JP5754976B2 - 画像処理装置、及び、制御方法 - Google Patents

画像処理装置、及び、制御方法 Download PDF

Info

Publication number
JP5754976B2
JP5754976B2 JP2011032218A JP2011032218A JP5754976B2 JP 5754976 B2 JP5754976 B2 JP 5754976B2 JP 2011032218 A JP2011032218 A JP 2011032218A JP 2011032218 A JP2011032218 A JP 2011032218A JP 5754976 B2 JP5754976 B2 JP 5754976B2
Authority
JP
Japan
Prior art keywords
image
tomographic image
tomographic
display
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032218A
Other languages
English (en)
Other versions
JP2011224347A (ja
JP2011224347A5 (ja
Inventor
坂川 幸雄
幸雄 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011032218A priority Critical patent/JP5754976B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to KR1020127027156A priority patent/KR101413100B1/ko
Priority to EP11716072.1A priority patent/EP2552296B1/en
Priority to CN201180018081.2A priority patent/CN102858231B/zh
Priority to PCT/JP2011/001765 priority patent/WO2011121959A2/en
Priority to US13/634,342 priority patent/US9201004B2/en
Publication of JP2011224347A publication Critical patent/JP2011224347A/ja
Publication of JP2011224347A5 publication Critical patent/JP2011224347A5/ja
Application granted granted Critical
Publication of JP5754976B2 publication Critical patent/JP5754976B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0037Performing a preliminary scan, e.g. a prescan for identifying a region of interest
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02029Combination with non-interferometric systems, i.e. for measuring the object
    • G01B9/0203With imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02089Displaying the signal, e.g. for user interaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging

Description

本発明は、断層画像を表示する画像処理装置、及び、制御方法に関する。
光干渉断層撮影装置(OCT撮影装置)は、光干渉断層計(OCT:Optical Coherence Tomography)の原理を用い、撮影対象の内部を画像化した断層画像を得ることができる。これら断層画像により眼部の内部構造を観察でき、疾病の診断をより的確なものとすることができる。
