JP5825909B2 - Plant growth medium - Google Patents

Plant growth medium Download PDF

Info

Publication number
JP5825909B2
JP5825909B2 JP2011166640A JP2011166640A JP5825909B2 JP 5825909 B2 JP5825909 B2 JP 5825909B2 JP 2011166640 A JP2011166640 A JP 2011166640A JP 2011166640 A JP2011166640 A JP 2011166640A JP 5825909 B2 JP5825909 B2 JP 5825909B2
Authority
JP
Japan
Prior art keywords
plant growth
water
growth medium
organic
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011166640A
Other languages
Japanese (ja)
Other versions
JP2013027365A (en
Inventor
茂 増田
茂 増田
Original Assignee
茂 増田
茂 増田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂 増田, 茂 増田 filed Critical 茂 増田
Priority to JP2011166640A priority Critical patent/JP5825909B2/en
Publication of JP2013027365A publication Critical patent/JP2013027365A/en
Application granted granted Critical
Publication of JP5825909B2 publication Critical patent/JP5825909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Description

本発明は、生産性の高い植物育成培地及びその製造方法に関する。   The present invention relates to a plant growth medium with high productivity and a method for producing the same.

土耕栽培では、土壌病害や連作障害等があることから、土壌から隔離した隔離ベッド栽培やロックウール栽培等の固形培地耕が導入されている。   In soil culture, there are soil diseases, continuous cropping failures, etc., so solid medium cultivation such as isolated bed cultivation and rock wool cultivation isolated from soil has been introduced.

固形培地耕に使用される固形培地は、有機培地と無機培地に大別される。有機培地としてはヤシ殻解砕物、ピートモス、バーグ等が挙げられ、一方、無機培地としてはロックウール、礫、火山礫、焼成多孔体等が挙げられる。   Solid media used for solid media cultivation are roughly classified into organic media and inorganic media. Examples of the organic medium include crushed coconut shells, peat moss, and burgers, and examples of the inorganic medium include rock wool, gravel, volcanic gravel, and fired porous material.

ところで、従来の地床栽培においては、一般的に水と栄養は別々に供給するものの、水と栄養の摂取は同時に起こる。植物は、土壌溶液から栄養を、蒸散していく水の流れから取り込むので、水と栄養の供給は同時に検討すべきである。よって、植物の健全な生育を得るためには、必要な時に適正な質と量の養液を供給しなければならない。   By the way, in conventional ground cultivation, although water and nutrients are generally supplied separately, intake of water and nutrients occurs simultaneously. Plants take nutrients from soil solutions from the stream of transpiration of water, so the supply of water and nutrients should be considered simultaneously. Therefore, in order to obtain healthy growth of plants, it is necessary to supply a nutrient solution of an appropriate quality and quantity when necessary.

このようなことから、固形培地耕において液肥混入機を使用して、点滴灌水する養液栽培システムには、液肥混入機、電磁弁、タイマー、水量計、水分センサー等を設備し、目標とする生育、収量及び品質を得るために給液管理による生育制御が行われている。   For this reason, the nutrient solution cultivation system that performs drip irrigation using a liquid fertilizer mixing machine in solid medium cultivation is equipped with a liquid fertilizer mixing machine, a solenoid valve, a timer, a water meter, a moisture sensor, and the like. In order to obtain growth, yield and quality, growth control is performed by liquid supply management.

近年、トマトの栽培において容量が1L〜6L前後のポットで根域を独立させて栽培する独立ポット耕栽培が注目されている。独立ポット耕栽培には、ピートモスやヤシ殻解砕物又はそれらの混合物や粘土を造粒した後に1000℃以上の高温で焼成した多孔体等が利用されている。この独立ポット耕栽培は、固形培地耕において液肥混入機を使用して点滴灌水する養液栽培であり、根域を制限した少量培地耕であることから生育のコントロールが容易で草勢のコントロールも容易である。このことが栽植密度を高密度化でき得る要因となっている。なお、従来の地床栽培は2,000株〜2,500株/10aで2作/年であるが、3段密植栽培は6,250株/10a、あるいは1段密植栽培は8,000株〜10,000株/10aで4〜5作/年を栽培することが可能であることが報告されている。   In recent years, independent pot cultivation in which the root area is independently grown in pots having a capacity of about 1 L to 6 L in cultivation of tomatoes has attracted attention. In the independent pot cultivation, a porous body or the like that is baked at a high temperature of 1000 ° C. or higher after granulating peat moss, coconut shell crushed material, a mixture thereof, or clay is used. This independent pot cultivation is a hydroponic cultivation in which drip irrigation is performed using a liquid fertilizer mixing machine in solid medium cultivation, and because it is a small amount medium cultivation with a restricted root area, growth control is easy and grass power control is also possible. Easy. This is a factor that can increase the planting density. In addition, the conventional underground cultivation is 2,000 to 2,500 shares / 10a, 2 crops / year, but the three-stage dense planting is 6,250 shares / 10a, or the first-stage dense planting is 8,000 to 10,000 shares / 10a, 4 to 4 It has been reported that it is possible to grow 5 crops / year.

このようなことから、苗が従来の10倍と大量に必要になるために、安い種子や生産性の高い植物育成培地が求められている。ここでいう植物育成培地とは、播種に用いる培地を含む、植物を育成せしめるための培地をいう。   For this reason, since seedlings are required in a large amount of 10 times the conventional amount, cheap seeds and highly productive plant growth media are required. The plant growth medium as used herein refers to a medium for growing plants, including a medium used for sowing.

ところで、従来において、植物育成培地の開発がなされている。
特許文献1は、pF2.0以下の有効水分量が適度に少なく、且つpF2.0〜3.2の有効水分量が多い水分保持特性を有する培地を、周辺土壌から隔離された状態とし、そこに栽培しようとする植物を植え付け、水又は液肥を供給して栽培することを含む、養液栽培による植物栽培方法を開示する。なお、pFとは水分が土壌に吸引されている強さをその吸引圧に相当する水柱の高さの対数で表したものである。特許文献1においては、使用する培地として、粒径0.1mm以下の粒子が5容量%以上50容量%以下の浄水場発生土を含む培地、また浄水場発生土、バーグ堆肥及びピートモスから成る培地が挙げられている。
By the way, conventionally, a plant growth medium has been developed.
Patent Document 1 cultivates a medium having a water retention characteristic of a moderately low effective water content of pF 2.0 or less and a high effective water content of pF 2.0 to 3.2 isolated from the surrounding soil. Disclosed is a method for plant cultivation by hydroponics, which comprises planting a plant to be planted and supplying water or liquid fertilizer for cultivation. Note that pF represents the strength with which water is sucked into the soil as a logarithm of the height of the water column corresponding to the suction pressure. In Patent Document 1, as a medium to be used, a medium containing water purification plant generation soil having a particle size of 0.1 mm or less and 5 volume% or more and 50 volume% or less, or a medium composed of water purification plant generation soil, Berg compost and peat moss. Are listed.

