JP3807947B2 - Rooftop and aboveground greening media - Google Patents

Rooftop and aboveground greening media Download PDF

Info

Publication number
JP3807947B2
JP3807947B2 JP2001119811A JP2001119811A JP3807947B2 JP 3807947 B2 JP3807947 B2 JP 3807947B2 JP 2001119811 A JP2001119811 A JP 2001119811A JP 2001119811 A JP2001119811 A JP 2001119811A JP 3807947 B2 JP3807947 B2 JP 3807947B2
Authority
JP
Japan
Prior art keywords
pumice
medium
cultivation
soil
rooftop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119811A
Other languages
Japanese (ja)
Other versions
JP2002315432A (en
Inventor
哲生 黒田
秀光 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001119811A priority Critical patent/JP3807947B2/en
Publication of JP2002315432A publication Critical patent/JP2002315432A/en
Application granted granted Critical
Publication of JP3807947B2 publication Critical patent/JP3807947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems

Landscapes

  • Cultivation Of Plants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、屋上及び地上緑化用培地に関し、更に具体的には、建造物の屋上及び地上部分において、例えば野菜、樹木、芝、草花などを施設栽培法によって節水及び省資源下で栽培するのに好適な植物栽培用の培地に関する。また、培地の水分調節ができるので、果菜類のうちトマトやメロン等で糖度を上げることができるなど、付加価値のある農作物を栽培することのできる屋上及び地上緑化用の栽培用培地に関する。
【0002】
【従来の技術】
この百年間で、東京の平均気温は2.9℃も上昇した。こんな都心の「ヒートアイランド現象」に歯止めをかけようと、東京都は自然保護条令を改正し、国内で初めて、新改築のビルに「屋上緑化」を義務づけることを決定した(平成11年12月20日)。
これは、利用可能な屋上スペースの20%に樹木や芝、草花などを植えることを義務づけるものである。
従来、建築物であるビルの屋上に土を乗せ、樹木を植えたり、また大きなビルでは屋上などに庭園を作る例があるが、土を乗せて樹木を植えことは大きな重量が掛かることになり、屋根からの水漏れの原因となることから、建造物を傷めることになるので、個人所有の小さいビルに限られ、庭園を作る場合には営業関係のものに限られていた。そのため、「屋上緑化」のための特別な技術というものがそれほどあるわけではなかった。
また、最近は建築物に限らず、人工地盤など大がかりな建造物が作られ、その上に建築物を建てることが行われており、この場合屋上緑化だけではなく、建造物の地上部分の土壌がないコンクリート製部分に緑化域を形成する必要が出てきているが、その部分に単に土を入れることが行われているレベルである。
最近、民間でもビルの屋上を野菜畑に転換するエコガーデンシステムが開発され、ビルでは不適とされた野菜の栽培ができ、芝や花の栽培にも成功している。
【0003】
ところで、高級野菜や果樹植物の優れた施設栽培法として、養液栽培法がある。養液栽培法は、固形培地方式と非固形培地方式とに分類される。固形培地方式には、例えば、砂耕、れき耕、くん炭耕などがある。これは、砂、礫、くん炭などを敷き詰めて培地とし、ここに栄養水液などを絶えずふりかける方法である。
【0004】
【発明が解決しようとする課題】
ところで、都市のヒートアイランド現象を防ぐために、建築するすべてのビルの屋上を緑化するために、屋上に樹木を植えるようにするとなると、従来のようにビルの屋上を防水して、そこに土を入れ、樹木を植えるというやり方では非常に困難な問題を起こすことになる。特に高層ビルでは柱に掛かる重量を少しでも減らすために多くの軽量化材料を使用しているのに、屋上に重い土を乗せたのでは、建物の強度上の問題を起こし、耐震性にも問題を起こすことになる。
また、建造物の中の建築物に限らず、大型の建造物では周囲の土を除いてしまう関係で、また地下に駐車場を作る関係などで周囲がコンクリート製の地上部分となることが多いが、その場合景観上などからその地上部分を緑化する必要がある。この場合下がコンクリート製部分である関係で、防水や重量の問題などがあり、緑化をすることが容易ではない。
【0005】
すなわち、建造物の屋上や地上部分を緑化するために、建造物の屋上や地上部分に植物を植えるための土壌を保持するときには、その土壌の重量で建造物に負担が掛かる問題、及び保持している土壌に植えた植物を栽培させるために水や培養液を供給する際に、水等の供給量が多すぎたり、あるいは大雨が降ったりすると、土壌の下の建造物の天井部分に漏水の問題を起こしたり、また土壌の重量がさらに増して、前記の建造物に負担が掛かることが一層深刻になる問題があり、それを防ぐのには建造物の強度を一層増大させたり、また建造物の屋上の屋根の防水構造を一層強化する必要がある。
さらに、ビルの屋上では地上よりも日当たりが強く、ビル全体の熱容量も大きく、また風も強いために、土壌を植物の生育に適した条件になるよう、また土壌が飛ばないようにに水の供給条件などを設定したりすることは難しいことであった。
従来の固形培地方式においては、栽培に非常に手間がかかるという問題があった。砂や礫などの培地には、植物は根を張りにくく、そのため収穫率が悪かった。また、植物が病気になりやすく、絶えず監視の目を怠ることができなかった。更に、水管理が難しく、しばしば大量の排水を排出したり、或いは逆に水不足を起こすという問題もあった。
【0006】
現在、屋上及び地上緑化用の施設栽培用の培地として、特に屋上緑化用として軽量で保水性に優れた培地の中から、様々な用途や目的に応じてさまざまな培地が検討されているが、養液を多量に必要とせず、また養液を滞留させることがなくて病気を発生させにくいなどの点から、軽石を培地として使用することが提案されている。しかしながら、培地として軽石を使用するとしても、どのような物性を有する軽石が施設栽培用培地として適しているか、或いはどの程度の粒度のものが適しているかという研究はこれまで行われていない。
本発明は、特に屋上緑化用の固形培地方式の栽培法において軽石を培地として用いる場合の最適の物性及び粒度を見出し、栽培にほとんど手間がかからず、水管理が容易で、基本的には排液を発生することのない屋上及び地上緑化用培地を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明者等は、軽石の種々の物性の屋上及び地上緑化用培地に及ぼす影響について鋭意検討を行った。
種々の培地の中で、粒状の火山性軽石を培地とすると、培地の透水性が良好で、軽量であり、また粘着性がないことから、栽培作業が簡便になる利点がある。また、この粒状軽石の培地は、土と比べると根圏に対する養分の補給機能が少なく、肥料成分の保持機能も低いが、養液を滴下チューブによって適宜供給することにより、作物を含めた隔離床からの水分の蒸発量とほぼ等しい液滴供給量で適正な水分状態を維持できる利点がある。したがって、極めて少量の水と極めて少ないエネルギーで栽培を行うことができる。
【0008】
軽石とは、火山噴火で、流紋岩、安山岩などのケイ長質マグマが空中に噴出されるときに、急激な圧力の低下によってマグマ中の揮発分が放出され、多数の気孔が生じたガラス質の岩石を言い、小孔のある泡のような外観を呈する無数の小さな穴を有することを特徴とする。軽石は、通常その産地で区別される。その理由は、軽石の原料となる岩石の種類の違いによって、その物性が異なるからである。軽石が安山岩を主成分とする場合には優黒質気味であるのに対して、流紋岩を主成分とする場合には白ないし淡灰色を示し、後者の方がより多孔質である。
【0009】
本発明者らは、屋上及び地上緑化用固形培地方式において用いる培地としての軽石の種々の特性について研究を行った結果、飽和透水係数及び通気係数に着目し、飽和透水係数が0.1〜1.0cm/sec、通気係数が乾燥資料及び湿潤資料で5〜60cm/secで、また屋上緑化用の軽量性の観点から、軽石の嵩比重が0.3〜0.8の粒状軽石を用いることにより、極めて優れた野菜栽培用培地を提供することができることを見出し、さらに陽イオン交換容量が1〜10meq/100gであり、粒径範囲が0.1〜10mmであり、かつ粒径が0.1mm未満のものを10体積%以上含まず、採掘後に乾燥工程を施されて5.0%以下の含水率を有するように調整されている粒状軽石を用いることにより本発明を完成するに至った。かかる範囲内の物性を有する粒状の軽石から構成される栽培培地は、作物の根の吸水作用、呼吸作用に理想的な環境条件を具現し、更に培地中に好気性条件が維持されて嫌気性菌の繁殖を抑制し、根の病気の発病を抑制するという効果を発揮する。
【0010】
すなわち、本発明は下記の構成からなるものである。
(1)屋上及び地上野菜栽培用培地として、通常の土より嵩比重が小さく、軽石の嵩比重が、0.3〜0.8であり、飽和透水係数が0.1〜1.0cm/sec、通気係数が乾燥試料及び湿潤試料で5〜60cm/secであり、陽イオン交換容量が1〜10meq/100gであり、粒径範囲が0.1〜10mmであり、採掘後に乾燥工程を施されて5.0%以下の含水率を有するように調整されている粒状軽石から構成されることを特徴とする屋上及び地上野菜栽培用培地。
【0011】
【発明の実施の形態】
上述したように、本発明に係る栽培用培地は、軽量で、飽和透水係数及び通気係数が所定の範囲内にある粒状の軽石から構成されることを特徴とする。
本発明に係る栽培用培地において用いられる軽石は、0.1〜1.0cm/secの範囲内の飽和透水係数を有することが好ましい。飽和透水係数が0.1cm/sec未満の場合、水の拡散が遅すぎて、培地の水分が不均一になり、古い培養液が滞留して植物の根を傷め易くなり、好ましくない。また、1.0cm/secを超えると、水の拡散が速すぎて、培地から水が抜けてしまい、十分な給水或いは栄養補給が困難となり、好ましくない。「飽和透水係数」は、例えば、「土壌環境分析法」、日本土壌肥料学会監修、土壌環境分析法編集委員会編、博友社刊、1997年第1刷発行、66〜69頁に説明されている。本発明において規定する飽和透水係数は、定水位法によって求める。定水位法による飽和透水係数を測定するために用いられる土壌透水性測定器(例えば、大起理化工業製、DIK−4000)の例を図1に概念図として示す。
【0012】
