JP5852425B2 - 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 - Google Patents
超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 Download PDFInfo
- Publication number
- JP5852425B2 JP5852425B2 JP2011264015A JP2011264015A JP5852425B2 JP 5852425 B2 JP5852425 B2 JP 5852425B2 JP 2011264015 A JP2011264015 A JP 2011264015A JP 2011264015 A JP2011264015 A JP 2011264015A JP 5852425 B2 JP5852425 B2 JP 5852425B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- superconducting
- superconducting coil
- cooling
- boiling point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
- G01R33/3815—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/02—Quenching; Protection arrangements during quenching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3804—Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/842—Measuring and testing
- Y10S505/843—Electrical
- Y10S505/844—Nuclear magnetic resonance, NMR, system or device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/85—Protective circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/879—Magnet or electromagnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/888—Refrigeration
- Y10S505/892—Magnetic device cooling
- Y10S505/893—Spectrometer
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
本発明は、超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置に関する。
超電導電磁石装置は、超電導コイルと、それに並列に設置された永久電流スイッチから構成され、上記の永久電流スイッチを開にした状態で励磁電源から超電導コイルに電流供給し、その後、永久電流スイッチを閉にした状態で励磁電源からの供給電流を減少させゼロにすることで、超電導コイルおよび永久電流スイッチからなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導電磁石装置は、長期に渡って磁場を保持することが可能である。
永久電流運転中に超電導コイルに常電導転移で抵抗が発生した場合、超電導コイルの蓄積エネルギーがジュール発熱で熱エネルギーに変換され、コイル温度が上昇する。この蓄積エネルギーが全て超電導コイルで消費されると、過大な温度上昇を引き起こし超電導コイルに性能劣化または焼損が生じてしまう場合がある。この問題を避けるため、上記の回路では、常電導転移発生後に超電導コイルに並列に設けた保護抵抗に電流を供給し、超電導コイル並びに保護抵抗でエネルギーを消費することで、超電導コイルの温度上昇を抑えるようになっている。
従来の超電導電磁石装置は、上記の超電導コイルや永久電流スイッチに代表される構成素子を超電導状態に保持するため、液化ヘリウムや液化窒素に代表される冷媒に浸漬させて使用する浸漬冷却方式や、冷凍機と構成素子とを熱伝導性の良い金属で熱的に接続して冷却する伝導冷却方式が多く採用されている。ただし、上記の冷却方式は装置が大型化すると、浸漬冷却方式では大量の冷媒が必要となり、伝導冷却方式では冷却対象物内での温度勾配が大きくなって所望の温度に保持することができなくなる。そこで、核融合装置に代表される大型装置では、装置内部に冷媒流路を設けてポンプで強制的に循環させる強制冷却方式が採用されている(特許文献1)。また、磁気共鳴イメージング装置(MRI)に代表される中型装置では、超電導コイル等の熱源で気化した冷媒と液化した冷媒の密度差と自然対流を利用して冷媒を流路内で循環させるサーモサイフォン方式(特許文献2)が提案されている。
ちなみに、超電導電磁石装置を超電導状態に保持するため、液体ヘリウムや液化窒素に代表される冷媒に超電導素子を浸漬させる浸漬冷却方式や、冷凍機と構成素子とを熱伝導性の良い金属で熱的に接続して冷却する伝導冷却方式が多く採用されている。しかしながら、核融合装置や磁気共鳴イメージング装置(MRI)といった大型の装置については、使用冷媒量が増大することや冷却対象物内部での温度勾配が大きくなることを避けるため、装置内部に設けた流路に冷媒を循環させる強制冷却方式やサーモサイフォン方式が採用されている。
ここで、超電導電磁石装置を常温から冷却する作業を初期冷却と呼ぶ。この初期冷却について、上記の浸漬冷却方式では、液化窒素に代表される冷媒を装置内部に冷媒導入口から送りこみ、装置内部の熱で気化した冷媒を冷媒排出口から排出し、その後、装置内部が冷媒の液化温度に到達することで内部に冷媒が液化したままの状態で留まり、超電導素子が浸漬したことをもって初期冷却を終了する。
ところで、上記の冷却方式のうち、強制冷却方式(特許文献1)並びにサーモサイフォン方式(特許文献2)では、冷媒流路の一部を超電導素子に熱的に接触させたのみであることから、浸漬冷却と比較して熱伝導率が小さいため(冷却効率が劣るため)、短時間で初期冷却を完了できないという課題があった。
また、上記のような超電導電磁石装置は長期に渡って極低温状態に保持する必要があるが、なんらかの原因で温度上昇してしまう場合がある。例えば停電による冷凍機の停止や、コイルの一部が常電導転移し、そのジュール発熱でなだれ的にコイル全体が常電導転移するクエンチ現象である。浸漬冷却方式の場合、冷媒が蓄冷剤として作用して温度上昇を抑制するが、上記のような伝強制冷却方式並びにサーモサイフォン方式では蓄冷剤として作用する部材が流路内に少量しか存在しないため、浸漬冷却と比較して温度上昇を抑制することが困難であった。そこで、蓄冷剤となる物質を装置内部に格納しておく方法も考えられるが、内部に新たに構造物を設ける必要があるため装置が大型化してしまうという課題があった。
以上の点から、本発明の課題は、冷却性能に優れて使い勝手の良い、超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置を提供することにある。
本発明は、冷媒が循環される冷媒循環流路と、前記冷媒循環流路における冷媒の蒸気を冷却する冷凍機と、前記循環される冷媒により冷却される超電導コイルと、前記超電導コイルと熱的に接触されると共に、内部空間を有する保護抵抗と、前記保護抵抗内の内部空間に、前記冷媒よりも高沸点、かつ、前記冷媒により凍結される高沸点冷媒を供給する高沸点冷媒供給部と、前記冷媒循環流路、前記超電導コイル、および前記保護抵抗を少なくとも収容する真空断熱容器と、を備える超電導磁石装置として構成した。他の構成については、後記する実施形態で詳細に説明する。
