JP5773561B2 - Tea planting method - Google Patents

Tea planting method Download PDF

Info

Publication number
JP5773561B2
JP5773561B2 JP2009042615A JP2009042615A JP5773561B2 JP 5773561 B2 JP5773561 B2 JP 5773561B2 JP 2009042615 A JP2009042615 A JP 2009042615A JP 2009042615 A JP2009042615 A JP 2009042615A JP 5773561 B2 JP5773561 B2 JP 5773561B2
Authority
JP
Japan
Prior art keywords
fertilizer
nitrogen
fertilization
amount
tea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009042615A
Other languages
Japanese (ja)
Other versions
JP2010193790A (en
Inventor
利明 荒木
利明 荒木
光育 岩橋
光育 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JCAM Agri Co Ltd
Original Assignee
JCAM Agri Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JCAM Agri Co Ltd filed Critical JCAM Agri Co Ltd
Priority to JP2009042615A priority Critical patent/JP5773561B2/en
Publication of JP2010193790A publication Critical patent/JP2010193790A/en
Application granted granted Critical
Publication of JP5773561B2 publication Critical patent/JP5773561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)

Description

本発明は茶樹の栽培方法に関する。   The present invention relates to a method for cultivating tea plants.

近年、茶樹に代表される多年生作物の栽培において、窒素施用量低減に向けた施肥削減技術の開発とともに施肥基準が見直されている。これは、茶園周辺の水系においてしばしば高濃度の硝酸性窒素が検出されてきたためである。また、茶栽培においては、その品質向上を目的として他作物と比べて極端な窒素多施用が行われてきた。   In recent years, in the cultivation of perennial crops typified by tea trees, fertilizer standards have been reviewed along with the development of fertilizer reduction techniques for reducing nitrogen application rates. This is because nitrate nitrogen has often been detected in the water system around the tea garden. Further, in tea cultivation, an excessive amount of nitrogen has been applied compared to other crops for the purpose of improving the quality.

施肥量削減技術としては肥効調節型肥料や石灰窒素の利用が挙げられ、特に前者は濃度障害を起こしにくく、溶脱による損失を減らせる点や施肥回数を減らせる点が評価されている(例えば、非特許文献1参照)。   Fertilizer application reduction techniques include the use of fertilizer control type fertilizers and lime nitrogen, and the former is particularly evaluated for its ability to reduce concentration loss and reduce the number of fertilizer application, for example, because the former is less susceptible to concentration disturbance (for example, Non-Patent Document 1).

通常、茶栽培の施肥はうね間に行うが、手作業で歩きながらの施用であるため、施肥作業が長時間かかり、多大な労力がかかっていた。施肥位置がうね間(茶園の20%弱の面積に相当)に限定され、そこへ多量施肥しているため濃度障害が発生するとともに、うね間は作業場であり土壌の物理性が良好に維持できないなど様々な課題がある(例えば、非特許文献1参照)。一方で、被覆肥料による全面施用(例えば、非特許文献2参照)や樹幹下施肥も提案されており、液肥を利用した技術開発について報告されている(例えば、非特許文献3参照)。   Usually, fertilization of tea cultivation is performed in the ridges, but since it is applied while walking by hand, the fertilization work took a long time and much labor was required. Fertilization position is limited to ridges (corresponding to less than 20% of the area of tea garden), and there is a concentration failure due to the large amount of fertilizer applied there, and the ridges are the workplace and the physical properties of the soil are good There are various problems such as inability to maintain (see Non-Patent Document 1, for example). On the other hand, full-scale application with a coated fertilizer (for example, see Non-Patent Document 2) and under-tree fertilization have also been proposed, and technical development using liquid fertilizer has been reported (for example, see Non-Patent Document 3).

しかしながら、特に茶樹などの葉が密集している作物においては樹上から肥料を施用すると葉の上に肥料が残留しやすい。また、葉を収穫する作物においては、葉の上に肥料が残留した結果として葉焼けが発生すると商品価値が著しく低下することから、樹上から、肥料の一般的な形態である粉もしくは粒状物は樹幹下への施肥が困難であり、実態としてそこは施用できない場所になっている。   However, especially in crops with dense leaves such as tea trees, fertilizer tends to remain on the leaves when fertilizer is applied from the top of the tree. In addition, in crops that harvest leaves, if burnt leaves as a result of fertilizer remaining on the leaves, the value of the product is significantly reduced. Is difficult to fertilize under the trunk, and in reality it is a place where it cannot be applied.

また、被覆肥料による全面施用(例えば、非特許文献2参照)の事例に従えば、2年で1回の施肥を例示しているが、これでは施肥の管理が難しく、施肥した時期を忘れてしまうおそれがあるため、単年度の施肥体系を組むのが生産者より望まれていた。   In addition, according to the case of full-scale application with coated fertilizer (for example, see Non-Patent Document 2), fertilization is illustrated once every two years, but with this it is difficult to manage fertilization and forget the time of fertilization Therefore, it was desired by producers to establish a single year fertilization system.

野中邦彦,「茶園における窒素環境負荷とその低減のための施肥技術」,茶業研究報告,日本茶業技術協会,平成17年12月,100号,p.29−41Kunihiko Nonaka, “Nitrogen environmental load in tea garden and fertilization technology for its reduction”, Tea Industry Research Report, Japan Tea Technology Association, December 2005, No. 100, p. 29-41 志和将一,「被履肥料の茶園全面施用による施肥効率の向上」,茶業研究報告,日本茶業技術協会,平成17年12月,100号,p.83−85Masakazu Shiwa, “Improvement of fertilization efficiency by applying the fertilizer to the entire tea garden”, Tea Industry Research Report, Japan Tea Technology Association, December 2005, No. 100, p. 83-85 中村茂和,「茶園の樹冠下液肥施用における年間窒素量が収量、摘芽中の窒素含量に及ぼす影響」,茶業研究報告,日本茶業技術協会,平成17年12月,100号,p.86−88Shigekazu Nakamura, “Effects of Annual Nitrogen Content on Yield and Nitrogen Content during Sprouted Tea Application in Tea Plantation”, Tea Industry Research Report, Japan Tea Technology Association, December 2005, No. 100, p. 86-88

本発明は、茶樹に代表される多年生作物の栽培において、肥効調節型肥料の肥効を従来以上に高めつつ施肥作業にかかる労力を低減し、かつ、多年生作物の収量を増大させることが可能な栽培方法を提供することを課題とする。   In the cultivation of perennial crops typified by tea trees, the present invention can reduce the labor required for fertilization work while increasing the fertilization effect of the fertilizer with adjustable fertilizer than before, and can increase the yield of perennial crops. It is an object to provide a simple cultivation method.

