JP5759606B1 - ヒートパイプ - Google Patents

ヒートパイプ Download PDF

Info

Publication number
JP5759606B1
JP5759606B1 JP2014200493A JP2014200493A JP5759606B1 JP 5759606 B1 JP5759606 B1 JP 5759606B1 JP 2014200493 A JP2014200493 A JP 2014200493A JP 2014200493 A JP2014200493 A JP 2014200493A JP 5759606 B1 JP5759606 B1 JP 5759606B1
Authority
JP
Japan
Prior art keywords
groove
metal powder
wick
powder layer
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014200493A
Other languages
English (en)
Other versions
JP2016070593A (ja
Inventor
シャヘッド アハメド モハマド
シャヘッド アハメド モハマド
祐士 齋藤
祐士 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2014200493A priority Critical patent/JP5759606B1/ja
Application granted granted Critical
Publication of JP5759606B1 publication Critical patent/JP5759606B1/ja
Priority to US14/869,350 priority patent/US20160091258A1/en
Publication of JP2016070593A publication Critical patent/JP2016070593A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】蒸発部の熱抵抗を低減させ、熱輸送性能を向上させるヒートパイプを提供する。【解決手段】ウイック式のヒートパイプ1において、密閉容器2の内部に、長手方向に沿って蒸発部3から断熱部5を介して凝縮部4に到るように延びる溝ウイックを備え、蒸発部3の溝ウイック内には、溝壁面に固着された微細な金属粉末により構成された金属粉末層が設けられており、金属粉末層は、溝壁面からの厚さが所定厚さで溝ウイックの形状に沿った形状に形成されている。【選択図】図1