本発明によれば、冷却性能に優れて使い勝手の良い、超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置を提供することができる。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
ちなみに、本実施形態では、強制冷却方式並びにサーモサイフォン方式を採用した超電導電磁石装置において、初期冷却時間を短縮すると共に、装置を大型化することなく冷凍機停止やクエンチ時の温度上昇を抑制することが可能である超電導電磁石装置について説明する。
ちなみに、本実施形態では、強制冷却方式並びにサーモサイフォン方式を採用した超電導電磁石装置において、初期冷却時間を短縮すると共に、装置を大型化することなく冷凍機停止やクエンチ時の温度上昇を抑制することが可能である超電導電磁石装置について説明する。
≪第1の実施形態≫
以下、本発明を適用してなる第1の実施形態について、図1並び図2を参照して説明する。図1は、本発明の第1の実施形態に係る超電導電磁石装置の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、これらの断面は、スライス断面であり、奥側にあるものは記載されていない。この点は、後記の図3などにおいても同じである。
以下、本発明を適用してなる第1の実施形態について、図1並び図2を参照して説明する。図1は、本発明の第1の実施形態に係る超電導電磁石装置の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、これらの断面は、スライス断面であり、奥側にあるものは記載されていない。この点は、後記の図3などにおいても同じである。
図1に示すように、本実施形態の超電導電磁石装置1は、真空容器2、この真空容器2に内包された輻射シールド3、この輻射シールドに内包された複数の超電導コイル4、コイルボビン5、サーモサイフォン部6(本体下部6a、本体上部6b、冷媒降下流路部6c)、永久電流スイッチ9、保護抵抗10、保護抵抗収容部11などのほか、真空容器2、輻射シールド3、冷凍機12などを含んで構成される。なお、本実施形態の超電導コイル4の中心軸21は鉛直方向を向いている。すなわち、図1(a)において、紙面の上方が上であり、紙面の下方が下である。
ちなみに、第1の実施形態に係る超電導電磁石装置1は、例えば、核磁気共鳴装置(Nuclear Magnetic Resonance)に適用される。
ちなみに、第1の実施形態に係る超電導電磁石装置1は、例えば、核磁気共鳴装置(Nuclear Magnetic Resonance)に適用される。
図1(a)に示すように、第1の実施形態での超電導コイル4は、符号4aが付されたものと符号4bが付されたもの2つである。コイルボビン5には、前記の超電導コイル4が巻き付けられている。この例における超電導コイル4とコイルボビン5は周知のものであるので、詳細な説明を省略する。
なお、コイルボビン5の外周には、超電導コイル4やコイルボビン5と熱的な接触をしつつこれらを取り巻く環状の保護抵抗収容部11が配置されており、保護抵抗10は、その内側(保護抵抗収容部11内)に収容されている。この図の例では、保護抵抗10は、保護抵抗収容部11内に、内層と外層というように二重のコイル状に密に巻かれて収容されている。この保護抵抗10は、管状に構成された保護抵抗管10a、10bを備えている。保護抵抗管10aは超電導コイル4aに対応し、保護抵抗管10bは超電導コイル4bに対応する。つまり、保護抵抗収容部11の内部において、保護抵抗管10aが上部に位置し、保護抵抗管10bが下部に位置する。
コイルボビン5を環状に取り巻く保護抵抗管10a,10bには、「高沸点冷媒供給部」に相当する高沸点冷媒の給排出部22(供給部22aと排出配部22b)が接続されており、供給部22aから供給して排出配部22bから排出するというように、高沸点冷媒を、保護抵抗管10a,10bの内部の高沸点冷媒通路(内部空間S)を通流させて、コイルボビン5(ひいては超電導コイル4)を急速に冷却することができるようになっている。ちなみに、高沸点冷媒は、例えば液化窒素である。
この第1の実施形態では、保護抵抗管10a,10bが連通して、実質的に1本の高沸点冷媒通路(内部空間S)を構成しており、給排出部22は1つであるが、保護抵抗管10aおよび10bがそれぞれ独立しているならば給排出部22は2つ設ける必要がある。また、給排出部22が、高沸点冷媒供給部22aと高沸点冷媒排出部22bを有することとしたが、すなわち、専用の入口と専用の出口を有することとしたが、入口出口が共用されるものであってもよい。
この第1の実施形態では、保護抵抗管10a,10bが連通して、実質的に1本の高沸点冷媒通路(内部空間S)を構成しており、給排出部22は1つであるが、保護抵抗管10aおよび10bがそれぞれ独立しているならば給排出部22は2つ設ける必要がある。また、給排出部22が、高沸点冷媒供給部22aと高沸点冷媒排出部22bを有することとしたが、すなわち、専用の入口と専用の出口を有することとしたが、入口出口が共用されるものであってもよい。
なお、保護抵抗10は、無酸素銅を代表とする常電導線、または無酸素銅と同等の電気的・磁気的性質の常電導線を前記の超電導コイル4と磁気的に結合しないように無誘導に巻線(この例では密に巻線)したものである。無誘導に巻線するとは、例えば、時計回り向きの巻き線の数と、反時計回り向きの巻き線の数とを同じするなどである。
次に、サーモサイフォン部6は、図1(a)(b)の位置関係を基準にして、超電導磁石装置1の内部の右側に配置されている。より具体的には、本実施形態のサーモサイフォン部6は、図1(b)における3時の方向に配置されており、本体(本体下部6a、本体上部6b)、および、本体下部6aの下端と本体上部6bの上端を結ぶ独立した冷媒下降流路部6cを主として構成されている。なお、冷媒下降流路部6cは、幅広の矩形状断面に構成されている。サーモサイフォン部6は、本体下部6aに冷媒Rの液溜めが形成され、超電導コイル4の発熱などの熱により気化して液溜めの表面から上昇する冷媒Rの蒸気は、本体上部6bへと案内され(詳細は後記する)、そして、冷凍機12で液化され、液化された冷媒Rは、冷媒下降流路部6cの内部を重力により下降して、再び本体下部6aの液溜めに戻るように循環する。冷媒Rは、前記の高温冷媒である液化窒素よりも沸点の低い液化ヘリウムであり、冷媒供給部23aを介してサーモサイフォン部6の内部に供給され、冷媒排出部23bを介してサーモサイフォン部6の内部から排出されるように構成されている。
なお、本実施形態のサーモサイフォン部6は、超電導コイル4およびコイルボビン5の一部(右端部分)を液密・気密を保持しつつ収容するように構成されている。そして、サーモサイフォン部6の内部において、該サーモサイフォン部6は、保護抵抗収容部11の内部と連通している。すなわち、本体下部6aと保護抵抗収容部11の下部とが連通し、本体上部6bと保護抵抗収容部11の上部とが連通している。このため、図1(a)(b)から理解されるように、冷媒Rの液溜めは、本体下部6aだけでなく、保護抵抗収容部11の下部(保護抵抗管10b同士の隙間)にも形成される。ちなみに、本体下部6aに形成される液溜めにおける冷媒Rの液面は、この例では、コイルボビン5の下端と超電導コイル4bの下端との間に位置している。