本発明者等は、前述の課題を解決するため鋭意研究を重ねた。その結果、特定の肥効調節型粒状肥料を用いて茶樹の上部より1年に1回施用する栽培方法であれば、容易に樹幹下施肥が可能であることを見出した。さらに、施肥作業にかかる労力を低減させるため使用条件を検討したところ、動力散布機等での機械施肥時に粒状肥料への影響が無く、機械施肥前後の肥効特性に影響しないような肥効調節型肥料を施用する方法を含んだ栽培方法により、前記課題が解決されることを見出し、その知見に基づいて本発明を完成した。   The inventors of the present invention have made extensive studies in order to solve the above-described problems. As a result, it was found that if the cultivation method is applied once a year from the upper part of the tea tree using a specific fertilization effect-adjusted granular fertilizer, it can be easily applied under the trunk. In addition, we examined the use conditions in order to reduce the labor required for fertilization work. The cultivation method including the method of applying mold fertilizer was found to solve the above problems, and the present invention was completed based on the findings.

本発明の要旨は以下の通りである。
[1]肥効調節型粒状肥料の茶樹への施用方法であって、下記(1)〜(3)の特性を有した肥効調節型肥料を茶樹の上部より複数年にわたって毎年1回施用し、施用量の80%以上の該肥効調節型粒状肥料が樹冠下の範囲内に分布するようにすることを特徴とする多年生作物の栽培方法。
(1)被覆粒状肥料組成物および/または化学合成緩効性窒素肥料から選ばれた1種以上により構成される。
(2)水中または土中25℃一定条件下での3日目の窒素成分の溶出率または無機化率が10%以下である。
(3)水中または土中25℃一定条件下での80%溶出日数または無機化日数が40〜250日である。
[2]年間窒素施肥量の20〜80%を茶樹の上部より施用することを特徴とする上記[1]記載の茶樹の栽培方法。
The gist of the present invention is as follows.
[1] A method for applying fertilizer-controllable granular fertilizer to tea trees, wherein the fertilizer-controlling fertilizer having the following characteristics (1) to (3) is applied once a year from the top of the tea tree for a plurality of years. A method for cultivating a perennial crop, characterized in that the fertilizing effect-controllable granular fertilizer of 80% or more of the application amount is distributed within the range under the crown.
(1) It is comprised by 1 or more types chosen from the covering granular fertilizer composition and / or the chemical synthetic slow-release nitrogenous fertilizer.
(2) The elution rate or mineralization rate of the nitrogen component on the third day under constant conditions at 25 ° C. in water or soil is 10% or less.
(3) 80% elution days or mineralization days in water or in soil at a constant temperature of 25 ° C. is 40 to 250 days.
[2] The method for cultivating tea trees according to the above [1], wherein 20 to 80% of the annual nitrogen fertilizer amount is applied from the upper part of the tea tree.

本発明により、多年生作物の栽培方法に関し、下記(1)〜(5)の効果が挙げられる。
(1)機械施肥が可能であることから、施肥作業にかかる労力の低減
(2)容易に樹幹下施肥ができるので、肥料の利用率向上による施肥量削減、増収
(3)うね間へ多量施肥を回避できるため、濃度障害の回避や良好な栽培環境の維持
(4)施肥量削減による環境負荷低減
(5)年1回施肥とすることで施肥時期が年間スケジュール化できるため、施肥時期の間違いが無くなる
According to the present invention, the following effects (1) to (5) can be mentioned with respect to the method for cultivating perennial crops.
(1) Reduction of labor required for fertilization work because mechanical fertilization is possible (2) Since it is possible to apply fertilizer under trunk easily, fertilizer usage rate reduction and increase in yield (3) Large amount to ridges Since fertilization can be avoided, avoiding concentration disturbance and maintaining a good cultivation environment (4) Environmental load reduction by reducing fertilizer application amount (5) Since fertilization time can be scheduled annually by applying fertilization once a year, There is no mistake

本発明の栽培方法は、茶樹の上部より肥効調節型粒状肥料を施用することにより樹幹下に施用を実現する栽培方法である。   The cultivation method of this invention is a cultivation method which implement | achieves application under a tree trunk by applying a fertilization effect type | mold granular fertilizer from the upper part of a tea tree.

本発明における茶樹の上部とは、茶樹表面に対する方向が上部という意味であり、茶樹表面は通常、葉や枝で覆われている。樹幹下とは文字通り作物の幹、枝葉の下部の地表面であり、作物が南からの日射を受けた場合の影の部分に相当する。   The upper part of the tea tree in the present invention means that the direction with respect to the surface of the tea tree is upper, and the surface of the tea tree is usually covered with leaves and branches. Under the trunk is literally the trunk of the crop, the ground surface below the branches and leaves, and corresponds to the shadow when the crop is exposed to solar radiation from the south.

本発明では、肥効調節型粒状肥料が樹冠下の範囲内に施用量の80%以上分布させることができる。   In the present invention, the fertilizing effect-controllable granular fertilizer can be distributed in an area under the crown of 80% or more of the application amount.

本発明の樹上施用では、施用直後は葉面や幹、枝に肥料が残ることもある。一般の化成肥料を同様の方法で施肥し葉の上に残った場合には肥料成分が速やかに葉に吸収されるために葉焼け(濃度障害)が発生する恐れがある。本発明の肥効調節型肥料の場合は被膜が樹脂であり、難水溶性の成分であるために直接肥料成分と接触しないために、このような葉焼けの発生が無い。通常の環境では風による振動により自然落下するため樹幹下に確実に落下させることができる。また、施用後に樹木を棒などで振動させ肥料粒子を落下させるのが好ましい。   In the tree application of the present invention, fertilizer may remain on the foliage, trunk, or branch immediately after application. When general chemical fertilizer is fertilized in the same manner and left on the leaf, the fertilizer component is quickly absorbed into the leaf, which may cause leaf burning (concentration disorder). In the case of the fertilizer for adjusting fertilization effect of the present invention, the coating film is a resin, and since it is a poorly water-soluble component, it does not come into direct contact with the fertilizer component. In a normal environment, it naturally falls due to wind vibrations, so it can be reliably dropped under the trunk. In addition, it is preferable to drop the fertilizer particles by vibrating the tree with a stick or the like after application.