まず、分析する試料を充填した採土円筒1の上部に、ゴムリング2によって定水位ホルダー3を接続する。次に、採土円筒1を水槽4に据え、定水位ホルダー3の排水パイプ6の上方に位置させる。これは、余剰水を排水させるためである。なお、採土円筒1の下部は金網キャップ11によって止められている。水槽の排水口7の下にメスシリンダー8を置き、自在ノズル9を定水位ホルダー3の上に位置させて給水パイプ10から給水を開始する。この時、給水によって試料の土壌面が乱されないように、ろ紙片などで土壌面を保護する。給水は常温のものを用いる。定水位ホルダー内の水位が一定に保たれるように自在ノズル9のコックによって給水量を適度に調節し、メスシリンダー内に一定時間t(sec)の間に流入した水の体積Q(ml)を測定する。測定は2〜3回繰り返して行う。
【0013】
試料の飽和透水係数(cm/sec)は、次式によって係数Kとして算出される。
K=Q÷{(A・t・H)/L} (1)
上式中、Qは流量(ml);Aは試料の断面積(cm2 );tは時間(sec);Hは位差(cm);Lは試料の厚さ(cm);である。
【0014】
本発明に係る栽培用培地において用いられる軽石は、通気係数が乾燥試料、湿潤試料ともに5〜60cm/secであることが好ましく、20〜30cm/secであることがより好ましい。通気係数が5cm/sec未満となると、根に対する酸素供給の低下が起こり、植物に攻撃的な嫌気性菌の増殖を助長するおそれがあり、好ましくない。また、60cm/secを超えると、酸素供給の面からは問題がないが、空隙率が高い為に根と培地とが密着しずらくなる傾向になり、好ましくない。なお、湿潤試料とは、水の飽和状態下で24時間放置した直後の試料をいう。
【0015】
「通気係数」は、例えば、「土壌物理性測定法」、農林省農林水産技術会議事務局監修、土壌物理性測定法委員会編、養賢堂刊、1978年発行、下巻270〜273頁に説明されている。土壌の通気係数を測定するための装置の概念図を図2に示す。実際の測定には、例えば大起理化工業製の土壌通気性測定器DIK−5001などを用いる。図2において、12は試料の入っている円筒で、厚いゴム板13の中に密着するように挿入してある。ゴム板13は、ガラス容器14の上に気密を十分保たせてのせる。水中マノメーター16で試料の入口圧力と出口圧力の差(P2−P1)(水頭cm)を測定しながら一定量(Qcm3 )の空気をガスメーター15で計量しながら試料に通気して、通過時間t(sec)を測定する。流路面積をAcm2 、流路長をLcmとすると、通気係数Ka(cm/sec)は次式で求められる。
Ka=Q×L/{(P2−P1)×A・t} (2)
【0016】
更に、本発明に係る栽培用培地において用いられる軽石は、1〜10meq/100gの陽イオン交換容量を有することがより好ましい。なお、本明細書においてmeq/100gは100gの乾土あたりのミリ当量をいう。陽イオン交換容量が1meq/100g未満の場合には、保肥力が小さく収穫率が悪くなるので好ましくなく、また、軽石の組成上、陽イオン交換容量が10meq/100gを超えることはほぼ無い。陽イオン交換容量の測定は、例えば、上述の「土壌環境分析法」208〜210頁に記載のセミミクロSchollenberger法(pH7.0の1M酢酸アンモニウムを用いたSchollenberger法を10分の1に縮小した方法)を用いて行うことができる。Schollenberger法では、浸透管に土壌カラムを作成し、酢酸アンモニウム中のNH4 + で交換性陽イオンを交換・浸出した後、エタノールで余剰の酢酸アンモニウムを洗浄し、次いで塩化ナトリウム液でNH4 + を浸出し、水蒸気蒸留・滴定等によってNH4 + を定量し、吸着NH4 + をもって陽イオン交換容量とする。
【0017】
本発明者らの研究により、軽石は、0.1〜10mmの範囲の粒径を有する場合に、上記に規定する範囲の適度な飽和透水係数、通気係数及び陽イオン交換容量を有する場合が多いことが分かった。とりわけ、鹿児島県地方のシラス軽石で上記の範囲の粒径を有するものは、上記に規定する適度な飽和透水係数、通気係数及び陽イオン交換容量を有することが分かった。
例えば、粒径0.1mm以下の軽石粒子は、通気係数が乾燥試料で10cm/sec近辺、湿潤試料で2〜5cm/secである。したがって、0.1mm以下の粒径の軽石粒子を用いると、特に湿潤状態で通気性が著しく悪くなる。粒径が0.1〜10mmの範囲では、乾燥試料、湿潤試料ともに、安定して優れた通気係数が得られる。
【0018】
粒径は、例えばJIS Z8801記載の試験用標準篩を用いて分ける。粒径0.1〜10mmの軽石は、JIS Z8801の呼称寸法10mmの篩を通過し、呼称寸法0.1mmの篩を通過しない大きさのものをいう。篩い分けは常法によって操作し、粒径値は、事実上の主たる粒子の粒径値を指す。全重量中に10体積%以下の割合で微粉末を含んでいることは問題にはならず、このような軽石も、本発明の範囲内に含まれる。
したがって、本発明に係る屋上及び地上緑化用培地において用いられる軽石は、0.1〜10mmの範囲の粒径を有し、且つ、0.1〜1.0cm/secの範囲内の飽和透水係数を有し、更に通気係数が乾燥試料、湿潤試料ともに5〜60cm/secを有することが特に好ましい。更には、本発明に係る屋上及び地上緑化用培地において用いられる軽石は、上記の範囲の粒径を有し、且つ、1〜10meq/100gの陽イオン交換容量を有することが更に好ましい。粒径が0.1mm未満の軽石は、しばしば陽イオン交換容量が1.0meq/100g未満に下がる。
【0019】
シラス軽石については、例えば、「土の環境圏」、岩田進午ら監修、(株)フジテクノシステム発行、1997年、30〜32頁にその定義と共に説明がなされている。これによれば、「シラス」とは、「後期沙羅更新世の大規模なカクデラ火山から噴出した火砕軽石流堆積物の非溶結部またはその2次堆積物」の総称であり、我が国においては、南九州のものがよく知られている。また、これ以外にも、屈斜路湖、十勝岳、支笏湖、洞爺湖、十和田湖、阿蘇山などのカルデラ火山周辺に同様のシラスが分布するが、国土庁の土地分類基本調査等の表層地質図では軽石流堆積物として図示されている。
図3にシラス軽石の500倍拡大顕微鏡写真を、図4に砂粒の500倍拡大顕微鏡写真を示す。図3及び図4を比較すると、シラス軽石の多孔質性が確認される。
【0020】
また、本発明に係る屋上及び地上緑化用培地に用いられる軽石は、上記に説明したように、粒径0.1〜10mmの範囲で採掘及び選別し、直ちに含水率を5.0%以下になるように乾燥工程を施したものが更に好ましい。したがって、本発明の他の態様は、飽和透水係数が0.1〜1.0cm/sec、通気係数が乾燥試料及び湿潤試料で5〜60cn/secの粒状の軽石を、採掘後に乾燥工程を施して5.0%以下の含水率を有するように調整された軽石から構成される屋上及び地上緑化用培地に関する。
【0021】
採掘された軽石は、空隙部分などに有機物や微生物などが付着していたり、或いは取り扱い中に付着したりするので、これが栽培の際に悪影響を与えたり、これらの有機物や微生物などの存在によって軽石の物理性及び化学性が不安定になる場合があるが、このように採掘直後の軽石に乾燥工程を施することにより、軽石の物理性及び化学性を安定させると共に、微生物の繁殖を防ぐことができ、安定した品質を保持できる栽培用培地を提供することができる。乾燥は、加熱炉又は電子レンジ等によって行うことができる。加熱炉を用いる場合には、軽石の温度として最低でも105℃まで加熱すべきで、望ましくは250℃前後で加熱することが好ましい。また、電子レンジを用いる場合には、工業用で出力の大きな電子レンジを用いる必要がある。加熱時間は、軽石の含水率が5.0%以下になる時間とする。軽石中に初期に含まれている水の量が異なる場合が多いので、安全をみて加熱時間を少し長めにとることが望ましい。乾燥工程が終了した軽石は、常温になった時点でビニール等の湿気を遮断する袋に密封して保管することが望ましい。
【0022】
土壌の含水率は、以下の式で表される。
含水率(重量%)=(水分重量/湿土重)×100 (3)
ここで、水分重量=湿土重−乾土重であり、乾土重は、採取した土壌を105℃で24時間乾燥した後の重量である。なお、乾土重の定義は、上述の「土壌環境分析法」21〜23頁の記載に基づく。
【0023】
更に、本発明者らは、上記に説明した所定の物性を有する粒状の軽石から構成される栽培用培地に更に粒状の炭を混合することによって、大規模栽培により一層適した屋上及び地上野菜栽培用培地を提供することができることを見出した。このような混合培地は、培地の物理性及び化学性が軽石培地とほぼ同等の条件で、保水力及び保肥力を大きくして、苗の定植後に生育速度の大きな栽培をさせることができる。したがって、本発明の更に他の態様は、上記に規定する粒状の軽石から構成される培地に、更に炭を配合したことを特徴とする屋上及び地上野菜栽培用培地に関する。
【0024】
ここで用いることのできる粒状の炭は、各種の有機性材料を乾留して得られる炭であれば何でもよいが、保水性と保肥性との観点から、多孔質の程度の大きなものが好ましい。本発明の好ましい態様において好ましく用いることのできる炭の形態としては、木炭、竹炭、もみがら炭などをあげることができる。本発明の好ましい態様において炭を加える目的は、保肥性のあまりよくない火山性軽石の欠点を補うものであるので、多孔質の程度が高く、保水力及び保肥力の高いものであることが好ましい。また、例えば、農業副産物を炭化したもの、具体的には例えばビール粕(かす)を炭化したものを用いると、廃棄物の有効利用にもつながり、極めて好ましい。更に、本発明の好ましい態様に係る栽培用培地において用いる炭は、その有効利用の観点から、循環して再利用することが好ましい。
【0025】
炭の粒度は、軽石の粒度と同程度でよいが、炭の多孔質の状態、軽石に対する配合割合などによって、適宜選択することができる。炭の好ましい粒度は1〜5.6mmの範囲がよいが、平均粒径はその状況によって選択する。軽石と混合した際に均一に混ざり合うような平均粒径を有する炭が好ましい。
軽石と炭との配合割合は、栽培する作物との関係で種々選択することができるが、一般に、軽石の質量に対する炭の質量が0.1〜0.5倍の範囲とすることができる。
【0026】
【実施例】
以下の実施例によって、本発明の各種態様をより具体的に説明する。これら実施例は、本発明の具体例を示すものであり、本発明はこれらに限定されるものではない。
【0027】
実施例1
本実施例で用いた屋上及び地上野菜栽培用栽培装置の概念を図5に示す。450mm×1200mmの広さの栽培ボックス20を設け、鹿児島県算出のシラス軽石21を深さ80mmに充填し、7、8月時期にサラダナAを栽培した。栽培試験は静岡県において行った。用いたシラス軽石21は、5660μmの篩と1000μmの篩とを用いて粒径1.0mm〜5.6mmに選別し、加熱炉内で250℃で4時間乾燥したものを用いた。軽石の含水率は0.2%であった。軽石の飽和透水係数は3.4×10-1cm/sec、通気係数は乾燥試料で29cm/sec、湿潤試料で27cm/sec、陽イオン交換容量は3.4meq/100gであった。放水小孔22が所定間隔で周壁に長さ方向に一列に点在する多孔放水管23を、栽培ボックス20の上方に水平に掛け渡し、適宜散水を行った。サラダナを播種して2日後に発芽を確認し、10日後に温室内の栽培ボックス20に定植した。栽培面積は20m2 であった。太陽光を照射しながらかけ流しして栄養(液肥)と水を補給した。定植30日後、1m2 あたり36株の収穫があった。収穫されたサラダナの株のうちの12株の重量を測定した。ここで、株の重量とは、根を除くサラダナの重量である。結果を第1表に示す。
【0028】
【表1】