保護抵抗収容部11に収容されている保護抵抗10(保護抵抗管10a,10b)が図1(a)に示されるように密に巻かれていると、冷媒Rが気化した蒸気は、鉛直方向(真上)への上昇は阻害される。しかし、本実施形態では、保護抵抗管10a,10bの断面が円形であることから、密に巻かれても、隣接する保護抵抗管10a,10bとの間や、保護抵抗収容部11の内壁との間に隙間ができ、その隙間が、本体下部6aと本体上部6bとを連通する。すなわち、その隙間、つまり、(1)保護抵抗管10a,10b同士の隙間と、(2)保護抵抗管10a,10bと保護抵抗収容部11の内壁との隙間が、液溜めの表面から上昇する冷媒Rの蒸気が本体上部6bへと向かう通路(らせん状の通路)として機能し、冷媒Rの冷熱を全体に伝達するように、換言すると、超電導コイル4の発熱と外部からの侵入熱を奪って、超電導コイル4を冷却するように、また、温度の均一化を図るように、構成されている。
この隙間(通路)を考慮すると、広い意味では、環状の保護抵抗収容部11も、サーモサイフォン部6を構成すると言える。
この隙間(通路)を考慮すると、広い意味では、環状の保護抵抗収容部11も、サーモサイフォン部6を構成すると言える。
次に、超電導磁石装置1の回路を、図2を参照して説明する。
図2は、超電導電磁石装置1の回路を模式的に示す図である。
この図2に示されるように、また、前記したように、保護抵抗10は、保護抵抗管10a、10bとで構成され、それぞれ複数ある超電導コイル4(4a、4b)に並列に設置されている。これらは、真空容器2の内部(輻射シールド3の内部)に設置されているが、真空容器2の外には、励磁電源13、電流遮断器14、直流電源16が設置されている。なお、超電導コイル4並びに永久電流スイッチ9は臨界温度以下に保たれ、超電導状態となっている。また、保護抵抗10は、超電導コイル4並びに永久電流スイッチ9と、同じ温度レベルに冷やされている。
図2は、超電導電磁石装置1の回路を模式的に示す図である。
この図2に示されるように、また、前記したように、保護抵抗10は、保護抵抗管10a、10bとで構成され、それぞれ複数ある超電導コイル4(4a、4b)に並列に設置されている。これらは、真空容器2の内部(輻射シールド3の内部)に設置されているが、真空容器2の外には、励磁電源13、電流遮断器14、直流電源16が設置されている。なお、超電導コイル4並びに永久電流スイッチ9は臨界温度以下に保たれ、超電導状態となっている。また、保護抵抗10は、超電導コイル4並びに永久電流スイッチ9と、同じ温度レベルに冷やされている。
永久電流スイッチ9を開にした状態で励磁電源13から超電導コイル4に電流供給し、その後、永久電流スイッチ9を閉にした状態で励磁電源13からの供給電流をゼロにして電流遮断器14を開にすると、超電導コイル4および永久電流スイッチ9からなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導電磁石装置1は、長期に渡って磁場を保持することが可能である。
超電導電磁石装置1は、前記のとおり、装置内部に設けたサーモサイフォン部6で冷媒Rを循環させて冷却することにより、超電導コイル4並びに永久電流スイッチ9を超電導状態に維持するサーモサイフォン方式を適用している。超電導電磁石装置1の中央部に設けた超電導コイル4からの発熱で気化した冷媒が、密度差による浮力で上昇し、冷凍機12で再度凝縮されて下降することで図中に示した矢印20の方向に冷媒が循環する。この冷却方式は浸漬冷却方式と比較して使用冷媒量を減らせる利点があるが、超電導コイルと冷媒との接触面積が小さいため、超電導電磁石装置を常温から冷却する初期冷却に要する時間が長くなるといった課題があった。また、停電による冷凍機の停止やコイル全体が常電導転移するクエンチ現象で超電導コイル4が温度上昇してしまう場合がある。浸漬冷却方式の場合、冷媒が蓄冷剤として作用して温度上昇を抑制することが可能であるが、上記のようなサーモサイフォン方式では、蓄冷剤として作用する部材が流路内に冷媒Rを除いて存在しないため、浸漬冷却と比較して温度上昇を抑制することが困難である。
そこで、本発明者らはこの点に着目し、以下に述べるように、超電導コイルに対して並列に設置された保護抵抗10と超電導コイル4並びにサーモサイフォン部6を熱的に接触させ、かつ、保護抵抗10の内部の高沸点冷媒通路にサーモサイフォン部6中を循環する冷媒R(液化ヘリウム)より凝固点が高い冷媒(液化窒素)を供給可能な流路(内部空間S)を設けることで、初期冷却時の冷却構造および、停電時やクエンチ時の温度上昇を抑制する蓄冷剤としての機能を両立させることとした。
以下、第1の実施形態に係る超電導磁石装置1の動作を説明する。
以下、第1の実施形態に係る超電導磁石装置1の動作を説明する。
(高沸点冷媒による初期冷却)
室温からの初期冷却の際には、高沸点冷媒供給排出部22の高沸点冷媒供給部22aから、保護抵抗管10a,10bの内部に設けた高沸点冷媒通路に高沸点冷媒(液化窒素)を供給する。高沸点冷媒通路が内部に設けられた保護抵抗管10a,10bが熱的に超電導コイル4やコイルボビン5に接続されているため、さらには、保護抵抗管10a,10bが熱的にサーモサイフォン部6にも接続されているため、これら(装置内部)を潜熱や顕熱で冷却して蒸発・昇温し、高沸点冷媒排出部22bから排出される。高沸点冷媒を高沸点冷媒供給部22aから供給し続けることにより、装置内部の冷却が進み、高沸点冷媒の蒸発量が減少してくる。また、保護抵抗管10a,10bの内部、すなわち、高沸点冷媒通路(内部空間S)が高沸点冷媒で満たされてくる。
室温からの初期冷却の際には、高沸点冷媒供給排出部22の高沸点冷媒供給部22aから、保護抵抗管10a,10bの内部に設けた高沸点冷媒通路に高沸点冷媒(液化窒素)を供給する。高沸点冷媒通路が内部に設けられた保護抵抗管10a,10bが熱的に超電導コイル4やコイルボビン5に接続されているため、さらには、保護抵抗管10a,10bが熱的にサーモサイフォン部6にも接続されているため、これら(装置内部)を潜熱や顕熱で冷却して蒸発・昇温し、高沸点冷媒排出部22bから排出される。高沸点冷媒を高沸点冷媒供給部22aから供給し続けることにより、装置内部の冷却が進み、高沸点冷媒の蒸発量が減少してくる。また、保護抵抗管10a,10bの内部、すなわち、高沸点冷媒通路(内部空間S)が高沸点冷媒で満たされてくる。
この保護抵抗10を介した冷却と並行して、冷媒供給排出部23の冷媒供給部23aから、サーモサイフォン部6にも高沸点冷媒(液化窒素)を供給する。高沸点冷媒は、サーモサイフォン部6の内部を冷却することで、コイルボビン5(超電導コイル4)や保護抵抗10を冷却する。
ちなみに、初期冷却の終了は、例えば、図示しない温度センサにより、装置内部の温度を計測することにより、および/または、高沸点冷媒排出部22bや冷媒排出部23bから排出される高沸点冷媒の温度を計測することにより、判定できる。
ちなみに、初期冷却の終了は、例えば、図示しない温度センサにより、装置内部の温度を計測することにより、および/または、高沸点冷媒排出部22bや冷媒排出部23bから排出される高沸点冷媒の温度を計測することにより、判定できる。
(低沸点冷媒による冷却)
高沸点冷媒による初期冷却の終了後、サーモサイフォン部6から初期冷却で用いた高沸点冷媒を除去し、今度は、それよりも沸点(凝固点)が低い冷媒を、冷媒供給部23aからサーモサイフォン部6に供給することで、仕上げの冷却を行う。その際、保護抵抗管10a,10bの内部には、高沸点冷媒を溜めたままにしておく。
高沸点冷媒による初期冷却の終了後、サーモサイフォン部6から初期冷却で用いた高沸点冷媒を除去し、今度は、それよりも沸点(凝固点)が低い冷媒を、冷媒供給部23aからサーモサイフォン部6に供給することで、仕上げの冷却を行う。その際、保護抵抗管10a,10bの内部には、高沸点冷媒を溜めたままにしておく。