本発明で用いる肥料は施用時の残留を考慮すると好ましい粒度分布は粒径2.0〜4.5mmが90%以上であり、さらに好ましくは95%以上である。   The fertilizer used in the present invention preferably has a particle size distribution of 90% or more, more preferably 95% or more when the particle size is 2.0 to 4.5 mm in consideration of the residue at the time of application.

肥料粒子は一般にその製造方法にもよるが、凹部や凸部を有する複雑な形状を有しており、肥料の形状として理想は真球状であるが製造が困難である。そこで、円形度係数を用いて例示すれば好ましくは0.9以上である。   Although fertilizer particles generally depend on the production method, the fertilizer particles have a complicated shape having a concave portion and a convex portion, and the shape of the fertilizer is ideally spherical but difficult to produce. Therefore, if the circularity coefficient is used as an example, it is preferably 0.9 or more.

本発明における肥効調節型粒状肥料とは、樹脂等の被膜組成物で粒状肥料を被覆した被覆粒状肥料組成物(以下「被覆肥料」とする)、尿素等を化学合成した化学合成緩効性窒素肥料、ジシアンジアミド等の硝酸化成抑制材を含有する粒状肥料が挙げられるが、好ましくは被覆肥料、化学合成緩効性窒素肥料であり、さらに好ましくは被覆肥料を用いることができる。これらの肥料はいずれか1種を単独で、または2種以上を組み合わせて用いることができる。   The fertilization effect control type granular fertilizer in the present invention is a coated granular fertilizer composition (hereinafter referred to as “coated fertilizer”) in which the granular fertilizer is coated with a coating composition such as a resin, chemically synthesized slow-release property obtained by chemically synthesizing urea or the like. A granular fertilizer containing a nitrification inhibitor such as nitrogen fertilizer and dicyandiamide can be mentioned, and preferably a coated fertilizer and a chemically synthesized slow-release nitrogen fertilizer, more preferably a coated fertilizer. These fertilizers can be used alone or in combination of two or more.

被覆肥料としては、窒素質肥料をポリオレフィン系樹脂、ポリウレタン系樹脂、硫黄その他の被膜材料で被覆した被覆窒素肥料;カリ質肥料をポリオレフィン系樹脂、ポリウレタン系樹脂、硫黄その他の被膜材料で被覆した被覆カリ肥料;及び化成肥料等をポリオレフィン系樹脂、ポリウレタン系樹脂、硫黄その他の被膜材料で被覆した被覆複合肥料等が挙げられる。   Coated fertilizer: Nitrogenous fertilizer coated with polyolefin resin, polyurethane resin, sulfur and other coating materials; Nitrogen fertilizer coated with potassium fertilizer; Polyolefin resin, polyurethane resin, sulfur and other coating materials coated Examples thereof include potash fertilizers; and coated composite fertilizers obtained by coating chemical fertilizers and the like with polyolefin resins, polyurethane resins, sulfur and other coating materials.

上記被覆肥料の場合、水200mLに該被覆肥料10gの割合で25℃一定に静置した条件下において3日目の累積窒素成分溶出率が10質量%以下である肥料であることが好ましい。   In the case of the said coated fertilizer, it is preferable that it is a fertilizer whose accumulated nitrogen component elution rate of the 3rd day is 10 mass% or less on the conditions which left still at 25 degreeC constant in the ratio of 10 g of this coated fertilizer in 200 mL of water.

また、上記被覆肥料の累積窒素成分溶出率は以下の方法にて求めることが可能である。被覆肥料10gを水200mL中に浸漬して25℃に静置し、所定期間経過後被覆肥料と水とに分け、水中に溶出した窒素成分の溶出累計量を定量分析により求める。さらに、上記被覆肥料10g中の全窒素量を定量し、該全窒素量に対する上記溶出累計量の割合を百分率で示したものを累積窒素成分溶出率とする。具体的には、特開2005−319417号公報等の方法が例示でき、これに準じて行えばよい。すなわち、被覆肥料10gと予め25℃に調整をしておいた蒸留水200mLとを250mLのポリ容器に投入し、25℃設定のインキュベーターに静置した。3日後該容器から水を全て抜き取り、抜き取った水に含まれる溶出累計窒素成分量(窒素成分累計溶出量)を定量分析(例えば、肥料分析法(例えば、農林水産省農業環境技術研究所著,「肥料分析法(1992年版)」,(財)日本肥糧検定協会発行,1992年12月,p.15−22や山添文雄ら著,「詳解肥料分析法 改訂第1版」,養賢堂発行,1973年1月,p.35−62等))により求
めた。累積窒素成分溶出率は被覆肥料10g中の全窒素量に対する上記溶出累計窒素成分量の割合を百分率で示したものである。
Moreover, the accumulation nitrogen component elution rate of the said coated fertilizer can be calculated | required with the following method. 10 g of the coated fertilizer is immersed in 200 mL of water and allowed to stand at 25 ° C. After a predetermined period, the coated fertilizer and water are separated, and the total elution amount of nitrogen components eluted in water is determined by quantitative analysis. Further, the total nitrogen amount in 10 g of the coated fertilizer is quantified, and the ratio of the total elution amount to the total nitrogen amount as a percentage is defined as the cumulative nitrogen component elution rate. Specifically, a method disclosed in JP-A-2005-319417 can be exemplified, and it may be performed according to this method. That is, 10 g of the coated fertilizer and 200 mL of distilled water that had been adjusted to 25 ° C. in advance were put into a 250 mL plastic container and allowed to stand in an incubator set at 25 ° C. Three days later, all the water is extracted from the container, and the amount of accumulated elution nitrogen component (total amount of elution of nitrogen component) contained in the extracted water is quantitatively analyzed (for example, fertilizer analysis method (for example, written by the Ministry of Agriculture, Forestry and Fisheries "Fertilizer analysis method (1992 version)", published by Japan Fertilizer Examination Association, December 1992, p.15-22 and Fumio Yamazoe, "Detailed Fertilizer Analysis Method Revised 1st Edition", Yokendo Issue, January 1973, p.35-62 etc.)). The cumulative nitrogen component elution rate is the percentage of the total elution nitrogen component amount relative to the total nitrogen amount in 10 g of the coated fertilizer.