OCT撮影装置では、信号光を眼底上に照射すると照射された位置の深さ方向における内部構造の情報が得られる。この信号光を眼底において線状に並ぶ複数の位置に照射する走査(Bスキャン)を行うことにより、撮影対象における所定断面の二次元断層画像が得られる。また、眼底表面における二次元の領域における複数の位置に照射する走査を行うことにより、網膜の三次元ボリュームデータが得られる。
断層画像の観察においては、網膜の複数の断面における二次元断層画像を比較することで診断に適する情報をより多く得ることができる。特許文献1には、眼底画像上での断面の指定に応じて断層画像を切り替えて表示する技術が開示されている。また特許文献2には、撮影対象に対するBスキャン方向が異なる複数の断層画像を並べて表示する技術が開示されている。
特開2007−117714号公報 特開2008−209166号公報
しかしながら、複数の断層画像を並べて表示させると、もともと撮影対象に対するBスキャン方向が異なる複数の断層画像を表示させる場合に、これら断層画像だけからでは撮影対象に対するBスキャン方向が異なっているという情報が失われてしまう。
本発明は上述の課題を解決するためになされたものであり、第一の断面による第一のOCT断層画像と、前記第一の断面を挟んで対向する位置の第二及び第三の断面による第二及び第三のOCT断層画像と、前記第一の断面と交差する第四の断面による第四のOCT断層画像と、前記第四の断面を挟んで対向する第五及び第六の断面による第五及び第六のOCT断層画像とを取得する取得手段と、前記第一、第二及び第三のOCT断層画像を前記第一、第二及び第三の断面の並び順に従う並び順で配置されるように配置を決定する配置決定手段と、前記配置されるOCT断層画像のうち、1のOCT断層画像を他の断層画像に対して異なる表示状態で表示されるように前記第一、第二及び第三のOCT断層画像の表示状態を決定する決定手段と、前記画像配置手段により決定された配置で、かつ前記決定手段により決定された表示状態で、前記第一、第二及び第三の断層画像を表示部に表示させる表示制御手段と、を有し、前記表示制御手段は、前記第一、第二及び第三のOCT断層画像とともに、前記第四、第五及び第六のOCT断層画像を前記表示部に表示させることを特徴とする。
本発明によれば、表示画面において各断層画像の配置でBスキャン方向の情報を明示することができる。これにより、ユーザは表示された複数の断層画像においてBスキャンの方向を容易に把握することができる。
断層撮影システム100の構成を示す図である。 断層撮影装置120の構成を示す図である。 撮影された画像の例を示す図である。 断層撮影システム100の処理の流れを示すフローチャートである。 図5(a)は表示制御部105による表示画面を示す図であり、図5(b)は表示制御部105によるその他の表示画面を示す図である。 図6(a)は断層画像と共に眼底画像を表示した表示画面を示す図であり、図6(b)はその他の表示画面を示す図である。 表示制御部105によるその他の表示画面を示す図である。 断層撮影装置820の構成を示す図である。 図9(a)は信号光Bm1、Bm2、及びBm3をスキャン方向に対して垂直に入射する例を示した図であり、図9(b)は係る場合の網膜RT上での各信号光のスキャン方向と配列を示す図である。図9(c)は信号光がスキャン方向に対して水平に入力する例を示した図であり、図9(d)は係る場合の網膜RT上での各信号光のスキャン方向と配列を示す図である。図9(e)は図9(a)乃至図9(d)におけるX軸方向及びY軸方向を示す図である。 その他の実施例における断層撮影システム100の処理の流れを示すフローチャートである。 図11(a)はマルチビームOCTで撮影された断層画像の表示画面を示す図である。図11(b)はその他の表示画面を示す図であり、図11(c)はまたその他の表示画面を示す図である。 図12(a)は各信号光に対応するコヒーレンスゲートの相対位置関係を表示する例を示す図である。図12(b)はコヒーレンスゲートの位置を調整する調整画面の例を示す図である。 図13(a)は各信号光に対応するコヒーレンスゲートの相対位置関係を表示する例を示す図である。図13(b)はその他の表示例を示す図である。図13(c)はその他の表示例を示す図である。 表示制御部105によるその他の表示画面を示す図である。
図を適宜参照しながら本発明の実施形態を以下の実施例に基づいて説明する。
本実施例における断層撮影システム100は、画像処理装置110にて断層撮影装置120により撮された複数の断層画像をBスキャンの方向の相対関係を示すように表示形態を決定し、表示装置130に表示するというものである。
図1は断層撮影システム100の構成を示す。同図に示す光干渉断層撮影システムは、画像処理装置110、断層撮影装置(OCT撮影装置)120と表示装置130を備える。画像処理装置110は、光干渉断層撮影装置120から断層画像や眼底画像を取得して、断層像の表示制御を行う。また画像処理装置110は断層撮影装置120に対して撮影条件の入力や撮影指示を行う撮影制御装置としても機能する。断層撮影装置120は、信号光で被検眼の網膜をスキャンすることで網膜の断層画像と眼底画像を撮影する。これについては後述する。表示装置130は、例えば液晶ディスプレイ等からなり、撮影対象の断層画像や眼底画像、画像処理装置110により加工された断層画像や眼底画像、撮パラメータなどを表示する。
画像処理装置110は画像取得部101、指示取得部102、制御部103、画像生成部104、表示制御部105、記憶部106を有する。
画像取得部101は外部装置とのデータのやり取りを行う入出力部であり、断層撮影装置120から撮影対象の断層画像を取得する。また、これと合わせて撮影対象の表面の画像も取得する。本実施例においては撮影対象を眼部の網膜とするので、表面の画像として眼底カメラにより撮影された眼底画像を取得する。本実施例においては、これら断層画像および眼底画像は二次元の画像とする。
また、画像取得部101は断層撮影装置120と画像以外のデータのやり取りも行う。また、画像取得部101は後述する撮影パラメータや撮開始を指示する情報を断層撮影装置120に対して送信する。この撮影パラメータと撮開始の指示に基づいて断層撮影装置120が撮影処理を行い、得られた断層画像を画像取得部101が取得することとなる。かかる断層画像は、前記撮影対象に対する主走査線の方向が異なる複数の断層画像であるとする。
指示取得部102は、操作者が不図示の操作部で入力した撮影条件や撮影開始の指示を取得する。ここで撮影条件とは、断層画像の撮影位置(Bスキャンの位置)や走査の向き、コヒーレンスゲートの位置などである。コヒーレンスゲートとは、信号光の軸方向の撮影範囲を示す値である。操作部は画像処理装置110に備えられたキーボードやマウスを指す。指示取得部102が取得した指示は制御部103へと送信される。
制御部103は、指示取得部102が取得した指示に基づいて信号光の撮影位置(Bスキャン位置)、スキャン速度などの断層像を撮するためのパラメータを設定し、断層像撮指示と眼底画像撮影指示と共に画像取得部101へ送る。その撮指示に基づいて撮影され画像取得部101が取得した画像を、画像生成部104へと送る。また、制御部103は生成された画像と、撮影時のパラメータを表示制御部105へと送る。
画像生成部104は、得られた断層画像や眼底画像を診断に用いる画像として見やすくするための処理を行う。ここで行われる画像処理は、ノイズ低減処理やコントラスト調整処理等の単体の画像を見やすくするための処理である。ここでの形成処理として、コントラスト調整を説明する。まず、画像全体のヒストグラム分布を算出する。次に、ヒストグラム分布から、最高値の上位5%を除いた最大の値を上限値とする。同様ヒストグラム分布から、下位5%を除いた最小の値を下限値とする。そして、その上限値と下限値を利用して、画素値を線形に256階調の0から255までに変換をする。なお、コントラスト調整のほか、ガンマ補正処理、または擬似カラー化などの処理を施しても良い。処理された複数の画像は、制御部103により表示制御部105へと転送される。