Figure 0003807947
【0029】
比較例1
シラス軽石に代えて以下の性状を有する砂を培地として用いた他は、実施例1と同様にサラダナの栽培試験を行った。用いた砂の粒径は0.2〜1.0mm、含水率は0.5wt%、飽和透水係数は3.7cm/sec、通気係数は乾燥試料で59cm/sec、湿潤試料で63cm/sec、陽イオン交換容量は0.9meq/100gであった。栽培面積は10m2 であった。1m2 あたり22株の収穫があり、そのうち12株について重量を測定した。結果を第2表に示す。12株の平均株重量は82.9gであった。
実施例1と比較例1とを比較することにより、本発明に係る軽石培地を用いると、砂耕に比べて栽植密度を高くすることが可能で、且つ株当たりの重量を高めることができることが分かる。
【0030】
【表2】
Figure 0003807947
【0031】
比較例2
鹿児島県産出のシラス軽石を、粒径0.1mm未満に篩選別した試料の飽和透水係数、通気係数、陽イオン交換容量を測定した。飽和透水係数は2.5×10-2cm/secと実施例1で用いたシラス軽石試料の約10分の1以下であった。通気係数は乾燥試料で12cm/sec、湿潤試料で4cm/secであり、特に湿潤試料の通気係数が低かった。また、陽イオン交換容量は1.3meq/100gであった。
【0032】
参考例1
軽石に木炭を混合した培地を用いた栽培試験を行った。軽石としては、実施例1で用いたものと同じシラス軽石試料を用いた。木炭(ヤシガラ炭)を粉砕して粒径1〜2mmに調整した木炭粒子を準備し、シラス軽石に対して、木炭を重量比で、それぞれ0%(A)、10%(B)、20%(C)、30%(D)、40%(E)、50%(F)となるように混合した培地を形成した。それぞれの培地においてサラダナを栽培した。栽培は沖縄県において行った。5月末に播種し、播種後17日目に定植し、その32日後に収穫した。灌水方法は、点滴かけ流しとし、育苗中は50ミリリットル/株、定植中は60ミリリットル/株の量の灌水を行った。肥料として液肥を施した。それぞれの培地に関して21株を収穫し、株当たりのサラダナの平均重量(根を除いた部分の重量)を求めた。結果を第3表及び図6に示す。
【0033】
【表3】
Figure 0003807947
【0034】
第3表及び図6より、木炭を混合しない培地で栽培したサラダナに対して、木炭を混合した培地で栽培したサラダナの重量が株当たり平均20g増大したことが分かる。
【0035】
参考例2
軽石に木炭を混合した培地を用いた連作栽培試験を行った。軽石としては、実施例1で用いたものと同じシラス軽石試料を用いた。木炭(ヤシガラ炭)を粉砕してシラス軽石試験と同じサイズの分級を行い(粒径1〜5.6mm)、粒度を調整した木炭粒子を準備し、シラス軽石に対して、木炭を重量比で、それぞれ0%(A)、10%(B)、20%(C)、30%(D)、50%(E)、80%(F)、100%(G)となるように混合した培地を形成した。それぞれの混合培地を1鉢について800gとなるように採取し、1リットルのパイレックス(登録商標)製ビーカーに収容して培地とし、それぞれの培地においてコマツナを栽培した。
【0036】
栽培は静岡県において行った。播種後約10日目に定植し、その約30日後に収穫した。これを10連作行った。養液として、河川水をベースに養分を添加したものを用いた。添加下養分の割合は、園芸試験場標準処方の培養液(成分濃度:N=16(meq/リットル:以下単位同じ);P=4;K=8;Ca=8;Mg=4)とほぼ同じになるようにした。全ての培地に対して、一つの養液タンクで調整した養液を同じタイミングで同じ量だけ供給するようにした。栽培試験期間中、培地はビニールハウス内に収容した。収穫されたコマツナの株の重量を測定した。結果を第4表に示す。なお、株重量は、10株の重量を測定した値の平均値である。
第4表より、シラス軽石100%の培地よりも、10〜50重量%の木炭を配合した混合培地の方が、収穫が増えており、また、連作による作物の収量低下が起こらなかったことが分かる。
【0037】
【表4】
Figure 0003807947
【0038】
【発明の効果】
本発明に係る屋上及び地上野菜栽培用培地は、仮比重が一般の土壌(砂質土壌や粘度質土壌)が1.0〜1.3であるのに比べて、例えば粒径範囲が1〜10mmの粒状軽石で嵩比重が0.45〜0.6という、一般土壌に対してその数値が半分以下の粒状軽石から構成されることを特徴とする。従って一般土壌の荷重負荷に対し、屋上及び地上での荷重負荷が半分になり、建造物に対して強度上の問題を起こすことがなく、建築基準法を満たすことが容易であるため、特に屋上野菜栽培用に好適な培地である。本発明に係る栽培用培地を用いて栽培することのできる植物としては、具体的には、野菜、花卉植物などを挙げることができる。また、本発明の更に好ましい態様においては、更に培地に炭を加えることにより、培地の保水力及び保肥力が高まり、連作による作物の収量低下を防ぐことができ、長期間に亘って栽培を繰り返すことができるので、農作業が簡略化される。更に、培地の汚染による培地の交換頻度が少なくなることによって、使用済みの培土の廃棄による経済的な負担が軽減される。
【0039】
本発明の粒状軽石培地は、植物の栽培に必要な水や培養液の供給が少なくて済むので、建造物の屋上及び地上部分での栽培に必要な灌水装置が簡単となり、また水や培養液の供給による建造物の屋上及び地上部分の損傷が少ないので、建造物の寿命を縮めることがない。
本発明の粒状軽石培地は、もともと陽イオン交換容量(CEC)が一般土壌に比べて小さい。屋上緑化や地上緑化の場合は、培地が被覆されていないので、雨が降った場合は、培地に直接大量の水が流れ込み、培地の肥料成分を流出させてしまう。粒状軽石培地はCECが3meq/100g程度なので、一般土壌のCEC15〜30meq/100gの1/10程度であり、雨がいくら降っても肥料成分の流出量が少ない。流出量がCECに比例するのであれば、1/10程度となり極めて肥料の流亡防止効果も大きい。
【図面の簡単な説明】
【図1】本発明において規定する定水位法による飽和透水係数を測定するために用いられる土壌透水性測定器の概念図である。
【図2】本発明において規定する通気係数を測定するために用いられる通気性測定装置の概念図である。
【図3】シラス軽石の500倍拡大顕微鏡写真である。
【図4】砂粒の500倍拡大顕微鏡写真である。
【図5】本発明の実施例1において用いた栽培試験装置の概念を示す図である。
【図6】本発明の実施例2の栽培試験結果を示すグラフである。
【符号の説明】
1 採土円筒
2 ゴムリング
3 定水位ホルダー
4 水槽
5 排水口
6 排水パイプ
7 排水口
8 メスシリンダー
9 自在ノズル
10 給水パイプ
11 金網キャップ
12 円筒
13 厚いゴム板
14 ガラス容器
15 ガスメーター
16 水中マノメーター
20 栽培ボックス
21 シラス軽石
22 放水小孔
23 多孔放水管
A サラダ菜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a culture medium for rooftop and above-ground greening, and more specifically, on the rooftop and above-ground part of a building, for example, vegetables, trees, turf, flowers, etc. are cultivated under water-saving and resource-saving by a facility cultivation method. It is related with the culture medium suitable for plant cultivation. In addition, since the water content of the medium can be adjusted, the present invention relates to a roofing medium and a cultivation medium for above-ground greening that can grow a value-added crop such as tomato and melon among fruits and vegetables.
[0002]
[Prior art]
Over the past hundred years, the average temperature in Tokyo has risen by 2.9 ° C. The Tokyo Metropolitan Government amended the Conservation Ordinance to stop the “Heat Island Phenomenon” in the city center, and for the first time in Japan decided to require “green roof” for newly renovated buildings (December 20, 1999). Day).
This obliges 20% of the available rooftop space to be planted with trees, turf and flowers.
Conventionally, there are examples of building soil on the roof of a building, which is a building, and planting trees, and in large buildings, making gardens on the roof etc., but planting trees with soil on top of them is very heavy. Because it causes water leakage from the roof, it damages the building, so it is limited to small buildings owned by individuals, and limited to sales-related things when making a garden. For that reason, there was not much special technology for “green rooftop”.
Recently, not only buildings, but also large-scale structures such as artificial ground have been created, and buildings have been built on them. In this case, not only rooftop greening but also soil on the ground part of the building There is a need to form a greening area in a concrete part that has no, but it is at a level where soil is simply put in that part.
Recently, an eco-garden system has been developed in the private sector to convert the roof of a building into a vegetable field.
[0003]
By the way, there is a hydroponics method as an excellent facility cultivation method for high-quality vegetables and fruit tree plants. The hydroponics method is classified into a solid medium method and a non-solid medium method. Examples of the solid medium method include sand cultivation, gravel cultivation, and charcoal cultivation. This is a method in which sand, gravel, charcoal, etc. are spread and used as a medium, and nutrient water is continuously sprinkled there.
[0004]
[Problems to be solved by the invention]
By the way, in order to prevent the urban heat island phenomenon, in order to plant the trees on the rooftops to green the rooftops of all the buildings to be built, the rooftops of the buildings are waterproofed and the soil is put there as before. Planting trees can cause very difficult problems. Especially in high-rise buildings, a lot of weight-reducing materials are used to reduce the weight on the pillars, but if heavy soil is placed on the roof, it will cause problems in the strength of the building, and it will also be earthquake resistant. Will cause problems.
Also, not only in buildings, but in large buildings, the surrounding soil is often removed, and the surroundings are often made of concrete ground due to the construction of a parking lot underground. However, in that case, it is necessary to green the ground part from the scenery. In this case, there is a problem of waterproofing and weight because the lower part is a concrete part, and greening is not easy.
[0005]
In other words, when holding the soil for planting plants on the rooftop or ground part of the building in order to green the rooftop or ground part of the building, there is a problem that the weight of the soil places a burden on the building, and When supplying water or culture solution to grow plants planted in soil, if there is too much water or heavy rain, water leaks to the ceiling of the building under the soil In addition, there is a problem that the weight of the soil is further increased and the load on the building is more serious. To prevent this, the strength of the building is further increased, or It is necessary to further strengthen the waterproof structure of the roof of the building.
In addition, the rooftop of the building is more sunny than the ground, has a large heat capacity throughout the building, and is windy, so that the soil is in a condition suitable for plant growth, and the soil does not fly. It was difficult to set supply conditions.
In the conventional solid medium system, there was a problem that it took much time for cultivation. Plants were difficult to root on media such as sand and gravel, which resulted in poor harvest rates. In addition, plants were prone to disease and we could not neglect their constant monitoring. Furthermore, water management is difficult, and there is also a problem that a large amount of waste water is often discharged or water shortage occurs.
[0006]
Currently, as a medium for facility cultivation for rooftop and above-ground greening, various mediums are being investigated according to various uses and purposes from among lightweight and excellent water retention media especially for rooftop greening. It has been proposed to use pumice as a culture medium because it does not require a large amount of nutrient solution and does not cause retention of the nutrient solution and is unlikely to cause illness. However, even if pumice is used as a medium, no research has been conducted on what kind of physical properties of pumice are suitable as a culture medium for institutional cultivation or what particle size is suitable.
The present invention finds the optimum physical properties and particle size when using pumice as a medium in the cultivation method of a solid medium method especially for rooftop greening, takes little labor for cultivation, is easy to manage water, and basically An object is to provide a rooftop and above-ground greening medium that does not generate drainage.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors conducted extensive studies on the effects of various physical properties of pumice on the rooftop and aboveground greening medium.