本発明では、被膜の欠陥が多いことを示す施用初期の溶出率を指標として、静置後3日目の累積窒素成分溶出率が20質量%以下である肥料が好ましい。さらに、80質量%累積窒素成分溶出率が40日以上である場合は、一般的な化成肥料と比べても肥効が持続するためより好ましい。年1回の施肥作業である点を考慮すると80質量%累積窒素成分溶出率が100日〜250日の被覆肥料を用いるのが特に好ましい。   In the present invention, a fertilizer having a cumulative nitrogen component elution rate of 20% by mass or less on the third day after standing with the elution rate at the initial stage of application indicating that there are many coating defects as an index is preferable. Furthermore, when the elution rate of 80% by mass cumulative nitrogen component is 40 days or more, it is more preferable because the fertilization effect is sustained even when compared with a general chemical fertilizer. Considering the fact that it is a fertilization work once a year, it is particularly preferable to use a coated fertilizer with an 80 mass% cumulative nitrogen component elution rate of 100 days to 250 days.

本発明の化学合成緩効性窒素肥料としては、例えば財団法人農林統計協会発行の「ポケット肥料要覧 2007」(p.96)に記載されており、尿素−脂肪族アルデヒド縮合
物、グリオキサール縮合尿素、硫酸グアニル尿素及びオキサミド等が挙げられる。好ましくは難水溶性の尿素−脂肪族アルデヒド縮合物を含有する肥料が特に好ましい。
The chemically synthesized slow-release nitrogenous fertilizer of the present invention is described in, for example, “Pocket Fertilizer Manual 2007” (p. 96) published by the Agricultural and Forestry Statistics Association, urea-aliphatic aldehyde condensate, glyoxal condensed urea, Examples thereof include guanylurea sulfate and oxamide. A fertilizer containing a slightly water-soluble urea-aliphatic aldehyde condensate is particularly preferred.

上記緩効性肥料が、肥料成分として難水溶性の尿素−脂肪族アルデヒド縮合物を含有する肥料であれば、該肥料に含有する速効性窒素を窒素換算で窒素成分全質量に対して10質量%以下とすることが好ましく、0.1〜10質量%とすることがより好ましく、1〜10質量%とすることが特に好ましい。速効性窒素の含有量が上記の範囲であれば、施用直後の肥料成分由来の生育障害等を起こすことなく、緩効性窒素質肥料である尿素−脂肪族アルデヒド縮合物の特徴を補うことができる。また、速効性窒素を含有せず尿素−脂肪族アルデヒド縮合物のみの肥料を得ようとした場合、精製工程を介する分コスト高になり実用的でない。尚、速効性窒素としては、アンモニア態窒素、硝酸態窒素、尿素態窒素を挙げることができる。   If the slow-acting fertilizer is a fertilizer containing a poorly water-soluble urea-aliphatic aldehyde condensate as a fertilizer component, the fast-acting nitrogen contained in the fertilizer is 10 mass with respect to the total mass of the nitrogen component in terms of nitrogen. % Or less, more preferably 0.1 to 10% by mass, particularly preferably 1 to 10% by mass. If the content of fast-acting nitrogen is within the above range, it can supplement the characteristics of the urea-aliphatic aldehyde condensate, which is a slow-acting nitrogenous fertilizer, without causing growth disorders derived from fertilizer components immediately after application. it can. Moreover, when it is going to obtain the fertilizer which does not contain fast-acting nitrogen but only a urea-aliphatic aldehyde condensate, the cost will be increased by the purification step, which is not practical. Examples of fast acting nitrogen include ammonia nitrogen, nitrate nitrogen, and urea nitrogen.

また、尿素−脂肪族アルデヒド縮合物は、特に限定されず、直鎖状、分岐のある鎖状、環状等の何れの分子構造を持つ尿素−脂肪族アルデヒド縮合物であっても使用することができる。具体的には、肥料取締法(普通肥料の公定規格、肥料の種類)に記載のアセトアルデヒド縮合尿素(CDUまたはOMU)、イソブチルアルデヒド縮合尿素(IBDU)、メチロール尿素重合肥料、ホルムアルデヒド加工尿素肥料等を挙げることができる。本発明においてはそれらのうち1種以上を任意に選択し使用すればよい。好ましくは尿素−脂肪族アルデヒド縮合物でありアセトアルデヒド縮合尿素である2−オキソ−4−メチル−6−ウレイドヘキサヒドロピリミジン(CDU)である。   The urea-aliphatic aldehyde condensate is not particularly limited, and it may be used even if it is a urea-aliphatic aldehyde condensate having any molecular structure such as linear, branched chain, and cyclic. it can. Specifically, acetaldehyde condensed urea (CDU or OMU), isobutyraldehyde condensed urea (IBDU), methylol urea polymerization fertilizer, formaldehyde processed urea fertilizer, etc. described in the Fertilizer Control Law (official standard of fertilizer, type of fertilizer) Can be mentioned. In the present invention, one or more of them may be arbitrarily selected and used. 2-Oxo-4-methyl-6-ureidohexahydropyrimidine (CDU) which is a urea-aliphatic aldehyde condensate and an acetaldehyde condensed urea is preferable.

上記化学合成緩効性窒素肥料の場合、土壌(水分:最大容水量の60%)に該肥料を用いて25℃一定に静置した条件下において3日目の無機化率が10質量%以下である肥料であることが好ましい。無機化率は、採取した土壌中の無機態窒素量をアンモニア態、亜硝酸態、硝酸態窒素の同時浸出測定法(養賢堂 土壌養分測定法 p.197−p.200に記載の方法)で無機態窒素を測定することで算出できる。   In the case of the above-mentioned chemically synthesized slow-release nitrogenous fertilizer, the mineralization rate on the third day is 10% by mass or less under the condition that the fertilizer is kept constant at 25 ° C. in the soil (water: 60% of the maximum water capacity). It is preferable that it is a fertilizer which is. The mineralization rate is determined by measuring the amount of inorganic nitrogen in the collected soil by simultaneous leaching measurement of ammonia, nitrite, and nitrate nitrogen (method described in Yokendo soil nutrient measurement method p.197-p.200). It can be calculated by measuring inorganic nitrogen.