Description

この発明は、ウイック式のヒートパイプに関するものである。
従来、作動流体の潜熱を利用する熱輸送素子としてヒートパイプが周知である。ヒートパイプでは、長手方向の両端部を封止させた管状の密閉容器を有し、熱輸送媒体として作動流体が密閉容器内に封入されているため、発熱体から熱を受け取ると、密閉容器内で作動流体は気液二相に変化するとともに長手方向に流動する。
例えば、発熱体と放熱部材とをヒートパイプによって熱的に接続する場合、密閉容器の一方端側を発熱体に接触させて、他方端側を放熱部材に接触させることが一般的である。この場合、密閉容器の一方端側は発熱体の熱で内部の液相の作動流体(作動液)が蒸発する蒸発部となり、密閉容器の他方端側では放熱部材へ放熱することにより気相の作動流体(蒸気)を凝縮させる凝縮部となる。そして、凝縮部で生じた作動液を再び蒸発部で蒸発させる必要がある。そのため、作動液を蒸発部へ還流させる方式として、毛管力を利用するウイック式が周知である。
特許文献1には、ウイック式のヒートパイプとして、凝縮部となる第一の金属管と、蒸発部となる第二の金属管とが、電気絶縁筒を介して連通された構成が記載されている。各金属管の内面には、作動液を還流させるための条溝が形成されている。さらに、蒸発部となる第二の金属管の条溝内に、銅粉を焼結した多孔層を形成することが記載されている。
特開平4−98093号公報
ところで、扁平ヒートパイプは、コンテナが平坦部を含む管状に形成されている。扁平ヒートパイプが薄型に形成された場合、コンテナの内部空間は厚さ方向に狭くなるものの、幅方向に確保された内部空間を蒸気流路として利用することになる。その場合、扁平型かつ薄型のコンテナでは内容積が小さいため、作動流体の流動性能を向上させることが難しい。
例えば、作動液の還流性能を向上させるために、大きなウイック構造体をコンテナ内部に設けた場合、ウイック構造体が内部空間の大部分を占め、蒸気流路となる内部空間を確保することが困難になる。一方、作動液の還流性能が低いと、蒸発部で作動液が不足してドライアウトが生じてしまう。
上記の特許文献1に記載されたヒートパイプでは、ヒートパイプ内面に溝が形成されているので、例えば扁平形状に形成された場合、蒸気流路となる内部空間は確保できる。
しかしながら、その扁平ヒートパイプでは、蒸発部となる第二の金属管の溝内に、100〜400μmの粒径の金属粉末を焼結した多孔層が溝を埋めるようにして設けられている。そのため、多孔層によって埋め尽くされた溝では、溝により生じる毛管力が小さくなる可能性がある。さらに、溝内において、多孔層のうち溝壁からの厚さが薄い部分では作動液を蒸発させられるが、溝壁からの厚さが厚い部分では作動液を蒸発できない可能性がある。
この発明は、上記の技術的課題に着目してなされたものであり、蒸発性能を向上させ、熱輸送性能を向上させることができるヒートパイプを提供することを目的とするものである。
上記の目的を達成するために、この発明は、長手方向の両端部が封止された管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から断熱部を介して前記凝縮部に到るように複数本形成された溝ウイックを含み、前記蒸発部と前記断熱部と前記凝縮部とのうち少なくとも前記蒸発部における前記溝ウイックの溝壁面のみに固着された金属粉末からなる金属粉末層を備え、前記金属粉末は、金属の微粒子により構成され、前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成されていることを特徴とするものである。
また、この発明は、長手方向の両端部が封止された管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から前記凝縮部に到るように複数本形成された溝ウイックを含み、前記蒸発部と前記断熱部と前記凝縮部とのうち前記蒸発部のみにおける前記密閉容器の内面に固着された金属粉末からなる金属粉末層を備え、前記金属粉末は、金属の微粒子により構成され、前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成されていることを特徴とするものである。
この発明は、上記発明において、前記溝壁面は、対向する一対の溝側壁面と、当該溝壁面同士を繋ぐ溝底面とを有し、前記溝ウイックは、前記溝壁面によって凹状に形成された前記微細溝を含み、前記溝内金属粉末層のうち前記溝側壁面に設けられている第一部分の厚さは、前記溝ウイックの溝幅の五分の一以下に形成され、前記溝内金属粉末層のうち前記溝底面に設けられている第二部分の厚さは、前記溝ウイックの溝深さの三分の一以下に形成されていることを特徴とするヒートパイプである。
この発明は、上記発明において、前記密閉容器は、金属製であり、前記金属粉末は、粒径が1〜5μmの微粒子であり、かつ焼結によって前記溝壁面に接合されており、前記溝内金属粉末層の厚さは、前記第一部分の厚さが前記溝幅の五分の一以下、かつ前記第二部分の厚さが前記溝深さの三分の一以下となるように、前記金属粉末の粒径の1〜5倍の範囲内に形成されていることを特徴とするヒートパイプである。
さらに、この発明は、長手方向の両端部が封止された金属製でかつ管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から前記凝縮部に到るように複数本形成された溝ウイックを含み、前記蒸発部と前記断熱部と前記凝縮部とのうち少なくとも前記蒸発部内で、前記密閉容器の内面に固着された粒径が1〜5μmの銅粉末からなる金属粉末層を備え、前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成され、前記溝壁面は、対向する一対の溝側壁面と、当該溝壁面同士を繋ぐ溝底面とを有し、前記溝ウイックは、前記溝壁面によって凹状に形成された前記微細溝を含み、前記溝内金属粉末層のうち前記溝側壁面に設けられている第一部分の厚さは、前記溝ウイックの溝幅の五分の一以下でかつ前記銅粉末の粒径の1〜5倍の範囲内に形成され、前記溝内金属粉末層のうち前記溝底面に設けられている第二部分の厚さは、前記溝ウイックの溝深さの三分の一以下でかつ前記銅粉末の粒径の1〜5倍の範囲内に形成されていることを特徴とするものである。
この発明は、上記発明において、前記金属粉末は、前記溝壁面上に当該溝壁面の一部を露出させるように散在させられており、前記蒸発部内の前記溝ウイックにおける表面形状は、前記金属粉末によって微細な凹凸状に形成されていることを特徴とするヒートパイプである。
この発明は、上記発明において、前記溝内金属粉末層の厚さが前記範囲内で前記金属粉末の粒径の1倍よりも大きく形成されている場合、前記金属粉末層は前記金属粉末同士の焼結体からなる多孔質ウイックを形成していることを特徴とするヒートパイプである。
この発明は、上記発明において、前記金属粉末層は、前記溝内金属粉末層に加えて、前記内面のうち周方向で前記溝ウイック同士に挟まれている内壁面に固着されている前記金属粉末からなる溝外金属粉末層をさらに含むように構成されていることを特徴とするヒートパイプである。
この発明は、上記発明において、前記溝外金属粉末層は、前記内壁面からの厚さが前記溝ウイックの溝幅の五分の一以下に形成されていることを特徴とするヒートパイプである。
この発明は、上記発明において、前記密閉容器は、幅に対して厚さ方向の寸法が小さい扁平形状に形成され、前記溝ウイックは、周方向で前記内面の全周に亘って所定間隔を空けて形成されている複数本の微細溝によって構成されていることを特徴とするヒートパイプである。
この発明によれば、溝ウイック内で溝内金属粉末層が溝ウイックを埋めないように構成されるので、溝ウイックによる還流特性を発揮できるとともに、金属粉末層が蒸発部内に設けられていることにより、還流された作動液が蒸発部内で拡散しやすくなり、蒸発面積が増大して蒸発性能を向上させることができる。さらに、溝内金属粉末層が毛管力を生じることにより、溝ウイックによる還流特性に加えて、金属粉末層による還流特性を発揮させることができる。また、金属粉末層が薄く形成されているので、蒸発部での熱抵抗が増大することを抑制でき、ヒートパイプ全体としての熱輸送性能を向上させることができる。また、溝ウイックと金属粉末とは、密閉容器の内部空間を奪わないので、金属粉末層を設けた場合も十分な量の蒸気が流動できる蒸気流路を確保でき、蒸気の流動性能が低下することを防止できる。
この発明の一例におけるヒートパイプの外観を模式的に示す斜視図である。 (a)は、図1のA−A断面を示し、内面に複数形成された溝ウイックを説明するための蒸発部における密閉容器の断面図である。(b)は、長手方向に延びる溝ウイックを説明するために、図1のA−A断面を含む部分断面図を模式的に示す斜視図である。 (a)は図2(a)のB範囲を示し、蒸発部内の溝壁面に固着された金属粉末を説明するための拡大断面図である。(b)は図1のC−C断面を含み、金属粉末が蒸発部内のみに散在されていることを簡略化して示す斜視図である。 (a)は、ヒートパイプの非作動時に蒸発部の溝ウイック内に保持されている作動液の状態を示す模式図である。(b)は、ヒートパイプの作動時に図4(a)に示す状態から溝ウイック内の作動液が減少した状態を示す模式図である。(c)は、ヒートパイプの作動時に図4(b)に示す状態から溝ウイック内の作動液が減少して金属粉末によって保持されている状態を示す模式図である。(d)は図1のD−D断面を示し、作動液に凝縮部内で生じる水層を模式的に示す断面図である。 溝内壁面に多孔質ウイックとして設けられた金属粉末層の一例を説明するための拡大断面図である。 (a)は溝内金属粉末層と溝外金属粉末層とにより構成された金属粉末層の一例を説明するための拡大断面図である。(b)は溝内金属粉末層および溝外金属粉末層が多孔質ウイックとして形成された例を模式的に示す拡大断面図である。 (a)は試験装置の上面図を模式的に示す説明図であり、(b)は試験装置の正面図を模式的に示す説明図である。 (a)は実施例のヒートパイプが作動時に密閉容器の内部で生じている作動液の水位を模式的に示した説明図である。(b)は比較例のヒートパイプが作動中に密閉容器の内部で生じている作動液の水位を模式的に示した説明図である。 実施例と比較例との試験結果を示す棒グラフである。
以下、図面を参照して、この発明の一例におけるヒートパイプについて具体的に説明する。
(1.ヒートパイプの全体構造)
まず、図1を参照して、この具体例におけるヒートパイプの外形について説明する。この具体例のヒートパイプ1は、長手方向に沿って直線状に形成された密閉容器2を有し、密閉容器2内に封入された作動流体の潜熱を利用する熱輸送素子である。なお、この説明では、図1に示す厚さ方向を上下を用いて説明する場合がある。
