JP5857994B2 - 人工石材の製造方法 - Google Patents

人工石材の製造方法 Download PDF

Info

Publication number
JP5857994B2
JP5857994B2 JP2013070067A JP2013070067A JP5857994B2 JP 5857994 B2 JP5857994 B2 JP 5857994B2 JP 2013070067 A JP2013070067 A JP 2013070067A JP 2013070067 A JP2013070067 A JP 2013070067A JP 5857994 B2 JP5857994 B2 JP 5857994B2
Authority
JP
Japan
Prior art keywords
clay
layer
cast
artificial stone
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070067A
Other languages
English (en)
Other versions
JP2014193778A (ja
Inventor
孝一 市川
孝一 市川
久宏 松永
久宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013070067A priority Critical patent/JP5857994B2/ja
Publication of JP2014193778A publication Critical patent/JP2014193778A/ja
Application granted granted Critical
Publication of JP5857994B2 publication Critical patent/JP5857994B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

この発明は、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物をヤードに打設して水和硬化させ、この水和固化体を粗破砕して人工石材を製造する方法に関する。
粉粒状の製鋼スラグと高炉スラグ微粉末を主体とする原料を水で混練し、これを水和硬化させた水和固化体が知られており(例えば、特許文献1)、この水和固化体は、路盤材、土木材料、港湾土木材料、その他のコンクリート代替品として使用可能である。
このような水和固化体の製造方法の一つとして、原料と水の混練物をヤードに打設し、硬化後に粗破砕して人工石材を得る方法が知られている(非特許文献1)。この方法で得られる不定形な人工石材は、港湾土木材料である被覆石、根固め石、捨石、潜堤材などに特に適している。
非特許文献1に示されるような人工石材の従来の製造方法は、原料と水の混練物をヤードの広い範囲に打設して平らにならし、硬化後の水和固化体をコンクリートブレーカーなどの重機を用いて100〜300kg/個程度のサイズの塊状石材に粗破砕するものである。また、特許文献2には、この方法の生産性を向上させるために、ヤードに複数条の平行な畝を設け、畝間の溝に混練物を打設する方法が示されている。この方法では、畝間に細長い水和固化体が形成されるので、粗破砕工程では水和固化体を幅方向で2面破砕するだけで塊状石材が得られ、粗破砕作業を極めて効率的に行えることなどにより、スラグ原料の水和固化体からなる人工石材を高い生産性で製造できる。
また、細骨材代替として浚渫土を配合したもの、すなわち、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料を水で混練し、これを水和硬化させた水和固化体も知られている(特許文献3,4)。
特許第3654122号公報 特開2009−107908号公報 特開2011−246336号公報 特開2012−12287号公報
「沿岸開発技術ライブラリーNo.16,鉄鋼スラグ水和固化体 技術マニュアル,製鋼スラグの有効利用技術」,平成15年3月,財団法人沿岸開発技術センター
非特許文献1や特許文献2に示されるような人工石材の製造方法では、打設物の上面は開放された状態にある。このため、打設直後から上面部は水分が蒸発し始め、水和硬化に必要な水分が蒸発によって不足し、打設物の上面から厚さ数cmに渡る反応不良の脆弱層が形成されるという問題がある。特に、細骨材代替として浚渫土を配合した人工石材の場合、その脆弱部は、固化した打設物(水和固化体)を破砕したり、分級して製品粒度を調整する際、文字通り粉化してしまい、石材製品とならないため、製品歩留りを大きく低下させる。特に夏季の高温時には影響が大きく、破砕時の粉発生量を増大させるとともに、製品人工石材の強度を低下させる。このため粒度調整工程で発生する篩下の粉量が増大して規格外品となり、処理を困難にする。これを防止するためには、打設後も表面の湿分を常時保持するために散水を繰り返すか、コンクリート養生マットと呼ばれる保湿シートを用いることも考えられるが、資材コストが増大したり、作業員を増員する必要があるため、経済的な面で実施は困難である。