表示制御部105は配置決定部107を有しており、撮影対象に対する主走査線の方向の相対関係に応じて、複数のOCT断層画像における主走査線の方向が表示画面において異なるような配置で複数のOCT断層画像を表示画面に表示させる。配置の決定には、同じく制御部103が取得した走査線(Bスキャンライン)の相対位置関係の情報に基づいて、各断層画像の走査線同士のなす角が異なることを明示する各断層画像の配置を決定する。また、表示制御部105は、撮影時のパラメータに応じて生成された断層画像や眼底画像を加工し、断層画像や眼底画像に新たな情報を付加するなどして表示形態を変え、断層画像を表示する表示用画像の作成を行う。
ここで制御部103が送信し配置決定部107が受信するデータの一つには、断層撮影装置120から撮影対象に対する各断層画像のBスキャン位置がある。ここで、Bスキャンの位置とは、断層撮影装置120による信号光の走査方向を示す方向である。Bスキャンについては後述する。Bスキャンの位置は、断層画像とは別に付属情報として取得しても、画像に関連付けられたBスキャン位置の情報を得ても、指示取得部102が取得した指示情報から取得しても、画像を解析してBスキャンの位置を得てもよい。画像とは別に付属情報として得る場合には、画像取得部101が断層撮影装置120から付属情報を取得してもよい。
また、表示制御部105は複数の断層画像におけるBスキャン方向の相対関係の情報を直接制御部103から取得してもよい。ここで相対関係の情報とは、複数のBスキャン方向のなす角度の情報や、複数の断層画像の交差する位置の情報である。
上述の情報に基づいて表示制御部105の配置決定部107は、複数の断層画像のBスキャン位置の違いを示すような断層画像の配置を決定する。例えば、互いのBスキャン位置が直交する場合には、一方の画像を他方の画像に対して90度傾けて配置する。表示制御部105は、決定された配置で表示装置130に表示させる表示制御を行う。このような表示により、複数の断層画像についてBスキャン方向の違いをユーザに直感的に認識させることができる。これにより、逐一Bスキャン方向を確認する必要が不要となり、ユーザの利便性が向上する。表示例の詳細については後述する。
記憶部106は、撮された診断用断層画像を保持する。
次に図2に基づいて断層撮影装置120の構成を説明する。図2は断層撮影装置120の構成を図示したものであり、断層撮影装置120は、光干渉断層計(OCT:Optical Coherence Tomography)の原理を利用した光干渉断層撮影装置であり、低コヒーレンス光により撮影対象を所定の主走査線に沿ってスキャンすることで断層画像を得る。
断層撮影装置120は撮影対象の一例である眼球EBの網膜RTを信号光でスキャンして断層画像を取得する。本実施例において断層撮影装置120は干渉光を分光して検出した信号をフーリエ変換して断層像を生成するスペクトラルドメイン方式とする。なお以降の説明では撮影対象に入射する信号光の光軸方向をZ軸、Z軸と直交する平面内にX軸及びY軸を取る。
図2において低コヒーレンス光源であるSLD201から発せられた光はファイバカプラ203に入射する。ファイバカプラ203は入射した光を信号光Bmと参照光Brに分離し、信号光Bmは光ファイバにより走査光学系04に、参照光Brは参照光コリメータ208に出力される。
走査光学系204は入力した信号光Bmをガルバノミラー206に集光し、集光された信号光の網膜RTへの入射位置を順次変えることにより網膜RTの走査を行う。ここでガルバノミラー206は、水平スキャンをするスキャナと垂直スキャンをするスキャナから構成され、スキャナ制御部205はガルバノミラー206を駆動制御する。走査された信号光Bmは対物光学系207を介して被測定物である網膜RTに到達し、ここで反射して再び対物光学系207、走査光学系204を通ってファイバカプラ203に到達する。
一方、ファイバカプラ203から出力された参照光Brは光ファイバにより参照光コリメータ208を介して参照ミラー209で反射し、再びファイバカプラ203に到達し、ここで信号光Bmと干渉して干渉光が生成され、信号検出部210に入力される。参照ミラー制御部212は参照ミラー209の位置を駆動制御する。参照ミラー209の位置を変更することで、参照光の光路長を変更する。これにより、信号光と参照光が干渉する範囲が決定される。この、干渉光が生成され画像化されるZ軸方向の範囲をコヒーレンスゲートまたはコヒーレントゲートと呼ぶ。