密閉容器2は、幅に対して厚さ方向の寸法が小さい扁平形状に形成され、長手方向の両端部が封止された管状の中空容器である。つまり、密閉容器2の内部空間は幅方向の寸法が厚さ方向の寸法よりも大きい。また、密閉容器2は金属製であり、銅やスチール鋼やアルミニウムなど熱伝導率の大きい素材により構成される。
密閉容器2の壁部20は、下壁部としての第一平坦部21と、上壁部としての第二平坦部22と、一対の側壁部23,23とによって形成されている。第一平坦部21と第二平坦部22とは、外面が平坦面に形成され、厚さ方向で対向して長手方向の寸法が幅よりも大きく形成されている。各側壁部23,23は、第一平坦部21と第二平坦部22とを接続するように湾曲状に形成され、幅方向で対向している。例えば、扁平形状の密閉容器2を作製する場合、丸型金属管を素形材としプレス加工することによって、各平坦部21,22と一対の側壁部23,23とが形成される。
作動流体は、周知の相変化物質からなる熱輸送媒体であって、密閉容器2内で液相と気相とに相変化する。例えば、作動流体として、水やアルコールやアンモニアなどを採用できる。なお、この説明では、液相の作動流体を「作動液」、気相の作動流体を「蒸気」と記載して説明し、液相と気相とを特に区別しない場合には「作動流体」と記載する。
図1に示すように、密閉容器2の長手方向において、一方端側が蒸発部3となり、他方端側が凝縮部4となり、中央部分が断熱部5となり、蒸発部3と凝縮部4とは断熱部5を介して一連に形成されている。断熱部5は、蒸発部3の内部空間と凝縮部4の内部空間とを連通させ、作動流体が相変化せずに長手方向に流動する流体流路を形成する。各平坦部21,22は、蒸発部3から断熱部5を介して凝縮部4に到る長手方向の全域に亘って延びている。
この具体例では、冷却対象となる発熱体(図1に示さず)にヒートパイプ1を取り付ける場合、蒸発部3における壁部20のうち第一平坦部21が発熱体と接触するように構成される。この場合、第一平坦部21の外面(平坦面)と発熱体の表面とは面接触する。発熱体には、小型の電子機器における電子部品、例えばCPUなどが含まれる。
さらに、凝縮部4における壁部20のうち第一平坦部21には放熱部材(図1に示さず)が取り付けられる。放熱部材として、金属製の放熱板や金属製のヒートシンクなどがある。例えば、放熱板を凝縮部4に取り付けた場合、第一平坦部21の外面(平坦面)と放熱板の表面(平坦面)とが面接触している。
要するに、ヒートパイプ1では、蒸発部3の第一平坦部21において発熱体で生じた熱を受け取り、凝縮部4の第一平坦部21において放熱部材へ放熱するように構成されている。蒸発部3では、発熱体の熱によって密閉容器2内の作動液が蒸発して蒸気が生じる。また、凝縮部4では、蒸発部3で生じた蒸気が凝縮して作動液が生じる。そして、ヒートパイプ1は、毛管力によって凝縮部4で生じた作動液を蒸発部3へ還流させるウイックとして図2に示す溝ウイック10を備えている。なお、ヒートパイプ1における熱輸送サイクルについては後述する。
(2.密閉容器の内部構造)
ここで、図2,図3を参照して、密閉容器2の内部構造について説明する。
(2−1.溝ウイック)
まず、図2(a),(b)を参照して、密閉容器2内に形成された溝ウイック10について説明する。図2(a)に示すように、密閉容器2の内部では、各平坦部21,22と、両側の側壁部23,23とに、溝ウイック10が形成されている。溝ウイック10は、密閉容器2の内面2aから窪み矩形状(凹状)に形成された複数本の微細溝によって構成される。例えば、溝ウイック10は、溝幅Wが80μm、溝深さDが50μmに形成される。また、溝ウイック10では、複数本の微細溝が周方向で内面2aの全周に亘って所定間隔を空けて形成されているため、内面2aは周方向で凹凸面となる。
具体的には、溝ウイック10は、第一平坦部21の内壁面21a(平坦面)から窪む微細溝と、第二平坦部22の内壁面22a(平坦面)から窪む微細溝と、側壁部23の内壁面23a(湾曲面)から窪む微細溝とを含む。各内壁面21a,22a,23aはいずれも、表面形状が全面に亘り滑らかに形成され、長手方向に沿って延びている。また、内壁面21aと内壁面22aとは厚さ方向で対向している。要は、内面2aにおいて、溝ウイック10は凹面、溝ウイック10同士に周方向で挟まれる各内壁面21a,22a,23aが凸面を形成する。
図2(b)に示すように、溝ウイック10は、複数本の微細溝が長手方向に沿って平行に延びるように形成されている。各微細溝は長手方向において凝縮部4から断熱部5を介して蒸発部3(いずれも図2(b)には示さず)に到るように一連に形成されている。溝ウイック10は、毛管力によって作動液を蒸発部3へ還流させる液体流路(以下「還流路」という)を形成する。上述したように、溝ウイック10は周方向で内面2aの全周に亘って所定間隔を空けて形成されていることにより、作動液の還流性能を向上させることができる。
(2−2.金属粉末層)
次に、図3を参照して、密閉容器2内に形成されている金属粉末層12について説明する。なお、図3(a),(b)には、蒸発部3内の溝ウイック10のうち、代表して第一平坦部21に形成された溝ウイック10を示してある。要は、蒸発部3内であれば、図3には示さない第二平坦部22と各側壁部23,23とに形成された溝ウイック10内についても、図3に示す構成と同様に構成されている。
図3(a)に示す例では、金属粉末層12は、溝ウイック10の溝壁面11に固着(接合)されている複数の金属粉末12aのみによって構成されている。金属粉末12aは、例えば銅の微粒子(銅粉末)など、粒径が1〜5μmの大きさに形成された金属の微粒子である。
なお、金属粉末層12とは、金属粉末12aが他の金属粉末12a上に積み重なった構造に形成されたものに限らず、金属粉末12a同士が積み重ならない構造に形成されたものも含む。例えば内面2aを形成する密閉容器2を金属層と見れば、内面2aを金属層の界面と言えるため、内面2a上に固着された金属粉末12aは、金属層の界面上に設けられていることになる。つまり、図3(a)に示すような内面2aに固着する金属粉末12aのみによって構成された金属粉末層12は、内面2aからの厚さが金属粉末12aの粒径の1倍に形成されているものと言える。すなわち、図3(a)に示す金属粉末層12は金属粉末12a同士が積み重ならない一層構造に形成されていることになる。
溝壁面11は、矩形状の微細溝を形成する壁面であり、溝底面11aと、一対の溝側壁面11b,11bとの三面を含む。蒸発部3において、複数個の金属粉末12aが溝底面11a,一方の溝側壁面11b,他方の溝側壁面11bの三面に固着していることになる。なお、この説明では、溝ウイック10内に設けられた金属粉末層12を溝内金属粉末層121と記載して説明する場合がある。さらに、溝底面11aと、一方の溝側壁面11bと、他方の溝側壁面11bとを特に区別しない場合には、その三面をいずれも含む意味合いで溝壁面11と記載して説明する。
また、図3(b)に示すように、金属粉末層12は、蒸発部3のみに設けられており、凝縮部4および断熱部5には設けられていない。長手方向に延びる溝ウイック10のうち、蒸発部3内に含まれる部分には、溝壁面11に金属粉末12aが固着(接合)させられている。
さらに、図3(a),(b)に示す例では、金属粉末12aは、溝壁面11のうち一部の面を内部空間に露出させるようにして溝ウイック10内に散在させられている。そのため、蒸発部3内では、溝壁面11に固着されている金属粉末12aは疎らであり、溝壁面11の全面が金属粉末層12(溝内金属粉末層121)によって覆われていない。金属粉末12aが蒸発部3内の溝壁面11に散在させられていることによって、溝ウイック10の表面形状は、蒸発部3において微細な凹凸状に形成されている。密閉容器2が銅製の場合、溝ウイック10の溝壁面11上に金属粉末12aを散在させて焼結させることにより、金属粉末12aを溝壁面11に固着(接合)させることができる。
特に、図3(a)に示す金属粉末12aには、他の金属粉末12a上に積み重なっている金属粉末12a、すなわち他の金属粉末12aに固着しているが溝壁面11には固着していない金属粉末12aが含まれない。つまり、金属粉末層12(溝内金属粉末層121)を構成する金属粉末12aとは、他の金属粉末12aには固着せずに溝壁面11のみに固着している金属粉末12aや、溝壁面11に固着しているとともに他の金属粉末12aに固着している金属粉末12aである。したがって、図3(a),(b)に示すように、疎らな金属粉末12aに形成された金属粉末層12(溝内金属粉末層121)は、溝壁面11からの厚さが金属粉末12aの粒径と等しい、すなわち金属粉末12aの粒径の1倍の大きさに形成されており、溝壁面11上の全面(溝底面11a,溝側壁面11bを含む)に亘り隙間を含みながら矩形状(凹状)に形成されている。
(3.製造方法)
ここで、ヒートパイプ1の製造方法について説明する。例えば、微細溝が形成された丸型金属管(素形材)内に金属粉末12aを入れた後、金属管に振動を与えて金属管内から余分な金属粉末12aを取り除く。金属粉末12aを焼成後、金属管の一方の端部をスエージング加工し、水を注入し、脱気した後に金属管の他方の端部を溶接する。
具体的には、焼結処理の前工程として、素形材となる丸型金属管の内面2aに削りだし加工などを施し、溝ウイック10となる複数本の微細溝が溝壁面11を有するように形成される。そして、溝壁面11には金属粉末12aとなる金属の微粒子を付着させる(付着工程)。
その付着工程の一例として、蒸発部3となる範囲内の微細溝を対象として、その溝内に金属の微粒子を充填する。その素形材の蒸発部3側の開口端を下方に向け、素形材に打撃を与え、あるいは素形材を振動させることにより、余分な金属粉末12aを素形材外部へ除去し、溝壁面11に付着する金属粉末12aを疎らにさせる。金属粉末12aは、粒径が数μmの微粒子であるため、分子間力によって溝壁面11に付着することができる。例えば、かなづちや木づちで素形材に打撃を与えてもよく、試験管ミキサー(ボルテックスミキサー)のような振動機で数秒間だけ素形材を振動させてもよい。その後、溝壁面11に付着する金属粉末12aが疎らな状態で焼結工程を行う。この具体例では、金属粉末12aの粒径が1〜5μmの微細な粒子であるため、焼結工程において、従来の焼結低温(1000℃程度)に比べて低温の焼結温度(500℃程度)で溝壁面11に焼結できる。なお、上述した焼結処理の前加工や、焼結処理後のプレス加工やスエージング加工などの焼結処理の後工程については、周知の製造方法であればよい。
(4.熱輸送サイクル)
次に、図4(a)〜(d)を参照して、ヒートパイプ1による熱輸送サイクルと、ヒートパイプ1の蒸発部3で生じる作動液の水量変化とについて説明する。図4(a)には、作動液が蒸発し始める前の蒸発部3の水位を示してある。図4(b)には、作動液が蒸発し始めて蒸発部3で水量が減少した場合の蒸発部3の水位を示してある。