したがって本発明の目的は、以上のような従来技術の課題を解決し、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物をヤードに打設して水和硬化させ、この水和固化体を粗破砕して人工石材を製造する際に、経済性を損なうことなく製品歩留りを高め、人工石材を高い生産性で低コストに製造することができる製造方法を提供することにある。
本発明者らは、ヤードに打設した原料と水の混練物(打設物)を養生する際に、打設物の上面の乾燥を効果的かつ経済的に防止できる方法について検討を行い、水分を含んだ浚渫土により打設物上面を被覆し、乾燥防止用の保水層とする方法を見出した。すなわち、水分を含んだ浚渫土を打設物の上面に一定の厚さで層状に敷設して保水層とすれば、この層から水分が蒸発し切るまでに数日を要するため、浚渫土層で覆われた打設物上面の水分低下を抑制できることが判った。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物(a)をヤードに打設し、その打設物(A)を水和硬化させた後、粗破砕して人工石材を製造する方法において、
混練物(a)をヤードに打設した後、その打設物(A)の上面を、有姿の浚渫土に水分を加えて解砕した浚渫土からなり、含水比を100〜250%とした浚渫土層(B)で覆い、その状態で打設物(A)を養生することを特徴とする人工石材の製造方法。
[2]上記[1]の製造方法において、浚渫土層(B)は、平均厚さが2cm以上であることを特徴とする人工石材の製造方法。
[3]上記[1]又は[2]の製造方法において、打設物(A)の養生完了後、打設物(A)の上面を覆う浚渫土層(B)を除去することを特徴とする人工石材の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、養生完了後の打設物(A)を粗破砕して得られた人工石材を、任意の時点で篩にかけ、浚渫土を分離することを特徴とする人工石材の製造方法。
[5]上記[1]〜[4]のいずれかの製造方法において、浚渫土層(B)の敷設時の散水以外は、浚渫土層(B)に散水を行わずに養生を完了することを特徴とする人工石材の製造方法。
本発明によれば、人工石材となる水和固化体を得るための打設物の上面を含水させた保水性の高い浚渫土層(保水層)で覆うことにより、養生中における打設物上層部の乾燥を抑え、強度発現不良部の発生を低減させることができ、製品歩留りを向上させて生産性を高めることができる。また、保水層に浚渫土を利用できるため、安価に実施することができる。したがって、経済性を損なうことなく製品歩留りを高め、人工石材を高い生産性で低コストに製造することができる。
本発明の製造方法の一実施形態を工程順に示すもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図 本発明の製造方法の他の実施形態を示すもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図 実施例において浚渫土層Bに用いた浚渫土の粒度分布を示すグラフ 文献に示される引っかき傷幅と圧縮強度との関係を示す図
本発明は、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物aをヤードに打設し、その打設物Aを水和硬化させた後、粗破砕して人工石材を製造する方法であって、混練物aをヤードに打設した後、その打設物Aの上面を含水させた浚渫土層Bで覆い(打設物Aの上に浚渫土層Bを敷設する)、その状態で打設物Aを養生するものである。なお、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とするとは、それらを50質量%以上含むという意味である。
このような本発明の人工石材の製造方法によれば、含水させた保水性の高い浚渫土層(保水層)が養生中の打設物上層部の乾燥を抑え、強度発現不良部の発生を低減させることができ、製品歩留りを向上させることができるとともに、保水層として浚渫土を利用できるため、安価に実施することができる。
浚渫土は浚渫工事によって水底から掘り出された泥土である。保水層からの水分の蒸発を抑制するためには、層の中に小空隙を多く形成して、その空隙を水で飽水させることが有効である。この点、浚渫土は、粒径1mm以下のシルトや粘土を主体とするものであるため、水分を多量に取り込むことができ(実際、浚渫土として掘り出されてからある程度の期間は多量の水分を含んでいる)、これを保水層に利用することは合理的である。浚渫土を配合した人工石材を製造する場合には、石材強度を高めるために、可能な限り水分を低減することを志向するが、保水層に用いる場合は、浚渫土はいずれ製品と分離するため、水分を抑制する必要はなく、滑らかに敷設しやすいレベルまで水分を添加してよい。
例えば、浚渫土を他の材料と混合して用いる場合、他の材料との均一混合性を確保するため、有姿の浚渫土に水分を加えて解砕し、流動化させるのは通常に行われる手法であるが、本発明で保水層に用いる浚渫土も、このような流動状態のものを用いればよく、保水層調整用に新たな工程を設ける必要はない。