本発明栽培方法では動力散布機等による機械施肥をすることで省力化が可能になる。上記肥効調節型肥料を機械施肥する場合、羽根や肥料粒子同士の衝突により肥料粒子の表面が損傷しやすいため、被覆肥料であれば被膜の欠陥部より肥料成分の初期バーストが起こることによる生育障害が発生する恐れがある。被膜の無い化学合成緩効性窒素肥料であっても、損傷により発生した肥料粉が施用時に作物に付着して濃度障害が発生する恐れがある。動力散布機は、市販品でかまわないが、より広範囲に散布できるように複数の散布口が開いた噴頭ホースを使用するのが好ましい。   In the cultivation method of the present invention, it is possible to save labor by applying mechanical fertilization with a power spreader or the like. When the fertilizer with controlled fertilizer is mechanically fertilized, the surface of the fertilizer particles is likely to be damaged by the collision between the blades and fertilizer particles, so if it is a coated fertilizer, the growth caused by the initial burst of fertilizer components from the defective part of the coating Failure may occur. Even if it is a chemically synthesized slow-release nitrogen fertilizer without a coating, fertilizer powder generated due to damage may adhere to the crop during application and cause concentration disturbance. The power spreader may be a commercially available product, but it is preferable to use a jet hose with a plurality of spray ports opened so that it can be spread over a wider range.

本発明の栽培方法は、一年間に必要とされる施肥の全量を樹上施用してもよいが、必要に応じて従来のうね間施肥と併用してもかまわない。通常、茶樹の施肥は低温の初春に行われるため、初期肥効の確保は硫安や尿素、過燐酸石灰、硫酸加里や塩化加里等の単肥やこれらを原料とする化成肥料等の速効性肥料を施用したほうがコスト的にも有利である。好ましくは年間窒素施肥量の20%以上、さらに好ましくは年間窒素施肥量の20〜80%を樹上施用すれば全体の施肥量を低減することができる。   In the cultivation method of the present invention, the entire amount of fertilizer required for one year may be applied on the tree, but it may be used in combination with conventional furrow fertilization as necessary. Usually, the fertilization of tea trees is carried out in the early spring when the temperature is low, so the initial fertilization effect is ensured by fast fertilizers such as simple fertilizers such as ammonium sulfate, urea, superphosphate lime, potassium sulfate and potassium chloride, and chemical fertilizers made from these. It is more advantageous in terms of cost to apply. Preferably, 20% or more of the annual nitrogen fertilization amount, more preferably 20 to 80% of the annual nitrogen fertilization amount, can be applied on the tree to reduce the entire fertilization amount.

以下実施例によって本発明を更に詳しく説明するが、本発明はこれら実施例により限定されるものではない。尚、以下の実施例における「%」は特に断りがない限り「重量%」である。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. In the following examples, “%” is “% by weight” unless otherwise specified.

1.肥料の特性測定
本発明では、肥効調節型肥料1(エコロング424 140日タイプ、チッソ旭肥料製)、肥効調節型肥料2(LPコート140、チッソ旭肥料製)、肥効調節型肥料3(ハイパーCDU(短期)、チッソ旭肥料製)、肥効調節型肥料4(LPコート20、チッソ旭
肥料製)、肥効調節型肥料5(粒状ホルムアルデヒド加工尿素、市販品)の肥効調節型肥料と、肥効調節型肥料ではない肥料6の有機肥料(市販品、N10−P2−K2)、肥料7の化成肥料(市販品、N7−P3−K3−Mg1)を用いた。肥効調節型肥料1〜5、有機肥料(肥料6)、化成肥料(肥料7)それぞれの溶出率、無機化率は下記に示す方法で測定した。肥効調節型肥料5の窒素成分含有率は41.3%、内水溶性窒素成分28.9%であった(水溶性窒素成分は公定分析法の測定値)。
1. Measurement of Fertilizer Characteristics In the present invention, fertilizer control type fertilizer 1 (Eco Long 424 140 days type, manufactured by Chisso Asahi Fertilizer), fertilizer control type fertilizer 2 (LP coat 140, manufactured by Chisso Asahi Fertilizer), fertilizer control type fertilizer 3 (Hyper CDU (short term), manufactured by Chisso Asahi Fertilizer), Fertilizer Control Type Fertilizer 4 (LP Coat 20, manufactured by Chisso Asahi Fertilizer), Fertilizer Control Type Fertilizer 5 (granular formaldehyde processed urea, commercial product) An organic fertilizer of fertilizer 6 (commercial product, N10-P2-K2) that is not a fertilizer and a fertilizer control type fertilizer and a chemical fertilizer of fertilizer 7 (commercial product, N7-P3-K3-Mg1) were used. The elution rate and the mineralization rate of each of the fertilizer control type fertilizers 1 to 5, the organic fertilizer (fertilizer 6), and the chemical fertilizer (fertilizer 7) were measured by the methods shown below. The nitrogen content of fertilizer 5 of fertilizer control type fertilizer 5 was 41.3%, and the internal water-soluble nitrogen component was 28.9% (the water-soluble nitrogen component was measured by an official analysis method).

(溶出率の測定)
被覆肥料を10gとあらかじめ25℃に調整をしておいた蒸留水200mlとを250mlの蓋付きポリ容器に投入し、25℃設定のインキュベーターに静置した。3日後、該容器から水を全て抜き取り、抜き取った水に含まれる窒素量を定量分析、例えば、「詳解肥料分析法 第二改訂版」養賢堂)により求めた。水を抜き取った後のサンプルは再度該
容器に入れ、該容器に再度蒸留水を200ml投入し同様に静置した。窒素溶出量の積算値が、予め同一ロットの被覆粒状肥料を用いて測定した窒素含有量の80重量%に達する迄この操作を繰り返した。
(Measurement of dissolution rate)
10 g of the coated fertilizer and 200 ml of distilled water that had been adjusted to 25 ° C. in advance were put into a 250 ml plastic container with a lid, and left in an incubator set at 25 ° C. Three days later, all the water was extracted from the container, and the amount of nitrogen contained in the extracted water was determined by quantitative analysis, for example, “Detailed Fertilizer Analysis Method Second Revised Edition”. The sample after draining water was put into the vessel again, and 200 ml of distilled water was put into the vessel again and left in the same manner. This operation was repeated until the integrated value of the nitrogen elution amount reached 80% by weight of the nitrogen content measured in advance using the same lot of coated granular fertilizer.