ヒートパイプ1の非作動時、例えば図4(a)に示す状態のように、蒸発部3の溝ウイック10内は作動液Lで満たされている。なお、ヒートパイプ1の作動時であっても、図4(a)に示す状態のようになる場合がある。一例として、発熱体Hが発熱し始めた直後など、蒸発部3が発熱体Hで生じた熱を受け取り熱伝達によって作動液Lの温度が上昇し始めているものの、蒸発には到らない状態には、図4(a)に示す状態となる。
そして、ヒートパイプ1の作動時、発熱体Hで生じた熱によって、蒸発部3の溝ウイック10内の作動液Lが蒸発し始める。蒸発部3で作動液Lが蒸発することにより、溝ウイック10内の作動液Lは減少し始める。そのように作動液Lが蒸発している場合、図4(b)に示す状態のように、蒸発部3の溝ウイック10内では、作動液Lが大きな曲率のメニスカスを形成する。
特に、この具体例の蒸発部3では、溝壁面11の一部を露出させるように金属粉末12aが散在されているので、溝ウイック10の表面粗さが増してぬれ性が良くなっている。要は、蒸発部3において作動液Lの拡散性能が向上している。そのため、図4(b)に示す点線範囲E内のように、溝ウイック10内で開口部付近の作動液Lと、両側の溝側壁面11b,11bとの接触角が小さくなる。これにより、溝ウイック10の開口部側では、溝底面11a側から溝ウイック10の開口部側へ向けて溝側壁面11bに沿うように広範囲に亘り、薄い水層状の作動液Lが存在することになる。そして、点線範囲E内の作動液Lは、溝側壁面11bからの厚さ(幅方向で溝側壁面11bからの水位)が薄い水層を形成するため、熱抵抗が小さくなるので蒸発し易い。したがって、図4(b)に示す作動液Lのうち、点線範囲E内に含まれる作動液Lが蒸発するため、蒸発面積が増大し、蒸発性能が向上する。すなわち、小さな熱抵抗で熱伝達可能な作動液Lの水量が増すため、蒸発性能が向上することになる。
図4(b)に示す状態から発熱体Hの発熱量が増大し続けて、作動液Lの蒸発が進行すると、蒸発部3の溝ウイック10内の作動液Lはさらに減少する。その状態の一例を、図4(c)に示してある。
図4(c)に示す状態のように、蒸発部3の溝ウイック10内では、溝壁面11に疎らに接合された金属粉末12aによって作動液Lが薄い水層状(水膜状)に保持される。その作動液Lの水層は、溝底面11aと一対の溝側壁面11b,11bとに沿った矩形状になる。これは、金属粉末12aが散在されていることによって溝ウイック10のぬれ性が良くなっているためである。これにより、蒸発部3の溝ウイック10内における作動液Lの水量が少量の場合であっても、蒸発部3において溝壁面11に触れるべき作動液Lが枯渇し、いわゆるドライアウトが生じることを抑制できる。さらに、図4(c)に示す状態では、上述した図4(b)に示す状態よりも、作動液Lの水層が薄いうえに、作動液Lの蒸発面積が増大するので、蒸発部3での熱抵抗を低減でき、かつ蒸発性能を向上できる。
蒸発部3で生じた蒸気は、蒸発部3よりも圧力および温度が低い凝縮部4へ向けて蒸気流路内を流動する。断熱部5および凝縮部4には、金属粉末12aが設けられていないので、蒸気流路は流動方向となる長手方向に沿って滑らかな面によって区画されている。そのため、蒸気が流動する際に生じる圧力損失を低減でき、蒸気の流動性能を向上できる。さらに、内部空間において、各内壁面21a,22a,23aよりも内側に所定体積を有するウイック構造物が設けられていないので、ウイック構造物が設けられている場合に比べて、蒸気の流路断面積を大きく取れるため、蒸気の流量を増大させ、熱輸送性能を向上させることができる。
凝縮部4では、凝縮部4に到達した蒸気を凝縮させる。つまり、凝縮部4内では作動液Lが生じる。凝縮部4で生じた作動液Lは、図4(d)に示すように、凝縮部4の溝ウイック10内に流入する。この場合、上述したように蒸発部3において作動液Lが蒸発して溝ウイック10内の作動液Lが大きな曲率のメニスカスを生じることによって、作動液Lを凝縮部4側から蒸発部3側へ流動(還流)させるように作用する毛管力が生じる。これにより、凝縮部4では溝ウイック10外の作動液Lが溝ウイック10内へ流入させられ、凝縮部4の溝ウイック10内の作動液Lは蒸発部3側に吸引される。その結果、蒸発部3よりも凝縮部4側の作動液Lは、溝ウイック10による還流路内を流動して凝縮部4から断熱部5を介して蒸発部3へ還流させられる。
長手方向に延びる溝ウイック10のうち、蒸発部3内のみに金属粉末12aが設けられているので、図4(d)に示すように凝縮部4および断熱部5内では滑らかな面によって還流路が区画されている。これにより、作動液Lの流動抵抗を低減でき、還流性能を向上させることができる。
そして、溝ウイック10によって蒸発部3に還流された作動液Lは、発熱体Hの熱によって再び蒸発し、ヒートパイプ1は上述した熱輸送サイクルを繰り返すことになる。
(5.多孔質ウイックの金属粉末層)
上述した具体例では、金属粉末層12の厚さは金属粉末12aの粒径の1倍であったが、この発明に係るヒートパイプでは溝ウイック10内が金属粉末12aによって埋め尽くされないように構成されていればよい。そのため、金属粉末12aが他の金属粉末12a上に積み重なるようにして、金属粉末12a同士の間に隙間を有する焼結体(多孔質ウイック)としての金属粉末層12が形成されてもよい。つまり、金属粉末層12の厚さは、金属粉末12aの粒径の1倍よりも大きく形成されてもよく、具体的には金属粉末12aの粒径の1〜5倍の範囲内に形成されてよい。
図5には、金属粉末層12の厚さが金属粉末12aの粒径の1倍よりも大きくかつ5倍以下に形成されている構成例を示してある。図5に示す金属粉末層12は、金属粉末12a同士が焼結して内部に隙間を有する焼結体(多孔質ウイック)を形成している。すなわち、その金属粉末12aには、溝壁面11に固着する金属粉末12aに加えて、溝壁面11とは固着せずに他の金属粉末12aのみと固着している金属粉末12aが含まれている。
多孔質ウイックとしての金属粉末層12(溝内金属粉末層121)は、溝壁面11の全面を覆うように設けられており、溝壁面11に沿った矩形状に形成されている。上述したように溝ウイック10の溝幅Wは80μm、溝深さDは50μmであるため、金属粉末層12の厚さが金属粉末12aの粒径の5倍以下(最大粒径5μの場合に25μm以下)に形成されていることにより、金属粉末12aが溝ウイック10内を埋め尽くすことはない。なお、図5に示すように、金属粉末層12が多孔質ウイックを形成する場合も、図3(a),(b)を参照して上述した場合と同様に、溝壁面11のうち一部の面を内部空間に露出させるようにして溝ウイック10内に金属粉末12aを散在させる構成とすることが可能である。この場合には、多孔質ウイックとしての金属粉末層12は連続的に形成されており、露出面となる溝壁面11に囲まれるようにして金属粉末層12が独立して設けられているわけではない。
(6.固着範囲)
また、上述した具体例では、金属粉末層12が蒸発部3内の溝壁面11のみに設けられていた、すなわち金属粉末層12が溝内金属粉末層121のみによって構成されていたが、この発明に係るヒートパイプは少なくとも蒸発部3の溝ウイック10内に金属粉末層12が設けられていればよいため、内面2aのうち金属粉末12aが固着させられる範囲に各内壁面21a,22a,23aを含んでもよい。
図6(a)には、周方向で内面2a全体に亘って金属粉末12aが固着されている構成例を示してある。図6(a)に示す金属粉末層12は、内面2aにおいて凹面となる溝壁面11に設けられた溝内金属粉末層121に加えて、内面2aにおいて凸面となる各内壁面21a,22a,23aに固着されている金属粉末12aによって構成されている溝外金属粉末層122を含む。この場合の金属粉末層12は、図6(a)に示すような一層構造であってもよく、図6(b)に示すような多孔質ウイックであってもよい。なお、図6(a)には、内壁面22aおよび内壁面23aを示してない。
図6(b)に示す多孔質ウイックとしての金属粉末層12を用いて、金属粉末層12の厚さtを、溝ウイック10の溝幅Wと溝深さDとに対応させて説明する。溝内金属粉末層121(金属粉末層12)のうち溝底面11a上に設けられている第一部分121aでは、溝底面11aからの厚さt1が溝深さDの三分の一(D/3)以下となるよう形成されている。また、溝内金属粉末層121(金属粉末層12)のうち溝側壁面11b上に設けられている第二部分121bでは、溝側壁面11bからの厚さt2が溝幅Wの五分の一(W/5)以下となるように形成されている。さらに、金属粉末層12のうち内壁面21a上(図示しない内壁面22a,23a上も含む)に設けられている溝外金属粉末層122では、内壁面21aからの厚さt3が溝幅Wの五分の一(W/5)以下となるように形成されている。なお、溝幅Wとは、溝ウイック10の開口幅のことである。また、溝深さDとは、溝ウイック10の開口端から溝底面11aまでの距離のことである。例えば、溝ウイック10の形状が図6(b)に示すような矩形状の場合、その開口端から溝底面11aに到る溝側壁面11bの長さを溝深さDと言える。
つまり、金属粉末層12の厚さは、第一部分121aの厚さt1が溝深さDの三分の一以下、かつ第二部分121bの厚さt2および溝外金属粉末層122の厚さt3が溝幅Wの五分の一以下の範囲内で、金属粉末12aの粒径の1〜5倍の大きさに形成される。これにより、溝ウイック10が金属粉末12aによって埋まらないように構成される。例えば、溝幅Wが80μm、溝深さDが50μm、金属粉末12aの粒径が1μmの場合、金属粉末層12の厚さが粒径の5倍に形成されても5μmであり、厚さt1が溝深さDの三分の一(約16.7μm)以下かつ厚さt2および厚さt3が溝幅Wの五分の一(16μm)以下となり、上述した範囲を超えないため、粒径を基準とする厚さに設定される。一方、金属粉末12aの粒径が最大粒径の5μmの場合、金属粉末層12の厚さを粒径の5倍にすると25μmとなり、上述した範囲を超えてしまうため、金属粉末層12の厚さは、厚さt1は溝深さDの三分の一(約16.7μm)、かつ厚さt2および厚さt3は溝幅Wの五分の一(16μm)となり、溝形状を基準する厚さに設定される。すなわち、金属粉末層12の厚さとして、粒径を基準とする厚さと溝形状を基準とする厚さとを比較して小さい方の値を採用することになる。
なお、図6(a),(b)を参照して上述した溝内金属粉末層121と溝外金属粉末層122とを含む金属粉末層12の厚さについて、その溝内金属粉末層121の厚さは、図3(a),図5を参照して上述した溝内金属粉末層121のみによって構成された金属粉末層12の厚さとすることが可能である。