浚渫土層Bの含水比は100〜250%程度が好ましく、この含水比で打設物Aの上面を覆い、打設物Aを養生することが好ましい。ここで、浚渫土層Bの含水比とは、浚渫土層Bに含まれる水分量をW(質量%)、固形分量をS(質量%)としたとき、含水比=(W/S)×100で求められる。浚渫土層Bの含水比が100%未満では、浚渫土の流動性が低く、解砕もしづらいため、浚渫土層Bが打設物Aの上を隙間なく薄く覆う状態を形成しにくくなる。一方、含水比が250%を超えると、浚渫土が過剰に流動化して、打設物A上のわずかな勾配でも低い側に流れ落ちたり、或いは浚渫土が打設物Aに形成された溝や穴内に深く入り込み、浚渫土層Bを分離する際に表面を平らに掻くだけでは浚渫土の分離が十分にできなくなり、浚渫土の製品への混入を抑制しにくくなる、などの問題を生じやすい。このため、浚渫土層Bの含水比は100〜250%が好ましい。ほとんどの浚渫土は、有姿で100%以上の含水比で水分を有しているが、流動化させるために最大で含水比250%程度まで水を添加して解砕すればよい。
通常、保水層とする浚渫土の含水比調整は敷設前に解砕作業として行うが、天候の状況次第で表面水分が不足に見える場合は、敷設後の散水などで補ってもよい。ただし、通常、散水は養生開始時の1回で足り、それ以外は実施しなくてもよい場合が多い。
浚渫土層Bに含水させる水は、打設物Aの養生期間中に水分不足に陥ることを防ぐことが可能であれば、幅広い水源を用いることが可能である。すなわち、淡水、雨水、工業用水、水道水はもとより、海域用途での製造であれば海水でも問題はない。さらに、人工石材の製造工程で発生するスラッジ水、ミキサーでの混練時回収水などカルシウムイオンでアルカリ性を示す水も、むしろ好適であり、製造時の排水発生量の圧倒的な低減にも貢献できる。
浚渫土層Bの厚さに特別な制限はなく、養生の日数などによって浚渫土層Bの適正な厚さは異なるが、平均厚さが2cm未満では水分蒸発が速く、特に本発明の適用が有効な夏季の高温時には所要の養生時間に対して保水量が不足する場合がある。したがって、浚渫土層Bの平均厚さは2cm以上とすることが好ましい。
一方、浚渫土層Bの厚さが大きくなると水分保持には有利であるが、浚渫土層(保水層)厚みの占める割合が、製品である打設物Aの層厚に対して大きくなり、養生後に製品から分離する浚渫土量が増大するため不経済となる。また、層厚を増して浚渫土層B全体の含水量を増大させた場合、浚渫土層Bの下層部側、すなわち打設物Aに接している部分の方が浚渫土層Bの上層部側よりも含水が高いため、養生完了後、過剰な含水を残している場合は濡れによって打設物Aとの分離性が悪くなる場合がある。このため浚渫土層Bの平均厚さは5cm以下とすることが好ましい。
浚渫土層Bの敷設は、打設物Aの養生を要する期間の初期に行うのが有効であるが、(i)浚渫土層Bの浚渫土bが打設物Aに食い込んで、打設物Aの水和による強度発現を抑制したり、浚渫土bが打設物Aに低強度で付着することを防止すること、(ii)混練物aの打設後に時として行う、製品粒径に近い間隔で破壊基点を設けるための溝や穴形成(後述する「筋入れ」)作業を阻害しないこと、などのために、タイミングを調整するのが有効である。実質的には、打設物Aに筋入れを行った後、表面を荒らさないで作業できる程度まで固化した後に敷設するのが、製品粒径未満の発生量を抑えて製品歩留りを向上させるのに最も有利なタイミングである。
打設物Aの養生期間に特別な制限はないが、打設物A上面を含水した浚渫土層Bで覆った状態で1日以上養生することが好ましい。
打設物Aの養生完了後、打設物Aの上面を覆う浚渫土層Bを除去する。浚渫土層Bの除去は、重機(例えば、下部に爪が出ていないバケットを備えたバックホウ)や人力で掻き取ったり、型枠の側方(型枠外)に掻き出せばよい。
保水層とした浚渫土層はほとんど強度発現がないため、バックホウのバケットで掻き取ったり、側方の型枠外に掻き出してやれば、大部分の浚渫土層Bの粒子は容易に打設物Aの上面から分離できる。この回収物はほとんど浚渫土だけであるため、人工石材の材料としても、再度の保水層材としても問題なく使用できる。
打設物Aの上から浚渫土層Bを除去した後、重機を用いた打設物A(水和固化体)の粗破砕を行い、塊状石材とする。通常、この粗破砕は重機(例えば、コンクリートブレーカー)などを用いて行われる。
なお、打設物Aの水和硬化が十分でなく、圧縮強度が低い状態で粗破砕を行うと細粒分が多く発生し、製品歩留まりが低下しやすく、一方、水和硬化が進んで圧縮強度が高くなり過ぎると破砕しにくくなるとともに、小塊が発生して歩留まりも低下するので、打設物Aを粗破砕するまでの養生期間は1日〜7日程度とすることが好ましい。
打設物A(水和固化体)を粗破砕して得られた塊状石材は、ショベルカーなどで打設場所から掻き出され、さらにストックヤードなどで数週間程度養生する。通常、粗破砕して得られた塊状石材は、打設場所や養生場所からの移動時、出荷時、荷卸時などのいずれかの時点で、グリズリーや重機のスケルトンバケット等でズリなどの小径・細粒分を分離除去する分級(篩い分け)がなされ、製品となる。
また、打設物Aから除去できずに残存していた浚渫土bを除去するために、養生完了後の打設物Aを粗破砕して得られた人工石材を、任意の時点で篩にかけ、浚渫土bを分離することが好ましいが、打設物Aを粗破砕して得られた塊状石材からズリなどの小径・細粒分を除去する上記のような分級作業により浚渫土bを容易に分離できる。
小径・細粒分を含まないという製品仕様に合格するため、浚渫土bの分離を徹底する必要がある場合、打設物Aの粗破砕前の浚渫土層Bの掻き取りで浚渫土bの大部分を分離し、さらに上記のような分級(打設物Aを粗破砕して得られた塊状石材から小径・細粒分を除去するための分級)を組み合わせて実行すれば、浚渫土bの分離の効率が向上できて有利である。
以下、本発明の製造方法の好ましい条件について説明する。
本発明で用いる浚渫土、粉粒状の製鋼スラグ及び高炉スラグ微粉末を主体とする原料は、浚渫土と粉粒状の製鋼スラグが水和固化体の主たる骨材となり、高炉スラグ微粉末が水和固化体の主たる結合材となる。
浚渫土の含水比の上限は特にないが、含水比が大きすぎると固化体の強度を確保するための結合材の添加量を多くする必要があるので、経済性の面から浚渫土の含水比は300%程度を上限とすることが好ましい。
粉粒状の製鋼スラグの種類に特別な制限はない。製鋼スラグとしては、転炉脱炭スラグ、溶銑予備処理スラグ(例えば、脱燐スラグ、脱珪スラグ)、電気炉スラグ、二次精錬スラグ、造塊スラグなどが挙げられ、これらの2種以上を用いてもよい。なお、製鋼スラグのなかでも溶銑予備処理スラグは、free−CaOが少ないために大気エージングの終了が早いだけでなく、free−MgO相が少ないため水和膨張による割れなどが生じにくいので、特に好ましい。
また、製鋼スラグは、事前に自然エージングや蒸気エージングを施したものや、炭酸化処理などの各種処理を施したものを用いてもよい。
製鋼スラグは、スラグ粒子の粒径が大きいほど、内部にfree−CaOやfree−MgOの粒を含む可能性が高くなり、水和固化体の膨張安定性にとって問題が生じる可能性が高くなるので、粒径25mm以下のものが好ましい。
また、水和固化体の主たる結合材となる高炉スラグ微粉末は、JIS
A 6206:1997に適合したものを使用することが好ましい。
原料には、さらに必要に応じて、粉粒状の高炉水砕スラグ、フライアッシュ、アルカリ刺激材などの中から選ばれる1種以上を配合することができる。
前記粉粒状の高炉水砕スラグは、基本的には骨材の一部として配合されるが、弱い水硬性を有しているので、水和固化体中にあっては、アルカリ刺激材によりアルカリ刺激を受けて固化し、強度にも寄与する。
前記フライアッシュはポゾラン物質として働き、長期材齢での強度向上に役立つとともに、水和固化体全体としてのアルカリ性を低減させ、水和固化体を水に浸したときに溶出するアルカリ物質の量を低減させる働きもある。
前記アルカリ刺激材としては、例えば、消石灰やセメント(ポルトランドセメントなど)などのCa系のものを用いことができる。高炉スラグ微粉末は潜在水硬性を有し、アルカリ刺激によって硬化が促進される。このためアルカリ刺激材を添加することで、より安定的に高い強度を得ることができる。
一般的な原料配合割合としては、浚渫土の含水比にもよるが、混合物中の容積率で、例えば、浚渫土(水分を含む)を40〜60%、製鋼スラグを10〜50%、高炉スラグ微粉末を10〜30%程度とし、必要に応じて他の成分(高炉水砕スラグ、フライアッシュ、アルカリ刺激材などの1種以上)を適量加える。
本発明の製造方法が実施されるヤードに特別な制限はなく、普通の屋外の地面でよい。本発明において、製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物aをヤードに打設する形態は任意である。したがって、例えば、非特許文献1に示されるように、原料と水の混練物aをヤードの広い範囲に打設して平らにならし、硬化後の打設物A(水和固化体)を粗破砕するようにしてもよい。ただし、生産性の面からは、特許文献2に示すような方法、すなわち、下記(i)又は(ii)の方法が特に好ましい。
(i)ヤードに複数条の平行な畝を設け、該畝間の溝に混練物aを打設する。すなわち、畝間の溝を型枠として利用する。
(ii)ヤードに畝を設けるととともに、該畝と平行な型枠板を配置し、前記畝と型枠板間の溝に混練物aを打設する。すなわち、畝・型枠板間の溝を型枠として利用する。
また、後述する実施例に示すように、ヤードに型枠用の部材(例えば、板状やIビーム状のコンクリート部材や鋼製部材)を並べて型枠を構成し、この型枠に混練物aを打設するようにしてもよい。
図1(ア)〜(エ)は、本発明の製造方法の一実施形態を工程順に示したもので、図(a)は平面図、図(b)は図(a)のX−X線に沿う断面図である。
この実施形態では、まず、図1(ア)に示すように屋外の地面1に型枠用の部材20(側板)を並べて型枠2を組み立て、この型枠2内に製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物aを打設する(流し込む)。そして、この打設物Aを一定時間(例えば1〜6時間程度)放置して流動性が無くなる程度まで固化させた後、図1(イ)に示すように、その打設物Aの上面を含水させた浚渫土層Bで覆い、その状態で打設物Aを養生する。通常、浚渫土bはバックホウなどの重機を用いて打設物Aの上に敷設される。浚渫土層Bには、必要に応じて散水してもよい。