また、特許文献2は、嵩比重が軽く、保水性に優れ、且つ軽資材との分散性に優れ、育苗培土に好適な団粒構造ゼオライト、並びに当該団粒構造ゼオライトとピートモス等の軽資材とを含む育苗培土を開示する。   Patent Document 2 discloses light aggregates such as aggregated zeolite with light bulk specific gravity, excellent water retention, dispersibility with light materials, and suitable for raising seedlings, and light materials such as aggregated zeolite and peat moss. Disclose the seedling culture soil containing

さらに、特許文献3は、持続的な撥水防止効果があり、保存性に優れ、且つ超軽量の培土資材として、ピートモス等の撥水性有機資材にゼオライト等の粘土鉱物の粉状物、加熱により不溶化する水溶性高分子材料から成るバインダー及び水を加え、混合し、水分10重量%以下となるまで品温70℃以上150℃以下の温度で加熱乾燥させることで製造した高吸水性軽量培土を開示する。   Furthermore, Patent Document 3 has a sustained water-repellent effect, has excellent storage stability, and is an ultralight soil material. Water-repellent organic materials such as peat moss, powdered clay minerals such as zeolite, and the like by heating. A highly water-absorbing lightweight soil produced by adding and mixing a binder consisting of a water-soluble polymer material to be insolubilized, mixing, and heating and drying at a temperature of 70 ° C to 150 ° C until the water content is 10% by weight or less. Disclose.

特開2003-92924号公報JP2003-92924 特開2000-336356号公報JP 2000-336356 A 特開2005-341898号公報Japanese Patent Laid-Open No. 2005-341898

固形培地耕に使用される固形培地は固相、気相及び液相の三相を有し、植物の栽培には通気と保水のバランスが取れた三相分布が最適である。なお、独立ポット耕栽培に主として使用されているヤシ殻解砕物の三相の一例としては、固相6%、気相28%及び液相66%が挙げられる。   A solid medium used for solid medium cultivation has three phases of a solid phase, a gas phase, and a liquid phase, and a three-phase distribution that balances aeration and water retention is optimal for plant cultivation. In addition, as an example of the three phases of the coconut shell pulverized material mainly used for independent pot cultivation, solid phase 6%, gas phase 28% and liquid phase 66% can be mentioned.

「トマトの独立ポット耕栽培システムの開発」(安田雅晴・越川兼行・勝山直樹, 岐阜県農業技術センター研究報告, 2009年, Vol. 9, pp. 11-16)は、独立ポット耕栽培にヤシ殻解砕物を使用するに当っては不織布以外を使用したポットは、排水が悪いため使用しないことを記載する。すなわち、ヤシ殻解砕物は気相率が少なく、通気性の改良が必要とされることが示唆されている。更には、ポット側面の周囲に苔の発生や養液の結晶がみられ不織布の通気性を阻害している。   “Development of Tomato Independent Pot Cultivation System” (Masharu Yasuda, Kaneyuki Koshikawa, Naoki Katsuyama, Gifu Agricultural Technology Center Research Report, 2009, Vol. 9, pp. 11-16) It is described that pots using other than non-woven fabric are not used because of poor drainage. That is, it is suggested that the coconut shell crushed material has a low gas phase rate and needs to improve air permeability. Furthermore, the occurrence of moss and crystals of nutrient solution are observed around the side of the pot, impairing the air permeability of the nonwoven fabric.

一方、硬質な多孔体培地を装入し液肥混入機を使用して点滴灌水する栽培方法について、特許文献1は、比較的糖度の高いトマトやメロン等を安定的に生産することは難しく、植物にとって極めて強い水分ストレスが与えられ、収量が大幅に減少することを記載する(段落番号「0007」及び「0008」)。さらに、「トマト養液栽培用培地としての土壌焼成多孔体の利用」(大石直記・小杉敏己・斉藤和夫, 静岡県農業試験場研究報告第42号(1997))は、粒径2mmの多孔体では保水率が高いため給液量をかなり減少させないと茎径等の生育を抑えることが困難であることを記載する。   On the other hand, regarding a cultivation method in which a rigid porous medium is charged and drip irrigation using a liquid fertilizer mixing machine, Patent Document 1 is difficult to stably produce tomatoes, melons, and the like with relatively high sugar content. It is described that the yield is greatly reduced due to extremely high water stress (paragraph numbers “0007” and “0008”). Furthermore, “Utilization of Soil-fired Porous Material as a Medium for Tomato Hydroponic Culture” (Naoki Oishi, Toshimi Kosugi, Kazuo Saito, Shizuoka Prefectural Agricultural Experiment Station Research Report No. 42 (1997)) It describes that it is difficult to suppress the growth of stem diameter and the like unless the water supply amount is significantly reduced because the water retention rate is high.

そこで、本発明は、上述した実情に鑑み、植物を安定的に生産することを可能にする、水分のコントロールが容易な植物育成培地を提供することを目的とする。   Therefore, in view of the above-described circumstances, an object of the present invention is to provide a plant growth medium that allows stable production of plants and that can easily control moisture.

上記課題を解決するため鋭意研究を行った結果、湾曲面を物理的成分とする素材を基材として、当該素材の凹に有機素材及び/又は無機素材を充填した加工物が通気性及び保水性の双方に優れ、水分のコントロールが容易な植物育成培地であることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, a material with a curved surface as a physical component is used as a base material, and a workpiece filled with organic material and / or inorganic material in the concave of the material is breathable and water-retaining It was found that the plant growth medium is excellent in both, and the moisture control is easy, and the present invention has been completed.

本発明は、以下を包含する。
(1)基材として湾曲面を物理的成分とする素材と、有機素材及び/又は無機素材とを含有する植物育成培地。
The present invention includes the following.
(1) A plant growth medium containing a material having a curved surface as a physical component as a substrate and an organic material and / or an inorganic material.

(2)有機素材及び/又は無機素材が湾曲面を物理的成分とする素材の凹に充填されていることを特徴とする、(1)記載の植物育成培地。   (2) The plant growth medium according to (1), wherein an organic material and / or an inorganic material is filled in a concave of a material having a curved surface as a physical component.

(3)湾曲面を物理的成分とする素材がモミガラ又はソバガラである、(1)又は(2)記載の植物育成培地。   (3) The plant growth medium according to (1) or (2), wherein the material having a curved surface as a physical component is rice bran or buckwheat.

(4)有機素材及び/又は無機素材が、有機物又はその粉砕物、粘土鉱物又はその粉状物及び鉱物又はその粉状物から成る群より選択される1種又は2種以上の混合物である、(1)〜(3)のいずれか1記載の植物育成培地。   (4) The organic material and / or the inorganic material is one or a mixture of two or more selected from the group consisting of an organic material or a pulverized product thereof, a clay mineral or a powdered product thereof, and a mineral or a powdered product thereof, The plant growth medium according to any one of (1) to (3).

(5)有機物又はその粉砕物が、ピートモス又はヤシ殻解砕物である、(4)記載の植物育成培地。   (5) The plant growth medium according to (4), wherein the organic matter or the pulverized product thereof is peat moss or coconut shell crushed material.