その場合、図3(a),図5に示すような金属粉末層12が溝内金属粉末層121のみの構成と、図6(a),(b)に示すような金属粉末層12が溝内金属粉末層121および溝外金属粉末層122の構成とで熱輸送性能を比較すると、金属粉末層12が溝内金属粉末層121のみで構成されているほうが性能は高い。例えば、上述したように、各内壁面21a,22a,23aに金属粉末12aが設けられていないことによって溝内金属粉末層121のみのほうが蒸気の流動性能を向上させることができるからである。また、各内壁面21a,22a,23aに固着させる分の金属粉末12aを削減できるので、溝内金属粉末層121のみの構成のほうが製造コストを削減できる。
さらに、この発明に係るヒートパイプでは、長手方向において、少なくとも蒸発部3内に金属粉末層12が設けられていればよいため、長手方向全域(蒸発部3,凝縮部4,断熱部5を全て含む)に金属粉末層12が設けられてもよい。したがって、長手方向全域に亘って溝壁面11のみに金属粉末12aを固着させてもよく、あるいは長手方向全域に亘って内面2aの全面に金属粉末12aを固着させてもよい。
例えば、金属粉末層12(溝内金属粉末層121のみの構成であるか、溝内金属粉末層121に加えて溝外金属粉末層122を含む構成であるかを問わず)が、長手方向で蒸発部3内のみに設けられている場合と、長手方向全域に亘って設けられている場合とで熱輸送性能を比較すると、長手方向で蒸発部3内のみに金属粉末層12が設けられている構成のほうが性能は高い。例えば、作動液が金属粉末層12内を流動する際に作動液の流動抵抗が生じるため、長手方向全域に亘って金属粉末層12が設けられている構成よりは、蒸発部3内のみに金属粉末層12が設けられている構成のほうが作動液の流動抵抗の発生を抑制できるからである。
したがって、蒸発部3内の溝ウイック10内のみに金属粉末層12が設けられている構成は、周方向および長手方向で内面2aの全面に亘って金属粉末層12が設けられている構成よりも、熱輸送性能が高いと予測できる。
(7.熱輸送性能の試験)
次に、図7,図8,図9を参照して、熱輸送性能の試験結果について説明する。この試験では、実施例と比較例とで、外径寸法は同じであるが内部構造が異なるヒートパイプを用いた。なお、この説明では、「長手方向長さ」を単に「長さ」と記載する。
(7−1.実施例と比較例)
実施例とは、上述した具体例のヒートパイプ1のうち、溝内金属粉末層121および溝外金属粉末層122によって構成された金属粉末層12が長手方向で蒸発部3から断熱部5を介して凝縮部4に到るように内面2aの全域に亘って設けられている構成を備え、下記の寸法に形成されたヒートパイプである。比較例とは、ヒートパイプ1のうち金属粉末層12(金属粉末12a)が設けられず、溝ウイック10のみによって作動液を還流させるように構成されたヒートパイプ100のことである。図7(a),(b)に示すように、実施例および比較例において、密閉容器2の外形寸法は、長さが100mm、厚さが0.55mm、幅が2.85mmである。プレス加工前の外径が6.0mmの丸管(素形材)を用いて密閉容器2を作製した。溝ウイック10は、溝幅Wが0.08mm、溝深さDが0.05mmに形成されている。また、実施例において、金属粉末12aの粒径および金属粉末層12の厚さは、上述した通りの大きさに構成されている。
(7−2.試験方法)
図7(a)に示すように、この試験では、発熱体Hとして、長さ10mm、幅10mmに形成された電気ヒータを用いた。つまり、電気ヒータに通電した際の電力量に基づいて、電気ヒータからヒートパイプへ入力される熱量(以下「入熱量」という)Q[W]が決まる。また、発熱体Hは金属板Sを介してヒートパイプ1,100と熱的に接続されている。金属板Sは、長さ100mm、幅50mmに形成されている。
図7(b)および図8(a),(b)に示すように、第一平坦部21の外面を全面に亘って金属板Sに面接触させ、かつ金属板Sのうち蒸発部3内の第一平坦部21の下方部分の裏面に発熱体Hを面接触させている。実施例および比較例のヒートパイプは、第一平坦部21を水平方向と平行にして試験装置に取り付けられ、複数点で温度を測定する。温度測定には周知の熱電対温度計を使用した。熱電対温度計による測定点は、電気ヒータの表面温度Th[℃]である。
例えば、図7(b)に示すように、電気ヒータの表面温度Th[℃]について、電気ヒータの外面うち蒸発部3の下方で金属板Sの下面と接触する部分を測定対象とする。なお、図8(a),(b)のそれぞれに示す上向きの白抜き矢印はヒートパイプへの入熱を表し、下向きの白抜き矢印はヒートパイプからの放熱を表す。
室温の条件下で、電気ヒータに通電することにより蒸発部3を加熱し、その際の入熱量Q[W]と、電気ヒータの表面温度Th[℃]とを測定した。その測定方法は、実施例のヒートパイプ1と比較例のヒートパイプ100とでそれぞれに、入熱量Q[W]が3Wの場合と、4Wの場合と、5Wの場合とで、各入熱量Q[W]に対しての電気ヒータの表面温度Th[℃]の温度を測定した。例えば、所定の入熱量Q[W]を一定時間入力し、電気ヒータの表面温度Th[℃]が一定になったときの温度を測定する。その測定結果を図9に棒グラフで示してある。
(7−3.試験結果)
図9には、実施例のヒートパイプ1による試験結果を斜線付きの四角棒で示し、比較例のヒートパイプ100による試験結果を白抜きの四角棒で示してある。また、入熱量Q[W]が3W,4W,5Wの場合のそれぞれについて比較例の測定結果を左側、実施例の測定結果を右側に並べて図示してある。
図9に示すように、入熱量Q[W]が3Wの場合、比較例の表面温度Th[℃]は79.2℃、実施例の表面温度Th[℃]は76.3℃であった。入熱量Q[W]が4Wの場合、比較例の表面温度Th[℃]は88.8℃、実施例の表面温度Th[℃]は85.3℃であった。入熱量Q[W]が5Wの場合、比較例の表面温度Th[℃]は105.1℃、実施例の表面温度Th[℃]は101.1℃であった。
実施例と比較例との試験結果を比較すると、実施例は比較例よりも電気ヒータの表面温度Th[℃]を低下させることができる。したがって、実施例は比較例よりも熱輸送量が多いことが分かる。すなわち、金属粉末層12を有する実施例が、金属粉末層12を有さない比較例よりも、高性能なヒートパイプであることが確認できた。例えば、図8(b)に示すように、実施例のヒートパイプ1では、金属粉末層12が設けられていることにより、比較例のヒートパイプ100よりも蒸発部3の溝ウイック10でぬれ性が向上し、ヒートパイプ全体としての熱輸送性能が向上していたと考えられる。
以上説明した通り、この具体例のヒートパイプによれば、溝ウイック内に設けられた金属粉末層が溝ウイックを埋めないように構成されているので、溝ウイックによる還流特性に加えて、金属粉末層による還流特性を発揮させることができる。また、金属粉末層が蒸発部内に設けられていることにより、還流された作動液が蒸発部内で拡散しやすくなり、溝ウイックのみの構造に比べて蒸発面積が増大して蒸発性能を向上させることができる。
さらに、金属粉末層のうち溝ウイック内の溝内金属粉末層は、溝底面に設けられた第一部分の厚さが溝深さの三分の一以内に、溝側壁面に設けられた第二部分の厚さが溝幅の五分の一以内に形成されていることにより、厚さが必要以上になり金属粉末層によって熱抵抗が増大してしまうことを抑制できるとともに、溝ウイックの形状に沿わなくなり蒸発面積が減少してしまうことを抑制できる。
加えて、蒸発部に設けられている金属粉末層が溝ウイック内で溝壁面の凹状に沿った所定厚さの多孔質ウイックを形成する場合には、蒸発部では金属粉末層による多孔質ウイックの空隙によって毛管力を生じることができる。これにより、溝ウイック内の蒸発部側で金属粉末層によるポンプ力(毛管力)が生じ、そのポンプ力が溝ウイック内の作動液に作用するため、作動液の還流性能を向上させることができる。また、溝内金属粉末層において第一部分および第二部分が上述した厚さに形成されていることにより、作動液を還流させる際に作動液の圧力損失を低減させることができる。
また、金属粉末層が薄いため、扁平型の密閉容器内で蒸気流路として利用できる内部空間を十分に確保できるのとともに、熱抵抗の増大を抑制できるので、蒸気の流動性能を確保でき、かつ最大熱輸送量を増大させることができる。
望ましくは、蒸発部内のみの溝ウイックの溝壁面に金属粉末を散在させられている金属粉末層がよい。この場合、溝ウイックの表面形状が微細な凹凸状となり、蒸発部で溝ウイックのぬれ性が向上するとともに熱抵抗の増大を抑制できるため、ヒートパイプの熱輸送性能を向上させることができる。そのため、蒸発部では作動液の拡散性能が向上してドライアウトが生じること抑制できるとともに、蒸発面積を拡大でき蒸発性能を向上させることができる。加えて、溝ウイックの溝壁面に少量の金属粉末を散在させればよいため、ヒートパイプを軽量化できるとともに材料費を抑えることができ製造コストを削減できる。
さらに、金属粉末が粒径1〜5μmに構成されていることにより、粒径が小さすぎることにより金属製の密閉容器に焼結する際に完全に溶けてしまい粒形状を失うことを防止できるとともに、粒径が大きすぎることにより溝ウイック内に多孔質ウイックを形成する溝内を埋め尽くしてしまうことを防止できる。例えば、粒径が1μmよりも小さい金属粉末を用いると、多孔質ウイックの空隙が少なくなり作動液の圧力損失が増大してしまう虞がある。また、粒径が5μmよりも大きい金属粉末を用いると、溝内で毛管力が減少してしまうとともに、蒸気流路として必要な密閉用器の内部空間、および溝ウイックが十分に機能するために必要な空間としてより大きな空間が必要になってしまうため、薄型のヒートパイプには適さない。
なお、この発明に係るヒートパイプは、上述した具体例に限定されず、この発明の目的を逸脱しない範囲で適宜変更が可能である。
例えば、上述した具体例では、発熱体は、第一平坦部21と第二平坦部22とのうちいずれか一方の外面と接触するように取り付けられていればよい。加えて、蒸発部3における内面2aであれば、溝ウイック10の溝壁面11以外に、各内壁面21a,22a,23aのうち少なくともいずれか一面に金属粉末12aが疎らに固着(接合)されていてもよい。
また、金属粉末層を溝ウイック内のみに形成する場合(金属粉末層12が溝内金属粉末層121のみによって構成される場合)の製造方法として、丸型金属管の内部に各内壁面21a,22a,23aと密着する中子を挿入し、その状態で溝ウイック内に金属粉末を充填することにより溝壁面のみに金属粉末を固着させることができる。一方、内面2aの全面に亘って金属粉末層を形成する場合(金属粉末層12が溝内金属粉末層121および溝外金属粉末層122によって構成される場合)の製造方法として、上述した中子を用いずに、丸型金属管の内部に金属粉末を充填し、内面2aの全面に金属粉末が触れるようにすればよい。
1…ヒートパイプ、 2…密閉容器、 2a…内面、 3…蒸発部、 4…凝縮部、 5…断熱部、 10…溝ウイック、 11…溝壁面、 12…金属粉末層、 12a…金属粉末、 121…溝内金属粉末層、 121a…第一部分、 121b…第二部分、 122…溝外金属粉末層。