打設物Aの養生が完了したら、図1(ウ)に示すように浚渫土層Bを重機などで除去し、次いで、型枠2(部材20)を取り外した後、図1(エ)に示すように、重機(例えば、コンクリートブレーカー)を用い、打設物A(水和固化体)の長手方向で適宜間隔をおいた位置pをその幅方向で破砕(破断)し、塊状石材3とする。この粗破砕の間隔は、製造すべき石材のサイズ(粒径)に応じて適宜決められる。これにより、打設物A(水和固化体)をその幅方向で2面破砕(破断)するだけで塊状石材3が得られるので、粗破砕作業を非常に効率的に行うことができる。
打設物A(水和固化体)を粗破砕して得られた塊状石材3は、ショベルカーなどで掻き出され、さらにストックヤードなどで一定期間養生し、製品となる。また、粗破砕して得られた塊状石材3は任意の時点で分級(篩い分け)がなされ、細粒分が分離される。
また、打設物A(水和固化体)の粗破砕をより効率的に行うために、打設物Aの長手方向で適宜間隔をおいた位置、すなわち打設物Aを幅方向で破砕(破断)すべき位置に、打設物Aの幅方向に沿って溝または複数の穴部を形成してもよい(以下、このような溝または複数の穴部を形成することを「筋入れ」という場合がある。)。
図2はその一実施形態を示したもので、図(a)は平面図、図(b-1)および(b-2)は、図(a)のX−X線に沿う断面図である。
図2(a)に示すような、打設物Aの長手方向で適宜間隔をおいた位置p(打設物Aを幅方向で破砕すべき位置)に、図2(b-1)の場合には打設物幅方向に沿って溝4aが形成され、また、図2(b-2)の場合には打設物幅方向に沿って複数の穴部4bが間隔的に形成されている。これらの溝4aや穴部4bの形成方法は任意であるが、例えば、打設した混練物aの流動性が無くなってから、重機(例えば、コンクリートブレーカー)の作業アームの一部を打設物Aの上面から内部に押し込むなどして形成することができる。なお、このような溝4aや穴部4bの形成は、混練物aを流動性がなくなる程度(例えば、混練物aを打設して60〜120分程度)まで固化させてから行えばよい。
また、溝4aや穴部4bの深さは任意であるが、打設物Aの厚さの50%以上、望ましくは60%以上とすることが好ましい。また、打設物幅方向に沿って複数の穴部4bを間隔的に形成する場合には、隣り合う穴部4bどうしの間隔(穴部外縁間の距離)は穴径の2倍以下とすることが好ましい。
図2のように、打設物Aを粗破砕(破断)すべき位置に幅方向に沿って溝4aまたは複数の穴部4bを適正に形成しておけば、コンクリートブレーカーなどの重機による一撃で打設物Aの全幅を破断させることができる。
浚渫土層Bに使用した浚渫土bの粒度分布を図3に示す。この浚渫土は、液性限界が65%、75μm以下の粒子の割合が約60質量%のものであり、含水比160%となるように水分を加えて調整し、解砕した。
以下、本実施例で行った人工石材の製造手順を説明する。
28日標準養生後の圧縮強度9.8N/mm以上の人工石材を目標とし、粒径30mm以下の転炉スラグのエージング材(骨材)と、瀬戸内海の港湾の浚渫土(細骨材)と、高炉スラグ微粉末(結合材)を主体とし、さらにフライアッシュ、普通ポルトランドセメントを配合した原料(各材料を「鉄鋼スラグ水和固化体技術マニュアル(改訂版),平成20年2月」の標準範囲で配合)を水と混練し、この混練物aを夏季に日中の屋外のヤードで打設した。
I字型のコンクリート部材(Iビーム)を並べて幅4mの打設型枠とし、この型枠内にコンクリートアジテータ車から直接混練物aを流し出して打設し、バックホウで約60cm厚みに均厚化した(打設時の混練物aのスランプ6.0cm)。なお、混練物aの打設2時間後に、バックホウの先端に取り付けた棒状のブレーカーユニットにより、約40cm間隔で混練物aの上面からマス目状に穴部を形成して筋入れを行った。
混練物aを打設してから3時間経過後、浚渫土bをバックホウバケットで掬って型枠内の打設物Aの上に敷設して均し、打設物Aの上面を覆う浚渫土層Bを形成した。なお、浚渫土層Bの厚さが薄いものについては、人力で均した(グランド整備用のトンボを使用)。
なお、試験期間中の日間の最高気温は33〜36℃で、養生期間中に日間1mm以上の降雨は無かった。
型枠内での養生(表1に記載の養生期間(3日または7日))後、型枠をはずし、バックホウ(下部に爪が出ていないバケット)で浚渫土層Bを打設物Aの側方に掻き落とした。掻き落とした浚渫土bは、バックホウで掻き集めて、打設場所から移動させ、車載の状態で秤量した。このときの浚渫土bの質量を[x1]とする。浚渫土層Bを掻き落とした打設物Aは、コンクリートブレーカーで粗破砕し、塊状石材とした。
型枠内で7日間養生した打設物Aを粗破砕して得られた塊状石材については、粗破砕後、そのまま製品ヤードに移送した。一方、型枠内で3日間養生した打設物Aを粗破砕して得られた塊状石材については、製品強度を発現させるために、粗破砕後、4日間その場に置いて養生し、その後、製品ヤードに移送した。すなわち、いずれの実施例も、粗破砕の前後を問わず、混練物aの打設からの養生期間の合計が7日間となるようにした。