サーモサイフォン部6に供給された冷媒Rは、その顕熱と潜熱とで、コイルボビン5などを直接冷やしつつ(すなわち超電導コイル4を冷却しつつ)、装置内部を冷却して、蒸発・昇温し、冷媒排出部23bから排出される。ちなみに、本実施形態では、保護抵抗10(保護抵抗管10a,10b)が密に巻かれているため、前記のとおり、蒸発した冷媒Rは鉛直方向(真上)への上昇ができないので、抵抗管同10a,10b同士の隙間などを旋回しながら上昇していき、装置内部を冷却する。
冷媒Rを冷媒供給部23aから供給し続けることにより、装置内部のさらなる冷却が進み、冷媒Rの蒸発量が減少し、サーモサイフォン部6の本体下部6aに冷媒Rの液溜めが形成され、超電導コイル4および永久電流スイッチ9が超電導状態になる。
なお、冷凍機12は、この時点で運転を開始してもよいし、この前でも後でも、任意の時点で運転を開始してもよい。
なお、冷凍機12は、この時点で運転を開始してもよいし、この前でも後でも、任意の時点で運転を開始してもよい。
前記のとおり、初期冷却の際に保護抵抗10の内部に供給した冷媒は除去せず保持する。このことにより、保護抵抗10の内部の冷媒は固化した状態で存在することになる。例えば窒素が固化した場合、温度30K以下での比熱は同体積の銀や銅と比較して2〜3倍程度と大きく、蓄冷剤としての効果が大きい。これにより冷凍機が停止した場合やクエンチ時の温度上昇の抑制が可能である。また、保護抵抗10は、前記のとおり、無酸素銅に代表される常電導線を超電導コイルとの磁気的な結合が生じないように無誘導に密巻きした構造をしており、かつ、図中のA−A‘断面に示すようにその常電導線の隙間を冷媒が移動することが可能で周回方向への熱伝導経路を兼ねていることから、別途、熱伝導経路を設けるということを省略することが可能である。
(まとめ)
このように本実施形態の超電導電磁石装置1は、初期冷却の際に保護抵抗10の内部に設けた流路に冷媒を供給することで、サーモサイフォン部6(冷媒循環経路)のみに冷媒を供給した場合と比較して短時間で初期冷却を終了することが可能である。また、保護抵抗10の内部に保持した冷媒が蓄冷剤として機能し、冷凍機が停止した場合やクエンチ時の温度上昇の抑制が可能である。そして、保護抵抗10は周回方向への熱伝導経路を兼ねていることから、別途設置する必要のある熱伝導経路を省略し、装置を小型化することが可能である。
このように本実施形態の超電導電磁石装置1は、初期冷却の際に保護抵抗10の内部に設けた流路に冷媒を供給することで、サーモサイフォン部6(冷媒循環経路)のみに冷媒を供給した場合と比較して短時間で初期冷却を終了することが可能である。また、保護抵抗10の内部に保持した冷媒が蓄冷剤として機能し、冷凍機が停止した場合やクエンチ時の温度上昇の抑制が可能である。そして、保護抵抗10は周回方向への熱伝導経路を兼ねていることから、別途設置する必要のある熱伝導経路を省略し、装置を小型化することが可能である。
すなわち、強制冷却方式並びにサーモサイフォン方式を採用した超電導電磁石装置において、初期冷却時間を短縮すると共に、装置を大型化することなく冷凍機停止やクエンチ時の温度上昇を抑制することが可能な超電導電磁石装置1を提供することができる。
なお、保護抵抗管10a,10bは、超電導コイル4の外周側に巻いているが、内周側に(内周側および/または外周側)に巻いてもよい。ここで、内周側とは、超電導コイル4とコイルボビン5の間やコイルボビン5の内周側が例としてあげられる(後記する第3の実施形態(図4)における超電導コイル4aなど参照)。
なお、保護抵抗管10a,10bは、超電導コイル4の外周側に巻いているが、内周側に(内周側および/または外周側)に巻いてもよい。ここで、内周側とは、超電導コイル4とコイルボビン5の間やコイルボビン5の内周側が例としてあげられる(後記する第3の実施形態(図4)における超電導コイル4aなど参照)。
≪第2の実施形態≫
次に、本発明を適用してなる第2の実施形態について、図3などを参照して説明する。
図3は、第2の実施形態に係る超電導電磁石装置1の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、第1の実施形態と同様の要素については、第1の実施形態で用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
次に、本発明を適用してなる第2の実施形態について、図3などを参照して説明する。
図3は、第2の実施形態に係る超電導電磁石装置1の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、第1の実施形態と同様の要素については、第1の実施形態で用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
この第2の実施形態は、サーモサイフォン部6が、超電導磁石装置1の3時の方向の位置に設けられている点で(図3(b)参照)、また、保護抵抗10が抵抗管10a,10bとして構成され、その内部に高沸点冷媒通路(内部空間S)が形成されている点などで、図1に示す第1の実施形態と同じである。
しかし、図3に示されるように、保護抵抗管10a,10bが角型であり、保護抵抗管10a,10b同士の間にも、保護抵抗管10a,10bと保護抵抗収容部11の内壁との間にも隙間がない。このため、第1の実施形態では、サーモサイフォン部6の内部に供給された初期冷却時の高沸点冷媒や初期冷却後の冷媒Rは、保護抵抗管10a,10b同士の隙間などを通流して、中心軸21を中心にして旋回しながら本体下部6aから本体上部6bへと上昇することができたが、この第2の実施形態ではそれができない。したがって、第2の実施形態では、サーモサイフォン部6の内部に、初期冷却時の高沸点冷媒や初期冷却後の冷媒Rが上昇することができる、サーモサイフォン部6の内部に閉じた循環流路が設けられている。
すなわち、図3(a)(b)に示すように、第2の実施形態のサーモサイフォン部6は、冷媒降下流路部6c、下部流路部6d、冷媒上昇流路部6e、上部流路部6f、および、液溜め部6gを備え、これらがこの順に接続されて、初期冷却時には高沸点冷媒が初期冷却後には冷媒Rが、サーモサイフォン部6の内部にいきわたるよう、特に初期冷却後の通常運転時には、サーモサイフォンにより冷媒Rがサーモサイフォン部6の内部を循環し、冷却を促進するように構成されている。
なお、冷凍機12は、液溜め部6gの上部空間を冷却して冷媒Rの蒸気を液化するように配置されている。
なお、冷凍機12は、液溜め部6gの上部空間を冷却して冷媒Rの蒸気を液化するように配置されている。
ちなみに、この第2の実施形態では、冷媒上昇流路部6eは、並列した複数の流路に分割されている。その一つは、図3(b)に示されるように、サーモサイフォン部6の内部において、保護抵抗10を内周側と外周側の両側から挟み込むように配置された冷媒上昇流路部6eである。また、別の一つは、図3(a)に示されるように、保護抵抗10を上下方向に貫通して配置された冷媒上昇流路部6eである(「保護抵抗の内部を複数の冷媒循環流路が貫く」に相当)。この例では、この貫通して配置された冷媒上昇流路部6eは、図3(b)に示されるように5つある。
冷媒下降流路部6cは、第1の実施形態と同様に幅広の矩形断面に構成されている。この点は、下部流路部6dも同じである。
冷媒下降流路部6cは、第1の実施形態と同様に幅広の矩形断面に構成されている。この点は、下部流路部6dも同じである。
また、この第2の実施形態では、永久電流スイッチ9は、下部流路部6dの上部に熱的に接触するように配置されており、熱伝導により冷却されるように構成されている。