Claims (10)

  1. 長手方向の両端部が封止された管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、
    前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から断熱部を介して前記凝縮部に到るように複数本形成された溝ウイックを含み、
    前記蒸発部と前記断熱部と前記凝縮部とのうち少なくとも前記蒸発部における前記溝ウイックの溝壁面のみに固着された金属粉末からなる金属粉末層を備え、
    前記金属粉末は、金属の微粒子により構成され、
    前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成されている
    ことを特徴とするヒートパイプ。
  2. 長手方向の両端部が封止された管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、
    前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から断熱部を介して前記凝縮部に到るように複数本形成された溝ウイックを含み、
    前記蒸発部と前記断熱部と前記凝縮部とのうち前記蒸発部のみにおける前記密閉容器の内面に固着された金属粉末からなる金属粉末層を備え、
    前記金属粉末は、金属の微粒子により構成され、
    前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成されている
    ことを特徴とするヒートパイプ。
  3. 前記溝壁面は、対向する一対の溝側壁面と、当該溝壁面同士を繋ぐ溝底面とを有し、
    前記溝ウイックは、前記溝壁面によって凹状に形成された前記微細溝を含み、
    前記溝内金属粉末層のうち前記溝側壁面に設けられている第一部分の厚さは、前記溝ウイックの溝幅の五分の一以下に形成され、
    前記溝内金属粉末層のうち前記溝底面に設けられている第二部分の厚さは、前記溝ウイックの溝深さの三分の一以下に形成されている
    ことを特徴とする請求項1または2に記載のヒートパイプ。
  4. 前記密閉容器は、金属製であり、
    前記金属粉末は、粒径が1〜5μmの銅の微粒子であり、かつ焼結によって前記溝壁面に接合されており、
    前記溝内金属粉末層の厚さは、前記第一部分の厚さが前記溝幅の五分の一以下、かつ前記第二部分の厚さが前記溝深さの三分の一以下となるように、前記金属粉末の粒径の1〜5倍の範囲内に形成されている
    ことを特徴とする請求項3に記載のヒートパイプ。
  5. 長手方向の両端部が封止された金属製でかつ管状の密閉容器と、前記密閉容器の内部に封入された作動流体と、毛管力によって作動液を流動させるウイックとを備え、前記密閉容器の長手方向で一方端側が前記作動液を蒸発させる蒸発部となり、前記密閉容器の長手方向で他方端側が前記作動流体を凝縮させる凝縮部となるように構成されたヒートパイプにおいて、
    前記ウイックは、前記密閉容器の内面から窪み前記長手方向に沿って延びる微細溝が、前記蒸発部から断熱部を介して前記凝縮部に到るように複数本形成された溝ウイックを含み、
    前記蒸発部と前記断熱部と前記凝縮部とのうち少なくとも前記蒸発部内で、前記密閉容器の内面に固着された粒径が1〜5μmの銅粉末からなる金属粉末層を備え、
    前記金属粉末層は、前記内面のうち前記溝ウイックの溝壁面に固着された前記金属粉末からなる溝内金属粉末層によって構成され、
    当該溝内金属粉末層は前記溝壁面からの厚さが所定厚さで前記溝ウイックの形状に沿った形状に形成され、
    前記溝壁面は、対向する一対の溝側壁面と、当該溝壁面同士を繋ぐ溝底面とを有し、
    前記溝ウイックは、前記溝壁面によって凹状に形成された前記微細溝を含み、
    前記溝内金属粉末層のうち前記溝側壁面に設けられている第一部分の厚さは、前記溝ウイックの溝幅の五分の一以下でかつ前記銅粉末の粒径の1〜5倍の範囲内に形成され、
    前記溝内金属粉末層のうち前記溝底面に設けられている第二部分の厚さは、前記溝ウイックの溝深さの三分の一以下でかつ前記銅粉末の粒径の1〜5倍の範囲内に形成されている
    ことを特徴とするヒートパイプ。
  6. 前記金属粉末は、前記溝壁面上に当該溝壁面の一部を露出させるように散在させられており、前記蒸発部内の前記溝ウイックにおける表面形状は、前記金属粉末によって微細な凹凸状に形成されていることを特徴とする請求項4または5に記載のヒートパイプ。
  7. 前記溝内金属粉末層の厚さが前記範囲内で前記金属粉末の粒径の1倍よりも大きく形成されている場合、前記金属粉末層は前記金属粉末同士の焼結体からなる多孔質ウイックを形成している
    ことを特徴とする請求項4または5に記載のヒートパイプ。
  8. 前記金属粉末層は、前記溝内金属粉末層に加えて、前記内面のうち周方向で前記溝ウイック同士に挟まれている内壁面に固着されている前記金属粉末からなる溝外金属粉末層をさらに含むように構成されていることを特徴とする請求項1から7のいずれかに記載のヒートパイプ。
  9. 前記溝外金属粉末層は、前記内壁面からの厚さが前記溝ウイックの溝幅の五分の一以下に形成されていることを特徴とする請求項8に記載のヒートパイプ。
  10. 前記密閉容器は、幅に対して厚さ方向の寸法が小さい扁平形状に形成され、
    前記溝ウイックは、周方向で前記内面の全周に亘って所定間隔を空けて形成されている複数本の微細溝によって構成されている
    ことを特徴とする請求項1から9のいずれかに記載のヒートパイプ。
JP2014200493A 2014-09-30 2014-09-30 ヒートパイプ Active JP5759606B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014200493A JP5759606B1 (ja) 2014-09-30 2014-09-30 ヒートパイプ
US14/869,350 US20160091258A1 (en) 2014-09-30 2015-09-29 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014200493A JP5759606B1 (ja) 2014-09-30 2014-09-30 ヒートパイプ