その後該被覆粒状肥料を乳鉢ですりつぶし、該肥料の内容物を水200mlに溶解後上記と同様の方法で窒素残量を定量分析した。積算窒素溶出量と窒素残量を加えた量を窒素全量とし、水中に溶出した窒素の溶出累計と日数の関係をグラフ化して溶出速度曲線を作成し、80重量%溶出率に至る日数を求めた。   Thereafter, the coated granular fertilizer was ground in a mortar, and the content of the fertilizer was dissolved in 200 ml of water, and then the remaining amount of nitrogen was quantitatively analyzed in the same manner as described above. The total amount of nitrogen dissolved and the amount of nitrogen remaining is added to the total amount of nitrogen, and the relationship between the total amount of nitrogen eluted in water and the number of days is graphed to create an elution rate curve, and the number of days to reach 80% by weight is calculated. It was.

(無機化率の測定)
2L容量の容器に2mmの篩いを通った風乾土壌(静岡県富士市で採取した黒ボク土、pH(1:5(H2O)4.3)を1kg入れ、そこに肥効調節型肥料1〜5、有機肥料
(肥料6)、化成肥料(肥料7)それぞれを全窒素含有割合で1.0g相当量、水を最大容水量の60%になるように入れ混合し無機化土壌サンプルを作成した。
(Measurement of mineralization rate)
1 kg of air-dried soil (black soil collected in Fuji City, Shizuoka Prefecture, pH (1: 5 (H 2 O) 4.3)) passed through a 2 mm sieve in a 2 L capacity container, and fertilizer effect type fertilizer 1 ~ 5, organic fertilizer (fertilizer 6), chemical fertilizer (fertilizer 7) each in a total nitrogen content of 1.0g equivalent, water is mixed to 60% of the maximum capacity, and the mineralized soil sample is mixed Created.

該無機化土壌サンプルが入った容器の上縁をポリエチレンフィルムで覆い25℃のインキュベーターに静置した。3日経過後に土壌を全て回収し、よく混合した後、そのうち10gを採取した。   The upper edge of the container containing the mineralized soil sample was covered with a polyethylene film and allowed to stand in an incubator at 25 ° C. After 3 days had elapsed, all the soil was collected and mixed well, and 10 g of that was collected.

採取した土壌中の無機態窒素量をアンモニア態、亜硝酸態、硝酸態窒素の同時浸出測定法(養賢堂 土壌養分測定法 p.197〜p.200に記載の方法)で測定した。試験は全て3反復制とし、供試土壌に元来含まれていた無機態窒素量を測定するために、肥料を施用していない無肥料区も設けた。各サンプリング日の土壌中のアンモニア態窒素量と硝酸態窒素量を表2に示した。単位はmg/100g風乾土壌である。   The amount of inorganic nitrogen in the collected soil was measured by a simultaneous leaching measurement method for ammonia, nitrite, and nitrate nitrogen (method described in Yokendo soil nutrient measurement method p.197 to p.200). All tests were repeated three times, and in order to measure the amount of inorganic nitrogen originally contained in the test soil, a non-fertilizer zone where no fertilizer was applied was also provided. Table 2 shows the amounts of ammonia nitrogen and nitrate nitrogen in the soil on each sampling day. The unit is mg / 100g air-dried soil.

続いて、これらの値の合計値(無機態窒素合計量)から、下記式に従って20日または40日培養後の無機化率を算出した。
無機化率(%)=(培養後の施用土壌に含まれる無機態窒素合計量−培養後の無肥料区土壌に含まれる無機態窒素合計量)/施用前の肥料に含まれる全窒素量×100
(粉化率の測定)
供試肥料は、予め、開き目が2.80mmと3.35mmの試験用篩で粒度を調整しておく。肥効調節型肥料1〜5(肥料1〜5)、有機肥料(肥料6)、化成肥料(肥料7)それぞれ100gと直径25mmの磁性ボール3個を容積1000mlの磁性ポットに投入し、毎分75回転で15分間回転させる。次に、磁性ポットから試料をボール毎、受け皿をつけた開き目1mmの試験用篩の上に乗せる。ブラシでボールに付着した粉を十分に取る。ボールを取り出し、試験用篩を電磁式篩振とう機(AS−200g:Retsch社製:振幅幅1.5mm)にセットし、5分間振とうさせ、受け皿に落下した粉の重量を測定する。受け皿に落ちた粉重量を100gで除した値の百分率が、本発明における粉化
率である。
Subsequently, from the total value of these values (total amount of inorganic nitrogen), the mineralization rate after 20-day or 40-day culture was calculated according to the following formula.
Mineralization rate (%) = (total amount of inorganic nitrogen contained in the applied soil after cultivation-total amount of inorganic nitrogen contained in the non-fertilizer soil after cultivation) / total amount of nitrogen contained in the fertilizer before application × 100
(Measurement of powdering rate)
The particle size of the test fertilizer is adjusted in advance with a test sieve having openings of 2.80 mm and 3.35 mm. Fertilizer control type fertilizer 1-5 (fertilizer 1-5), organic fertilizer (fertilizer 6), chemical fertilizer (fertilizer 7) 100g each and 3 magnetic balls 25mm in diameter are put into a 1000ml magnetic pot, every minute Rotate at 75 rpm for 15 minutes. Next, the sample from the magnetic pot is placed on a test sieve having an opening of 1 mm with a tray. Thoroughly remove the powder adhering to the ball with a brush. The ball is taken out, the test sieve is set on an electromagnetic sieve shaker (AS-200 g: manufactured by Retsch: amplitude width 1.5 mm), shaken for 5 minutes, and the weight of the powder dropped on the tray is measured. The percentage of the value obtained by dividing the weight of the powder falling on the saucer by 100 g is the powdering rate in the present invention.

Figure 0005773561
Figure 0005773561

2.試験
静岡県菊川市の茶樹(品種:やぶきた)を用いて栽培試験を行った。施肥は二月初旬に行った。窒素施肥は表2のとおり行い、りん酸と加里は慣行法に準じた施肥設計を行った。該りん酸と該加里はうね間に施用した。施肥機として、背負動力散布機DMC601((株)共立製)、噴頭ホースDMK−2を使用し、茶園の端から施用作業を実施した。作業後は下記に示す樹幹下施肥率を測定した。施肥後は葉面の様子を観察し、肥料焼けの有無を調査した。その他は慣行法に準じて栽培を行った。結果を表2に示す。
2. Test A cultivation test was conducted using tea trees (variety: Yabukita) in Kikugawa City, Shizuoka Prefecture. Fertilization was done in early February. Nitrogen fertilization was performed as shown in Table 2, and phosphoric acid and Kari were subjected to fertilization design according to the customary method. The phosphoric acid and the potassium were applied between the ridges. As a fertilizer applicator, backpack power spreader DMC601 (manufactured by Kyoritsu Co., Ltd.) and jet hose DMK-2 were used, and the application work was performed from the end of the tea garden. After the work, the following trunk trunk fertilization rate was measured. After fertilization, the state of the foliage was observed to investigate the presence of fertilizer burn. Others were cultivated according to customary methods. The results are shown in Table 2.