なお、冷媒供給排出部23の構成が第1の実施形態のそれと少し異なるものの、この第2の実施形態における、初期冷却の動作、初期冷却後の動作、クエンチ時における動作などは、第1の実施形態とほぼ同様であるので、説明を省略する。
なお、冷媒供給排出部23の構成が第1の実施形態のそれと少し異なるものの、この第2の実施形態における、初期冷却の動作、初期冷却後の動作、クエンチ時における動作などは、第1の実施形態とほぼ同様であるので、説明を省略する。
この第2の実施形態によれば、第1の実施形態と同様の効果(急速冷却や蓄熱作用)が得られるだけでなく、第1の実施形態のような周方向への冷媒流路を省略することが可能であることから、冷媒Rが下降する冷媒固化流路部6cに対して冷媒Rが上昇する流路の体積(冷媒上昇流路部6eの内部の体積)を小さくし、その内部に存在する冷媒Rの質量の差を大きくすることで冷媒Rをより高い位置まで上昇させることが可能となる。ちなみに、液溜め部6gが上部に配置されていることや、第1の実施の形態に比べて冷媒Rの上昇経路の長さが短いこと(圧力損失が少ないこと)も、冷媒Rの液面の上昇に貢献する。このことから、装置の上下に複数の冷媒容器を配置する必要がなく、超電導電磁石装置1を小型化することが可能となる。
補足すると、図3(a)に示すように、液溜め部6gにおける冷媒Rの液面の高さと冷媒上昇流路部6eにおける冷媒Rの液面の高さは、冷媒上昇流路部6eの方が高くなり、上部流路部6fにまで液面が達する(かつ液溜め部6gに冷媒Rがオーバフローする)。これは、冷媒上昇流路部6eの冷媒には、超電導コイル4の発熱などを受けて蒸発した冷媒Rの蒸気が混在するため、この蒸気の浮力などにより冷媒下降流路部6cにおける冷媒Rの液面を押し上げる作用が生じるからである(冷媒R中に含まれる蒸気が多くなるほど単位体積当たりの質量は小さくなる)。このことなどにより、サーモサイフォンが構成され、図3(a)において、冷媒Rが時計回りに循環する。
≪第3の実施形態≫
次に、本発明を適用してなる第3の実施形態について、図4などを参照して説明する。
図4は、第3の実施形態に係る超電導電磁石装置の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、第1の実施形態などと同様の要素については、第1の実施形態などで用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
次に、本発明を適用してなる第3の実施形態について、図4などを参照して説明する。
図4は、第3の実施形態に係る超電導電磁石装置の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。
なお、第1の実施形態などと同様の要素については、第1の実施形態などで用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
この第3の実施形態は、図1に示す第1の実施形態と比較して、直径の異なる複数の超電導コイル4が存在し、超電導コイル4の中心軸21が水平方向を向いており、サーモサイフォン部6における冷媒Rは、複数ある超電導コイル4の外周面を周方向に沿いながら鉛直方向上側に向かう点で異なる。
すなわち、この第3の実施形態は、「超電導コイルの中心軸は水平方向を向き、保護抵抗は超電導コイルの外周面、内周面、ボビンのいずれかに熱的に接触される」というものである。
すなわち、この第3の実施形態は、「超電導コイルの中心軸は水平方向を向き、保護抵抗は超電導コイルの外周面、内周面、ボビンのいずれかに熱的に接触される」というものである。
ちなみに、第3の実施形態の超電導磁石装置1は、例えば、医療分野における磁気共鳴画像(Magnetic Resonance Imaging)装置に適用されるものであり、超電導コイル4として、超電導コイル4b,4c(主コイル)のほかに、超電導コイル4a,4d(シールドコイル)を備えて、装置のほぼ中央に撮像領域が構成される。また、保護抵抗10も、4つの超電導コイル4(4a〜4d)に対応して4つ(保護抵抗管10a〜10d)を備えている。このうち、保護抵抗10a,10dは、対応する超電導コイル4a,4dの内周側に、当該超電導コイル4a,4dと熱的に接触して密に巻かれている。また、保護抵抗10b,10cは、対応する超電導コイル4b,4cの外周側に、当該超電導コイル4b,4cと熱的に接触して密に巻かれている。すなわち、この第3の実施形態では、第1の実施形態での保護抵抗収容部11が省略されている。
なお、符号6a〜6cは、第1の実施形態と同じである。
なお、符号6a〜6cは、第1の実施形態と同じである。
この第3の実施形態の超電導磁石装置1は、直径が異なる複数の超電導コイル4が存在し、その中心軸21が水平方向を向いた超電導電磁石装置1(トンネル型のMRI装置)であるが、この第3の実施形態でも、第1の実施形態などと同様の効果を得ることができ、超電導電磁石装置1を小型することなどが可能である。
なお、前記した第1の実施形態や第2の実施形態の超電導磁石装置を、この第3の実施形態のようなMRI装置に適用してもよい。
なお、前記した第1の実施形態や第2の実施形態の超電導磁石装置を、この第3の実施形態のようなMRI装置に適用してもよい。
≪第4の実施形態≫
次に、本発明を適用してなる第4の実施形態について、図5Aや図5Bなどを参照して説明する。
図5Aは、第4の実施形態に係る超電導電磁石1の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。図5Bも、第4の実施形態に係る超電導磁石装置1の断面図であり、(a)は図5A(a)のB−B’線での横断面を、(b)は図5A(a)のC−C’線での横断面を示す。
なお、第1の実施形態などと同様の要素については、第1の実施形態などで用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
次に、本発明を適用してなる第4の実施形態について、図5Aや図5Bなどを参照して説明する。
図5Aは、第4の実施形態に係る超電導電磁石1の断面図であり、(a)は中心位置での縦断面を、(b)は(a)のA−A’線での横断面を示す。図5Bも、第4の実施形態に係る超電導磁石装置1の断面図であり、(a)は図5A(a)のB−B’線での横断面を、(b)は図5A(a)のC−C’線での横断面を示す。
なお、第1の実施形態などと同様の要素については、第1の実施形態などで用いたのと同じ符号をその要素に付して、適宜説明を省略するものとする。
この第4の実施形態の超電導磁石装置1は、オープン型のMRI装置であり(例えば特開2011-194136号公報の図1など参照)、トンネル型のMRI装置である第3の実施形態の超電導磁石装置1(図4参照)とは形式が異なる。具体的には、超電導磁石装置1は、装置が上側と下側に別れており、装置の上側が2本の支柱1a,1bを介して装置の下側に支持さており、装置の上側と下側の間に開口部24が形成されている。ちなみに、開口部24を挟んで、装置の上側に超電導コイル4a,4bが配置され、下側に超電導コイル4c、4dが配置されている。このうち、超電導コイル4b,4cが主コイルであり、超電導コイル4a,4dがシールドコイルである。
すなわち、この第4の実施形態は、「超電導コイルの中心軸は鉛直方向を向き、超電導コイルは水平方向に設けた開口部を挟んで配置される」というものである。
すなわち、この第4の実施形態は、「超電導コイルの中心軸は鉛直方向を向き、超電導コイルは水平方向に設けた開口部を挟んで配置される」というものである。