打設物Aを粗破砕して得られた塊状石材を製品ヤードに移送する際に、バックホウに付けたスケルトンバケットによるスクリーニングにより、製品粒径未満である粒径150mm以下の小径・細粒分を分離し、これを秤量して、混練物aの打設量に対する比率を算出した。ここでは、粒径150mm以下の小径・細粒分が少ないほど、製品歩留りが高いことになる。なお、前記スケルトンバケットによるスクリーニングにより、若干量が残留した浚渫土b(浚渫土層Bを構成していた浚渫土)と打設物Aの粗破砕で生じた小径・細粒分が合わせて分級されるが、浚渫土bは全量が篩下になると想定して、先の[x1]と前記スクリーニングで分級された量[x2]を合計した量[X]から浚渫土層Bの敷設量を差し引いた量を、打設物Aの粗破砕で生じた小径・細粒分(粒径150mm以下)とした。また、型枠から払い出す前に浚渫土層Bの一部をサンプリングして浚渫土層Bの残留水分を測定し、この水分量で、合計量[X]から浚渫土層Bの敷設量を差し引く量を補正した。
また、粗破砕前に粉粒物層Bを手で掻き取って露出させた打設物Aの上面にマーキングし、粗破砕して打設7日後の時点(または打設後養生7日で粗破砕した時点)で、マーキングで判別した塊状石材の打設物上面由来の箇所について、日本塗り床工業会認定の引っ掻き試験器で引っ掻き傷を付け、その傷の幅を測定して打設物上面の強度を評価した。引っ掻きは荷重1.0kgに調整して実施し、強度目安としては文献「湯浅昇ら、日本建築学会大会学術講演梗概集、1999年9月、p.677」の図を用いて判断した。同図を図4として示す。
以上の測定結果を、各実施例の製造条件とともに表1に示す。表1において、「−150mm分の発生比率(%)」とは、打設物Aの粗破砕で発生した粒径150mm以下の小径・細粒分の量の混練物aの打設量に対する比率である。また、水分調整源とは、浚渫土層Bの含水比調整に用いた水のことである。
Figure 0005857994
比較例1は浚渫土層Bがないため、打設物の上部は水分不足で水和固化不良となり、小径・細粒分(粒径150mm以下)の発生が多く、製品歩留りは低い。
この比較例1の引っ掻き試験での傷幅は1.54mmと大きく、図4からの推定では、せいぜい圧縮強度2N/mm程度までしか強度発現しておらず、目標である28日標準養生後の圧縮強度9.8N/mm以上に対して、本実施例の評価時点である7日後の圧縮強度としては低過ぎる。
発明例1〜3では、浚渫土層Bの厚さが大きいほど小径・細粒分(粒径150mm以下)の発生量は減少し、比較例に較べて製品歩留りが向上している。なお、浚渫土層Bの厚さが5cmの発明例2と浚渫土層Bの厚さが8cmの発明例3を比較すると、小径・細粒分(粒径150mm以下)の発生量は変わらない。引っ掻き試験の傷幅は、浚渫土層Bの厚さが大きいほど改善しているが、図4によると、浚渫土層Bの厚さが5cmの発明例2と浚渫土層Bの厚さが8cmの発明例3は、両者とも圧縮強度7〜8N/mmは発現していると推定され、比較例1に比べて強度が大きく向上している。浚渫土層Bを5cmより厚くしても打設物Aからの細粒発生量は変わらないが、浚渫土層Bの厚さが大きくなった分、実作業では分離する細粒の総量は増大する。したがって、浚渫土層Bの厚さは5cm以下であることが好ましい。
発明例4は含水比の調整に海水を用いた場合であり、比較例1に比べて小径・細粒分(粒径150mm以下)の発生量が大きく減少しており、発明の効果が現れているが、発明例2よりも若干小径・細粒分(粒径150mm以下)の発生量が多い。これは海水を用いたため、海水の緩衝効果により、打設物Aに接している部分で凝結反応がやや遅れ傾向となったためであると考えられる。
発明例5は打設物Aの型枠内での養生期間を7日とした場合であり、7日で型枠から外し、直ちに製品粒径に粗破砕した後、製品ヤードに移送し、その際に分級を行った。この発明例5は、引っ掻き試験での傷幅が低下し強度は発現しているが、小径・細粒分(粒径150mm以下)の発生量は発明例2に比べて若干多い。粗破砕時に強度発現が進んでいると、製品粒径に調整するのに破砕作業が増大して、返って発生する粉量が増えるためである。したがって、粗破砕までの養生期間は7日間程度を上限とすることが好ましく、浚渫土層Bはその期間中、打設物Aの湿分を保持できれば充分である。浚渫土を本発明の好適な含水比に調整すれば、養生期間中に追加で散水する必要がなくなり、大いに省力化に貢献する。
発明例6は、浚渫土層Bの含水比を100%としたものであり、比較例1よりは小径・細粒分(粒径150mm以下)の発生量が大きく減少しており、強度も向上しているが、発明例2よりは若干劣っている。これは、浚渫土の解砕時に不均質となる部分があり、打設物A上への敷設時にムラが出て、一部で打設物Aからの水分蒸発を抑えられない部分が発生したためと考えられる。
発明例7は、浚渫土層Bの含水比を250%としたものであり、優れた結果が得られているが、高流動性となった浚渫土が打設物Aの溝や穴に入り込み、浚渫土層Bの除去時に手間がかかる傾向が見られた。
1 地面
2 型枠
3 塊状石材
4a 溝
4b 穴部
20 部材
A 打設物
B 浚渫土層
a 混練物
b 浚渫土