(6)粘土鉱物が、ゼオライト、ベントナイト及びカオリナイトから成る群より選択される、(4)記載の植物育成培地。
(7)さらに肥料を含有する、(1)〜(6)のいずれか1記載の植物育成培地。
(6) The plant growth medium according to (4), wherein the clay mineral is selected from the group consisting of zeolite, bentonite and kaolinite.
(7) The plant growth medium according to any one of (1) to (6), further containing a fertilizer.

(8)湾曲面を物理的成分とする素材と有機素材及び/又は無機素材とを水の存在下で混合する工程と、前記混合物にバインダーを添加し、添着造粒成形加熱乾燥に供する工程とを含む、植物育成培地の製造方法。   (8) a step of mixing a material having a curved surface as a physical component with an organic material and / or an inorganic material in the presence of water, a step of adding a binder to the mixture, and subjecting the mixture to heat-drying with additive granulation; A method for producing a plant growth medium, comprising:

(9)有機素材及び/又は無機素材が湾曲面を物理的成分とする素材の凹に充填されることを特徴とする、(8)記載の方法。   (9) The method according to (8), wherein an organic material and / or an inorganic material is filled in a recess of a material having a curved surface as a physical component.

(10)湾曲面を物理的成分とする素材がモミガラ又はソバガラである、(8)又は(9)記載の方法。   (10) The method according to (8) or (9), wherein the material having a curved surface as a physical component is a rice bran or a buckwheat.

(11)有機素材及び/又は無機素材が、有機物又はその粉砕物、粘土鉱物又はその粉状物及び鉱物又はその粉状物から成る群より選択される1種又は2種以上の混合物である、(8)〜(10)のいずれか1記載の方法。   (11) The organic material and / or the inorganic material is one or a mixture of two or more selected from the group consisting of an organic material or a pulverized material thereof, a clay mineral or a powdered material thereof, and a mineral or a powdered material thereof, The method according to any one of (8) to (10).

(12)有機物又はその粉砕物が、ピートモス又はヤシ殻解砕物である、(11)記載の方法。   (12) The method according to (11), wherein the organic substance or pulverized product thereof is peat moss or coconut shell crushed material.

(13)粘土鉱物が、ゼオライト、ベントナイト及びカオリナイトから成る群より選択される、(11)記載の方法。   (13) The method according to (11), wherein the clay mineral is selected from the group consisting of zeolite, bentonite and kaolinite.

(14)前記混合工程において、肥料を添加することを含む、(8)〜(13)のいずれか1記載の方法。   (14) The method according to any one of (8) to (13), including adding a fertilizer in the mixing step.

本発明によれば、通気と保水のバランスが良く、水分のコントロールが容易な植物育成培地が提供される。本発明に係る植物育成培地は、水分のコントロールが容易であることに加え、分散性が良く、崩壊が少なく、病原菌の心配がなく、農業分野において有効な培地である。   According to the present invention, there is provided a plant growth medium having a good balance between aeration and water retention and easy water control. The plant growth medium according to the present invention is an effective medium in the agricultural field, in addition to easy control of moisture, good dispersibility, little disintegration, and no fear of pathogenic bacteria.

単粒構造の模式図である。It is a schematic diagram of a single grain structure. 団粒構造の模式図である。It is a schematic diagram of a aggregate structure. 本発明に係る植物育成培地の一例を示す模式図である。It is a schematic diagram which shows an example of the plant growth culture medium which concerns on this invention. 実施例2及び3の本発明に係る植物育成培地のpF測定結果を示すグラフである。It is a graph which shows the pF measurement result of the plant growth medium based on this invention of Example 2 and 3.

以下、本発明を詳細に説明する。
従来において、植物育成培地の素材として有機質系素材、非有機質素材又はこれらの混合素材が利用されてきた。例えば、有機質系素材としては、ピートモス、ヤシ殻解砕物、バーグ等が挙げられる。非有機質素材としては、ゼオライト、ベントナイト、カオリナイト等の粘土鉱物、赤土、黒土、マサ土、水田土壌、畑土壌等の一般土壌等が挙げられる。いずれにおいても、植物の生育には通気と保水のバランスが取れた培地が最適であり、上記素材を植物の生育に好ましい組み合わせの構成にしなくてはならない。また、土は単粒構造といわれる小さな土の粒子と、大小様々な土の塊から成る団粒構造に分けられる。単粒構造と団粒構造の模式図を、それぞれ図1及び図2に示す。
Hereinafter, the present invention will be described in detail.
Conventionally, organic materials, non-organic materials, or mixed materials thereof have been used as materials for plant growth media. For example, examples of the organic material include peat moss, coconut shell crushed material, and berg. Examples of the non-organic material include clay minerals such as zeolite, bentonite, and kaolinite, and general soil such as red soil, black soil, masa soil, paddy soil, and field soil. In any case, a medium in which aeration and water retention are balanced is optimal for the growth of plants, and the above materials must be configured in a preferable combination for the growth of plants. In addition, soil is divided into small soil particles called single grain structure and aggregate structure consisting of large and small soil lump. Schematic diagrams of single grain structure and aggregate structure are shown in FIGS. 1 and 2, respectively.

土に充分に水をあたえてから、1〜2日後重力水(重力流去水)が自然に排出された状態の土が保持している水の量を圃場容水量と呼び、この水エネルギーは張力でpF1.6〜2.0の範囲である。重力水が排水され、重力水が入っていた孔隙が気相となり通気を容易にするものである。また、このpF1.6〜2.0の水分域は植物が最も養水分吸収を行いやすく、このことから養水分を過剰に吸収し、草勢のコントロールが困難となる。そこで、pF2.0〜2.2以上の水分域が必要となる。また、pF3.2〜3.3が植物の生長阻害点であることから、pF2.0〜2.2以下の水分量が少なく、pF2.0〜2.2以上からpF3.2〜3.3までの易有効水分が多い植物育成培地が求められる。   The amount of water retained by the soil in a state where gravity water (gravity runoff) is naturally discharged after 1-2 days after sufficient water is applied to the soil is called the field capacity. The tension is in the range of pF 1.6 to 2.0. Gravity water is drained, and the pores containing gravity water become a gas phase to facilitate ventilation. In addition, the moisture range of pF 1.6 to 2.0 is most easily absorbed by the plant, which makes it difficult to control the plant vigor due to excessive absorption of the nutrient water. Therefore, a moisture range of pF 2.0 to 2.2 or higher is required. In addition, since pF3.2 to 3.3 is a plant growth inhibition point, the amount of water of pF2.0 to 2.2 or less is small, and the plant has a large amount of easily available moisture from pF2.0 to 2.2 to pF3.2 to 3.3. A growth medium is required.

図1及び図2から理解されるように、pF2.0以上の毛管水は団粒内に貯えられ、団粒間は重力水(すなわち、非毛管水)として空気で満たされた孔隙になる。単粒構造は、粒と粒の隙間が小さくなって水や空気が通りにくくなる。一方、団粒構造は団粒同士の比較的大きな隙間では通気性を保ち、内部構造は単粒同士のために保水性が高い。すなわち、団粒構造の土は、通気と保水のバランスが取れた理想的な植物の培地となる条件を備えている。このことが、古くから土の理想と言われてきた理由である。   As can be understood from FIGS. 1 and 2, capillary water having a pF of 2.0 or more is stored in the aggregates, and the gaps between the aggregates become pores filled with air as gravity water (that is, non-capillary water). In the single grain structure, the gap between the grains becomes small and water and air are difficult to pass. On the other hand, the aggregate structure maintains air permeability in relatively large gaps between aggregates, and the internal structure has high water retention due to single grains. That is, the soil of aggregate structure has a condition to become an ideal plant culture medium in which aeration and water retention are balanced. This is the reason that has been said to be the ideal of soil since ancient times.

上述したように、良好な植物育成培地の第一条件は、作物の生育に欠かせない充分な水と酸素を絶え間なく根に与えることである。つまり、孔隙を通じて絶え間なく水と酸素を根に供給することである。換言すれば、植物育成培地は、通気と保水のバランスが取れていなければならない。この第一条件の他、植物育成培地に求められる条件に、分散性が良いこと、崩壊が少ないこと、病原菌の心配がないこと等が挙げられる。   As mentioned above, the first condition of a good plant growth medium is to constantly provide the root with sufficient water and oxygen essential for crop growth. In other words, it constantly supplies water and oxygen to the roots through the pores. In other words, the plant growth medium must be balanced between aeration and water retention. In addition to this first condition, the conditions required for the plant growth medium include good dispersibility, less disintegration, and no worry about pathogenic bacteria.

これらのことを植物育成培地に求められる条件として、新たな培地を検索するために従来から利用されてきた素材を構造単位として、肉眼的な判断で以下の4つの構造に大別する。   These are the conditions required for the plant growth medium, and the materials conventionally used for searching for a new medium are divided into the following four structures by macroscopic judgment using the structural unit as a structural unit.

(1)単粒構造:ゼオライト、ベントナイト、カオリナイト、赤土、黒土、マサ土、水田土壌、畑土壌等
(2)多孔構造(塊状):焼成多孔体、レキ、火山レキ
(3)板状構造:バーグ、バーミキュライト
(4)棒状(糸状)構造:ピートモス、ヤシ殻解砕物
次に、上記(1)〜(4)の素材を下記のように考察する。
(1) Single grain structure: zeolite, bentonite, kaolinite, red soil, black soil, masa soil, paddy soil, field soil, etc.
(2) Porous structure (bulk): calcined porous body, reki, volcano reki
(3) Plate structure: Berg, vermiculite
(4) Rod-like (thread-like) structure: peat moss, coconut shell crushed material Next, the materials of the above (1) to (4) are considered as follows.

(1)の単粒構造については、上述したように、粒と粒の隙間が小さくなって水や空気が通りにくくなる。その対策として、大小の異なる径の粒子を混合するも、分散性が悪くなる。   With regard to the single grain structure of (1), as described above, the gap between the grains becomes small and water and air hardly pass. As a countermeasure, even when particles of different sizes are mixed, the dispersibility deteriorates.

(2)の多孔構造については、特許文献1に述べられているように、比較的糖度の高いトマトやメロン等を安定的に生産することは難しく、植物にとって極めて強い水分ストレスが与えられ、収量が大幅に減少するとされている。   With regard to the porous structure of (2), as described in Patent Document 1, it is difficult to stably produce tomatoes, melons and the like having a relatively high sugar content, and the plant is subjected to extremely strong water stress, yield. There is a significant decrease.

(3)板状構造については、バーグは、樹皮の種類、堆積期間等により品質に差があるので注意する必要があることが知られている。バーミキュライトは、保肥力、保水力ともに大きく、通気性もよく、軽いので培地用素材として多く用いられているが、構造が崩壊されやすいことが知られている。構造が崩壊すれば、上記特性は発現しない。   (3) As for the plate-like structure, it is known that Berg needs to be careful because there are differences in quality depending on the type of bark and the deposition period. Vermiculite is widely used as a medium material because it has both high fertilizer and water retention, good air permeability, and is light, but it is known that its structure tends to collapse. If the structure collapses, the above characteristics will not appear.

(4)棒状(糸状)構造については、ヤシ殻解砕物は、気相率が少なく通気性の改良を必要とされることが示唆されている。ピートモスは、ヤシ殻解砕物よりもさらに保水性は高く通気性に乏しいことが知られている。このような負の原因は、力学的強度に乏しいことから形状が変化しやすく湿乾によって体積が膨張したり収縮することにある。つまり、素材そのものの物性が持つ吸水性と素材の組み合わせによって成る孔隙が保水性となる。植物育成培地は、素材が固相を形成し、二次的に気相及び液相が形成されることから、力学的強度に乏しいために形状が変化し、吸水で体積の膨張があれば、気相率は保障されない。   (4) Regarding the rod-like (filamentous) structure, it is suggested that the coconut shell crushed material has a low gas phase rate and needs to improve air permeability. It is known that peat moss has higher water retention and poor air permeability than coconut shell cracks. Such a negative cause is that the volume is expanded or contracted by wet drying because the shape is easily changed due to poor mechanical strength. In other words, the pores formed by the combination of the water absorption property of the material itself and the material serve as water retention. The plant growth medium, because the material forms a solid phase, secondary gas phase and liquid phase is formed, the shape changes because of poor mechanical strength, if there is a volume expansion due to water absorption, The gas phase rate is not guaranteed.

(1)〜(4)の素材の特性について考察の結果、単一素材では、長所はあるも欠点もあることから、特許文献1に開示されるように、浄水場発生土、バーグ堆肥、ピートモス等の紛粒混合タイプが利用されている。しかしながら、例えば有機素材と粘土鉱物を混合する行程において嵩比重の差や粒径の差に起因する分散性の低下が原因となり、植物個体の生育にバラつきが生じる。つまり、均質な生産性の高い植物育成培地の条件に合致しない。   As a result of consideration of the characteristics of the materials (1) to (4), there are advantages and disadvantages with a single material, so that as disclosed in Patent Document 1, water generation plant soil, burg compost, peat moss Etc. are used. However, for example, in the process of mixing the organic material and the clay mineral, the dispersibility is lowered due to the difference in bulk specific gravity or the difference in particle size, resulting in variations in plant growth. That is, it does not match the conditions of a homogeneous and highly productive plant growth medium.

以上のことから単一素材の問題点を考慮するも、紛粒混合タイプの植物育成培地は、本発明の目的である植物を安定的に生産することを可能にする、水分のコントロールが容易な植物育成培地の条件に合致しない。   Considering the problems of a single material from the above, the plant growth medium of the powder mixture type makes it possible to stably produce the plant which is the object of the present invention, and the moisture control is easy. Does not meet the conditions of the plant growth medium.

そこで、本発明は、植物を安定的に生産することを可能にする、水分のコントロールが容易な植物育成培地を提供することを目的とし、鋭意研究した結果、湾曲面を物理的成分とする素材を基材として、当該素材の凹に有機素材及び/又は無機素材を充填した加工物が通気性及び保水性の双方に優れ、水分のコントロールが容易な植物育成培地であることを見出した。   Therefore, the present invention aims to provide a plant growth medium that enables stable production of plants and allows easy control of moisture, and as a result of earnest research, the material has a curved surface as a physical component. It has been found that a processed product in which a concave portion of the material is filled with an organic material and / or an inorganic material is excellent in both air permeability and water retention, and is easy to control moisture.

本発明に係る植物育成培地は、基材として湾曲面を物理的成分とする素材と、有機素材及び/又は無機素材とを含有し、有機素材及び/又は無機素材が湾曲面を物理的成分とする素材の凹に充填されているものである。本発明に係る植物育成培地は、基材が湾曲面を有することで、粒子間に孔隙が存在し、通気性と保水性とを両立させた構造を有する。また、基材が湾曲面を有し、当該基材の凹内部に有機素材及び/又は無機素材が充填されていることで、本発明に係る植物育成培地の粒子の構造の崩壊が軽減される。さらに、本発明に係る植物育成培地の粒子は、嵩比重及び粒径の差が少ないことから、分散性に優れている。   The plant growth medium according to the present invention contains a material having a curved surface as a physical component as a base material, an organic material and / or an inorganic material, and the organic material and / or the inorganic material has a curved surface as a physical component. The material is filled in the recess. The plant growth medium according to the present invention has a structure in which pores exist between the particles and the air permeability and water retention are compatible because the substrate has a curved surface. In addition, since the base material has a curved surface and the concave portion of the base material is filled with an organic material and / or an inorganic material, the collapse of the particle structure of the plant growth medium according to the present invention is reduced. . Furthermore, the particles of the plant growth medium according to the present invention are excellent in dispersibility because of little difference in bulk specific gravity and particle size.

ここで、湾曲面を物理的成分とする素材とは、湾曲面を有し、凹部(入り込んだ部分)を有する素材を意味する。湾曲面を物理的成分とする素材としては、例えばプラスチック等の合成素材、モミガラ(例えばイネやムギのモミガラ)、ソバガラ等の天然素材等が挙げられるが、モミガラ及びソバガラが好ましい。   Here, the material having a curved surface as a physical component means a material having a curved surface and having a concave portion (intruded portion). Examples of the material having a curved surface as a physical component include synthetic materials such as plastic, natural materials such as rice straw (for example, rice and wheat rice), buckwheat, and the like, but rice flour and buckwheat are preferred.

モミガラは、C/N比(炭素/窒素比)が70程度と比較的高く腐りにくい資材である。モミガラをそのまま利用すると、窒素飢餓となり、またアブシジン酸やモミラクトーンフェノール等の発芽抑制物質を含有しているため、発芽不良や立ち枯れの原因となる。従って、モミガラをそのまま培地として利用することができない。そこで、モミガラは、水洗い、発酵、炭化や灰化により、発芽抑制物質を洗浄や分解させた後、栽培関連で利用されている。さらに、モミガラは、排水性が過度に優れているが、保水性や保肥力に劣ることから、粘土鉱物や他の有機物と混合するも、比重が異なるために分散性に欠ける。このことから、混合割合は限定され、多量に利用することができない。   Boiled rice is a material that has a relatively high C / N ratio (carbon / nitrogen ratio) of about 70 and does not rot easily. If the rice bran is used as it is, it causes nitrogen starvation and also contains germination inhibitors such as abscisic acid and momilactone phenol, which causes germination failure and withering. Therefore, the rice bran cannot be used as a medium as it is. Therefore, rice straw is used for cultivation after washing and decomposing germination inhibitors by washing with water, fermentation, carbonization and ashing. Furthermore, the rice bran is excessively excellent in drainage, but is poor in water retention and fertilizing power, so even when mixed with clay minerals and other organic substances, it lacks dispersibility due to different specific gravity. For this reason, the mixing ratio is limited and cannot be used in large quantities.

しかしながら、湾曲面を物理的成分とするモミガラは力学的強度が高く、さらに断片であっても、湾状あるいは舟形で形状変化が極めて少ない。この特性は培地の気相率の変化の軽減要素になり得る。   However, rice bran with a curved surface as a physical component has high mechanical strength, and even if it is a fragment, it has a bay shape or a boat shape, and its shape changes very little. This property can be a mitigating factor for changes in the gas phase rate of the medium.

本発明者は、従来において水洗い、発酵、炭化や灰化工程を経てモミガラを利用していたが、これら工程はモミガラの力学的強度を弱くし、気相率の変化の要因となっていた。従って、これら工程を省いて、モミガラを利用することに着目した。   The present inventor has conventionally used rice crackers through water washing, fermentation, carbonization and ashing processes, but these processes weaken the mechanical strength of rice straw and cause changes in the gas phase rate. Therefore, we paid attention to the use of rice bran without these steps.

一方、有機素材としては、有機物又はその粉砕物等が挙げられ、特にピートモス及びヤシ殻解砕物が好ましい。   On the other hand, examples of the organic material include organic matter or a pulverized product thereof, and peat moss and coconut shell crushed material are particularly preferable.

無機素材としては、粘土鉱物又はその粉状物、鉱物又はその粉状物等が挙げられる。粘土鉱物又はその粉状物としては、例えばゼオライト、ベントナイト、カオリナイト及びそれらの粉状物等が挙げられる。鉱物又はその粉状物としては、例えば火成岩、堆積岩、変成岩、一般土壌等が挙げられる。   Examples of inorganic materials include clay minerals or powders thereof, minerals or powders thereof, and the like. Examples of clay minerals or powdered materials thereof include zeolite, bentonite, kaolinite, and powdered materials thereof. Examples of minerals or powders thereof include igneous rocks, sedimentary rocks, metamorphic rocks, and general soil.

有機素材と無機素材は、単独で使用してもよく、あるいは2種以上の混合物を使用することもできる。例えば、ピートモス又はヤシ殻解砕物とゼオライトの混合物を、有機素材と無機素材との混合物として使用することができる。   The organic material and the inorganic material may be used alone, or a mixture of two or more kinds may be used. For example, a mixture of peat moss or coconut shell crushed material and zeolite can be used as a mixture of an organic material and an inorganic material.

本発明に係る植物育成培地は、肥料(例えば、窒素、リン酸、カリウム等の肥料成分)や植物病原菌に抵抗性を有する微生物やその成育に有効に作用する成分を含有してもよい。   The plant growth medium according to the present invention may contain a fertilizer (for example, a fertilizer component such as nitrogen, phosphoric acid, or potassium), a microorganism having resistance to phytopathogenic fungi, or a component that effectively acts on the growth thereof.

本発明に係る植物育成培地は、湾曲面を物理的成分とする素材と有機素材及び/又は無機素材とを水の存在下で混合する工程と、得られた混合物にバインダーを添加し、添着造粒成形加熱乾燥に供する工程を含む方法(以下、「本方法」と称する)により製造することができる。   The plant growth medium according to the present invention comprises a step of mixing a material having a curved surface as a physical component with an organic material and / or an inorganic material in the presence of water, and adding a binder to the resulting mixture, so It can be produced by a method (hereinafter referred to as “the present method”) comprising a step of subjecting to granulation heating and drying.

先ず、本方法では、湾曲面を物理的成分とする素材と有機素材及び/又は無機素材とを水の存在下で混合する。湾曲面を物理的成分とする素材と、有機素材及び/又は無機素材との混合割合は、所望の通気性、保水性、排水性及び嵩比重を得るために、適宜決定することができる。湾曲面を物理的成分とする素材としてモミガラを使用し、且つ有機素材及び/又は無機素材としてピートモスと粉状ゼオライトとの混合物を使用した場合には、例えばモミガラとピートモスを体積比で1:1、モミガラとピートモスの混合物に対して粉状ゼオライトを10容量%(vol%)、並びにモミガラ、ピートモス及び粉状ゼオライトの混合物(全量)に対して水を20vol%として、モミガラ、ピートモス及び粉状ゼオライトを水の存在下で混合する。混合は、例えばコンクリートミキサーによって行うことができ、湾曲面を物理的成分とする素材の凹に有機素材及び/又は無機素材が十分に充填される(入れ込まれる)ように、例えば常温で10分程度行われる。なお、肥料等の追加成分を含有させる場合には、当該混合工程において湾曲面を物理的成分とする素材と有機素材及び/又は無機素材との混合物に追加成分を添加し、混合を行うことが好ましい。   First, in this method, a material having a curved surface as a physical component and an organic material and / or an inorganic material are mixed in the presence of water. The mixing ratio of a material having a curved surface as a physical component and an organic material and / or an inorganic material can be appropriately determined in order to obtain desired air permeability, water retention, drainage, and bulk specific gravity. In the case of using Momiji as a material having a curved surface as a physical component and using a mixture of peat moss and powdered zeolite as an organic material and / or an inorganic material, for example, a volume ratio of 1: 1 to 1: , 10 vol% (vol%) of powdered zeolite with respect to the mixture of Momiji and peat moss, and 20 vol% of water with respect to the mixture (total amount) of Momiji, peat moss and powdered zeolite (total amount), In the presence of water. Mixing can be performed by, for example, a concrete mixer, and the organic material and / or the inorganic material is sufficiently filled (inserted) into the concave portion of the material having a curved surface as a physical component, for example, at room temperature for 10 minutes. Done about. In addition, when an additional component such as fertilizer is included, an additional component may be added to the mixture of a material having a curved surface as a physical component and an organic material and / or an inorganic material in the mixing step, and mixing may be performed. preferable.

次いで、本方法では、湾曲面を物理的成分とする素材と有機素材及び/又は無機素材との混合物にバインダーを添加し、添着造粒成形加熱乾燥に供する。使用するバインダーとしては、加熱により不溶化する水溶性高分子材料である公知の結合材が挙げられ、例えばポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ポリアクリルアミド、ポリアクリル酸、デンプン等が挙げられる。湾曲面を物理的成分とする素材と有機素材及び/又は無機素材との混合物に対してバインダーは、例えば当該混合物500Lに対して3〜5kgの量で添加する。また、ここで、添着造粒成形加熱乾燥とは、各素材を混合する行程と造粒成形及び乾燥行程を意味する。すなわち、添着造粒成形加熱乾燥工程では、各素材を混合すると共に造粒成形及び乾燥が行われる。添着造粒成形加熱乾燥は、例えば品温を70〜150℃(好ましくは100〜120℃)とし、水分10重量%(wt%)になるまでロータリーキルン、造粒機等で行うことができる。   Next, in this method, a binder is added to a mixture of a material having a curved surface as a physical component, an organic material, and / or an inorganic material, and subjected to additive granulation heating drying. Examples of the binder to be used include known binders that are water-soluble polymer materials that are insolubilized by heating, and examples thereof include polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, polyacrylamide, polyacrylic acid, and starch. For example, the binder is added to the mixture of the material having the curved surface as a physical component and the organic material and / or the inorganic material in an amount of 3 to 5 kg with respect to 500 L of the mixture. Here, the attached granulation molding heat drying means a process of mixing each material, a granulation molding and a drying process. That is, in the additive granulation molding heat drying step, the raw materials are mixed and granulated molding and drying are performed. The attached granulation molding heat drying can be carried out with a rotary kiln, granulator or the like until the product temperature is 70 to 150 ° C. (preferably 100 to 120 ° C.) and the water content becomes 10% by weight (wt%).

このようにして、本方法により本発明に係る植物育成培地を製造することができる。本方法では、添着造粒成形加熱乾燥において水分10wt%未満まで乾燥することで、本発明に係る植物育成培地による肥料成分や微生物の分解や変質が少なく、また本発明に係る植物育成培地の保存性を高くすることができる。   In this way, the plant growth medium according to the present invention can be produced by this method. In this method, by drying to a moisture content of less than 10 wt% in the impregnation granulation heating drying, there is less degradation or alteration of fertilizer components and microorganisms by the plant growth medium according to the present invention, and preservation of the plant growth medium according to the present invention. Sexuality can be increased.

また、本発明に係る植物育成培地に肥料等の追加成分を適宜添加して使用することもできる。   Moreover, additional components, such as a fertilizer, can also be suitably added and used for the plant growth culture medium which concerns on this invention.

さらに、本発明に係る植物育成培地は、pF0〜2.0付近の過度な重力水域が減少し、pF2.2〜3.3域の易有効水分が増え、通気と保水のバランスが取れた植物育成培地であり、固形培地耕、独立ポット耕栽培等の養液栽培における培地として有効である。また、本発明に係る植物育成培地においては、基材が湾曲面を有し、当該基材の凹内部に有機素材及び/又は無機素材が充填されていることで、干渉が少なく、その構造体の崩壊が軽減される。従って、搬送等において崩壊することなく、ユーザーは本発明に係る植物育成培地を入手することができ、また使用期間において構造を一定に保ち、培地としての性能を維持することができる。さらに、本発明に係る植物育成培地の粒子は、嵩比重及び粒径の差が少ないことから分散性に優れている。   Furthermore, the plant growth medium according to the present invention is a plant growth medium in which an excessive gravity water area in the vicinity of pF0 to 2.0 is reduced, an easily effective moisture in the pF2.2 to 3.3 area is increased, and a balance between aeration and water retention is achieved. It is effective as a medium in hydroponics such as solid medium cultivation and independent pot cultivation. Further, in the plant growth medium according to the present invention, the base material has a curved surface, and the organic material and / or the inorganic material is filled in the concave portion of the base material, so that there is less interference, and the structure The collapse of is reduced. Therefore, the user can obtain the plant growth medium according to the present invention without collapsing during transportation or the like, and can keep the structure constant during the period of use and maintain the performance as a medium. Furthermore, the particles of the plant growth medium according to the present invention are excellent in dispersibility because of little difference in bulk specific gravity and particle size.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these Examples.

〔実施例1〕本発明に係る植物育成培地の製造
モミガラ250Lにピートモス250L及び粉状ゼオライト20kgを水100Lの存在下において、コンクリートミキサーを用いて常温で10分間混合した。次いで、ポリビニルアルコール3kgを加え更に混合し、ロータリーキルンを用いて品温120℃で水分10wt%になるまで添着造粒成形加熱乾燥を行うことで、モミガラの凹にピートモス及び粉状ゼオライトの混合物が入り込んだ加工物(「本発明に係る植物育成培地」に相当する)を製造した。
このようにして製造した本発明に係る植物育成培地の模式図を図3に示す。
[Example 1] Production of plant growth medium according to the present invention 250 l of pear moss and 20 kg of powdered zeolite were mixed with 250 l of pear moth in the presence of 100 L of water at room temperature for 10 minutes. Next, 3 kg of polyvinyl alcohol was added and further mixed, and the mixture of peat moss and powdered zeolite entered into the recesses of the rice bran by performing addition granulation molding heating and drying using a rotary kiln until the moisture content was 10 wt% at 120 ° C. A processed product (corresponding to “plant growth medium according to the present invention”) was produced.
A schematic diagram of the plant growth medium according to the present invention produced as described above is shown in FIG.

〔実施例2及び3〕本発明に係る植物育成培地のpF測定評価
モミガラにヤシ殻解砕物及び粉状ゼオライトを水の存在下で混合し、ポリビニルアルコールを加え更に混合し、添着造粒成形加熱乾燥に供することで、モミガラの凹にヤシ殻解砕物及び粉状ゼオライトの混合物が入り込んだ加工物(「本発明に係る植物育成培地」に相当する)を製造した。実施例2ではモミガラとヤシ殻解砕物を体積比で2:1、実施例3ではモミガラとヤシ殻解砕物を体積比1:1として合計500Lとし、モミガラとヤシ殻解砕物、及び粉状ゼオライト20kgを水100Lの存在下において、コンクリートミキサーを用いて常温で10分間混合した。また、これら混合物に対するポリビニルアルコールの添加量は3kgであった。さらに、添着造粒成形加熱乾燥は、ロータリーキルンを用いて品温120℃で水分10wt%になるまで行った。
[Examples 2 and 3] pF measurement evaluation of plant growth medium according to the present invention Coconut shell crushed material and powdered zeolite are mixed with rice bran in the presence of water, polyvinyl alcohol is added, and the mixture is further added, followed by addition granulation molding heating By subjecting to drying, a processed product (corresponding to “plant growth medium according to the present invention”) in which a mixture of coconut shell crushed material and powdered zeolite was introduced into the depression of the rice cracker was produced. In Example 2, a volume ratio of 2: 1 was used for the cracked rice and the coconut shell, and in Example 3, a volume ratio of 1: 1 was set for the volume of the rice cracker and the coconut shell to make a total of 500 L. 20 kg was mixed for 10 minutes at room temperature using a concrete mixer in the presence of 100 L of water. The amount of polyvinyl alcohol added to these mixtures was 3 kg. Further, the impregnation granulation heating drying was performed using a rotary kiln until the water content became 10 wt% at a product temperature of 120 ° C.

得られた本発明に係る植物育成培地のpF0〜3.3を加圧式で、且つpF3.3〜7.0を遠心法(大起理化製作所製)で測定した。   PF0 to 3.3 of the obtained plant growth medium according to the present invention were measured by a pressure method, and pF3.3 to 7.0 were measured by a centrifugal method (manufactured by Dairika Chemical Co., Ltd.).

添着造粒成形加熱乾燥された本発明に係る植物育成培地のpF測定結果を表1及び図4に示す。なお、モミガラ及びモミガラ粉砕物のpF測定結果も表1及び図4に示す。図4においては、pF値の違いによる体積含水率(%v/v)を示す。図4において縦軸が体積含水率(%v/v)であり、横軸がpF値である。なお、図4において、矢印の箇所は、モミガラ及びモミガラ粉砕物の易有効水分を示す。また、表1は、基材とするモミガラ及びモミガラ粉砕物並びに実施例2及び3の本発明に係る植物育成培地の示される各pF測定値範囲における水分量(vol%)を表す。   Table 1 and FIG. 4 show the pF measurement results of the plant growth medium according to the present invention, which has been heat-dried by granulation molding. In addition, Table 1 and FIG. 4 also show the pF measurement results of the rice crackers and pulverized rice cakes. FIG. 4 shows the volumetric water content (% v / v) depending on the difference in pF value. In FIG. 4, the vertical axis represents the volumetric water content (% v / v), and the horizontal axis represents the pF value. In addition, in FIG. 4, the location of the arrow shows the easy effective water | moisture content of a rice cracker and a rice cracker ground material. Table 1 shows the moisture content (vol%) in each measured pF range of the pear and the pear ground material and the plant growth medium according to the present invention of Examples 2 and 3 as the base material.

Figure 0005825909
Figure 0005825909

表1及び図4から理解されるように、モミガラのpF0〜2.2の水分量の割合は87%であり、pF2.2〜3.3の水分量の割合は1%であった。モミガラの粉砕物のpF0〜2.2の水分量の割合は83%であり、pF2.2〜3.3の水分量の割合は3%であった。モミガラ及びモミガラ粉砕物は、共に排水性が過度に優れ、保水性に劣ることが分かった。   As understood from Table 1 and FIG. 4, the percentage of water content of pF0 to 2.2 of pear was 87%, and the percentage of moisture content of pF2.2 to 3.3 was 1%. The percentage of water content of pF0 to 2.2 of the ground rice cracker was 83%, and the percentage of water content of pF2.2 to 3.3 was 3%. It was found that both the rice crackers and the rice pulverized product were excessively excellent in drainage and inferior in water retention.

一方、実施例2及び3の本発明に係る植物育成培地は、共にモミガラにヤシ殻解砕物及び粉状ゼオライトを水の存在下で混合し、バインダー(ポリビニルアルコール)を加え更に混合し、添着造粒成形加熱乾燥に供することで、モミガラの凹にヤシ殻解砕物及び粉状ゼオライトの混合物が入り込んだ加工物であり、所望の排水性、保水性及び嵩比重を得るために、ヤシ殻解砕物の混合割合を変えて製造したものである。実施例2の本発明に係る植物育成培地のpF0〜2.2の水分量の割合は58%であり、pF2.2〜3.3の水分量の割合は13%であった。一方、実施例3の本発明に係る植物育成培地のpF0〜2.2の水分量の割合は52%であり、pF2.2〜3.3の水分量の割合は24%であった。   On the other hand, in the plant growth medium according to the present invention of Examples 2 and 3, both crushed coconut shells and powdered zeolite were mixed in the presence of water, and a binder (polyvinyl alcohol) was added and further mixed, It is a processed product in which a mixture of crushed coconut shells and powdered zeolite enters the depressions of the rice crackers by subjecting them to granulation heating and drying, and pulverized coconut shells to obtain the desired drainage, water retention and bulk specific gravity. It was manufactured by changing the mixing ratio. In the plant growth medium according to the present invention in Example 2, the proportion of water content of pF0 to 2.2 was 58%, and the proportion of water content of pF2.2 to 3.3 was 13%. On the other hand, the proportion of water content of pF0 to 2.2 of the plant growth medium according to the present invention of Example 3 was 52%, and the proportion of water content of pF2.2 to 3.3 was 24%.

このように、実施例2及び3の本発明に係る植物育成培地は、共にpF0〜2.0付近の過度な重力水域が減少し、pF2.2〜3.3域の易有効水分が増え、明らかに通気と保水のバランスが取れた植物育成培地に求められる条件に改善されていた。また、粒径及び単位構造が安定均一なモミガラを基材に利用することで、添着造粒成形加熱乾燥された加工物も粒径及び単位構造が容易に安定均一化することで分散性の良い植物育成培地となった。さらには、基材となるモミガラが湾状であり、モミガラの凹内部にヤシ殻解砕物及び粉状ゼオライトが入り込んでいることから、添着造粒成形加熱乾燥された粒子は干渉が少なく、崩壊が少なかった。   Thus, the plant growth media according to the present invention of Examples 2 and 3 both have an excessive gravity water area near pF0-2.0, an increase in easily effective moisture in the pF2.2-3.3 area, and clearly aeration. It was improved to the conditions required for a plant growth medium with balanced water retention. In addition, by using a rice bran with a stable and uniform particle size and unit structure as a base material, it is possible to easily and uniformly disperse the particle size and unit structure by adding and granulating and heat-dried processed products. It became a plant growth medium. Furthermore, since the chaff from which the base material is bay-shaped and coconut shell cracked material and powdered zeolite are contained in the concave of the chrysanthemum, the particles that have been heat-dried by the attached granulation molding have little interference and do not collapse. There were few.

Claims (6)

基材としてモミガラ又はソバガラと、有機素材及び/又は無機素材とを含有する植物育成培地であって、前記有機素材及び/又は無機素材が前記モミガラ又はソバガラの凹に、バインダーにより添着され、且つ充填されていることを特徴とする、前記植物育成培地。 A plant growth medium containing a chaff or buckwheat as a base material and an organic material and / or an inorganic material, wherein the organic material and / or the inorganic material is attached to a recess of the chaff or buckwheat by a binder and filled The said plant growth culture medium characterized by the above-mentioned. 有機素材及び/又は無機素材が、有機物又はその粉砕物、粘土鉱物又はその粉状物及び鉱物又はその粉状物から成る群より選択される1種又は2種以上の混合物である、請求項1記載の植物育成培地。 Organic materials and / or inorganic material, an organic material or a ground product, a clay mineral or a powdery substance and mineral or one or more mixtures selected from the group consisting of the powdery substance, according to claim 1 The plant growth medium as described. 有機物又はその粉砕物が、ピートモス又はヤシ殻解砕物である、請求項2記載の植物育成培地。 The plant growth culture medium of Claim 2 whose organic substance or its ground material is peat moss or a coconut shell cracked material. 粘土鉱物が、ゼオライト、ベントナイト及びカオリナイトから成る群より選択される、請求項2記載の植物育成培地。 The plant growth medium according to claim 2 , wherein the clay mineral is selected from the group consisting of zeolite, bentonite and kaolinite. 有機素材及び/又は無機素材が、ピートモス又はヤシ殻解砕物と粉状ゼオライトとの混合物である、請求項1記載の植物育成培地。The plant growth medium according to claim 1, wherein the organic material and / or the inorganic material is a mixture of peat moss or coconut shell crushed material and powdered zeolite. さらに肥料を含有する、請求項1〜5のいずれか1項記載の植物育成培地。   Furthermore, the plant growth culture medium of any one of Claims 1-5 containing a fertilizer.
JP2011166640A 2011-07-29 2011-07-29 Plant growth medium Active JP5825909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166640A JP5825909B2 (en) 2011-07-29 2011-07-29 Plant growth medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166640A JP5825909B2 (en) 2011-07-29 2011-07-29 Plant growth medium

Publications (2)

Publication Number Publication Date
JP2013027365A JP2013027365A (en) 2013-02-07
JP5825909B2 true JP5825909B2 (en) 2015-12-02

Family

ID=47785093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166640A Active JP5825909B2 (en) 2011-07-29 2011-07-29 Plant growth medium

Country Status (1)

Country Link
JP (1) JP5825909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105475031A (en) * 2015-12-08 2016-04-13 北京农学院 Culture medium for landscape plant seedling cultivation and preparation method thereof
JP7301496B2 (en) * 2017-10-26 2023-07-03 茂 増田 Seedling culture soil, method for producing seedling culture soil, and seedling-raising method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532205A (en) * 1976-06-25 1978-01-11 Daicel Ltd Molded culture soil for seedling and its preparation
JP2001103857A (en) * 1999-10-07 2001-04-17 Sumitomo Forestry Co Ltd Method for hydroponic culture and medium used therefor
JP2004041052A (en) * 2002-07-10 2004-02-12 Hiroshima Pref Gov Lightweight seedling medium for vegetable seedling and flowerbed seedling
JP2004089038A (en) * 2002-08-30 2004-03-25 Maeda Kosen Co Ltd Planting base sheet mat, and method for protecting slope with the same and sodding method

Also Published As

Publication number Publication date
JP2013027365A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
CN102696462B (en) Method for producing nutritive soil for practical and highly efficient soilless flower growth
CN103214315B (en) Greening matrix containing quarry mucks, animal manures, straws and charcoal powder and preparation method thereof
CN104909878B (en) A kind of drought-hit area leaf vegetables cultivation matrix and preparation method thereof
JP4573924B2 (en) Agglomerated zeolite, production method thereof and seedling culture soil
CN105009726B (en) A kind of clayey soil type saline-alkali soil improvement method using hydrolyzed polyacrylonitrile soil subsoiling agent
CN104961572A (en) Efficient ecological organic fertilizer and preparation method thereof
CN206389945U (en) A kind of water-loss reducer sand culture is potted plant
JP5825909B2 (en) Plant growth medium
CN104838997B (en) A kind of red sage cultivation medium formula and water and fertilizer management method
CN107226736A (en) A kind of composite interstitial substance for vegetable soilless culture in family room
CN111374026A (en) Special seedling culture substrate and preparation method thereof
JP4864466B2 (en) Transplanting nursery
CN107226751A (en) A kind of biomass carbon granulates the preparation method of organic fertilizer
CN107032882A (en) A kind of preparation method that type tobacco seedling medium can be recycled
JP4813127B2 (en) Seedling medium with granular fertilizer
JP2012044961A (en) Gravel culture method, and method for producing container made of tuffaceous sandstone powder
JP2003092924A (en) Method for cultivating plant by hydroponics
JP3302342B2 (en) Cyclamen cultivation medium
JPH04169127A (en) Culture medium for cultivating plant
CN107889722A (en) A kind of soilless culture substrate for improving cucumber yield
CN103804068A (en) Water-storing and fertilizer-retaining nutrition blanket and production method thereof
CN109089828A (en) A kind of flower vegetables seedling medium and preparation method thereof
CN107439216A (en) City stockyard dust controlling method
CN107517835A (en) A kind of tomato seedling soilless culture ardealite haydite and preparation method thereof
JP4699771B2 (en) Nursery soil for machine-planting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151013

R150 Certificate of patent or registration of utility model

Ref document number: 5825909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250