コイルボビン5は、装置の上側と下側にそれぞれあり、各コイルボビン5には、対応する各超電導コイル4が外周側から巻き付けられている。そして、各超電導コイル4には、対応する保護抵抗10(保護抵抗管10a〜10d)が外周側から巻き付けられている。各保護抵抗管10a〜10dは内部が連通しており、高沸点冷媒供給部22aから供給された高沸点冷媒が保護抵抗管10a→保護抵抗管10b→保護抵抗管10c→保護抵抗管10d→の順にとおり、高沸点冷媒排出部22bから排出されるようになっている。なお、図5Aなどでは、各保護抵抗管10a〜10dの間の接続関係の図示は省略している。
この第4の実施形態のサーモサイフォン部6は、冷媒降下流路部6c、下部流路部6d、冷媒上昇流路部6e1,6e2、上部流路部6f、および、液溜め部6gを備え、これらがこの順に接続されている。また、冷媒供給排出部23が、液溜め部6gの上部空間と外部とを接続している。そして、初期冷却時には高沸点冷媒が、初期冷却後には冷媒Rが、それぞれサーモサイフォン部6の内部にいきわたるよう、冷媒共有排出部23から導入され、初期冷却後の通常運転時には、冷却を促進するように、サーモサイフォンにより、冷媒Rがサーモサイフォン部6の内部を循環される。
ちなみに、この第4の実施形態の超電導磁石装置1におけるサーモサイフォン部6の動作は、第2の実施形態のそれに近いので、第2の実施形態とほぼ同じ符号を付している。
ちなみに、この第4の実施形態の超電導磁石装置1におけるサーモサイフォン部6の動作は、第2の実施形態のそれに近いので、第2の実施形態とほぼ同じ符号を付している。
なお、図5A(b)に示すように、下部流路部6dは、装置の端から端までを横断するように設けられている。冷媒Rの流れを基準に、下部流路部6dの始端に冷媒降下流路部6cの終端(下端)が接続され、下部流路部6dの終端に冷媒上昇流路部6e1の始端(下端)が接続され、下部流路部6dの始端に近い側に冷媒上昇流路部6e2の始端(下端)が接続されている。そして、冷媒下降流路部6cからの冷媒Rの流れを、冷媒上昇流路部6e1,6e2に振り分けるようにしている(図5B(a)参照)。
また、上部流路部6fは、冷媒上昇流路部6e1,6e2と液溜め部6gの間に位置するが、この上部流路部6fは、下部流路部6dに対応した構成なので、説明を省略する。
また、上部流路部6fは、冷媒上昇流路部6e1,6e2と液溜め部6gの間に位置するが、この上部流路部6fは、下部流路部6dに対応した構成なので、説明を省略する。
冷媒上昇流路部6e1,6e2の内、冷媒上昇流路部6e1は、支柱1aの内部を通されており、冷媒上昇流路部6e2は、支柱1bの内部を通されている。そして、冷媒上昇流路部6e1,6e2は、超電導コイル4a〜4dと保護抵抗管10a〜10dが巻かれたコイルボビン5a〜5dの外周の形状に沿うように、屈曲しながら立ち上がるように構成されており、超電導コイル4a〜4dの冷却を促進するようにされている。
この第4の実施形態でも、初期冷却時には、保護抵抗10(保護抵抗管10a〜10d)を介してと、サーモサイフォン部6を介しての、高沸点冷媒による冷却が行われる。このため、従来のように、サーモサイフォン部6を介してだけよりも、より急速な冷却が可能である。また、保護抵抗管10a〜10dの内部の高沸点冷媒通路(内部空間S)に高沸点冷媒(液化窒素)を残留させたまま冷媒R(液化ヘリウム)による冷却を行い、高沸点冷媒を凍結させるので、高沸点冷媒の高い比熱(さらには融解熱)により、クエンチ時などにおける熱的安定性が向上する。
また、この第4の実施形態によれば、超電導コイル4の外側に巻き付けられた保護抵抗10による周方向への熱伝導に加えて、複数設けた冷媒流路(中心軸21を挟んで対抗する位置に設けられた冷媒上昇流路6e1,6e2)によって周方向への冷却効率が向上する。また、このような構造をとることで、開口部24を挟んで複数の超電導コイル4が配置された超電導電磁石装置1でも上下に複数の冷媒容器を配置する必要がなく、超電導電磁石装置1を小型化することが可能となる。
なお、第4の実施形態では、支柱が符号1a,1bの2つある例を示したが、支柱が1つしかないタイプのオープン型のMRI装置にも適用することができる。この場合は、1つの支柱に、冷媒降下流路6cと冷媒上昇流路6e(6e1,6e2)や、保護抵抗管1b,10cを連通させる部材などが収容される。ちなみに、冷媒上昇流路6e1,6e2を合流させて1つの流路として支柱を通過させ、通過後に分岐するようにしてもよい。また、冷媒上昇流路6eは、符号6e1,6e2の2が存在する例を示したが、全体として、1つでも、3つ以上でもよい。
1 超電導電磁石装置
2 真空断熱容器
3 輻射シールド
4、4a、4b、4c、4d 超電導コイル
5 コイルボビン
6 サーモサイフォン部(冷媒循環流路)
6a 本体下部
6b 本体上部
6c 冷媒降下流路部
6d 下部流路部
6e 冷媒上昇流路部
6f 上部流路部
6g 液溜め部
9 永久電流スイッチ
10 保護抵抗
10a 抵抗管部
10b 高沸点冷媒通路部
11 ・BR>@ 保護抵抗収容部
12 冷凍機
13 直流電源
14 電流遮断器
20 気化した冷媒の進行方向を示す矢印
21 超電導電磁石装置の中心軸
22 高沸点冷媒供給排出部(高沸点冷媒供給部、外部につながる流路)
22a 高沸点冷媒供給部
22b 高沸点冷媒排出部
23 冷媒供給排出部
23a 冷媒供給部
23b 冷媒排出部
24 開口部
S 内部空間
2 真空断熱容器
3 輻射シールド
4、4a、4b、4c、4d 超電導コイル
5 コイルボビン
6 サーモサイフォン部(冷媒循環流路)
6a 本体下部
6b 本体上部
6c 冷媒降下流路部
6d 下部流路部
6e 冷媒上昇流路部
6f 上部流路部
6g 液溜め部
9 永久電流スイッチ
10 保護抵抗
10a 抵抗管部
10b 高沸点冷媒通路部
11 ・BR>@ 保護抵抗収容部
12 冷凍機
13 直流電源
14 電流遮断器
20 気化した冷媒の進行方向を示す矢印
21 超電導電磁石装置の中心軸
22 高沸点冷媒供給排出部(高沸点冷媒供給部、外部につながる流路)
22a 高沸点冷媒供給部
22b 高沸点冷媒排出部
23 冷媒供給排出部
23a 冷媒供給部
23b 冷媒排出部
24 開口部
S 内部空間
Claims (10)
- 冷媒が循環される冷媒循環流路と、
前記冷媒循環流路における冷媒の蒸気を冷却する冷凍機と、
前記循環される冷媒により冷却される超電導コイルと、
前記超電導コイルと熱的に接触されると共に、内部空間を有する保護抵抗と、
前記保護抵抗内の内部空間に、前記冷媒よりも高沸点、かつ、前記冷媒により凍結される高沸点冷媒を供給する高沸点冷媒供給部と、
前記冷媒循環流路、前記超電導コイル、および前記保護抵抗を少なくとも収容する真空断熱容器と、
を備えることを特徴とする超電導磁石装置。 - 前記高沸点冷媒は、
初期冷却時には、前記高沸点冷媒供給部から前記保護抵抗の内部空間に供給されて前記超電導コイルを冷却し、
前記初期冷却後には、前記内部空間において、前記冷媒により冷却・凍結されること、
を特徴とする請求項1に記載の超電導磁石装置。 - 前記保護抵抗は、前記内部空間を管路として有する保護抵抗管として形成されており、
前記保護抵抗管が、前記超電導コイルの外周側および/または内周側に、当該超電導コイルと熱的に接触するように巻かれていること
を特徴とする請求項1または2に記載の超電導電磁石。 - 前記保護抵抗は、無酸素銅または無酸素銅と同等の常電導線を前記超電導コイルと磁気的に結合しないように無誘導に巻線したこと特徴とする請求項1ないし3のいずれかに記載の超電導電磁石装置。
- 前記保護抵抗は常電導線を密巻した構造を有し、前記の冷媒循環流路を流れる冷媒が密巻された常電導線の隙間を通過するように構成されていることを特徴とする請求項1ないし4のいずれか1項に記載の超電導電磁石装置。