Claims (5)

  1. 製鋼スラグ、浚渫土及び高炉スラグ微粉末を主体とする原料と水の混練物(a)をヤードに打設し、その打設物(A)を水和硬化させた後、粗破砕して人工石材を製造する方法において、
    混練物(a)をヤードに打設した後、その打設物(A)の上面を、有姿の浚渫土に水分を加えて解砕した浚渫土からなり、含水比を100〜250%とした浚渫土層(B)で覆い、その状態で打設物(A)を養生することを特徴とする人工石材の製造方法。
  2. 浚渫土層(B)は、平均厚さが2cm以上であることを特徴とする請求項1に記載の人工石材の製造方法。
  3. 打設物(A)の養生完了後、打設物(A)の上面を覆う浚渫土層(B)を除去することを特徴とする請求項1又は2に記載の人工石材の製造方法。
  4. 養生完了後の打設物(A)を粗破砕して得られた人工石材を、任意の時点で篩にかけ、浚渫土を分離することを特徴とする請求項1〜のいずれかに記載の人工石材の製造方法。
  5. 浚渫土層(B)の敷設時の散水以外は、浚渫土層(B)に散水を行わずに養生を完了することを特徴とする請求項1〜のいずれかに記載の人工石材の製造方法。
JP2013070067A 2013-03-28 2013-03-28 人工石材の製造方法 Active JP5857994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070067A JP5857994B2 (ja) 2013-03-28 2013-03-28 人工石材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070067A JP5857994B2 (ja) 2013-03-28 2013-03-28 人工石材の製造方法