(樹幹下施肥率の測定)
樹幹下に施用した肥料を回収する目的で、プラスチックシートを敷き、うね間との境界を高くして回収ロスが出ないようにした。施肥作業後はシート上の肥料を計量し、下記算式により樹幹下施肥率を求めた。
(樹幹下施肥率)[%]=(回収肥料量)/(平均施肥量)×100
(Measurement of trunk fertilization rate)
In order to collect the fertilizer applied under the tree trunk, a plastic sheet was laid and the boundary between the ridges was raised to prevent recovery loss. After the fertilization work, the fertilizer on the sheet was weighed, and the trunk fertilization rate was calculated by the following formula.
(Tree trunk fertilization rate) [%] = (recovered fertilizer amount) / (average fertilizer amount) x 100

Figure 0005773561
Figure 0005773561

実施例1〜4のとおり本発明肥料を樹上施肥するとその効果で従来よりも増収となった。これは、樹幹下に均一に分布したため根の活性と肥料の肥効特性の相乗効果によるものと予測される。さらに機械施肥により施肥時間が比較例1と比べて約半分に短縮し、省力化となった。   When the fertilizer of the present invention was fertilized on the tree as in Examples 1 to 4, the effect resulted in an increase in sales. This is presumably due to the synergistic effect of root activity and fertilizer properties due to the uniform distribution under the trunk. Furthermore, the fertilization time was shortened by about half compared with Comparative Example 1 by mechanical fertilization, and labor saving was achieved.

一方、比較例1〜4のようなうね間に施用された肥料の性能は実施例と遜色なくても、肥効面で影響があったことが収量より明らかとなった。比較例5は用いた肥料の肥効が短く良好な結果を得られなかった。比較例6は葉面に焼けがあり、収量および製品品質に影響を及ぼした。さらに、樹幹下に施肥しても減収となった。   On the other hand, even if the performance of the fertilizer applied between the ridges as in Comparative Examples 1 to 4 was not inferior to that of the Examples, it was revealed from the yield that there was an effect on the fertilization effect. In Comparative Example 5, the fertilizer effect of the fertilizer used was short and good results could not be obtained. Comparative Example 6 had burnt leaves, which affected yield and product quality. Furthermore, even when fertilized under a tree trunk, sales decreased.

Claims (1)

肥効調節型粒状肥料の茶樹への施用方法であって、複数年にわたって毎年1回、下記(1)〜(3)の特性を有する肥効調節型粒状肥料を、茶樹の上部より年間窒素施肥量の20〜80%を施用し(ただし、年間窒素施肥量の残りはうね間施肥)、施用量の80%以上の該肥効調節型粒状肥料が樹冠下の範囲内に分布するようにすることを特徴とする茶樹の栽培方法。
(1)被覆粒状肥料組成物および/または化学合成緩効性窒素肥料から選ばれた1種以上により構成される。
(2)25℃一定条件下、被覆粒状肥料組成物の場合は水中での3日目の窒素成分の溶出率、化学合成緩効性窒素肥料の場合は土中での3日目の無機化率が20%以下である。
(3)25℃一定条件下、被覆粒状肥料組成物の場合は水中での80%溶出日数、化学合成緩効性窒素肥料の場合は土中での80%無機化日数が40〜250日である。
A method for applying fertilization-controllable granular fertilizer to tea trees, and once a year for a plurality of years, fertilization-controllable granular fertilizer having the following characteristics (1) to (3) Apply 20 to 80% of the amount (however, the remainder of the annual nitrogen fertilizer amount is fertilizer between ridges), so that the fertilization-controllable granular fertilizer of 80% or more of the applied amount is distributed within the range under the canopy Tea cultivation method characterized by doing.
(1) It is comprised by 1 or more types chosen from the covering granular fertilizer composition and / or the chemical synthetic slow-release nitrogenous fertilizer.
(2) Under constant conditions at 25 ° C, in the case of a coated granular fertilizer composition, the elution rate of nitrogen components on the third day in water, and in the case of chemically synthesized slow-release nitrogen fertilizers , mineralization on the third day in soil The rate is 20% or less.
(3) Under constant conditions at 25 ° C., in the case of a coated granular fertilizer composition, 80% elution days in water, and in the case of chemically synthesized slow-release nitrogen fertilizer, 80% mineralization days in soil are 40 to 250 days. is there.
JP2009042615A 2009-02-25 2009-02-25 Tea planting method Active JP5773561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042615A JP5773561B2 (en) 2009-02-25 2009-02-25 Tea planting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042615A JP5773561B2 (en) 2009-02-25 2009-02-25 Tea planting method

Publications (2)

Publication Number Publication Date
JP2010193790A JP2010193790A (en) 2010-09-09
JP5773561B2 true JP5773561B2 (en) 2015-09-02

Family

ID=42819205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042615A Active JP5773561B2 (en) 2009-02-25 2009-02-25 Tea planting method

Country Status (1)

Country Link
JP (1) JP5773561B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612696A (en) * 2016-11-24 2017-05-10 淳安县金狮峰茶果专业合作社 Soil processing method before organic tea planting
CN108947736A (en) * 2018-09-10 2018-12-07 长兴兴德生物科技有限公司 A kind of dedicated amino acid organic and inorganic fertilizer of albino tea and its method of administration
CN109197359A (en) * 2018-11-07 2019-01-15 常宁市瑶园生态农业科技发展有限公司 A kind of implantation methods of environmental protection tea