- 前記保護抵抗の内部を前記複数の冷媒循環流路が貫くことを特徴とする請求項1ないし5のいずれかに記載の超電導電磁石装置の冷却構造。
- 前記超電導コイルの中心軸は水平方向を向き、前記保護抵抗は超電導コイルの外周面、内周面、ボビンのいずれかに熱的に接触されることを特徴とする請求項1ないし5のいずれかの超電導電磁石装置。
- 前記超電導コイルの中心軸は鉛直方向を向き、前記の超電導コイルは水平方向に設けた開口部を挟んで配置されることを特徴とする請求項1ないし5のいずれかに記載の超電導電磁石装置。
- 冷媒が循環される冷媒循環流路と、
前記冷媒循環流路における冷媒の蒸気を冷却する冷凍機と、
前記循環される冷媒により冷却される超電導コイルと、
前記超電導コイルに対して並列に接続される保護抵抗と、
前記冷媒循環流路、前記超電導コイル、および前記保護抵抗を少なくとも収容する真空断熱容器と、
を備える超電導磁石装置の冷却方法であって、
前記保護抵抗は、前記超電導コイルと熱的に接触されると共に、外部につながる流路を備える内部空間を有するように形成されており、
初期冷却時は、
前記冷媒よりも高沸点、かつ、前記冷媒により凍結される高沸点冷媒が、前記外部につながる流路から前記内部空間へと供給され、さらに、前記冷媒循環流路に、前記高沸点冷媒が供給されて、前記超電導磁石が冷却され、
前記初期冷却の後は、
前記冷媒循環流路から前記低沸点冷媒を除去した後に、前記冷媒が供給されることで、前記超電導磁石が冷却されると共に、前記内部空間に残留される前記高沸点冷媒が凍結されること、
を特徴とする超電導磁石装置の冷却方法。 - 請求項1ないし8のいずれかの超電導磁石装置を備えることを特徴とする磁気共鳴イメージング装置。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011264015A JP5852425B2 (ja) | 2011-12-01 | 2011-12-01 | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 |
| CN201280058904.9A CN103975395B (zh) | 2011-12-01 | 2012-11-28 | 超导电磁铁装置、其冷却方法以及磁共振成像装置 |
| PCT/JP2012/080690 WO2013080986A1 (ja) | 2011-12-01 | 2012-11-28 | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 |
| US14/360,653 US8988176B2 (en) | 2011-12-01 | 2012-11-28 | Superconducting electromagnet device, cooling method therefor, and magnetic resonance imaging device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011264015A JP5852425B2 (ja) | 2011-12-01 | 2011-12-01 | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2013118228A JP2013118228A (ja) | 2013-06-13 |
| JP5852425B2 true JP5852425B2 (ja) | 2016-02-03 |
Family
ID=48535437
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011264015A Expired - Fee Related JP5852425B2 (ja) | 2011-12-01 | 2011-12-01 | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US8988176B2 (ja) |
| JP (1) | JP5852425B2 (ja) |
| CN (1) | CN103975395B (ja) |
| WO (1) | WO2013080986A1 (ja) |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103811145A (zh) * | 2012-11-12 | 2014-05-21 | 通用电气公司 | 超导磁体系统 |
| JP6215345B2 (ja) * | 2013-11-15 | 2017-10-18 | 株式会社日立製作所 | 超電導磁石 |
| JP6239394B2 (ja) * | 2014-01-29 | 2017-11-29 | 株式会社東芝 | 超伝導マグネット装置 |
| GB2529897B (en) | 2014-09-08 | 2018-04-25 | Siemens Healthcare Ltd | Arrangement for cryogenic cooling |
| KR101630616B1 (ko) | 2014-10-14 | 2016-06-15 | 삼성전자 주식회사 | 자기공명영상장치 |
| JP6378039B2 (ja) * | 2014-10-23 | 2018-08-22 | 株式会社日立製作所 | 超電導磁石およびmri装置、nmr装置 |
| GB2547581B (en) | 2014-11-04 | 2019-01-09 | Shenzhen United Imaging Healthcare Co Ltd | Displacer in magnetic resonance imaging system |
| CN104599805B (zh) * | 2015-01-30 | 2017-01-25 | 中国科学院电工研究所 | 一种太赫兹源的强磁聚焦磁体系统 |
| CN106504847B (zh) * | 2015-02-03 | 2018-06-19 | 上海联影医疗科技有限公司 | 低温保持器及其冷却方法 |
| CN104669111A (zh) * | 2015-02-16 | 2015-06-03 | 湖州美泰电气科技有限公司 | 一种带有恒温控制的电磁吸盘装置 |
| JP6602716B2 (ja) * | 2016-03-30 | 2019-11-06 | ジャパンスーパーコンダクタテクノロジー株式会社 | 超電導マグネット装置 |
| JP6546115B2 (ja) * | 2016-03-30 | 2019-07-17 | ジャパンスーパーコンダクタテクノロジー株式会社 | 超電導マグネット装置 |
| JP6502423B2 (ja) * | 2017-06-23 | 2019-04-17 | 日本マグネティックス株式会社 | 電磁石 |
| US10746816B2 (en) * | 2018-02-05 | 2020-08-18 | General Electric Company | System and method for removing energy from an electrical choke |
| US11250977B2 (en) | 2018-04-09 | 2022-02-15 | Mitsubishi Electric Corporation | Superconducting magnet apparatus |
| JP2019220495A (ja) * | 2018-06-15 | 2019-12-26 | 株式会社日立製作所 | 超電導電磁石装置 |