Publications (2)

Publication Number Publication Date
JP2014193778A JP2014193778A (ja) 2014-10-09
JP5857994B2 true JP5857994B2 (ja) 2016-02-10

Family

ID=51839345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070067A Active JP5857994B2 (ja) 2013-03-28 2013-03-28 人工石材の製造方法

Country Status (1)

Country Link
JP (1) JP5857994B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465052B2 (ja) * 2018-02-28 2024-04-10 五洋建設株式会社 高含水比泥土の改質土の製造方法
CN109503051B (zh) * 2018-12-10 2020-12-25 天津科技大学 疏浚土免烧法制备人造鹅卵石的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363589B2 (ja) * 2003-08-06 2009-11-11 五洋建設株式会社 藻場造成用構造物及び藻場造成方法
JP5853399B2 (ja) * 2010-06-03 2016-02-09 Jfeスチール株式会社 人工石材の製造方法

Also Published As

Publication number Publication date
JP2014193778A (ja) 2014-10-09

Similar Documents

Publication Publication Date Title
Bhardwaj et al. Waste foundry sand in concrete: A review
Wang et al. A novel type of controlled low strength material derived from alum sludge and green materials
Kore et al. Impact of marble waste as coarse aggregate on properties of lean cement concrete
KR100988151B1 (ko) 토사, 산업폐기물, 해사와 사막모래의 경화체 및 그것의 제조방법
JP5853399B2 (ja) 人工石材の製造方法
Qiao et al. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir
JP5856443B2 (ja) セメント混和材およびセメント組成物
Shreekant et al. Utilisation of mine waste in the construction industry–a critical review
JP5744387B2 (ja) 泥土含有固化体の製造方法
JP6662046B2 (ja) 泥土含有固化体の製造方法
JP5857994B2 (ja) 人工石材の製造方法
JP5907246B2 (ja) 固化体の製造方法
JP2012193079A (ja) 高強度ポーラスコンクリート組成物および高強度ポーラスコンクリート硬化体
JP2003034562A (ja) 水硬性組成物及び水和硬化体
JP5857995B2 (ja) 人工石材の製造方法
JP2007231565A (ja) 透水性防草舗装方法
JP2013028518A (ja) 膨張管理された鉄鋼スラグ水和固化体製人工石材およびその製造方法
JP6520164B2 (ja) ソイルセメントおよびソイルセメントを用いた盛土工法
JP2012025658A (ja) 人工石材の製造方法
JP2014001602A (ja) サンドコンパクションパイルおよびその造成方法
JP5936413B2 (ja) ホワイトトッピング舗装
JP2009107908A (ja) 人工石材の製造方法
Kamplimath et al. Alternatives to Conventional Cement-Sand mortar for sustainable masonry construction
JP2016176275A (ja) サンドコンパクションパイル用材料、サンドコンパクションパイルおよびサンドコンパクションパイルの造成方法
JP2011093751A (ja) 泥土含有固化体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250