Publications (2)

Publication Number Publication Date
JP5759606B1 true JP5759606B1 (ja) 2015-08-05
JP2016070593A JP2016070593A (ja) 2016-05-09

Family

ID=53887594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014200493A Active JP5759606B1 (ja) 2014-09-30 2014-09-30 ヒートパイプ

Country Status (2)

Country Link
US (1) US20160091258A1 (ja)
JP (1) JP5759606B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341586A (zh) * 2019-09-06 2022-04-12 大日本印刷株式会社 蒸发室、电子设备、蒸发室用片、布置有多个蒸发室用中间体的片、卷绕布置有多个蒸发室用中间体的片而成的卷、以及蒸发室用中间体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160069616A1 (en) * 2014-09-05 2016-03-10 Asia Vital Components Co., Ltd. Heat pipe with complex capillary structure
US10247488B2 (en) * 2015-09-17 2019-04-02 Asia Vital Components Co., Ltd. Heat dissipation device
FR3065279B1 (fr) 2017-04-18 2019-06-07 Euro Heat Pipes Evaporateur a interface de vaporisation optimisee
KR101826339B1 (ko) * 2017-05-29 2018-02-06 주식회사 씨지아이 관체를 이용한 박판형 히트파이프 제조방법
CN107168493A (zh) * 2017-06-01 2017-09-15 曙光节能技术(北京)股份有限公司 一种cpu散热方法和装置
WO2019018945A1 (en) 2017-07-28 2019-01-31 Dana Canada Corporation DEVICE AND METHOD FOR ALIGNING PARTS FOR LASER WELDING
DE112018003831T5 (de) 2017-07-28 2020-04-09 Dana Canada Corporation Ultradünne wärmetauscher für das wärmemanagement
EP3861837A1 (en) * 2018-10-02 2021-08-11 Telefonaktiebolaget Lm Ericsson (Publ) A carrier substrate, an electronic assembly and an apparatus for wireless communication
US10948241B2 (en) * 2018-10-25 2021-03-16 Toyota Motor Engineering & Manufacturing North America, Inc. Vapor chamber heat spreaders having improved transient thermal response and methods of making the same
TWI696542B (zh) * 2019-04-24 2020-06-21 慧隆科技股份有限公司 具有均溫腔的模塑熱傳組件之成形方法
JP2020180728A (ja) * 2019-04-24 2020-11-05 株式会社デンソー 機器温調装置
CN110044194A (zh) * 2019-04-29 2019-07-23 深圳市尚翼实业有限公司 一种能减小传热阻碍的热管
GB2587213A (en) * 2019-09-18 2021-03-24 Bae Systems Plc Cooling device for cooling electronic components
CN111290554A (zh) * 2020-04-01 2020-06-16 联想(北京)有限公司 一种导热装置及其加工方法
JP7458243B2 (ja) 2020-06-04 2024-03-29 古河電気工業株式会社 熱輸送デバイス
TWI783488B (zh) * 2021-05-19 2022-11-11 大陸商廣州力及熱管理科技有限公司 具有船型多孔隙毛細結構之管形元件及熱導管元件之製造方法
CN117156662A (zh) * 2023-11-01 2023-12-01 北京睿塔智能科技有限公司 一种金属基板、制备方法及散热电路板

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106961A (en) * 1977-02-28 1978-09-18 Ngk Spark Plug Co Ltd Ceramic heating pipes and manufacturing method
JPS56103780U (ja) * 1979-12-31 1981-08-13
JPH11330329A (ja) * 1998-05-20 1999-11-30 Denso Corp 沸騰冷却装置
JP2004212040A (ja) * 2002-12-30 2004-07-29 Harder Juergen Schulz ヒートパイプ形式のヒートシンクおよび係るヒートシンクの製造方法
US20090020269A1 (en) * 2007-07-18 2009-01-22 Foxconn Technology Co., Ltd. Heat pipe with composite wick structure
JP2009047383A (ja) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd ヒートパイプ構成原料
JP2011021211A (ja) * 2009-07-13 2011-02-03 Central Glass Co Ltd アルミニウム系親水性部材
JP2011530195A (ja) * 2008-08-01 2011-12-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 熱交換構造およびそのような構造を備える冷却デバイス
US20120051489A1 (en) * 2010-08-31 2012-03-01 Massachusetts Institute Of Technology Superwetting surfaces for diminishing leidenfrost effect, methods of making and devices incorporating the same
US20130020059A1 (en) * 2010-04-01 2013-01-24 Chanwoo Park Device having nano-coated porous integral fins
US20130049041A1 (en) * 2011-08-30 2013-02-28 Abl Ip Holding Llc Thermal conductivity and phase transition heat transfer mechanism including optical element to be cooled by heat transfer of the mechanism
US20130239410A1 (en) * 2012-03-16 2013-09-19 Foxconn Technology Co., Ltd. Method for manufacturing heat pipe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7207147B2 (en) * 2000-09-20 2007-04-24 Alliance Concrete Concepts, Inc. Mortarless wall structure
US20030136550A1 (en) * 2002-01-24 2003-07-24 Global Win Technology Heat sink adapted for dissipating heat from a semiconductor device
US6880626B2 (en) * 2002-08-28 2005-04-19 Thermal Corp. Vapor chamber with sintered grooved wick
TWI236870B (en) * 2004-06-29 2005-07-21 Ind Tech Res Inst Heat dissipation apparatus with microstructure layer and manufacture method thereof
TWI307399B (en) * 2005-09-09 2009-03-11 Delta Electronics Inc Heat dissipation module and heat pipe thereof
NL1031206C2 (nl) * 2006-02-22 2007-08-24 Thales Nederland Bv Vlakke warmtebuis voor koeldoeleinden.
TW201124068A (en) * 2009-12-29 2011-07-01 Ying-Tong Chen Heat dissipating unit having antioxidant nano-film and its method of depositing antioxidant nano-film.
US20120312507A1 (en) * 2011-06-07 2012-12-13 Hsiu-Wei Yang Thin heat pipe structure and manufacturing method thereof
US20140138056A1 (en) * 2012-11-18 2014-05-22 Chin-Hsing Horng Low-profile composite heat pipe
CN103868386A (zh) * 2012-12-17 2014-06-18 富瑞精密组件(昆山)有限公司 平板热管及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106961A (en) * 1977-02-28 1978-09-18 Ngk Spark Plug Co Ltd Ceramic heating pipes and manufacturing method
JPS56103780U (ja) * 1979-12-31 1981-08-13
JPH11330329A (ja) * 1998-05-20 1999-11-30 Denso Corp 沸騰冷却装置
JP2004212040A (ja) * 2002-12-30 2004-07-29 Harder Juergen Schulz ヒートパイプ形式のヒートシンクおよび係るヒートシンクの製造方法
US20090020269A1 (en) * 2007-07-18 2009-01-22 Foxconn Technology Co., Ltd. Heat pipe with composite wick structure
JP2009047383A (ja) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd ヒートパイプ構成原料
JP2011530195A (ja) * 2008-08-01 2011-12-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 熱交換構造およびそのような構造を備える冷却デバイス
JP2011021211A (ja) * 2009-07-13 2011-02-03 Central Glass Co Ltd アルミニウム系親水性部材
US20130020059A1 (en) * 2010-04-01 2013-01-24 Chanwoo Park Device having nano-coated porous integral fins
US20120051489A1 (en) * 2010-08-31 2012-03-01 Massachusetts Institute Of Technology Superwetting surfaces for diminishing leidenfrost effect, methods of making and devices incorporating the same
US20130049041A1 (en) * 2011-08-30 2013-02-28 Abl Ip Holding Llc Thermal conductivity and phase transition heat transfer mechanism including optical element to be cooled by heat transfer of the mechanism
US20130239410A1 (en) * 2012-03-16 2013-09-19 Foxconn Technology Co., Ltd. Method for manufacturing heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341586A (zh) * 2019-09-06 2022-04-12 大日本印刷株式会社 蒸发室、电子设备、蒸发室用片、布置有多个蒸发室用中间体的片、卷绕布置有多个蒸发室用中间体的片而成的卷、以及蒸发室用中间体

Also Published As

Publication number Publication date
US20160091258A1 (en) 2016-03-31
JP2016070593A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
JP5759606B1 (ja) ヒートパイプ
JP6623296B2 (ja) ベーパーチャンバ
JP5750188B1 (ja) ヒートパイプ
JP5789684B2 (ja) ベーパーチャンバー
US10184729B2 (en) Heat pipe
US9933212B2 (en) Heat pipe
EP2713132A1 (en) A vapor-based heat transfer apparatus
JP2006503436A (ja) 板型熱伝達装置及びその製造方法
JP5759600B1 (ja) 扁平ヒートパイプ
JP5778302B2 (ja) 熱輸送装置
JPWO2018116951A1 (ja) 放熱モジュール
JP2009068787A (ja) 薄型ヒートパイプおよびその製造方法
JP6827362B2 (ja) ヒートパイプ
JP5902404B2 (ja) 扁平型ヒートパイプおよびその製造方法
WO2017013761A1 (ja) 熱輸送装置
JPWO2014045714A1 (ja) 冷却装置、それに使用される受熱部、沸騰部、その製造方法
JP2018004108A (ja) 放熱モジュール及びその製造方法
JP2009115346A (ja) ヒートパイプ
JP4382891B2 (ja) 扁平ヒートパイプとその製造方法
JP4648106B2 (ja) 冷却装置
TW201825850A (zh) 熱管
JP5567059B2 (ja) 薄型ヒートパイプ
TW201032696A (en) Superconducting element structure
US20150090428A1 (en) Heat transfer device having 3-dimensional projections and an associated method of fabrication
JP2018009717A (ja) 振動型ヒートパイプ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R151 Written notification of patent or utility model registration

Ref document number: 5759606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250