Among various mediums, when granular volcanic pumice is used as a medium, the medium has good water permeability, is light in weight, and does not have stickiness. In addition, this granular pumice medium has less nutrient supply to the rhizosphere and lower retention of fertilizer components than soil, but it can be used as an isolated bed including crops by appropriately supplying nutrient solution through a drip tube. There is an advantage that an appropriate moisture state can be maintained with a droplet supply amount substantially equal to the evaporation amount of moisture from the. Therefore, cultivation can be performed with a very small amount of water and very little energy.
[0008]
Pumice is a volcanic eruption that causes glassy magma, such as rhyolite and andesite, to be ejected into the air. It refers to quality rocks and is characterized by countless small holes that look like bubbles with small holes. Pumice is usually distinguished by its origin. The reason is that the physical properties differ depending on the type of rock used as a raw material for pumice. When pumice is composed mainly of andesite, it is euphoric, whereas when it is composed mainly of rhyolite, it shows white or light gray, and the latter is more porous.
[0009]
As a result of studying various characteristics of pumice as a medium used in the solid medium system for rooftop and above-ground greening, the present inventors have paid attention to the saturated permeability coefficient and the aeration coefficient, and the saturated permeability coefficient is 0.1 to 1. Use granular pumice stone with a pumice bulk density of 0.3-0.8 from the viewpoint of lightness for rooftop greening with an air permeability coefficient of 5-60 cm / sec for dry and wet materials. Is found to be able to provide an extremely excellent vegetable cultivation medium, and further has a cation exchange capacity of 1 to 10 meq / 100 g, a particle size range of 0.1 to 10 mm, and a particle size of 0.1. those less than 1mm not contain more than 10 vol%, and completed the present invention by using a granular pumice is adjusted to have been subjected to a drying process up to 5.0% water content after mining A culture medium composed of granular pumice having physical properties within such a range embodies ideal environmental conditions for the water absorption and respiration of the roots of the crop, and anaerobic conditions are maintained in the medium. It suppresses the growth of fungi and exerts the effect of suppressing the onset of root diseases.
[0010]
That is, the present invention has the following configuration.
(1) As a culture medium for rooftop and above-ground vegetable cultivation, the bulk specific gravity is smaller than normal soil, the bulk specific gravity of pumice is 0.3 to 0.8, and the saturated hydraulic conductivity is 0.1 to 1.0 cm / sec. The aeration coefficient is 5 to 60 cm / sec for dry and wet samples, the cation exchange capacity is 1 to 10 meq / 100 g, the particle size range is 0.1 to 10 mm, and the drying process is performed after mining. A medium for cultivation of rooftop and above-ground vegetables, characterized in that the medium is composed of granular pumice that is adjusted to have a moisture content of 5.0% or less.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the cultivation medium according to the present invention is characterized by being composed of granular pumice that is lightweight and has a saturated hydraulic conductivity and an aeration coefficient within a predetermined range.
It is preferable that the pumice used in the cultivation medium according to the present invention has a saturated hydraulic conductivity within a range of 0.1 to 1.0 cm / sec. When the saturated hydraulic conductivity is less than 0.1 cm / sec, the diffusion of water is too slow, the water content of the medium becomes non-uniform, and the old culture solution stays and tends to damage the roots of the plant. On the other hand, if it exceeds 1.0 cm / sec, the diffusion of water is too fast and the water is removed from the culture medium, making it difficult to provide sufficient water supply or nutritional supplementation. “Saturated hydraulic conductivity” is explained, for example, in “Soil Environmental Analysis Method”, supervised by the Japan Soil Fertilizer Society, edited by Soil Environmental Analysis Method Editorial Committee, published by Hirotomo, 1997, first edition, pages 66-69. ing. The saturated hydraulic conductivity defined in the present invention is determined by the constant water level method. An example of a soil permeability measuring instrument (for example, DIK-4000, manufactured by Daihisa Kagaku Kogyo Co., Ltd.) used for measuring the saturated hydraulic conductivity by the constant water level method is shown as a conceptual diagram in FIG.
[0012]
First, the constant water level holder 3 is connected by the rubber ring 2 to the upper part of the sampling cylinder 1 filled with the sample to be analyzed. Next, the soil collecting cylinder 1 is placed in the water tank 4 and positioned above the drain pipe 6 of the constant water level holder 3. This is for draining excess water. In addition, the lower part of the sampling cylinder 1 is stopped by a wire mesh cap 11. A graduated cylinder 8 is placed under the drain 7 of the water tank, and the universal nozzle 9 is positioned on the constant water level holder 3 to start water supply from the water supply pipe 10. At this time, the soil surface is protected with a piece of filter paper so that the soil surface of the sample is not disturbed by water supply. Use water at room temperature. The volume Q (ml) of water that has flowed into the graduated cylinder for a fixed time t (sec) by adjusting the amount of water supply by the cock of the universal nozzle 9 so that the water level in the constant water level holder is kept constant. Measure. The measurement is repeated 2-3 times.
[0013]
The saturated hydraulic conductivity (cm / sec) of the sample is calculated as the coefficient K by the following equation.
K = Q ÷ {(A · t · H) / L} (1)
Where Q is the flow rate (ml); A is the cross-sectional area of the sample (cm 2 ); t is the time (sec); H is the potential difference (cm); L is the thickness of the sample (cm);
[0014]
The pumice used in the cultivation medium according to the present invention preferably has an aeration coefficient of 5 to 60 cm / sec for both dry and wet samples, and more preferably 20 to 30 cm / sec. If the air permeability coefficient is less than 5 cm / sec, the oxygen supply to the roots is lowered, which may promote the growth of anaerobic bacteria that are aggressive to plants, which is not preferable. On the other hand, if it exceeds 60 cm / sec, there is no problem in terms of oxygen supply. However, since the porosity is high, it tends to be difficult for the root and the culture medium to adhere to each other, which is not preferable. The wet sample is a sample immediately after being left for 24 hours in a saturated state of water.
[0015]
“Air permeability coefficient” is described in, for example, “Soil physicality measurement method”, supervised by the Secretariat of the Agriculture, Forestry and Fisheries Technology Council of the Ministry of Agriculture, Forestry and Forests, edited by the Soil Physicality Measurement Method Committee, published by Yokendo, published in 1978, lower volume, pages 270-273. Has been. The conceptual diagram of the apparatus for measuring the aeration coefficient of soil is shown in FIG. For the actual measurement, for example, a soil permeability tester DIK-5001 manufactured by Dairika Kogyo Co., Ltd. is used. In FIG. 2, reference numeral 12 denotes a cylinder containing a sample, which is inserted so as to be in close contact with the thick rubber plate 13. The rubber plate 13 is placed on the glass container 14 with sufficient airtightness. While measuring the difference between the inlet pressure and the outlet pressure of the sample (P2-P1) (water head cm) with an underwater manometer 16, a constant amount (Qcm 3 ) of air was measured through the gas meter 15 and the sample was vented, and the passage time t (Sec) is measured. When the channel area is Acm 2 and the channel length is Lcm, the air permeability coefficient Ka (cm / sec) is obtained by the following equation.
Ka = Q × L / {(P2-P1) × A · t} (2)
[0016]
Furthermore, the pumice used in the cultivation medium according to the present invention more preferably has a cation exchange capacity of 1 to 10 meq / 100 g. In this specification, meq / 100 g means milliequivalents per 100 g of dry soil. When the cation exchange capacity is less than 1 meq / 100 g, the fertilizing ability is small and the yield is poor, which is not preferable. In addition, the cation exchange capacity hardly exceeds 10 meq / 100 g due to the composition of pumice. The cation exchange capacity is measured by, for example, the semi-micro Schollenberger method described in the above-mentioned “Soil environmental analysis method” on pages 208 to 210 (the Schollenberger method using 1M ammonium acetate at pH 7.0 reduced to 1/10). ) Can be used. In the Schollenberger method, a soil column is prepared in a permeation tube, exchangeable cations are exchanged and leached with NH 4 + in ammonium acetate, excess ammonium acetate is washed with ethanol, and then NH 4 + is washed with sodium chloride solution. The NH 4 + is quantified by steam distillation, titration or the like, and the adsorbed NH 4 + is used as the cation exchange capacity.
[0017]
According to the research of the present inventors, when pumice has a particle size in the range of 0.1 to 10 mm, it often has an appropriate saturated hydraulic conductivity, air permeability coefficient and cation exchange capacity within the range specified above. I understood that. In particular, it was found that Shirasu pumice in Kagoshima Prefecture having a particle size in the above-mentioned range has an appropriate saturated water permeability, air permeability, and cation exchange capacity as defined above.
For example, pumice particles having a particle size of 0.1 mm or less have an air permeability coefficient of around 10 cm / sec for a dry sample and 2 to 5 cm / sec for a wet sample. Therefore, when pumice particles having a particle size of 0.1 mm or less are used, the air permeability is remarkably deteriorated particularly in a wet state. When the particle size is in the range of 0.1 to 10 mm, an excellent air permeability coefficient can be stably obtained for both the dry sample and the wet sample.
[0018]
The particle size is divided using, for example, a test standard sieve described in JIS Z8801. Pumice having a particle size of 0.1 to 10 mm refers to a size that passes through a sieve having a nominal size of 10 mm according to JIS Z8801 and does not pass through a sieve having a nominal size of 0.1 mm. The sieving is operated by conventional methods, and the particle size value refers to the particle size value of the main main particles. It does not matter that the fine powder is contained at a ratio of 10% by volume or less in the total weight, and such pumice is also included in the scope of the present invention.
Therefore, the pumice used in the rooftop and above-ground greening medium according to the present invention has a particle size in the range of 0.1 to 10 mm and a saturated hydraulic conductivity in the range of 0.1 to 1.0 cm / sec. It is particularly preferable that the air permeability coefficient is 5 to 60 cm / sec for both dry and wet samples. Furthermore, the pumice used in the rooftop and aboveground greening medium according to the present invention preferably has a particle size in the above range and a cation exchange capacity of 1 to 10 meq / 100 g. Pumice with a particle size of less than 0.1 mm often has a cation exchange capacity of less than 1.0 meq / 100 g.
[0019]
The Shirasu pumice is explained with its definition in, for example, “Environment of the Earth”, supervised by Shinno Iwata, published by Fuji Techno System, 1997, pages 30-32. According to this, “Shirasu” is a collective term for “the unwelded part of pyroclastic pumice flow deposits or secondary deposits erupted from the large Cakudera volcano in the late Sara Pleistocene”. South Kyushu is well known. In addition, similar shirasu are distributed around caldera volcanoes such as Lake Kussharo, Mt. Tokachi, Lake Shikotsu, Lake Toya, Lake Towada, and Mt. Aso. Is shown as pumice flow deposits.
FIG. 3 shows a 500 × magnified photomicrograph of Shirasu pumice, and FIG. 4 shows a 500 × magnified photomicrograph of sand grains. Comparing FIG. 3 and FIG. 4 confirms the porosity of Shirasu pumice.
[0020]
Further, as described above, the pumice used for the rooftop and the above-ground greening medium according to the present invention is mined and selected in a particle size range of 0.1 to 10 mm, and the water content is immediately reduced to 5.0% or less. What gave the drying process so that it may become still more preferable. Therefore, in another aspect of the present invention, a granular pumice having a saturated permeability coefficient of 0.1 to 1.0 cm / sec and an aeration coefficient of 5 to 60 cn / sec for dry and wet samples is subjected to a drying process after mining. The present invention relates to a rooftop and above-ground greening medium composed of pumice adjusted to have a moisture content of 5.0% or less.
[0021]
The mined pumice has organic matter and microorganisms attached to the voids, etc., or adheres to it during handling. This has an adverse effect during cultivation, and the presence of these organic matter and microorganisms can cause pumice. The physical and chemical properties of the pumice may become unstable, but by applying a drying process to the pumice immediately after mining in this way, the physical and chemical properties of the pumice are stabilized and the growth of microorganisms is prevented. Therefore, it is possible to provide a culture medium that can maintain stable quality. Drying can be performed by a heating furnace or a microwave oven. When a heating furnace is used, the pumice temperature should be at least 105 ° C., preferably about 250 ° C. In addition, when a microwave oven is used, it is necessary to use an industrial microwave oven with a large output. The heating time is the time when the moisture content of the pumice is 5.0% or less. Since the amount of water initially contained in pumice is often different, it is desirable to take a slightly longer heating time for safety reasons. The pumice stone after the drying process is preferably stored in a bag that blocks moisture such as vinyl when the temperature reaches room temperature.
[0022]
The moisture content of the soil is expressed by the following formula.
Water content (% by weight) = (moisture weight / wet soil weight) × 100 (3)
Here, moisture weight = wet soil weight−dry soil weight, and the dry soil weight is a weight after drying the collected soil at 105 ° C. for 24 hours. In addition, the definition of dry soil weight is based on the description of the above-mentioned "soil environmental analysis method" 21-23 pages.
[0023]
Furthermore, the present inventors further mixed rooftop and ground vegetable cultivation more suitable for large-scale cultivation by further mixing granular charcoal in the cultivation medium composed of the granular pumice having the predetermined physical properties described above. It has been found that a working medium can be provided. Such a mixed medium can be grown at a high growth rate after planting seedlings by increasing the water holding power and fertilizing power under conditions where the physical and chemical properties of the medium are substantially the same as those of the pumice medium. Accordingly, still another aspect of the present invention relates to a rooftop and above-ground vegetable cultivation medium characterized in that charcoal is further blended in a medium composed of granular pumice as defined above.
[0024]
The granular charcoal that can be used here may be anything as long as it is obtained by carbonizing various organic materials, but from the viewpoint of water retention and fertilizer retention, those having a large degree of porosity are preferred. . Examples of the form of charcoal that can be preferably used in the preferred embodiment of the present invention include charcoal, bamboo charcoal, rice bran charcoal and the like. In the preferred embodiment of the present invention, the purpose of adding charcoal is to compensate for the shortcomings of volcanic pumice, which is not very good in fertilizer, so that the degree of porosity is high and the water retention and fertilizer are high. preferable. Further, for example, use of carbonized agricultural by-products, specifically, for example, carbonized beer lees is extremely preferable because it leads to effective use of waste. Furthermore, it is preferable to circulate and reuse the charcoal used in the cultivation medium according to a preferred embodiment of the present invention from the viewpoint of effective utilization.
[0025]
The particle size of the charcoal may be about the same as the particle size of the pumice, but can be appropriately selected depending on the porous state of the charcoal, the blending ratio relative to the pumice, and the like. The preferred particle size of charcoal is in the range of 1 to 5.6 mm, but the average particle size is selected according to the situation. Preference is given to charcoal having an average particle size that mixes uniformly when mixed with pumice.
Although the blending ratio of pumice and charcoal can be variously selected in relation to the crop to be cultivated, generally, the mass of charcoal relative to the mass of pumice can be in the range of 0.1 to 0.5 times.
[0026]
【Example】
The following examples illustrate the various aspects of the present invention more specifically. These examples show specific examples of the present invention, and the present invention is not limited to these examples.
[0027]
Example 1