| US10782258B2 (en) * | 2018-09-04 | 2020-09-22 | Northrop Grumman Systems Corporation | Superconductor critical temperature measurement |
| CN110136914B (zh) * | 2019-06-18 | 2021-05-04 | 中国科学院合肥物质科学研究院 | 一种混合磁体联锁安全保护方法 |
| JP6656498B1 (ja) * | 2019-07-10 | 2020-03-04 | 三菱電機株式会社 | 超電導マグネット |
| CN115398571B (zh) * | 2020-04-20 | 2025-07-18 | 佳能医疗系统株式会社 | 超导电磁铁装置 |
| CN112885554B (zh) * | 2021-02-19 | 2023-06-02 | 西安聚能超导磁体科技有限公司 | 一种小型高温超导直冷磁体及其装配方法 |
| JP7648426B2 (ja) * | 2021-04-08 | 2025-03-18 | 住友重機械工業株式会社 | 超伝導磁石装置およびサイクロトロン |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5861608A (ja) * | 1981-10-07 | 1983-04-12 | Mitsubishi Electric Corp | 超電導装置 |
| JPH06342721A (ja) | 1993-05-31 | 1994-12-13 | Tokin Corp | 超電導マグネット装置 |
| JPH07122422A (ja) | 1993-10-27 | 1995-05-12 | Toshiba Corp | 超電導マグネットの冷却システム |
| JPH08222429A (ja) | 1995-02-13 | 1996-08-30 | Hitachi Ltd | 極低温装置 |
| JPH09106908A (ja) * | 1995-10-12 | 1997-04-22 | Hitachi Cable Ltd | 超電導コイルおよびその製造方法 |
| JPH11219814A (ja) * | 1998-01-29 | 1999-08-10 | Toshiba Corp | 超電導マグネットおよびその予冷方法 |
| JPH11233334A (ja) * | 1998-02-18 | 1999-08-27 | Hitachi Ltd | 伝導冷却式超電導磁石装置 |
| JP4068265B2 (ja) | 1998-10-07 | 2008-03-26 | 株式会社東芝 | 超電導マグネット及びその予冷方法 |
| DE10221639B4 (de) | 2002-05-15 | 2004-06-03 | Siemens Ag | Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit |
| JP2005124721A (ja) * | 2003-10-22 | 2005-05-19 | Hitachi Medical Corp | 超電導磁気共鳴イメージング装置 |
-
2011
- 2011-12-01 JP JP2011264015A patent/JP5852425B2/ja not_active Expired - Fee Related
-
2012
- 2012-11-28 US US14/360,653 patent/US8988176B2/en not_active Expired - Fee Related
- 2012-11-28 WO PCT/JP2012/080690 patent/WO2013080986A1/ja not_active Ceased
- 2012-11-28 CN CN201280058904.9A patent/CN103975395B/zh not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| US20140329688A1 (en) | 2014-11-06 |
| CN103975395A (zh) | 2014-08-06 |
| WO2013080986A1 (ja) | 2013-06-06 |
| US8988176B2 (en) | 2015-03-24 |
| CN103975395B (zh) | 2016-10-12 |
| JP2013118228A (ja) | 2013-06-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5852425B2 (ja) | 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置 | |
| US8525023B2 (en) | Cooled current leads for cooled equipment | |
| JP6181127B2 (ja) | 無冷媒型磁石のための管状の熱スイッチ | |
| CN101796597B (zh) | 冷却方法 | |
| US9508477B2 (en) | Superconducting magnet system | |
| JP2004202245A (ja) | 伝導冷却式受動シールドmriマグネット | |
| JP4691350B2 (ja) | 超伝導磁石用の低渦電流極低温剤回路 | |
| CN103247406A (zh) | 制冷器系统及具有该制冷器系统的超导磁体装置 | |
| JP6378039B2 (ja) | 超電導磁石およびmri装置、nmr装置 | |
| JP6887538B2 (ja) | 極低温冷却用の装置 | |
| US9575149B2 (en) | System and method for cooling a magnetic resonance imaging device | |
| JP2010245523A (ja) | 超伝導マグネット冷却の装置及び方法 | |
| JP6695324B2 (ja) | Mriシステムの超伝導磁石構造用の冷却装置 | |
| CN107110928A (zh) | 用于冷却磁共振成像装置的系统和方法 | |
| US20160180996A1 (en) | Superconducting magnet system | |
| JP6491828B2 (ja) | 超電導電磁石装置 | |
| CN111223631B (zh) | 超导磁体冷却设备及磁共振成像设备 | |
| JP6158700B2 (ja) | 超電導磁石装置及び超電導利用装置 | |
| JP2014209543A (ja) | 永久電流スイッチ及びこれを備える超電導装置 | |
| JP2019220495A (ja) | 超電導電磁石装置 | |
| JPWO2014155476A1 (ja) | 超電導磁石装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140819 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151117 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151204 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5852425 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| LAPS | Cancellation because of no payment of annual fees |