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511267A (en) * 2011-12-08 2012-06-27 金陵科技学院 Hardwood cutting seedling raising method for tea plant
CN103650805A (en) * 2012-08-31 2014-03-26 江苏吟春碧芽茶叶研究所有限公司 Novel tea seedling planting methods
CN103650811B (en) * 2012-09-13 2015-08-05 宁波市白化茶叶专业合作社 A kind of albino tea solid plucks crown canopy is plucked in tea place regulate and control method without spray
CN103081707A (en) * 2013-02-22 2013-05-08 云南省农业科学院农业环境资源研究所 Protective cultivation method of tea garden
JP6099048B2 (en) * 2013-08-30 2017-03-22 大分県 Tea fertilization method
CN103621284A (en) * 2013-11-11 2014-03-12 贵州省紫云县映宏农业开发有限公司 Method for cultivating white tea
CN103749119B (en) * 2013-12-30 2016-03-09 黄山市徽州洪通茶厂 The implantation methods of tealeaves
CN103975750A (en) * 2014-05-30 2014-08-13 全椒贡菊园茶厂 Planting method of tea trees
CN104303766B (en) * 2014-10-11 2016-09-28 张继忠 A kind of tree plant cultivation method promoting tea yield and tea leaf quality
CN104396518A (en) * 2014-11-24 2015-03-11 付德明 Method for raising seedlings of tea trees by cuttage through bottom empty seed bed
CN104472168A (en) * 2014-11-26 2015-04-01 安顺市西秀区春实绿化苗木有限公司 Cultivation method for Chinese redbud
CN104541921B (en) * 2015-01-30 2017-01-18 湖南省茶叶研究所 Comprehensive evaluation method of tea tree annual seedling growth potential
CN105145222A (en) * 2015-06-24 2015-12-16 安顺市西秀区春实绿化苗木有限公司 Tea plantation method
CN105432206A (en) * 2015-12-14 2016-03-30 镇江市丹徒区茗缘茶叶专业合作社 Fertilizing method for tea tree
CN105746269A (en) * 2016-03-01 2016-07-13 广南县坝美镇普南上坝桃源利民茶叶农民专业合作社 Planting method for organic tea
CN106105995B (en) * 2016-07-24 2019-04-02 普定县新华农业种植专业合作社 The plantation technique of ecological wild tea
CN107853056A (en) * 2017-12-05 2018-03-30 深圳市娅安科技有限公司 A kind of implantation methods of high yield high-quality tealeaves
CN109328813A (en) * 2018-09-18 2019-02-15 贵州绿欣生态农业开发有限公司 A kind of mountain area tea tree planting method
CN109392572A (en) * 2018-11-07 2019-03-01 常宁市瑶园生态农业科技发展有限公司 A kind of cultural method of non-polluted tea
CN110169301A (en) * 2019-06-20 2019-08-27 镇江市丹徒区上党镇里墅村茶林场 A kind of implantation methods of organic imperial leaf yellow tea leaf
CN112005802A (en) * 2020-08-06 2020-12-01 广西壮族自治区茶叶科学研究所 Method for quickly building tea garden in alpine mountain area
CN112449964A (en) * 2020-10-20 2021-03-09 铜仁学院 High-yield planting method for camellia oleifera
CN112438151A (en) * 2020-10-20 2021-03-05 铜仁学院 Planting method of organic selenium oil tea
CN115005002A (en) * 2022-06-16 2022-09-06 皖西学院 Cultivation technical method for early-fruiting and high-yield tea-oil trees
CN116076295B (en) * 2023-02-14 2024-03-29 四川农业大学 Efficient cultivation method for interplanting tea and tea-oil tree

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126585A (en) * 1984-07-16 1986-02-05 旭化成株式会社 Grained fertilizer
JP2004345872A (en) * 2003-05-20 2004-12-09 Asahi Kasei Chemicals Corp Coated granular fertilizer containing nitrification retarder and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612696A (en) * 2016-11-24 2017-05-10 淳安县金狮峰茶果专业合作社 Soil processing method before organic tea planting
CN108947736A (en) * 2018-09-10 2018-12-07 长兴兴德生物科技有限公司 A kind of dedicated amino acid organic and inorganic fertilizer of albino tea and its method of administration
CN109197359A (en) * 2018-11-07 2019-01-15 常宁市瑶园生态农业科技发展有限公司 A kind of implantation methods of environmental protection tea

Also Published As

Publication number Publication date
JP2010193790A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5773561B2 (en) Tea planting method
JP5040158B2 (en) Fertilization method in the cultivation of straw
JP2007089488A (en) Fertilizing method in potato cultivation
Ouda et al. Developing an adaptation strategy to reduce climate change risks on wheat grown in sandy soil in Egypt.
Johansson et al. Optimization of environmental factors affecting initial growth of Norway spruce seedlings
Kayesh et al. Integrated nutrient management for growth, yield and profitability of broccoli.
Layek et al. Effect of seaweed sap on germination, growth and productivity of maize (Zea mays) in North Eastern Himalayas
Salo Effects of band placement and nitrogen rate on dry matter accumulation, yield and nitrogen uptake of cabbage, carrot and onion
Harraq et al. Organic fertilizers mineralization and their effect on the potato" Solanum tuberosum" performance in organic farming
Lee et al. Comparison study on soil physical and chemical properties, plant growth, yield, and nutrient uptakes in bulb onion from organic and conventional systems
Chen et al. Evaluation of a polyolefin coated urea (Meister) as a fertilizer for irrigated cotton
Eldridge et al. Recovery of nitrogen fertilizer can be doubled by urea-briquette deep placement in rice paddies
Azizah et al. The growth and rooting dimensions of the local and Solomon Albizia in the agroforestry system
Soelaeman et al. Soil physical properties and production of upland ultisol soil
Gunadi Response of potato to potassium fertilizer sources and application methods in andisols of West Java
Obreza et al. Improving nitrogen and phosphorus fertilizer use efficiency for Florida's horticultural crops
Yadav et al. Effect of nutrient management through organic sources on the productivity of guava (Psidium guajava L.).
Brito et al. Organic lettuce, rye/vetch, and Swiss chard growth and nutrient uptake response to lime and horse manure compost
Wulandari The Amelioration of Planting Media in Chili Cultivation with Floating System in Lebak Swamp
Bibi et al. Optimal Supply of Water and Nitrogen Improves Grain Yield, Water Use Efficiency and Crop Nitrogen Recovery in Wheat.
Ramadiana The application of rice hull mulch and potassium nitrate on growth and yield of kailan (Brassica oleraceae var. long leaf)
Geries et al. Productivity and quality of two onion cultivars under organic, slow release and mineral fertilizers
Tanaskovikj et al. The influence of irrigation and drip fertigation regime on specific water consumption and evapotranspiration coefficient in tomato crop production.
Ahmed et al. Performance of Boro Rice in response to different application methods of urea fertilizer
Khatab et al. Maize productivity and crop–water relations as affected by irrigation levels and compost rates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250