The concept of the cultivation apparatus for rooftop and above-ground vegetable cultivation used in the present Example is shown in FIG. A cultivation box 20 having a size of 450 mm × 1200 mm was provided, Shirasu pumice 21 calculated by Kagoshima Prefecture was filled to a depth of 80 mm, and Saladana A was cultivated in July and August. The cultivation test was conducted in Shizuoka Prefecture. The Shirasu pumice 21 used was one that was screened to a particle size of 1.0 mm to 5.6 mm using a 5660 μm sieve and a 1000 μm sieve and dried at 250 ° C. for 4 hours in a heating furnace. The water content of pumice was 0.2%. The saturated permeability coefficient of pumice was 3.4 × 10 −1 cm / sec, the permeability coefficient was 29 cm / sec for the dry sample, 27 cm / sec for the wet sample, and the cation exchange capacity was 3.4 meq / 100 g. The porous water discharge pipes 23 in which the water discharge small holes 22 are scattered in a line in the length direction on the peripheral wall at predetermined intervals are horizontally spread over the cultivation box 20 and watering is appropriately performed. The seedlings were sown and germination was confirmed 2 days later. After 10 days, they were planted in the cultivation box 20 in the greenhouse. The cultivation area was 20 m 2 . The nutrient (liquid fertilizer) and water were replenished by irradiating with sunlight. After planting 30 days, there was a harvest of 1m 2 per 36 shares. The weight of 12 of the harvested Salana strains was measured. Here, the weight of the strain is the weight of Sardana excluding the roots. The results are shown in Table 1.
[0028]
[Table 1]
Figure 0003807947
[0029]
Comparative Example 1
A cultivation test of Saladana was conducted in the same manner as in Example 1 except that sand having the following properties was used as the medium instead of Shirasu pumice. The particle size of the sand used was 0.2 to 1.0 mm, the water content was 0.5 wt%, the saturated water permeability was 3.7 cm / sec, the air permeability was 59 cm / sec for the dry sample, 63 cm / sec for the wet sample, The cation exchange capacity was 0.9 meq / 100 g. The cultivation area was 10 m 2 . There is a harvest of 1m 2 per 22 shares, and weighed about 12 of which strain. The results are shown in Table 2. The average stock weight of 12 strains was 82.9 g.
By using Example 1 and Comparative Example 1 and using the pumice medium according to the present invention, it is possible to increase the planting density compared to sand culture and increase the weight per strain. I understand.
[0030]
[Table 2]
Figure 0003807947
[0031]
Comparative Example 2
Saturated hydraulic conductivity, air permeability coefficient, and cation exchange capacity of a sample obtained by screening Shirasu pumice produced in Kagoshima Prefecture to a particle size of less than 0.1 mm were measured. The saturated hydraulic conductivity was 2.5 × 10 −2 cm / sec, which was about 1/10 or less of the Shirasu pumice sample used in Example 1. The air permeability coefficient was 12 cm / sec for the dry sample and 4 cm / sec for the wet sample, and in particular, the air permeability coefficient of the wet sample was low. The cation exchange capacity was 1.3 meq / 100 g.
[0032]
Reference example 1
A cultivation test using a medium in which charcoal was mixed with pumice was conducted. As the pumice, the same Shirasu pumice sample as used in Example 1 was used. Charcoal particles prepared by pulverizing charcoal (coconut husk charcoal) to a particle size of 1 to 2 mm are prepared, and the charcoal is in a weight ratio of 0% (A), 10% (B), and 20%, respectively. (C), 30% (D), 40% (E), 50% (F) mixed media were formed. Saladana was cultivated in each medium. Cultivation was conducted in Okinawa Prefecture. Sowing was carried out at the end of May, planted on the 17th day after sowing, and harvested 32 days later. The irrigation method was instillation, and irrigation was carried out in an amount of 50 ml / strain during seedling raising and 60 ml / strain during planting. Liquid fertilizer was applied as a fertilizer. 21 strains were harvested for each medium, and the average weight of Saladana per strain (weight of the portion excluding the roots) was determined. The results are shown in Table 3 and FIG.
[0033]
[Table 3]
Figure 0003807947
[0034]
From Table 3 and FIG. 6, it can be seen that the weight of Saladana grown on a medium mixed with charcoal increased by an average of 20 g per strain compared to Saladna grown on a medium not mixed with charcoal.
[0035]
Reference example 2
A continuous cropping test using a medium in which charcoal was mixed with pumice was conducted. As the pumice, the same Shirasu pumice sample as used in Example 1 was used. The charcoal (coconut husk charcoal) is crushed and classified in the same size as the Shirasu pumice test (particle size 1 to 5.6 mm), and the charcoal particles adjusted in particle size are prepared. , 0% (A), 10% (B), 20% (C), 30% (D), 50% (E), 80% (F), 100% (G) mixed media Formed. Each mixed medium was collected so as to be 800 g per pot, and placed in a 1 liter Pyrex (registered trademark) beaker to form a medium, and Komatsuna was cultivated in each medium.
[0036]
Cultivation was conducted in Shizuoka Prefecture. The plants were planted about 10 days after sowing and harvested about 30 days later. This was done ten times. A nutrient solution based on river water was used as a nutrient solution. The proportion of nutrients under addition is almost the same as the culture fluid of the standard formulation of the horticultural laboratory (component concentration: N = 16 (meq / liter: the same unit)); P = 4; K = 8; Ca = 8; Mg = 4) I tried to become. The same amount of nutrient solution adjusted in one nutrient solution tank was supplied at the same timing to all the culture media. During the cultivation test, the medium was housed in a greenhouse. The weight of the harvested Komatsuna strain was measured. The results are shown in Table 4. The stock weight is an average value of values obtained by measuring the weight of 10 stocks.
From Table 4, it can be seen that the mixed medium containing 10 to 50% by weight of charcoal had a higher yield than the medium of 100% Shirasu pumice, and the crop yield did not decrease due to continuous cropping. I understand.
[0037]
[Table 4]
Figure 0003807947
[0038]
【The invention's effect】
The culture medium for rooftop and ground vegetable cultivation according to the present invention has a specific gravity of 1.0 to 1.3 compared to 1.0 to 1.3 for general soil (sandy soil or viscous soil). It is characterized by being composed of granular pumice with 10 mm granular pumice and a bulk specific gravity of 0.45 to 0.6, which is less than half that of general soil. Therefore, the load on the rooftop and the ground is halved compared to the load on general soil, and it is easy to meet the Building Standards Law without causing any problems in strength to the building. It is a medium suitable for vegetable cultivation . Specific examples of plants that can be cultivated using the culture medium according to the present invention include vegetables and flower plants . Further, in a further preferred aspect of the present invention, by further adding charcoal to the medium, the water retaining power and fertilizing power of the medium can be increased, and a decrease in crop yield due to continuous cropping can be prevented, and cultivation is repeated over a long period of time. As a result, farm work is simplified. Furthermore, since the frequency of replacement of the culture medium due to contamination of the culture medium is reduced, the economic burden due to disposal of the used culture medium is reduced.
[0039]
Since the granular pumice medium of the present invention requires less supply of water and culture solution necessary for plant cultivation, the irrigation device necessary for cultivation on the rooftop and the ground part of the building is simplified, and water and culture solution are also provided. Since the rooftop and the ground part of the building are less damaged by the supply of the building, the lifetime of the building is not shortened.
The granular pumice medium of the present invention originally has a small cation exchange capacity (CEC) compared to general soil. In the case of rooftop greening or aboveground greening, since the medium is not covered, if it rains, a large amount of water flows directly into the medium, causing the fertilizer components of the medium to flow out. Since the granular pumice medium has a CEC of about 3 meq / 100 g, it is about 1/10 of CEC 15-30 meq / 100 g of general soil, and the amount of fertilizer components flowing out is small no matter how much rain falls. If the outflow is proportional to the CEC, it will be about 1/10 and the fertilizer runoff prevention effect will be extremely large.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a conceptual diagram of a soil permeability measuring instrument used for measuring a saturated permeability coefficient by a constant water level method defined in the present invention.
FIG. 2 is a conceptual diagram of an air permeability measuring device used for measuring an air permeability coefficient defined in the present invention.
FIG. 3 is a 500 × magnified photomicrograph of Shirasu pumice.
FIG. 4 is a 500 × magnified photomicrograph of sand grains.
FIG. 5 is a diagram showing a concept of a cultivation test apparatus used in Example 1 of the present invention.
FIG. 6 is a graph showing the cultivation test results of Example 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Soil collecting cylinder 2 Rubber ring 3 Constant water level holder 4 Water tank 5 Drain outlet 6 Drain pipe 7 Drain outlet 8 Female cylinder 9 Swivel nozzle 10 Water supply pipe 11 Metal mesh cap 12 Cylinder 13 Thick rubber plate 14 Glass container 15 Gas meter 16 Underwater manometer 20 Cultivation Box 21 Shirasu pumice 22 Water discharge small hole 23 Porous water discharge pipe A Salad vegetable

Claims (1)

屋上及び地上野菜栽培用培地として、通常の土より嵩比重が小さく、軽石の嵩比重が、0.3〜0.8であり、飽和透水係数が0.1〜1.0cm/sec、通気係数が乾燥試料及び湿潤試料で5〜60cm/secであり、陽イオン交換容量が1〜10meq/100gであり、粒径範囲が0.1〜10mmであり、採掘後に乾燥工程を施されて5.0%以下の含水率を有するように調整されている粒状軽石から構成されることを特徴とする屋上及び地上野菜栽培用培地。As a culture medium for rooftop and above-ground vegetable cultivation, bulk density is smaller than normal soil, bulk density of pumice is 0.3-0.8, saturated water permeability is 0.1-1.0 cm / sec, air permeability coefficient Is 5 to 60 cm / sec for dry and wet samples, has a cation exchange capacity of 1 to 10 meq / 100 g, a particle size range of 0.1 to 10 mm, and is subjected to a drying process after mining. A medium for cultivation of rooftop and above-ground vegetables, characterized in that it is composed of granular pumice that has been adjusted to have a moisture content of 0% or less.
JP2001119811A 2001-04-18 2001-04-18 Rooftop and aboveground greening media Expired - Fee Related JP3807947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119811A JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119811A JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Publications (2)

Publication Number Publication Date
JP2002315432A JP2002315432A (en) 2002-10-29
JP3807947B2 true JP3807947B2 (en) 2006-08-09

Family

ID=18969965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119811A Expired - Fee Related JP3807947B2 (en) 2001-04-18 2001-04-18 Rooftop and aboveground greening media

Country Status (1)

Country Link
JP (1) JP3807947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929464B2 (en) * 2007-02-28 2012-05-09 国立大学法人島根大学 Soil management method
JP2012244934A (en) * 2011-05-27 2012-12-13 Kumagai Gumi Co Ltd Plant growing material for rooftop greening

Also Published As

Publication number Publication date
JP2002315432A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
Aggarwal et al. Puddling and N management effects on crop response in a rice-wheat cropping system
Buttar et al. Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.)
CN108865170A (en) A kind of charcoal base soil structure conditioner preparation method and method of administration
CN101507391B (en) Rock slope-surface ecology treatment method
Tingwu et al. Effect of drip irrigation with saline water on water use efficiency and quality of watermelons
CN1623365A (en) Fruit tree anti drought cultivation method
Yangyuoru et al. Effects of natural and synthetic soil conditioners on soil moisture retention and maize yield
Shangguan et al. Runoff water management technologies for dryland agriculture on the Loess
Gao et al. Improving Water Productivity and Reducing Nutrient Losses by Controlled Irrigation and Drainage in Paddy Fields.
JP3807947B2 (en) Rooftop and aboveground greening media
CN107226736A (en) A kind of composite interstitial substance for vegetable soilless culture in family room
CN113711876B (en) Method for constructing rice planting on coastal saline-alkali land through preferential flow, desalination and fertilization topsoil
CN1795715A (en) Organic soilless culture method for nursling of flower, and planting utensil
Legowo et al. Analysis of water-saving irrigation with organic materials at different percentages for rice cultivation
JP3302342B2 (en) Cyclamen cultivation medium
JP2012044961A (en) Gravel culture method, and method for producing container made of tuffaceous sandstone powder
JP3784719B2 (en) Culture medium
Fu et al. Effects of water and nitrogen coupling on photosynthetic characteristics and yield of winter wheat in film hole irrigation fields
Vaulin A new innovative irrigation method for wood, shrub crops and grapes
OKUR Soils And Climate Change
CN106977274A (en) A kind of composite interstitial substance for vegetables soilless pot culture
CN114071991B (en) Inlet device
JP2010166908A (en) Plant raising base material, plant raising base soil, and multilayer type culture soil
Vartanyan et al. Improving soil moisture capacity with polymeric-mineral materials for growing plants
JP3389113B2 (en) Artificial ground soil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees