications LLC | Connector assemblies and methods for providing sealing and strain-relief |
JP6424363B2 (ja) * | 2014-10-17 | 2018-11-21 | 株式会社明電舎 | 磁石埋込型電動機 |
KR20170106455A (ko) * | 2015-03-06 | 2017-09-20 | 미쓰비시덴키 가부시키가이샤 | 회전 전기의 회전자 및 회전 전기의 회전자의 제조 방법 |
CN105871098A (zh) * | 2016-06-06 | 2016-08-17 | 上海特波电机有限公司 | 电动汽车电机的低波动非对称式永磁转子 |
GB201620300D0 (en) * | 2016-11-30 | 2017-01-11 | Jaguar Land Rover Ltd | Electric machine apparatus |
CN106787304A (zh) * | 2016-12-29 | 2017-05-31 | 广州凯耀资产管理有限公司 | 一种中高档电机组件结构 |
WO2018159181A1 (ja) * | 2017-02-28 | 2018-09-07 | 日立オートモティブシステムズ株式会社 | 回転電機の回転子及びこれを備えた回転電機 |
CN108110920A (zh) * | 2017-12-14 | 2018-06-01 | 珠海格力节能环保制冷技术研究中心有限公司 | 异步起动同步磁阻电机转子、电机及压缩机 |
CN108023421B (zh) * | 2017-12-21 | 2024-05-28 | 珠海格力电器股份有限公司 | 电机转子和永磁电机 |
CN111512519B (zh) * | 2017-12-28 | 2022-10-11 | 株式会社电装 | 旋转电机 |
DE102018206478A1 (de) * | 2018-04-26 | 2019-10-31 | Robert Bosch Gmbh | Elektrische Maschine mit veränderlichem magnetischem Fluss |
JP6671553B1 (ja) * | 2018-07-19 | 2020-03-25 | 三菱電機株式会社 | 回転電機 |
US11581767B2 (en) * | 2018-09-06 | 2023-02-14 | Adlee Powertronic Co., Ltd. | Permanent magnet motor |
DE112019005868T5 (de) * | 2018-11-26 | 2021-09-02 | Minebea Mitsumi Inc. | Rotor und den rotor verwendender motor sowie elektronische maschine |
DE102019107452A1 (de) * | 2019-03-22 | 2020-09-24 | Feaam Gmbh | Rotor und elektrische Maschine |
US11894726B2 (en) * | 2019-03-22 | 2024-02-06 | Mitsubishi Electric Corporation | Rotating electric machine |
CN109905000A (zh) * | 2019-04-23 | 2019-06-18 | 山东理工大学 | 径向与切向永磁磁极混合励磁电机转子生产方法 |
CN112583152B (zh) * | 2019-09-30 | 2022-01-04 | 安徽威灵汽车部件有限公司 | 电机的转子、驱动电机和车辆 |
GB2620418A (en) * | 2022-07-07 | 2024-01-10 | Jaguar Land Rover Ltd | Electric machine rotor |
GB2620419A (en) * | 2022-07-07 | 2024-01-10 | Jaguar Land Rover Ltd | Electric machine rotor |
CN115955029B (zh) * | 2023-03-13 | 2023-05-30 | 柏瑞润兴(北京)科技发展有限公司 | 一种电机转子单元 |
CN118413026B (zh) * | 2024-07-04 | 2024-10-18 | 珠海凌达压缩机有限公司 | 一种转子组件及电机 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3290392B2 (ja) | 1997-10-31 | 2002-06-10 | 株式会社東芝 | 永久磁石式リラクタンス型回転電機 |
JP3970392B2 (ja) | 1997-10-13 | 2007-09-05 | 松下電器産業株式会社 | 永久磁石埋め込み回転子 |
US6483212B1 (en) | 1999-10-06 | 2002-11-19 | Asmo Co., Ltd. | Reluctance-type electric motor |
JP4626906B2 (ja) * | 1999-10-06 | 2011-02-09 | アスモ株式会社 | リラクタンス型電動機 |
JP2001145283A (ja) | 1999-11-19 | 2001-05-25 | Toyota Motor Corp | 永久磁石式回転機の回転子 |
JP4071510B2 (ja) | 2001-04-25 | 2008-04-02 | 松下電器産業株式会社 | 電動機 |
DE10316831A1 (de) * | 2002-04-15 | 2003-11-27 | Denso Corp | Permanentmagnetrotor für eine rotierende elektrische Maschine mit Innenrotor und magnetsparender Rotor für einen Synchronmotor |
FI116756B (fi) * | 2002-08-26 | 2006-02-15 | Abb Oy | Kestomagnetoidun sähkökoneen roottori ja menetelmä sen valmistamiseksi |
JP4449035B2 (ja) * | 2004-03-10 | 2010-04-14 | 日立オートモティブシステムズ株式会社 | 電動車両用の永久磁石回転電機 |
CN100388594C (zh) * | 2004-09-13 | 2008-05-14 | 日产自动车株式会社 | 用于旋转电机的转子 |
JP4715291B2 (ja) * | 2005-05-02 | 2011-07-06 | 日産自動車株式会社 | 電動機 |
JP4815204B2 (ja) * | 2005-12-01 | 2011-11-16 | アイチエレック株式会社 | 永久磁石回転機及び圧縮機 |
JP4793249B2 (ja) * | 2006-04-20 | 2011-10-12 | 株式会社豊田自動織機 | 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機 |
JP4838347B2 (ja) * | 2007-02-21 | 2011-12-14 | 三菱電機株式会社 | 永久磁石同期電動機及び密閉型圧縮機 |
JP5228582B2 (ja) * | 2008-04-04 | 2013-07-03 | 三菱電機株式会社 | 永久磁石型回転電機およびそれを用いた電動パワーステアリング装置 |
JP4764526B2 (ja) * | 2008-05-30 | 2011-09-07 | 株式会社東芝 | 永久磁石およびその製造方法、モータ用永久磁石および永久磁石モータ |
DE102009050991A1 (de) * | 2009-10-28 | 2011-05-05 | Bayerische Motoren Werke Aktiengesellschaft | Elektrische Antriebsmaschine für ein Fahrzeug |
JP5582149B2 (ja) * | 2010-01-19 | 2014-09-03 | 株式会社安川電機 | ロータ、これを用いた回転電機および発電機 |
JP2012080697A (ja) * | 2010-10-04 | 2012-04-19 | Asmo Co Ltd | モータ |
-
2012
- 2012-05-28 WO PCT/JP2012/063673 patent/WO2013179376A1/ja active Application Filing
- 2012-05-28 DE DE201211005688 patent/DE112012005688T5/de not_active Withdrawn
- 2012-05-28 US US14/404,551 patent/US9806571B2/en not_active Expired - Fee Related
- 2012-05-28 CN CN201280069361.0A patent/CN104115369B/zh not_active Expired - Fee Related
- 2012-05-28 JP JP2014518113A patent/JP5876147B2/ja not_active Expired - Fee Related
-
2013
- 2013-02-20 TW TW102105931A patent/TWI477036B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN104115369A (zh) | 2014-10-22 |
CN104115369B (zh) | 2016-11-30 |
JPWO2013179376A1 (ja) | 2016-01-14 |
US9806571B2 (en) | 2017-10-31 |
TW201349713A (zh) | 2013-12-01 |
TWI477036B (zh) | 2015-03-11 |
DE112012005688T5 (de) | 2014-10-02 |
WO2013179376A1 (ja) | 2013-12-05 |
US20150108865A1 (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6002217B2 (ja) | 複合トルク型回転電機 | |
JP5876147B2 (ja) | 複合トルク型回転電機 | |
CN112838693B (zh) | 旋转电机 | |
JP5328821B2 (ja) | 回転電機用回転子 | |
JP5491484B2 (ja) | スイッチドリラクタンスモータ | |
JP5363520B2 (ja) | 永久磁石同期機 | |
JP6421926B2 (ja) | 永久磁石同期機 | |
JP2019062673A (ja) | 可変磁束型の永久磁石式回転電機 | |
JP2012161227A (ja) | 回転電機用回転子 | |
JP7076188B2 (ja) | 可変磁力モータ | |
US9337692B2 (en) | Permanent magnet rotor with flux barrier for reduced demagnetization | |
JP7299531B2 (ja) | 回転子、モータ | |
JP5920472B2 (ja) | 回転電機およびロータ | |
JP2013132124A (ja) | 界磁子用コア | |
JP6428458B2 (ja) | 埋込磁石型モータ | |
JP6440349B2 (ja) | 回転電機 | |
JP2019161828A (ja) | 回転電機 | |
JP7116667B2 (ja) | 回転電機 | |
JP2014180096A (ja) | 永久磁石回転電機およびエレベーター駆動巻上機 | |
JP5750995B2 (ja) | 同期電動機 | |
JP5793948B2 (ja) | 同期電動機 | |
CN115699519A (zh) | 转子及使用了该转子的旋转电机 | |
JP5884464B2 (ja) | 回転電機 | |
JP2017163716A (ja) | ロータおよび回転電機 | |
JP2014187776A (ja) | 回転電機用ステータコア |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5876147 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |