JP2012044961A - Gravel culture method, and method for producing container made of tuffaceous sandstone powder - Google Patents

Gravel culture method, and method for producing container made of tuffaceous sandstone powder Download PDF

Info

Publication number
JP2012044961A
JP2012044961A JP2010192368A JP2010192368A JP2012044961A JP 2012044961 A JP2012044961 A JP 2012044961A JP 2010192368 A JP2010192368 A JP 2010192368A JP 2010192368 A JP2010192368 A JP 2010192368A JP 2012044961 A JP2012044961 A JP 2012044961A
Authority
JP
Japan
Prior art keywords
water
container
gravel
plant
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010192368A
Other languages
Japanese (ja)
Inventor
Shinichi Ando
進一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHONKAI GIJUTSU CONSULTANTS KK
Original Assignee
NIHONKAI GIJUTSU CONSULTANTS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHONKAI GIJUTSU CONSULTANTS KK filed Critical NIHONKAI GIJUTSU CONSULTANTS KK
Priority to JP2010192368A priority Critical patent/JP2012044961A/en
Publication of JP2012044961A publication Critical patent/JP2012044961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Abstract

PROBLEM TO BE SOLVED: To provide a gravel culture method solving the problem that conventional gravel culture employs ordinary gravel such as andesite and/or granite, the gravel itself only supports the roots of a grown plant and has little water absorption or root-adherent property, and that water is intermittently given, and therefore the plant runs dry when water supply gets scarce.SOLUTION: The gravel culture method comprises: planting a plant to be cultivated or sowing seeds of the plant in something charged with a porous granulated burnt product produced by granulating tuffaceous sandstone powder and burning the granulated one, into an unglazed flower pot or a container burnt using the tuffaceous sandstone powder; soaking the plant together with the flower pot or the container in a water tank in which water is shallowly filled; and cultivating the plant by mixing solid fertilizer with the porous granulated burnt product or adding liquid fertilizer to water for fertilizer application. The porous granulated burnt product made of tuffaceous sandstone powder has good absorption to naturally absorb water, so that the water is gradually supplied to the plant.

Description

本発明は、新規な礫耕栽培方法及びこれに使用する礫耕栽培用の来待石粉体製容器の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a novel gravel cultivation method and a method for producing a container made of granite stone powder for gravel cultivation used in this method.

礫耕栽培とは、土の代わりに礫を使い、これに培養液を散布して作物を栽培する方法であり、トマトやかいわれ大根、苺などの栽培にかなり広く採用されている。しかし、従来のものは大がかりな装置が必要な施設園芸であり、家庭で手軽に使用できるものは見当たらない。尚、礫耕栽培と言うキーワードを有する出願は、IPDLで調査した限り特許で2件実用新案で2件のみであり、しかも、礫が図面に描かれているのは、1件のみである(特許文献1)。   Gravel cultivation is a method of cultivating crops by using gravel instead of soil and spraying a culture solution on it, and it is widely used for cultivation of tomatoes, radish and potatoes. However, the conventional one is a facility gardening that requires a large-scale device, and there is no one that can be easily used at home. In addition, as far as investigated by IPDL, there are only 2 patent applications in the utility model, and only 1 in which gravel is depicted in the drawings. Patent Document 1).

公開実用新案昭和62−181139号公報Published Utility Model No. 62-181139

しかし、この技術は、植木鉢の内部にサイホンを仕込んだものであり、本願発明とは全く無関係のものである。そこで、本発明者は、来待石粉体の造粒焼成品を用いて、礫耕栽培をすることを思いつき、本発明を完成させたものである。   However, this technique is one in which a siphon is charged inside a flower pot and is completely unrelated to the present invention. Therefore, the present inventor has come up with the idea of carrying out gravel cultivation using granulated and fired products of visiting stone powder, and has completed the present invention.

来待石粉体の造粒焼成品に関しては、汚泥類と混合して焼成したものが本出願人により出願されている(特開2008−62219)。また、焼成品ではないが、低温乾燥した後セメントでコーティングする技術が、同じく本出願人から出願されている(特開2010−99655)。   Regarding the granulated and fired product of Japanese stone powder, a product obtained by mixing and firing with sludge has been filed by the present applicant (Japanese Patent Laid-Open No. 2008-62219). Further, although not a fired product, a technique for coating with cement after being dried at low temperature has also been filed by the present applicant (Japanese Patent Laid-Open No. 2010-99655).

しかし、前者は汚泥の処理に主眼がおかれ、その焼成品は農業の土壌代替品にも用いられるとしているが、主眼は濾過材や路盤材であり、農業の土壌代替品としての用途説明はこの出願では全くなされていない。しかも、汚泥を混入して高温(1000℃前後)で焼成するとダイオキシンが発生するので、好ましくない。また、後者は、低温乾燥した後、補強としてセメントでコーティングするもので、製品は再度湖に投入されるものである。   However, the former focuses on the treatment of sludge, and the baked product is used for agricultural soil substitutes, but the main focus is filter media and roadbed materials. Nothing has been done in this application. Moreover, dioxins are generated when sludge is mixed and baked at a high temperature (around 1000 ° C.), which is not preferable. In the latter case, after drying at low temperature, the product is coated with cement as a reinforcement, and the product is put into the lake again.

本発明は、これらのものとは異なり、来待石粉体の多孔質造粒焼成品を用い、その吸水性能の良さや植物の根の付着性の良さに着目してこれを礫耕栽培の礫として使用とするものである。   The present invention, unlike these, uses a porous granulated and fired product of Kuroshiki powder, focusing on its good water absorption performance and the good adhesion of plant roots. It is intended to be used as gravel.

従来、出願は少ないが礫耕栽培自体はかなり広く行われている。そして、それには、普通通常の礫(安山岩等の花崗岩、その他)が用いられており、礫自体は大きくなった植物の根を支えるだけであり、吸水性や根の付着性は殆どないものであり、水は間欠的に与えられるのみである。   Conventionally, although there are few applications, gravel cultivation itself has been widely practiced. For this, ordinary gravel (granite, such as andesite, etc.) is used, and the gravel itself only supports the roots of the enlarged plant, and has almost no water absorption or root adhesion. Yes, water is only given intermittently.

これに対し、来待石粉体の多孔質造粒焼成品は吸水性が良く(約10%、籾殻やおが屑混入品で約30〜50%)、しかも栽培植物の根との相性がよく根が良く付着する利点がある。しかも、その容器として素焼きの植木鉢や、同じく来待石粉体におが屑や籾殻を混合して水と混練し成型して焼成した植木鉢状の容器を用いるので、これらの容器を浅い水槽に置いておけば、自然に吸水して来待石粉体の多孔質造粒焼成品に水を供給する。そして、この水を植物が徐々に吸収するので、自動的な礫耕栽培が簡単に行えることになる。   On the other hand, the porous granulated and fired product of Kuroshiki stone powder has good water absorption (about 10%, about 30 to 50% for rice husk and sawdust mixed products), and has good compatibility with the roots of cultivated plants. There is an advantage that adheres well. In addition, as the container, we use unglazed flowerpots, or flowerpot-shaped containers that are made by mixing sawdust and rice husks into the granite stone powder, kneading with water, molding and firing, so place these containers in a shallow aquarium. If it does, it will naturally absorb water and supply water to the porous granulated and fired product of visiting stone powder. And since this plant gradually absorbs this water, automatic gravel cultivation can be easily performed.

先ず、本発明の主眼である来待石粉体の多孔質造粒焼成品について説明する。これは、来待石粉体単体或いは来待石粉体とおが屑や籾殻、或いはその両者を混合し、それに水を混ぜたものを回転造粒機(コンクリートミキサー)で混練して攪拌造粒し、次いで乾燥して焼成する。   First, a porous granulated and fired product of a visit stone powder that is the main object of the present invention will be described. This is made by mixing the granite stone powder alone or the granite stone powder with sawdust and rice husk, or both, and mixing it with water and kneading it with a rotary granulator (concrete mixer). Then, it is dried and fired.

来待石粉体は、礫混じり砂質粘土や礫混じりシルト質粘土或いは礫質土の粒度分布を有するもの単独、或いはこの来待石粉体の100重量部に対し、おが屑、籾殻或いはおが屑と籾殻の混合物3〜10重量部(容量でおが屑や籾殻が1に対して来待石粉体2程度の割合)と水10〜40重量部を加えて混練し攪拌造粒したのち、1000℃〜1180℃で焼成して、多孔質粒性の造粒焼成品を得る。或いはこの攪拌造粒品を500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きする。おが屑、籾殻或いはおが屑と籾殻の混合物3〜10重量部混合したのは、比重が軽く(約0.5)、また多孔のため吸水率が30〜50%にもなる。   The granite stone powder can be sawdust, rice husk or sawdust with respect to 100 parts by weight of the granite stone powder, gravel-mixed sandy clay, gravel-mixed silty clay, or gravelly soil particle size distribution alone. A mixture of rice husk 3 to 10 parts by weight (a ratio of sawdust and rice husk 2 is about 2 stone powder to 1 by volume) and 10 to 40 parts by weight of water, kneaded and granulated with stirring, and then 1000 ° C to Baking at 1180 ° C. gives a porous granulated and fired product. Alternatively, this stirred granulated product is unbaked at 500 ° C. to 950 ° C. and then main-baked at 1000 ° C. to 1180 ° C. Mixing 3 to 10 parts by weight of sawdust, rice husk or a mixture of sawdust and rice husk has a light specific gravity (about 0.5) and a water absorption of 30 to 50% due to porosity.

焼成は少量の場合は電気窯で行うとよい。焼成時間は、最高温度に達するまでに17〜18時間をかけ、最高温度を数十分維持した後或いは直ちに電源を切って1〜2日間次第に降温する。電気窯に限らず、灯油やガス、薪などの燃料を使用する窯も当然に使用できる。単独窯の他に、登り窯や連続窯で大量な焼成可能である。   In the case of a small amount, firing is preferably performed in an electric kiln. The firing time takes 17 to 18 hours to reach the maximum temperature, and after maintaining the maximum temperature for several tens of minutes or immediately after turning off the power, the temperature is gradually lowered for 1 to 2 days. Naturally, kilns that use fuel such as kerosene, gas, and firewood can be used. In addition to a single kiln, it can be fired in large quantities in climbing kilns and continuous kilns.

次に、容器は素焼きの植木鉢を用いても良いが、植木鉢は水の吸い上げが少なく、殆どが底の孔から内部の造粒焼成品に水が浸透することによる吸い上げであり、また、空気も素焼きの表面からの透過が少ない。   Next, the vessel may use an unglazed flower pot, but the flower pot has little uptake of water, most of the uptake is due to water permeating into the granulated fired product from the bottom, and the air also Less permeation from the surface of the unglazed surface.

これに対し、来待石粉体を用いて焼成した容器(来待容器)は、それ自体吸水性に優れ、多孔質造粒焼成品ともども水を吸い上げる。また、空隙率も大きいので側面からの空気の流通も良く、根に空気が十分に供給される利点がある。   On the other hand, a container fired using a visitor stone powder (a visitor container) itself is excellent in water absorption and sucks up water together with a porous granulated and fired product. Moreover, since the porosity is large, air circulation from the side surface is good, and there is an advantage that air is sufficiently supplied to the roots.

来待容器は、多孔質造粒焼成品と同様、礫混じり砂質粘土や礫混じりシルト質粘土或いは礫質土の粒度分布を有する来待石粉体100重量部に対し、おが屑、籾殻或いはおが屑と籾殻の混合物3〜10重量部(容量でおが屑や籾殻1に対して、来待石粉体2の割合)と水10〜40重量部より好ましくは20〜30重量部の割合でを加えて混練し、成型した後500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きして製造する。混練方法は特に限定はないが、小型のコンクリートミキサーを使用すれば、簡単に少量の混練物が得られる。大量の場合にはより大型の混合機を用いればよい。   As with the porous granulated and fired product, the container for sawdust, rice husk, or sawdust is used for 100 parts by weight of the granite-mixed sandy clay, gravel-mixed silty clay, or gravelly-ground granite powder. And 3 to 10 parts by weight of a mixture of rice husks (the ratio of the granite stone powder 2 to sawdust and rice husks 1 by volume) and 10 to 40 parts by weight of water, more preferably 20 to 30 parts by weight. It knead | mixes and shape | molds, unbaking at 500 to 950 degreeC, and then baking at 1000 to 1180 degreeC, and manufacturing. The kneading method is not particularly limited, but if a small concrete mixer is used, a small amount of kneaded material can be easily obtained. In the case of a large amount, a larger mixer may be used.

本発明の造粒焼成品及び来待容器に用いる来待石粉体は、礫混じり砂質粘土(礫混じりシルト質粘土、礫質土)状のものである。ここに、粘土とは、粒子の大きさが5μm以下(土質学会の分類、以下同じ)のものを言う。またシルトは5〜75μm、細砂は75〜250μm、中砂は250〜850μm、粗砂は850μm〜2mm、細礫は2〜4.75mmのものを言う。そして、本発明の粉体は2.60mm以下の礫を5%以下含んでいるものを言う。また、礫混じりシルト質粘土は、礫混じり砂質粘土に比べてシルト質の割合が多く、より粘土に近いものである。   The visit stone powder used for the granulated and fired product and the visit container of the present invention is in the form of sandy clay (gravel mixed silty clay, gravel soil). Here, clay refers to particles having a particle size of 5 μm or less (classified by the Geological Society of Japan, hereinafter the same). Silt is 5 to 75 μm, fine sand is 75 to 250 μm, medium sand is 250 to 850 μm, coarse sand is 850 μm to 2 mm, and fine gravel is 2 to 4.75 mm. And the powder of this invention says what contains 5% or less of 2.60 mm or less gravel. Moreover, gravel-mixed silty clay has a greater proportion of silty than gravel-mixed sandy clay, and is closer to clay.

来待石の粉体は、不良石材や端材、研削屑などをクラッシャー等の破砕機で粉砕して、また細かな研磨屑はそのままの状態で篩分け(2.65mm以下)して得られる。粒径の分布は、ほぼ図4の粒径加積曲線に類似する。   The powder of visiting stone is obtained by crushing inferior stones, scraps, grinding debris, etc. with a crusher such as a crusher, and sieving fine abrasive debris as it is (less than 2.65 mm) . The particle size distribution is almost similar to the particle size accumulation curve of FIG.

来待容器は、手捏ねや轆轤で成型するか、鉢状或いは円筒状の型に入れて振動或いは突き固めて成型するか、或いは円錐台柱その他の柱状型に入れて振動或いは突き固めて半乾燥状態にあるものを内側を抉って鉢状に成型した後に乾燥焼成する。   The waiting container is molded with hand kneading or scissors, placed in a bowl-shaped or cylindrical mold, vibrated or solidified, or placed in a truncated cone or other columnar mold and vibrated or solidified, semi-dried What is in a state is rolled inside and shaped into a bowl shape, and then dried and fired.

ところで、本発明で言う来待石とは、来待錆石のことである。来待錆石は、島根県に存在する宍道湖の南岸に広く分布する新第三紀中新世出雲層群下位層来待層を構成する凝灰質砂岩のことを言い、良質のものは、塊状凝灰質粗粒砂岩のうち特に淘汰の良い岩相の所に集中し、八束郡玉湯町から宍道町にかけての東西約10km、幅1〜2kmの範囲に存在する。この来待石は、石質が柔らかく採掘、加工が容易で、出雲石灯ろうは伝統工芸品に指定されている。   By the way, the visiting stone referred to in the present invention is a visiting rust stone. Kurusu rust stones are the tuff sandstones that make up the lower layer of the Izumo Group in the Neogene Miocene Izumo Group widely distributed on the south coast of Lake Shinji in Shimane Prefecture. It is concentrated in the area of the rocky facies among the massive tuffy coarse-grained sandstone, and it exists in the range of about 10km east-west from Yatsuka-gun Tamayu-cho to Shinji-cho and width of 1-2km. This stone is soft and easy to mine and process, and Izumo stone lantern is designated as a traditional craft.

この来待錆石は、多種多様な岩石片や結晶片、それらを埋める基質から構成されている。岩石片のサイズは径0.5mm〜1.0mmが多く、最大でも1.5mm程度である。岩石片や結晶片の占める割合が80%と多い。岩石片としては、安山岩、石英安山岩、流紋岩、花崩岩、多種類の凝灰岩などが確認されている。結晶片としては、斜長石、輝石、角閃石、黒雲母、不透明鉱物、火山ガラス、変質鉱物が確認されている。また、基質としては、変質によってできた沸石、緑泥石、炭酸塩鉱物が確認されている。   This coming rust stone is composed of a wide variety of rock pieces and crystal pieces, and a substrate for filling them. The size of the rock fragments is often 0.5 mm to 1.0 mm in diameter, and is about 1.5 mm at the maximum. The proportion of rock and crystal fragments is as high as 80%. As rock fragments, andesite, quartz andesite, rhyolite, flowering rock, and various types of tuff have been confirmed. As crystal fragments, plagioclase, pyroxene, amphibole, biotite, opaque minerals, volcanic glass, and altered minerals have been confirmed. In addition, zeolites, chlorite and carbonate minerals produced by alteration have been confirmed as substrates.

これらの鉱物の中には粘土鉱物と言われるものが多く含まれており、このことが、来待錆石の粉砕物が粘土、陶土として使用できる大きな理由であると思われる。尚、来待錆石以外に、来待白石といわれるものがある。これは、年代的に古くて流紋岩系でモンモリロナイトに変質した部分が多く、本発明には使用できないものである。   Many of these minerals are called clay minerals, and this seems to be the main reason why the ground rust stones can be used as clay and clay. In addition to the coming rust stone, there is what is called the coming shiroishi. This is an old chronologically rhyolite-type part that has changed to montmorillonite and cannot be used in the present invention.

表1に分析値を示す(島根県発行「島根の地質」)ように、来待錆石には鉄が多く(Fe23 として6.13%)含まれている。そのため、本発明の陶土は焼成すると赤、茶〜黒系統色に呈色する。ただ、本発明の場合土木工事や漁礁などに使用するので、焼成物の色は問題にならない。表中、数値は重量パーセントを示す。また、表1からも明らかなように、来待錆石には7%程度の焼熱減量(Ig.loss)が含まれている。これは、古代の植物残滓であり、これが焼成時に消滅して微細孔を生じることになる。

Figure 2012044961
As shown in Table 1 (analog “Shimane Geology” published by Shimane Prefecture), the rust stones contain a lot of iron (6.13% as Fe 2 O 3 ). Therefore, the porcelain clay of the present invention is colored red, brown to black color when fired. However, in the case of the present invention, since it is used for civil engineering work and fishing reefs, the color of the fired product is not a problem. In the table, the numerical value indicates weight percent. Further, as is apparent from Table 1, the incoming rust stone contains about 7% loss on burning (Ig. Loss). This is an ancient plant residue, which disappears during firing and creates micropores.

Figure 2012044961

以上詳述したように、本発明は素焼きの植木鉢や来待石粉体を用いて焼成した容器に、来待石粉体を造粒して焼成した多孔質造粒焼成品を収納したものに栽培植物を植え或いは種まきし、植木鉢或いは容器ごと水を浅く張った水槽に漬け、肥料は固形肥料を多孔質粒体に混入するか或いは水中に液肥をいれて植物を栽培するものである。   As described above in detail, the present invention is a container in which a porous granulated fired product obtained by granulating and firing a granite powder is stored in a container fired using an unglazed flower pot or a traditional stone powder. Cultivation plants are planted or seeded, and the plant pots or containers are immersed in a shallow water tank, and the fertilizer is mixed with solid fertilizers in porous granules, or liquid fertilizer is added in water to cultivate plants.

従って、
(1)水は、多孔質造粒焼成品に吸収され、次第に底のほうから上部まで水が上昇していく。植物の根は、この多孔質造粒焼成品から水の供給を受ける。従って、従来の礫耕栽培で水が間欠的に与えられるのとは異なり、常に少量ずつ根に水が与えられるため自動的な礫耕栽培が簡単に行え、理想的な礫耕栽培ということができる。
(2)素焼きの植木鉢では水は底の孔から多孔質粒体に吸い上げられる。これに対し、来待容器の場合、底には孔が無い場合は来待容器自体の吸水性により多孔質粒体に水が与えられる。
(3)しかも多孔質造粒焼成品及び来待容器は栽培植物の根との相性がよく根が良く付着する。
(4)来待容器の場合、側面からの通気性が良いため、根に空気が供給される。(5)素焼きの植木鉢の場合も来待容器の場合、底の方を水に漬けておいて多孔質造粒焼成品に水を吸わす方法をとる。そして、肥料は液肥を水に混入しておくか、固形肥料を多孔質造粒焼成品に混入しておくので、肥料管理は簡単である。
(6)本発明の多孔質造粒焼成品も来待容器も、篩分けした来待石粉体を水と混練し成形焼成するだけでよいから、設備さえあれば簡単に且つ大量に生産できる。
(7)混練物中に、モミ殻やのこ屑その他の有機物小塊を混入焼成することにより、多孔質の来待容器や多孔質造粒焼成品が得られ、水の吸収や伝播に優れるとともに比重を非常に小さくできる。
Therefore,
(1) Water is absorbed by the porous granulated and fired product, and gradually rises from the bottom to the top. Plant roots are supplied with water from the porous granulated baked product. Therefore, unlike conventional gravel cultivation where water is intermittently supplied, water is always given to the roots in small amounts, making automatic gravel cultivation easy and ideal gravel cultivation. it can.
(2) In unglazed flower pots, water is sucked up into porous granules from the bottom holes. On the other hand, in the case of a waiting container, when there is no hole in the bottom, water is given to the porous particles by the water absorption of the waiting container itself.
(3) Moreover, the porous granulated baked product and the waiting container have good compatibility with the roots of the cultivated plants and adhere well.
(4) In the case of a waiting container, air is supplied to the root because air permeability from the side is good. (5) In the case of an unglazed flower pot, in the case of a waiting container, the bottom is immersed in water and water is sucked into the porous granulated fired product. And since a fertilizer mixes liquid fertilizer in water or a solid fertilizer mixes in a porous granulated baking product, fertilizer management is easy.
(6) Both the porous granulated and fired product of the present invention and the container can be produced easily and in large quantities as long as there is equipment because the sieved powder is simply kneaded with water and molded and fired. .
(7) Porous shell containers and porous granulated fired products can be obtained by mixing and baking fir shells, sawdust and other organic small lumps into the kneaded product, and excellent in water absorption and propagation. At the same time, the specific gravity can be very small.

本発明で使用する来待容器(来待石粉体を用いて焼成した容器)の一部を断面した斜視図である。(実施例1)It is the perspective view which sectioned a part of visitor container (container baked using the visitor stone powder) used by this invention. Example 1 本発明で使用する市販の素焼きの植木鉢の一部を断面した斜視図である。(実施例1)It is the perspective view which carried out the cross section of a part of commercially available unglazed flower pot used by this invention. Example 1 図3は本発明で使用する来待石粉体の多孔質造粒焼成品の正面図である。(実施例1)FIG. 3 is a front view of a porous granulated and fired product of visiting stone powder used in the present invention. Example 1 来待石粉体の粒径加積曲線を示すグラフである。(実施例1)It is a graph which shows the particle size accumulation curve of visiting stone powder. Example 1 来待容器1或いは多孔質造粒焼成品3を焼成する温度と時間の関係を示すグラフである。(実施例1)It is a graph which shows the relationship between the temperature and time which bake the waiting container 1 or the porous granulated baking goods 3. FIG. Example 1 (a)は、この来待容器に多孔質造粒焼成品を詰めた状態の縦断面図、(b)はこの来待容器と造粒焼成品を水に漬けた場合の水の吸い上げ高さと時間(分)の関係を示すグラフである。(実施例2)(A) is a longitudinal cross-sectional view of a state in which a porous granulated baked product is packed in this waiting container, and (b) is a water suction height when the waiting container and the granulated baked product are immersed in water. It is a graph which shows the relationship of time (minutes). (Example 2) 多孔質造粒焼成品3の累積細孔容積のグラフで、縦軸は吸収した水銀の容量、横軸は細孔の直径を示す。(実施例2)In the graph of the cumulative pore volume of the porous granulated fired product 3, the vertical axis represents the absorbed mercury volume, and the horizontal axis represents the pore diameter. (Example 2) 三角図法による土性表示を示すグラフである。(実施例2)It is a graph which shows the earthiness display by a triangular projection. (Example 2) 土壌粒子33とその間に界面張力によって保持された水34を示す模式図である。(実施例2)It is a schematic diagram which shows the water 34 hold | maintained with the soil particle | grains 33 and the interfacial tension between them. (Example 2) 毛細管現象を示す正面図である。(実施例2)It is a front view which shows a capillary phenomenon. (Example 2) 作物の吸水利用から見た土壌水分の分類を示す図式である。(実施例2)It is a figure which shows the classification | category of the soil moisture seen from the water absorption utilization of the crop. (Example 2) 土壌の粒径と有効水分量の関係を示す図式である。(実施例2)It is a figure which shows the relationship between the particle size of soil, and an effective moisture content. (Example 2) 焼成品に水を十分吸収させて毛細管現象終了時点からの自然乾燥重量の変化を示すグラフである。(実施例2)It is a graph which shows the change of the natural dry weight from the time of a capillary phenomenon completion | finish when water is fully absorbed in a baked product. (Example 2) 来待容器1に多孔質造粒焼成品3と固形肥料4を入れ、水槽5に漬けた状態を示す縦断面図である。(実施例3)It is a longitudinal cross-sectional view which shows the state which put the porous granulated baking product 3 and the solid fertilizer 4 in the waiting container 1, and was immersed in the water tank 5. FIG. (Example 3) 大型の水槽9に来待容器1を多数設置した状態の正面図である。It is a front view of the state which installed many waiting containers 1 in the large sized water tank 9. FIG. 来待容器と素焼き植木鉢に多孔質造粒焼成品と通常の培土を入れ、固形肥料と液肥を用いたものの成長の度合いを示す比較のグラフである。(実施例4)It is a comparative graph showing the degree of growth of a solid granule and liquid fertilizer in which a porous granulated and fired product and normal soil are put in a waiting container and an unglazed flowerpot. Example 4 1株当たりの実の個数の比較を示すグラフである。(実施例4)It is a graph which shows the comparison of the real number per share. Example 4 ミニトマトの根71の状態を示す模式図であり、(a)が来待容器(b)が素焼き植木鉢である。(実施例4)It is a schematic diagram which shows the state of the root 71 of a cherry tomato, (a) is a visiting container (b) and is an unglazed flowerpot. Example 4

素焼きの植木鉢や来待石粉体を用いて焼成した容器に、来待石粉体を造粒して焼成した多孔質造粒焼成品を入れたものに栽培植物を植え或いは種まきし、植木鉢或いは容器ごと水を浅く張った水槽に漬けて礫耕栽培を行う。肥料は、固形肥料或いは液体肥料を用いる。   Planting or seeding cultivated plants into a container that has been baked with an unglazed flower pot or a container made of granite stone powder and a porous granulated product obtained by granulating and firing the granite stone powder, Gravel cultivation is performed by immersing the whole container in a shallow water tank. As the fertilizer, solid fertilizer or liquid fertilizer is used.

以下、本発明を、図面に基づいて詳細に説明する。図1は、本発明で使用する来待容器1(来待石粉体を用いて焼成した容器)の一部を断面した斜視図であり、図2は、同じく本発明で使用する市販の素焼きの植木鉢2の一部を断面した斜視図である。また、図3は本発明で使用する来待石粉体の多孔質造粒焼成品3の正面図である。図4は、来待石粉体の粒径加積曲線を示すグラフである。図5は、来待容器1或いは多孔質造粒焼成品3を焼成する温度と時間の関係を示すグラフである。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a cross section of a part of a visitor container 1 (container baked using a visitor stone powder) used in the present invention, and FIG. 2 is a commercially available unglazed food used in the present invention. It is the perspective view which cut down some flower pots 2 of. Moreover, FIG. 3 is a front view of the porous granulated and fired product 3 of the granite powder used in the present invention. FIG. 4 is a graph showing a particle size accumulation curve of the visit stone powder. FIG. 5 is a graph showing the relationship between the temperature and time for firing the waiting container 1 or the porous granulated fired product 3.

本発明に用いた来待容器1は、図1に示すように、礫混じり砂質粘土(礫混じり粘土)や礫混じりシルト質粘土或いは礫質土の粒度分布を有する来待石粉体100重量部に対し、おが屑、籾殻或いはおが屑と籾殻の混合物3〜10重量部(容量でおが屑や籾殻1に対して、来待石粉体2の割合)と水10〜40重量部より好ましくは20〜30重量部の割合でを加えて混練し、容器状に成型した後500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きして製造する。焼成後の寸法は、外径が縦17cm、直径14.5cm、孔の深さ12cm、内径が10.52cm、底のえぐり深さ11が2cmであった(成型時はこれよりも1割方寸法が大きい)。尚、底12の厚みは5cm、側壁13の厚みは2cmである。混練方法は特に限定はないが、小型のコンクリートミキサーを使用すれば、簡単に少量の混練物が得られる。大量の場合にはより大型の混合機を用いればよい。来待石粉体の粒径の分布は、ほぼ図4の粒径加積曲線に類似したものとなる。   As shown in FIG. 1, the visiting container 1 used in the present invention has a particle weight distribution of gravel mixed sandy clay (gravel mixed clay), gravel mixed silty clay, or gravelly soil 100 weight. 3 to 10 parts by weight of sawdust, rice husk or a mixture of sawdust and rice husk (a ratio of sawdust powder 2 to sawdust and rice husk 1 by volume) and 10 to 40 parts by weight of water, preferably 20 to 20 parts by weight. The mixture is added at a ratio of 30 parts by weight, kneaded, molded into a container, and then unbaked at 500 ° C. to 950 ° C., and then baked at 1000 ° C. to 1180 ° C. After firing, the outer diameter was 17 cm long, the diameter was 14.5 cm, the hole depth was 12 cm, the inner diameter was 10.52 cm, and the bottom bore depth 11 was 2 cm. Is great). The bottom 12 has a thickness of 5 cm, and the side wall 13 has a thickness of 2 cm. The kneading method is not particularly limited, but if a small concrete mixer is used, a small amount of kneaded material can be easily obtained. In the case of a large amount, a larger mixer may be used. The particle size distribution of the visit stone powder is almost similar to the particle size accumulation curve of FIG.

本発明の多孔質造粒焼成品3は、図3に示すように、来待石粉体単独、或いは来待容器1と同様におが屑や籾殻を混合したものに水10〜40重量部を加えて混練し小型のコンクリートミキサーなどの回転造粒機で攪拌造粒したのち、乾燥した後500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きする。符号31は来待石粉体、32はおが屑などの炭化物が更に加熱されて炭酸ガス化した空洞である。多孔質造粒焼成品3の径は、1〜10mm:より好ましくは2〜5mmである。   As shown in FIG. 3, the porous granulated and fired product 3 of the present invention is prepared by adding 10 to 40 parts by weight of water to a visitor stone powder alone or a mixture of sawdust and rice husk as in the visitor container 1. The mixture is kneaded and agitated and granulated with a rotary granulator such as a small concrete mixer, dried, unbaked at 500 ° C. to 950 ° C., and then main-baked at 1000 ° C. to 1180 ° C. Reference numeral 31 is a waiting stone powder, and 32 is a cavity in which carbides such as sawdust are further heated and carbonized. The diameter of the porous granulated fired product 3 is 1 to 10 mm: more preferably 2 to 5 mm.

尚、本発明の来待容器1も多孔質造粒焼成品3も、焼成温度は、図5に示すような時間的経過を示す。即ち、約8時間かけで電気釜の温度を徐々に昇温して900℃(500℃〜950℃)程度にする。これにより、おが屑や籾殻が炭化する。次に、約4時間かけて徐々に降温し、更に6時間程度かけて1130℃(1130℃〜1180℃)にまで昇温する。この昇温により、炭化物が完全に炭酸ガスとなり、その炭の部分が空洞化する。もともと、来待石粉体は、表1に示すように有機物(Ig.loss)を含んでおり、焼成によりこれが空洞化して水を吸収する(約1%)が、おが屑や籾殻を混合したものは吸水率が30〜50%にもなるのは、この理由による。   In addition, as for the waiting container 1 of this invention, and the porous granulated baked product 3, the calcination temperature shows time passage as shown in FIG. That is, the temperature of the electric kettle is gradually raised to about 900 ° C. (500 ° C. to 950 ° C.) in about 8 hours. Thereby, sawdust and rice husks are carbonized. Next, the temperature is gradually lowered over about 4 hours, and further raised to 1130 ° C. (1130 ° C. to 1180 ° C.) over about 6 hours. By this temperature rise, the carbide is completely converted to carbon dioxide gas, and the char portion is hollowed out. Originally, Kuroshiki stone powder contains organic matter (Ig.loss) as shown in Table 1, and it is hollowed by firing to absorb water (about 1%), but mixed with sawdust and rice husk. This is the reason why the water absorption is 30 to 50%.

一方、素焼き植木鉢2は、図2に示すような5号鉢を用いた。その寸法は外径16cm、高さ13cm、底の直径10cm、側壁21の厚み1cm、底の孔22の直径3cm、底の抉り23深さ0.5cmである。符号24は底の孔22に被せるネットである。   On the other hand, No. 5 pot as shown in FIG. The dimensions are an outer diameter of 16 cm, a height of 13 cm, a bottom diameter of 10 cm, a side wall thickness of 1 cm, a bottom hole 22 diameter of 3 cm, and a bottom depth of 23 cm of 0.5 cm. Reference numeral 24 denotes a net covering the bottom hole 22.

そして、来待容器1及び素焼き植木鉢2に、多孔質造粒焼成品3をほぼ一杯充填して、使用する。   Then, the waiting container 1 and the unglazed flower pot 2 are filled with the porous granulated baked product 3 almost fully and used.

次に、実施例2について説明する。図6(a)は、この来待容器1に多孔質造粒焼成品3を詰めた状態の縦断面図であり、来待容器1の14の位置まで水に漬かっている状態を示す。図6(b)はこの来待容器1と多孔質造粒焼成品3を水に漬けた場合の水の吸い上げ高さと時間(分)の関係を示すグラフである。図7は、多孔質造粒焼成品3の累積細孔容積のグラフで、縦軸は吸収した水銀の容量、横軸は細孔の直径を示す。図8の三角図法による土性表示を示すグラフである。図9は土壌粒子33とその間に界面張力によって保持された水34を示す模式図であり、図10は毛細管現象を示す図である。図11は、作物の吸水利用から見た土壌水分の分類を示す図式、図12は、土壌の粒径と有効水分量の関係を示す図式図13は、焼成品に水を十分吸収させて毛細管現象終了時点からの自然乾燥重量の変化を示すグラフである。   Next, Example 2 will be described. FIG. 6A is a longitudinal sectional view of the waiting container 1 filled with the porous granulated and fired product 3, and shows a state where the waiting container 1 is immersed in water up to position 14. FIG. 6B is a graph showing the relationship between the water suction height and the time (minutes) when the container 1 and the porous granulated fired product 3 are immersed in water. FIG. 7 is a graph of the cumulative pore volume of the porous granulated and fired product 3, wherein the vertical axis represents the absorbed mercury volume, and the horizontal axis represents the pore diameter. It is a graph which shows the earthiness display by the triangle projection of FIG. FIG. 9 is a schematic diagram showing soil particles 33 and water 34 held by interfacial tension therebetween, and FIG. 10 is a diagram showing capillary action. FIG. 11 is a diagram showing the classification of soil moisture from the viewpoint of water absorption of crops, FIG. 12 is a diagram showing the relationship between the particle size of soil and the effective moisture content, and FIG. It is a graph which shows the change of the natural dry weight from the phenomenon end time.

図6(a)に示すように、来待容器1に多孔質造粒焼成品3をほぼ一杯に詰めた状態で来待容器1の下側約の4cmを水に漬けておく14と、図6(b)に示すように、時間の経過とともに多孔質造粒焼成品3の水の吸い上げ高さが次第に高くなり、ついには(27分後)一番上の多孔質造粒焼成品3まで水を吸い上げた。吸水が始まって数分後頃に傾きが緩くなっているのは、来待容器1の底の部分に水が達し、吸い上げる速度が遅くなったためと思われる。最上部までは27分掛かったが、この時、多孔質造粒焼成品3の中心部まではまだ水は来ていない。多孔質造粒焼成品3の中心部まで湿るまでには、35分かかった。   As shown in FIG. 6 (a), the waiting container 1 is filled with the porous granulated baked product 3 almost fully, and the lower 4cm of the waiting container 1 is immersed in water. As shown in FIG. 6 (b), the water suction height of the porous granulated fired product 3 gradually increases with time, and finally (after 27 minutes) to the uppermost porous granulated fired product 3 I sucked up the water. The reason why the inclination becomes gentle around several minutes after the start of water absorption seems to be that the water reaches the bottom portion of the waiting container 1 and the speed of sucking up is slow. Although it took 27 minutes to reach the top, water has not yet reached the center of the porous granulated fired product 3. It took 35 minutes to get wet to the center of the porous granulated fired product 3.

吸水試験
来待容器の大きさは前述の通りであり、また、中まで多孔質造粒焼成品3が詰まっているとすると
来待容器1と他4の合計の体積は、
170×(72.5)2 ×π−20×(52.5)2 ×π=263429.09 mm3
吸水量 908g
体積水分率 908000 /263429.09 × 100=34.5%
Water absorption test The size of the waiting container is as described above, and if the porous granulated fired product 3 is clogged to the inside, the total volume of the waiting container 1 and the other 4 is
170 × (72.5) 2 × π−20 × (52.5) 2 × π = 263429.09 mm 3
Water absorption 908g
Volume moisture content 908000 / 263429.09 x 100 = 34.5%

何故、このように多孔質造粒焼成品3が水を吸い上げるかは、以下に延べるようなものと推察される。即ち、図7は、多孔質造粒焼成品3の累積細孔容積のグラフで、縦軸は吸収した水銀の容量、横軸は細孔の直径を示すものであるが、このグラフから、
空隙率 = 100−(0.407/(1/1.4843)× 100=39.6≒40%
( 1.4843 :水銀の比重)
粘土分径 = 100- 100 ×0.33/ 0.40 =18.9
シルト分径=81.08-100 ×0.202/0.40 =31.5
砂分径 =100 ×0.202/0.40 =49.6
砂分径50%、シルト分径30%、粘土分径20%の数値を、図8の三角図法による土性表示に対比すると、植壌土にプロットPされる。
The reason why the porous granulated fired product 3 sucks up water in this way is presumed to be as follows. That is, FIG. 7 is a graph of the cumulative pore volume of the porous granulated and fired product 3, wherein the vertical axis indicates the absorbed mercury volume and the horizontal axis indicates the pore diameter.
Porosity = 100− (0.407 / (1 / 1.4843) × 100 = 39.6 ≒ 40%
(1.4843: Specific gravity of mercury)
Clay size = 100-100 x 0.33 / 0.40 = 18.9
Silt diameter = 81.08-100 × 0.202 / 0.40 = 31.5
Sand diameter = 100 x 0.202 / 0.40 = 49.6
When the numerical values of the sand part size 50%, the silt part size 30%, and the clay part size 20% are compared with the soil property display by the triangle projection of FIG.

即ち、来待石の土性は植壌土と考えられるので、上記体積水分率34.5%で植壌土の交点Qを求めると、これは有効水分の所にくるので、植物の生育に良いと思われる。このことから、多孔質造粒焼成品3を充填した来待容器1全体を培地として扱う。   In other words, since the soil characteristics of visiting stones are considered to be planting soil, when the intersection point Q of the planting soil is obtained with the above-mentioned volumetric moisture content of 34.5%, it comes to the location of effective moisture, so it is good for plant growth. Seem. From this, the whole waiting container 1 filled with the porous granulated baked product 3 is handled as a culture medium.

次に、植物にとっての有効水分と本発明多孔質造粒焼成品の水分保持力を対比して、焼成品が培地に利用できるかを評価した。まず、焼成品の空隙に水分が保持されて水が引き上げられる毛細管水面高さ(H)を求めて、焼成品の平均的空隙率を推定して、pF値を求める。
pF=logH
実験値
H=30cm
pF=log30=1.5
一方、空隙の見掛け直径(d)をジュレンの式から求めると、0.1mmの数値で、細砂に分類される。
H=0.3/d(H=30)
d=0.01cm=0.1mm
細孔分布測定結果からの分類、植壌土とはかけ離れた土性を示すものである。尚、図9は土壌粒子33とその間に界面張力によって保持された水34を示す模式図であり、図10は毛細管現象を示す図である。
Next, the effective moisture for the plant and the water retention of the porous granulated baked product of the present invention were compared to evaluate whether the baked product can be used as a medium. First, the capillary water surface height (H) at which water is held in the voids of the fired product and the water is pulled up is obtained, the average porosity of the fired product is estimated, and the pF value is obtained.
pF = logH
Experimental value
H = 30cm
pF = log 30 = 1.5
On the other hand, when the apparent diameter (d) of the air gap is obtained from the Duren equation, it is classified into fine sand with a numerical value of 0.1 mm.
H = 0.3 / d (H = 30)
d = 0.01 cm = 0.1 mm
Classification from the results of pore distribution measurement, showing soil properties far from the soil. FIG. 9 is a schematic diagram showing soil particles 33 and water 34 held by interfacial tension therebetween, and FIG. 10 is a diagram showing capillary action.

図11は、作物の吸水利用から見た土壌水分の分類を示す図式、図12は、土壌の粒径と有効水分量の関係を示す図式(Brady and Weil.2002)である。図11中でpF=1.5は、重力水の箇所に当たり、図12でR1(砂壌土)及びR2(植壌土)は体積水分率が20.9%である点を示す。   FIG. 11 is a diagram showing the classification of soil moisture from the viewpoint of water absorption by crops, and FIG. 12 is a diagram (Brady and Weil. 2002) showing the relationship between soil particle size and effective moisture content. In FIG. 11, pF = 1.5 corresponds to the location of gravity water, and in FIG. 12, R1 (sand loam) and R2 (planting soil) indicate that the volume moisture content is 20.9%.

この20.9%は、以下のようにして求めた。焼成品内の水は重力水で流れ去る排水路に相当するもので、粗孔隙と評価しなければならない。しかし、細孔分布から評価すると植壌土(砂質シルト)に分類される。   This 20.9% was obtained as follows. The water in the baked product is equivalent to a drainage channel that flows away by gravity water and must be evaluated as a rough pore. However, when evaluated from the pore distribution, it is classified as a loam soil (sandy silt).

図13は、焼成品に水を十分吸収させて毛細管現象終了時点からの自然乾燥重量の変化を示すグラフである。ここで、毛細管現象試験実施後取り上げて直後の重量が4,250gで排水能力(270g)が著しく大きい。この排水量は重力水扱いとし、体積水分から除外する。
乾燥密度 =1.16
供試体体積 =3,610/1.16=3,112.1cm3
体積水分率 =((4260−3610) 3112.1) ×100=20.9%
空隙率60%に対して、体積水分率21%、残りの39%が重力水、空気率を示すことになる。供試体が重力水に浸されている(10%)とすれば、体積水分率が18.9%、空気率35.1%の数値となる。
FIG. 13 is a graph showing the change in the natural dry weight from the end of the capillary action after the fired product has sufficiently absorbed water. Here, the weight immediately after taking up the capillary phenomenon test is 4,250 g, and the drainage capacity (270 g) is remarkably large. This amount of wastewater is treated as gravity water and excluded from volumetric moisture.
Dry density = 1.16
Specimen volume = 3,610 / 1.16 = 3, 112.1 cm 3
Volume moisture content = ((4260-3610) 3112.1) × 100 = 20.9%
For a porosity of 60%, the volumetric moisture content is 21%, and the remaining 39% indicates gravity water and air content. If the specimen is immersed in gravity water (10%), the volume moisture content is 18.9% and the air content is 35.1%.

数値だけからの評価では空気率が35.1%と高く、植物根の活発な活動に対する必要空気率を十分に満足するものである。土性分類などから、来待石粉体焼成品が植物の生育土壌環境としての評価をすれば、保水性、透水性に優れ、土壌の起草も十分で、空隙の大きさから焼成物内で外気に呼応した空気の流れを発生すると思われる。   The evaluation based only on the numerical value shows that the air rate is as high as 35.1%, which sufficiently satisfies the required air rate for the active activities of plant roots. From the soil classification, etc., if the firewood powder is evaluated as a plant growing soil environment, it has excellent water retention and water permeability, sufficient soil drafting, and because of the size of the void, It seems to generate an air flow in response to the outside air.

次に、実施例3について説明する。図14は、来待容器1に多孔質造粒焼成品3と固形肥料4を入れ、水槽5に漬けた状態を示す縦断面図であり、図15は、大型の水槽9に図14の来待容器1を多数設置した状態の正面図である。   Next, Example 3 will be described. FIG. 14 is a longitudinal sectional view showing a state in which the porous granulated baked product 3 and the solid fertilizer 4 are put in the waiting container 1 and immersed in the water tank 5, and FIG. It is a front view in the state where many waiting containers 1 were installed.

即ち、図14は、実施例1に示す来待容器1に多孔質造粒焼成品3と固形肥料4を入れ、水槽5に漬けた状態を示す。符号6は水である。水6は、来待容器1に吸い上げられて多孔質造粒焼成品3に移り、下側の多孔質造粒焼成品3から次第に上の方の多孔質造粒焼成品3に吸い上げられる。多孔質造粒焼成品3に含まれる水は、植物植物7の根71から吸収される。来待容器1の横方向からは、空気8が流通する。来待容器1には多数の空隙があり、また多孔質造粒焼成品3同志の空隙及び多孔質造粒焼成品3自体の空隙もあり、空気が流通して植物の根71に空気を供給する。   That is, FIG. 14 shows a state where the porous granulated baked product 3 and the solid fertilizer 4 are put in the waiting container 1 shown in Example 1 and immersed in the water tank 5. Reference numeral 6 is water. The water 6 is sucked into the waiting container 1 and transferred to the porous granulated and fired product 3, and gradually sucked up from the lower porous granulated and fired product 3 to the upper porous granulated and fired product 3. The water contained in the porous granulated baked product 3 is absorbed from the root 71 of the plant plant 7. From the lateral direction of the waiting container 1, air 8 flows. The waiting container 1 has a large number of voids, and there are voids between the porous granulated baked product 3 and the porous granulated baked product 3 itself, and air flows to supply air to the plant root 71. To do.

表2は、作物の種類と根の活動を活発にする必要空気率の関係を示すものである。

Figure 2012044961

本発明の来待容器1は実施例2で示す通り空気率が35.1%であるので、植物根の活発な活動にする必要空気率を十分に満足するものである。 Table 2 shows the relationship between the type of crop and the required air rate that activates root activities.

Figure 2012044961

Since the waiting container 1 of the present invention has an air rate of 35.1% as shown in Example 2, it sufficiently satisfies the necessary air rate for the active activity of plant roots.

土性分類などから来待石粉体焼成物を植物の生育土壌環境として評価をすれば、保水性、透水性に優れ、土壌の気相も十分で、空隙の大きさから焼成物内で外気に呼応した空気の流れを発生すると思われる。   From the classification of soil properties, if you evaluate the granulated stone powder as a plant-growing soil environment, it is excellent in water retention and water permeability, and the soil gas phase is sufficient. It seems to generate air flow in response to this.

図15は、大型の水槽9に図14の来待容器1を多数設置した状態の正面図であり、水槽9にはタンク91から常に一定量の水6が供給されるようになっている。尚、固形肥料の代わりに、液体肥料を用い、この液体肥料を水に溶解して、養液・毛管水耕栽培としてもよい。また、大型水槽9の規模及び来待容器1の数は、栽培規模、栽培場所の形状によって、決定すればよい。   FIG. 15 is a front view showing a state where a large number of waiting containers 1 of FIG. 14 are installed in a large water tank 9, and a constant amount of water 6 is always supplied from the tank 91 to the water tank 9. Instead of solid fertilizer, liquid fertilizer may be used, and this liquid fertilizer may be dissolved in water for nutrient solution / capillary hydroponics. Moreover, what is necessary is just to determine the scale of the large sized tank 9 and the number of the waiting containers 1 according to the cultivation scale and the shape of the cultivation place.

次に、実施例4、本発明の来待容器1或いは素焼きの植木鉢と多孔質造粒焼成品3を用いたミニトマトの栽培について、図16〜図18に基づいて説明する。図16は、来待容器と素焼き植木鉢に多孔質造粒焼成品と通常の培土を入れ、固形肥料と液肥を用いたものの成長の度合いを示す比較のグラフである。尚、これは、9月の14日に3cm程度の苗を植え図15の装置で栽培した。水の深さは4cmであった。固形肥料は、窒素:燐酸:カリ=10:4:6のものを、多孔質造粒焼成品3に対して5%程度、液肥は、同じく窒素:燐酸:カリ=10:4:6のものを、水に2%混合したものを用いた。   Next, cultivation of cherry tomatoes using Example 4, the visiting container 1 of the present invention or the unglazed flower pot and the porous granulated baked product 3 will be described with reference to FIGS. FIG. 16 is a comparative graph showing the degree of growth of a solid granule and liquid fertilizer in which a porous granulated baked product and normal soil are placed in a waiting container and an unglazed flowerpot. In addition, this planted the seedling about 3 cm on September 14 and cultivated it with the apparatus of FIG. The water depth was 4 cm. The solid fertilizer is nitrogen: phosphoric acid: potassium = 10: 4: 6, about 5% of the porous granulated fired product 3, and the liquid fertilizer is also nitrogen: phosphoric acid: potassium = 10: 4: 6 Was mixed with water at 2%.

図16から明らかなように、来待容器1と液肥の組み合わせが最も成長が大きかった。総じて、液肥の方が成績が良かった。これは、固形肥料が水に十分に溶解しなかったことに起因すると思われる。通常の培土は多孔質造粒焼成品3よりも成長が少なかった。尚、種植えの場合、固形肥料の場合、水の吸収が悪いのか多孔質造粒焼成品3では枯れてしまった。液肥の場合も、水の吸い上げが悪く、植えてから水をかけた。   As is apparent from FIG. 16, the growth of the combination of the waiting container 1 and liquid fertilizer was the largest. Overall, liquid fertilizer performed better. This seems to be due to the fact that the solid fertilizer did not dissolve sufficiently in water. The normal cultivation soil grew less than the porous granulated fired product 3. In addition, in the case of seed planting, in the case of solid fertilizer, water absorption was bad or the porous granulated baked product 3 withered. In the case of liquid fertilizer, the water sucked up poorly, so water was applied after planting.

図17は、1株当たりの実の個数の比較を示すグラフである(栽培実験は、各4株行った)。これから判るように、液肥で多孔質造粒焼成品を用いたものが成績がよく、中でも来待容器のものが最も多く収穫できた。次に、来待容器と固形肥の出来がよく、素焼き植木鉢の固形非は、素焼き植木鉢と栽土の組み合わせと同程度であった。   FIG. 17 is a graph showing a comparison of the number of fruits per strain (4 cultivation experiments were conducted for each). As can be seen from this, the liquid fertilizer using the porous granulated baked product has good results, and among them, the container in the waiting container was the most harvested. Next, the ready container and solid fertilizer were good, and the solidity of the unglazed flowerpot was the same as the combination of the unglazed flowerpot and planting soil.

尚、実施例4の栽培実験を通して、以下のことが判明した。
(1)植えた時期が遅すぎたが、それでも可なりの数の実が収穫できた。
(2)素焼き植木鉢:葉が黄色く変色するのが見られた。これは、根が水に使って酸欠状態になっ14めと思われる。
(3)実が尻腐れになるのはカルシウム不足、来待容器1の場合、来待石粉体にカルシウムが含まれており(表1)、かかっていない。
(4)素焼き植木鉢と栽土の場合、実が大きく糖度もたかかった。これは、根が水に漬かっていたため酸欠状態となり、花の多くがが蕾の状態でおちたため、残った実に栄養分が行ったためと思われる。
(5)来待容器と液肥の組み合わせが最も実の数が多いが、それ故に糖度は低かった。
In addition, through the cultivation experiment of Example 4, the following was found.
(1) Although the time of planting was too late, a considerable number of fruits could still be harvested.
(2) Unglazed flower pot: It was seen that the leaves turned yellow. This seems to be the 14th when the roots are deficient in water.
(3) The fruit is rotted as a result of calcium deficiency, and in the case of the visiting container 1, the visiting stone powder contains calcium (Table 1) and is not applied.
(4) In the case of an unglazed flowerpot and planting soil, the fruit was large and the sugar content was high. This seems to be because the roots were soaked in water and became deficient, and many of the flowers fell in a cocoon state, so the remaining nuts actually performed nutrients.
(5) The combination of the container and liquid fertilizer has the highest number of fruits, but the sugar content is therefore low.

図18は、ミニトマトの根71の状態を示す模式図であり、(a)が来待容器1、(b)が素焼き植木鉢2である。これから判るように、来待容器1では細根72が来待容器1の壁(その細孔)に食い込んでおり、来待容器の壁からも水分を吸収しているが、素焼き植木鉢では細根72の数も少なく、また、素焼き植木鉢2の壁に食い込んでいないことが判る。   FIG. 18 is a schematic diagram showing the state of the roots 71 of cherry tomatoes, where (a) is the waiting container 1 and (b) is the unglazed flower pot 2. As can be seen from this, the fine root 72 in the visit container 1 bites into the wall (its pores) of the visit container 1 and absorbs moisture from the wall of the visit container. There are few numbers, and it turns out that it does not dig into the wall of the unglazed flower pot 2.

産業廃棄物である来待石粉体を用いて、来待容器及び多孔質造粒焼成品を製造し、これを用いて植物の礫耕栽培をすることができる。この来待石粉体製品は、保水性、吸水性に優れ、また空気の流通もよく、植物の礫耕栽培にとって理想的なものである。また、安価簡単に得られるものである。   A visit container and a porous granulated baked product can be manufactured using the visit stone powder which is an industrial waste, and the gravel cultivation of a plant can be performed using this. This granite stone powder product is excellent in water retention and water absorption, has good air circulation, and is ideal for gravel cultivation of plants. Moreover, it is cheap and can be obtained easily.

1 来待容器
11 底のえぐり深さ
12 底
13 側壁
14 水に漬かっている位置
2 素焼き植木鉢
21 側壁
22 底の孔
23 底の抉り
24 ネット
3 多孔質造粒焼成品
31 来待石粉体
32 空洞
33 土壌粒子
34 水
4 固形肥料
5 水槽
6 水
7 植物
71 植物の根
8 空気
9 水槽
91 タンク
P 植壌土の位置
Q 植壌土と体積水分率34.5%の交点
R1 R2 砂壌土と植壌土の体積水分率が20.9%との交点
DESCRIPTION OF SYMBOLS 1 Visiting container 11 Bottom hole depth 12 Bottom 13 Side wall 14 Position soaked in water 2 Unglazed flower pot 21 Side wall 22 Bottom hole 23 Bottom hole 24 Net 3 Porous granulated baked product 31 Visiting stone powder 32 Cavity 33 Soil particles 34 Water 4 Solid fertilizer 5 Aquarium 6 Water 7 Plant 71 Plant root 8 Air 9 Aquarium 91 Tank P Location of loam soil Q Intersection of loam soil and volumetric moisture content 34.5% R1 R2 Sand loam soil and loam soil Intersection with the volumetric moisture content of 20.9%

Claims (6)

素焼きの植木鉢や来待石粉体を用いて焼成した容器に、来待石粉体を造粒して焼成した多孔質造粒焼成品と固形肥料を入れたものに栽培植物を植え或いは種まきし、植木鉢或いは容器ごと水を浅く張った水槽に漬けることを特徴とする礫耕栽培方法。   Planting or seeding a cultivated plant in an unglazed flower pot or a container baked with Kurusu stone powder, containing granulated baked porous granulated powder and solid fertilizer. A gravel cultivation method characterized by immersing the whole plant pot or container in a shallow water tank. 素焼きの植木鉢や来待石粉体を用いて焼成した容器に、来待石粉体を造粒して焼成した多孔質造粒焼成品を入れたものに栽培植物を植え或いは種まきし、植木鉢或いは容器ごと肥料を入れた水を浅く張った水槽に漬けることを特徴とする礫耕栽培方法。   Planting or seeding cultivated plants into a container that has been baked with an unglazed flower pot or a container made of granite stone powder and a porous granulated product obtained by granulating and firing the granite stone powder, A gravel cultivation method characterized by immersing a container containing fertilizer in a shallow water tank. 栽培植物或いは種は、トマト或いはミニトマトである、請求項1又は請求項2記載の礫耕栽培方法。   The gravel cultivation method according to claim 1 or 2, wherein the cultivated plant or seed is tomato or cherry tomato. 礫混じり砂質粘土や礫混じりシルト質粘土或いは礫質土の粒度分布を有する来待石粉体100重量部に対し、おが屑、籾殻或いはおが屑と籾殻の混合物3〜10重量部と水10〜40重量部を加えて混練し、成型して乾燥した後500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きすることを特徴とする礫耕栽培用の来待石粉体製容器の製造方法。   3 to 10 parts by weight of sawdust, rice husk or a mixture of sawdust and rice husk and 10 to 40 parts of water for 100 parts by weight of granite powder having a particle size distribution of sandy clay mixed with gravel, silty clay mixed with gravel or gravelly soil A granulated stone powder container for gravel cultivation characterized by adding parts by weight, kneading, molding, drying, baking at 500 ° C to 950 ° C, and then baking at 1000 ° C to 1180 ° C Manufacturing method. 来待石粉体製容器は、手捏ねや轆轤で成型するか、鉢状或いは円筒状の型に入れて振動或いは突き固めて成型するか、或いは円錐台柱その他の柱状型に入れて振動或いは突き固めて半乾燥状態にあるものを内側を抉って鉢状に成型した後に乾燥焼成するものである、請求項4記載の礫耕栽培用の来待石粉体製容器の製造   The container made of powdered stone powder is molded with hand kneading or scissors, placed in a bowl-shaped or cylindrical mold, vibrated or solidified, or placed in a truncated cone or other columnar mold to vibrate or thrust. The manufacturing of a container made of a visitor stone powder for gravel cultivation according to claim 4, which is solidified, semi-dried, shaped into a pot shape by rolling inside and dried and fired. 多孔質造粒焼成品は、来待石粉体、或い来待石粉体とおが屑や籾殻、それに水を混ぜたものを混練して攪拌造粒し、次いで乾燥した後500℃〜950℃で素焼きし、次いで1000℃〜1180℃で本焼きするものである、請求項1又は請求項2記載の礫耕栽培方法。   The porous granulated and fired product is prepared by mixing kishigoishi powder, or kishimachi powder, sawdust, rice husk, and water mixed together, stirring and granulating, then drying, and then 500 ° C to 950 ° C The gravel cultivation method according to claim 1 or 2, wherein the baking is performed at a temperature of 1000 ° C to 1180 ° C.
JP2010192368A 2010-08-30 2010-08-30 Gravel culture method, and method for producing container made of tuffaceous sandstone powder Pending JP2012044961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192368A JP2012044961A (en) 2010-08-30 2010-08-30 Gravel culture method, and method for producing container made of tuffaceous sandstone powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192368A JP2012044961A (en) 2010-08-30 2010-08-30 Gravel culture method, and method for producing container made of tuffaceous sandstone powder

Publications (1)

Publication Number Publication Date
JP2012044961A true JP2012044961A (en) 2012-03-08

Family

ID=45900601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192368A Pending JP2012044961A (en) 2010-08-30 2010-08-30 Gravel culture method, and method for producing container made of tuffaceous sandstone powder

Country Status (1)

Country Link
JP (1) JP2012044961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283574A (en) * 2013-06-14 2013-09-11 苏州大学 Soilless pot plant water retention nutrition module and application method thereof
CN103380721A (en) * 2013-07-29 2013-11-06 高伟民 Organic ecological type soilless culture method for cherry tomatoes
CN103975751A (en) * 2014-05-30 2014-08-13 太仓市惠勤农场专业合作社 Method for planting home-planted cherry tomatoes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233726A (en) * 1987-03-20 1988-09-29 日新化成工業株式会社 Culture apparatus
JP2003327466A (en) * 2002-05-13 2003-11-19 Fumitaka Fujiwara Method of manufacturing kimachi sandstone porcelain clay and pottery
JP2004065192A (en) * 2002-08-09 2004-03-04 Meiji Univ Method for culturing plant by using organic fertilizer
JP2006096646A (en) * 2004-09-02 2006-04-13 Fumitaka Fujiwara Kimachi sandstone powder sintered compact and method of manufacturing the same
JP2009148752A (en) * 2007-11-30 2009-07-09 Tadao Santo Method for treating sludge or the like and water-sucking material of sludge
JP2010099062A (en) * 2008-09-25 2010-05-06 Nihon Univ Subsurface environment controller and subsurface environment control method for plant planted in vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233726A (en) * 1987-03-20 1988-09-29 日新化成工業株式会社 Culture apparatus
JP2003327466A (en) * 2002-05-13 2003-11-19 Fumitaka Fujiwara Method of manufacturing kimachi sandstone porcelain clay and pottery
JP2004065192A (en) * 2002-08-09 2004-03-04 Meiji Univ Method for culturing plant by using organic fertilizer
JP2006096646A (en) * 2004-09-02 2006-04-13 Fumitaka Fujiwara Kimachi sandstone powder sintered compact and method of manufacturing the same
JP2009148752A (en) * 2007-11-30 2009-07-09 Tadao Santo Method for treating sludge or the like and water-sucking material of sludge
JP2010099062A (en) * 2008-09-25 2010-05-06 Nihon Univ Subsurface environment controller and subsurface environment control method for plant planted in vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283574A (en) * 2013-06-14 2013-09-11 苏州大学 Soilless pot plant water retention nutrition module and application method thereof
CN103380721A (en) * 2013-07-29 2013-11-06 高伟民 Organic ecological type soilless culture method for cherry tomatoes
CN103975751A (en) * 2014-05-30 2014-08-13 太仓市惠勤农场专业合作社 Method for planting home-planted cherry tomatoes

Similar Documents

Publication Publication Date Title
CN101433167B (en) Earth column block for tree seedling cultivation and earth column seedling afforestation method
MX2013003809A (en) Plant growth medium.
WO2009158322A2 (en) Plant cultivation method and apparatus
JP2014068594A (en) Method for growing seagrass seedlings, transplant method thereof and method for developing seagrass bed
JP2012044961A (en) Gravel culture method, and method for producing container made of tuffaceous sandstone powder
KR102173970B1 (en) Bed soil composition for gardening and its manufacturing method
JP4049370B2 (en) Plant cultivation method using organic fertilizer
CN1300534A (en) Environment protection type nutritive earthware for culturing vegetable or flower seedlings
JP2007228978A (en) Plant cultivating method using organic fertilizer
JP2011250739A (en) Culture soil for plant cultivation
JP5825909B2 (en) Plant growth medium
JP3302342B2 (en) Cyclamen cultivation medium
JP2005126678A (en) Soil-improving material and method for improving soil by using the same
JP3807947B2 (en) Rooftop and aboveground greening media
Evans Soils and container media
JPH10191803A (en) Plane pot for nursery and plant cultivation using the same
JP4150332B2 (en) Hatake shimeji cultivation method
CN106977274A (en) A kind of composite interstitial substance for vegetables soilless pot culture
Bardhan et al. Recycling for sustainability: plant growth media from coal combustion products, biosolids and compost
JP2001095391A (en) Culturing mat for growing seedling and cutting, potting coltore soil and its production thereof
JPH02117330A (en) Nutriculture of plant and culture medium material for culture bed
JP2017012139A (en) Raising seedling culture soil for paddy rice
FR3009669A1 (en) APPLICATION OF A MICROPOROUS STRUCTURE AS A SUPPORT FOR THE GROUND CULTIVATION OF PLANTS
Nyakach et al. Evaluation of Plant Growth on Expanded Black Cotton Soil
JP2006101857A (en) Artificial soil mat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617