信号検出部210は干渉光を検出し、電気的な干渉信号として信号処理部211に出力する。信号処理部(画像形成部)211は干渉信号をフーリエ変換等の信号処理によって網膜RTのZ方向に沿った反射率に対応する信号を生成し、網膜RTの断層画像を再構成する。この1次元の画像を取得する処理をZ軸方向への走査になぞらえてAスキャンと呼び,得られた1次元画像をAスキャン画像と呼ぶ。
上述の断層撮影装置120により、眼底の所定位置に信号光を照射することで、照射された位置におけるAスキャン画像が得られる。この信号光を照射する所定位置をある走査線上にて所定間隔で順次変更した走査(Bスキャン)を行い、信号処理部211が周知の補間処理を行うことにより、この走査線を含みZ軸方向に広がる二次元の断層画像(Bスキャン画像)を得ることができる。また、眼底の所定領域内にて所定間隔でAスキャンを行い、得られたAスキャン画像を信号処理部211が周知の補間処理で補完することによりこの所定領域を含みZ軸方向に広がる三次元の断層画像を得ることができる。また、眼底表面と略平行で任意の深さを画像化した二次元断層画像(Cスキャン画像)など、任意の断層画像を得ることができる。ここで、Bスキャン方向は、Z軸に垂直な平面上の任意の方向とし、主走査方向に並ぶ信号光の照射位置を結ぶ線分を主走査線とする。
本実施例では、信号処理部211が、走査光学系204により網膜RTを複数の異なるBスキャン方向に走査することにより得られる前記信号光の戻り光に基づいてBスキャンの方向が異なる複数の断層画像を形成する。
また、断層撮影装置120は眼底カメラ202のユニットを有しており、撮影対象である被検眼EBの網膜RTが存在する眼底を撮影することができる。眼底カメラ202は眼底に対して赤外光や可視光を撮影光として照射し、眼底からの反射光を受光して眼底画像を形成する。眼底カメラ202が発する撮影光と、SLD201からの信号光は、それぞれ対物光学系07に入射し対物光学系07を介して眼底または網膜RTに入射する。なお、光路を2つに分割せずとも、波長選択性を有するダイクロイックミラー等の光学部材を用いて光路を共通化しても、跳ね上げミラー等を用いてもよい。
上述の断層撮影装置120により得られる断層画像の例を図3に基づいて説明する。図3では、被検眼の網膜RTの眼底カメラ202で撮影した眼底画像301と、断層撮影装置120により得られる網膜の断層画像30の例が示されている。網膜は図3に示すように複数の層が深さ方向に積層された層構造を形成している。
X軸305は、眼底において眼底及び黄斑を通る直線(基準線)と平行であり、このX軸の方向を水平スキャン方向とする。また、Y軸306はX軸305と直交する方向に取る。この方向を垂直スキャン方向とする。なお、これら水平スキャン及び垂直スキャンはBスキャン方向の例である。何れの方向をBスキャンの方向としてもよいが、説明のためある撮影において選択されたBスキャンの方向を特にその撮影における主走査方向とし、主走査方向及びAスキャン方向と直交する方向を副走査方向と定義する。またZ軸307はX軸及びY軸と直交する向きに取る。Z軸の方向は撮影対象に入射する信号光の光軸方向及びAスキャンの方向と一致する。なお、Bスキャン方向という場合には、正方向と負方向は特に考慮せず、信号光による走査が進む方向と逆方向をも含む概念とする。
断層画像30を再構成するため、断層撮影装置120はガルバノミラー206を主走査方向(ここでは、水平方向)に移動しながら信号処理部211がAスキャン304を一本ずつ画像として再構成する。このAスキャン画像同士の間を周知の補間処理により補間して二次元または三次元断層画像303を構成する。二次元の断層画像303はBスキャン画像と呼ばれ、網膜に対する奥行き方向とそれに直交する方向の二次元の断面、すなわち図3において示されるX軸305およびZ軸307で規定される平面に相当する。また、302は眼底画像301から見た断層画像303のBスキャン位置及び範囲を示している。
上述の断層画像を複数の異なるBスキャン位置で得て、それら複数の断層画像を断層撮影システム100が表示する際の表示処理について、図4に示すフローチャートに従い説明する。
〔ステップS410〕ステップS10において、指示取得部102は、不図示の操作者が入力する、被検眼の網膜に対して、複数の断層画像についての撮影位置や撮影のスキャン方向、コヒーレンスゲートの位置(撮深度)等の撮影条件を取得する。本実施例では、撮影位置の指示として、網膜を撮影位置の部位とする。この指示は、画像処理装置110に備えられた不図示の操作部を介して、操作者によって入力される。得られた指示は制御部103へと送信される。
〔ステップS420〕ステップS20において、画像取得部101は、断層撮影装置120から断層画像と眼底画像を取得する。取得された断層画像及び眼底画像は制御部103が受取って、撮影条件の情報と共に画像生成部104へと転送する。このステップでは、制御部103は診断用断層像撮影パラメータの調整のためにプレスキャン用の第1撮影のスキャンパラメータと第2撮影のスキャンパラメータを決定する。ここでは、第1撮影のスキャンパラメータにおける走査方向は、図3が示すように、網膜のX方向にする。これを第1の方向とする。撮影範囲は、指示取得部による指示に応じて行われる。診断用断層像の撮用パラメータと同じにする。第2撮のスキャンは、第1撮影のスキャンラインと第2撮影のスキャンラインが直交するように撮影位置と方向を決定する。これを第二の方向とする。撮影範囲(スキャン距離)は、第1撮のスキャンと同じとする。制御部103は、この第1撮影のパラメータと第2撮影のパラメータとを画像取得部101へ転送する。第1の方向と第2の方向は直交する。
画像取得部101、第1撮影のパラメータと第2撮影のパラメータとそれぞれの断層像の撮命令を断層撮影装置120へ転送する。
断層撮影装置120は、第1撮影のパラメータと第2撮影のパラメータに基づいて、網膜の断層画像を撮影する。この断層画像を第1の断層画像及び第の断層画像とする。
断層撮影装置120のスキャナ制御部205は、画像取得部101が転送した撮パラメータ情報の撮影位置と撮影範囲情報に従い網膜RT上で信号光Bmを垂直方向および水平方向にスキャンするようガルバノミラー206を駆動制御する。さらに、断層撮影装置120は、画像取得部101から転送された撮パラメータ情報のコヒーレンスゲート情報に従って参照ミラー制御部212を制御し、参照ミラー209を駆動する。そして、参照ミラー209を駆動することによって、参照光Brの光路長を変更し、網膜RTにおける目的とする深さ範囲の断層得る事ができる。さらに、眼底カメラ202により、網膜RTの眼底画像が撮影される。撮影された眼底画像は、画像取得部101へと転送される。
次に、撮パラメータとガルバノミラーの駆動の関係について説明する。第1撮影のパラメータのスキャン方向と第2撮影のパラメータのスキャン方向は直交するので、第1撮影のパラメータで網膜RTの断面を撮影する時に、スキャン方向を水平方向とする場合、水平スキャンに対応するガルバノミラー206がスキャンの主走査を行う。そして、第2撮影のパラメータで網膜RTの断面を撮影する時に、スキャン方向が垂直方向とし、垂直スキャンに対応するガルバノミラー206がスキャンの主走査を行う。本実施例では撮影順として、第1の撮パラメータでの撮の後に第2の撮パラメータでの撮をするが逆の順序でもよい。さらに、断層撮影装置120が複数の低コヒーレント光源を有している場合には両方を同時に行うことも考えられる。
なお、第1撮影のパラメータで撮された断層画像を第1の断層画像と呼び、第2撮影のパラメータで撮された断層画像を第2の断層画像と呼ぶ。画像取得部101は、第1の断層画像と第2の断層画像を、断層撮影装置120から取得する。
〔ステップS430〕ステップS30において、画像生成部104は、第1の断層画像と第2の断層画像の生成を行う。得られた断層画像や眼底画像を診断に用いる画像として見やすくするための処理を行う。なお、複数の画像で階調が共通するような階調変換処理をしてもよい。その場合には画像間の比較が容易になる。
〔ステップS440〕ステップS40において、表示制御部105は、形成された第1断層画像と第2断層画像の表示の制御を行う。配置決定部107は、制御部103から受け取った撮影条件から、第1断層画像のBスキャンの方向と第2断層画像のBスキャンの方向の関係を判定する。ここで、二つのBスキャンの方向が異なっていると判定された場合には、二つの断層画像の表示形態を変えて表示させるための配置を決定する。そして、表示制御部105はその配置に基づき表示用画像データを作成する。
ここでは、二つのBスキャン方向の相対的な関係が保存されるように、一方の画像を固定し、他方の画像を傾けて配置させ表示させる。入力された第1断層画像のBスキャン方向(撮影方向)は、図3が示される網膜のX軸方向にする。そのため、配置決定部107は、第1断層画像における網膜の深さ方向が表示装置130の表示画面の縦方向となるように表示画面上の配置を決定する。また、第2の断層画像のBスキャン方向は第1の断層画像のBスキャン方向と直交するので、その関係を表すために、第2の断層画像の網膜の深さ方向が表示画面の横方向となるように配置を決定する。また、これら断層画像と合わせて眼底画像の表示配置も決定する。表示制御部105はこれら決定された配置で第1の断層画像及び第2の断層画像を表示させるための表示用画像データを作成する。表示制御部105は、作成された表示用画像データを表示装置130に送信し、表示装置130は異なる表示用画像データが入力されるまでこの表示用画像データを継続的に表示させ、表示画面とする。この表示画面の例については後述する。
〔ステップS450〕ステップS50において制御部103は、指示取得部102により表示を終了する指示が入力されたかどうかを確認する。
表示を終了する指示として、指示取得部102が操作者から新たな断層画像を撮する指示がある。断層画像を撮影するスキャンの開始の指示は、指示取得部に不図示のボタンの押下により行われるが。これに限定されず、キーボードのキーの押下でも良いし、画面のGUIのボタンをクリックするのでもよい。
断層画像の撮影開始の指示があると、その指示は画像取得部101へと転送され、画像取得部101は複数の断層画像の撮を開始する。断層画像の主走査は、第1撮影のパラメータと同じ、副走査は、第2撮影のパラメータと同じにすることで、Bスキャンの位置が異なる複数の断層像の取得をする。さらに、撮影された断層画像は記憶部106に記憶される。新たな断層画像を撮影する指示の入力があったと判定した場合であれば、処理はステップS10へ戻り、新たな撮影指示を取得する。また、表示された断層画像によって医師により診断が行われ、その後に装置の利用を終了する指示があったと判定した場合も表示が終了する。
次に図5に基づいて表示制御部105による表示装置130での表示画面を説明する。図5(a)は、表示装置130の表示画面領域01に、網膜のX方向をBスキャン方向として撮影された第1の断層画像02と、Y方向をBスキャン方向として撮影された第2の断層画像03とが平面的または二次元的に表示されている。第1の断層画像02は表示画面領域01の縦方向と第1断層02における網膜の深さ方向(網膜のZ軸方向)が平行になるように配置されている。第2の断層画像03は表示画面領域01の縦方向と第2の断層画像03における網膜の深さ方向(網膜のZ方向)はと直交するように配置されて、かつ深い位置は表示画面領域01の右側となっている。第1の断層画像上におけるBスキャン方向と、第2の断層画像上におけるBスキャン方向とが直交するように配置されることとなる。
なお図5(a)は、複数の断層画像のBスキャンラインが平行でない場合の表示例であるが、平行である場合には、複数の断層画像における網膜の深さ方向が互いに平行となるように断層画像を平面的または二次元的に配置することとなる。
このように、Bスキャンラインが平行でない複数の断層画像を平行でないことを示す表示形態で表示させることにより、画面上においてBスキャンラインの違いを表示することができ、断層画像の相対関係の把握を容易にすることができる。また、画像の配置の仕方でBスキャンラインの違いを示すことができるため、ユーザに容易に、直感的に理解させ易いという効果がある。
また、複数の画像を二次元的に配置して表示することにより、三次元的に立体表示する場合に比べて、診断上必要な情報を正確に得ることが可能となる。これは三次元的に立体表示する場合、画像は表示画面上において長方形ではなく平行四辺形として表示されるため、立体表示された画像からでは診断を誤る可能性があるからである。
図5(b)にはその他の表示画面の例を示す。この表示は、図5(a)の表示に加えて、互いの断層画像が交差する位置を表示させる。断層画像同士の交差とは、断層画像に対応する撮影対象の断面が互いに交差していることを指す。表示制御部105は、互いのBスキャン位置の情報を制御部103から取得するので、その情報を用いて交差しているか否かを判定する。交差していると判定した場合には、網膜をスキャンしてお互いが交差する位置を示す印を追加する。印として、断層像上で交差する位置を線で示す。この線は、網膜のZ軸方向と同じ方向に引かれ、第1の断層画像と第2の断層画像におけるお互いが交差する位置に追加される。
図5(b)では、第1の断層画像08に、第2の断層画像506との交差位置を示す印(点線)09が表示されている。さらに、第2の断層画像06に、第1の断層画像508との交差位置を示す印(点線)07が表示されている。なお、ここでは印として点線を用いたが、交差する位置を示すものであれば、星印などでも良い。さらに第1の断層画像か、第2の断層画像のいずれか一方にだけ追加することとしても良い。
図5に例示される表示により、互いに直交するBスキャンラインに基づいて撮影された断層画像を、各画像における深さ方向または水平方向が直交するように表示させており、各断層画像のBスキャンラインが直交することを示すことができる。このように表示しても、画像に現れる撮影対象がBスキャン方向に依存せず類似する構造を有しているような場合には、図5のように一方の画像を傾けて配置したとしても画像から傾けて配置されていることを理解可能である。網膜は全域に渡り略同様の層構造を形成しているためこの例に当てはまり、網膜の断層画像において特に有効な表示形態である。
さらに、網膜を撮影する場合には、視神経乳頭部と黄斑を通る基準線と平行なX軸方向に主走査方向を、直交するY軸方向に副走査方向を取るのが通常である。X軸方向にBスキャンを行う画像を縦横反転させずに第1の断層画像02として配置することにより、断層画像の診断をより行い易くすることができる。
〔変形例〕
上述の実施例では、断層撮影装置120から第1断層像と第2断層像を取得する場合の説明をしたが、本発明は、これに限定することがなく、データサーバ(不図示)に保存されているデータから第1断層像と第2断層像を取得しても良い。この場合は、ステップS20において、画像取得部101は不図示のデータサーバへ第1断層画像と第2断層画像の要求を送り、これら画像を取得して表示させてもよい。
また、上述の実施例では2枚の画像の表示について述べたが、2枚の画像のみに限らず、複数枚の画像を表示させてもよい。
また、上述の実施例のステップS40にて複数の断層画像のBスキャン位置が異なっているか否かを判定したが、これに限らず、各断層画像におけるBスキャン方向の撮影対象に対する位置関係に応じて表示形態を変えてもよい。
また、表示された各断層画像について、スキャン方向を示すマークを付してもよい。これにより、Bスキャンの方向の違いをより強調することができる。
本実施例では、二つの画像のBスキャンが直交する例を示したが、斜交する場合も考えられる。このような場合には配置決定部107が一方の画像を斜めに傾けて配置しても、あるいは図のように90度傾けて表示してもよい。その際には、表示制御部105により撮影対象において二つの断層画像がなす角度を文字やマーク等で明示させることで、少なくともBスキャン方向が異なることを画像の配置により示しつつ、相対位置関係を明示することができる。また、傾けて表示させる断層画像に代えて、断層画像の斜視図を表示させるようにしてもよい。
また、90度傾けて表示させる場合には、傾けて表示された断層画像を確認するのは困難な場合がある。これに対応するため、複数の表示モードを設ける。第1の表示モードでは、表示制御部105は図に示すような表示形態で表示し、第2の表示モードでは、表示制御部105は選択された一方の画像を傾けずに拡大表示する。第表示モードから第2の表示モードへの切り替えは一方の画像が操作部により選択されることで行われ、選択されたいずれかの断層画像を傾けずに拡大表示する。選択を解除することに応じて、制御部103は第2の表示モードから第表示モードへと遷移させ、表示制御部105は表示画面が図に示す通常の表示に切り替える。このようにすることで、Bスキャン方向を直感的に示しつつ、画像の確認を容易にすることができる。
本実施例では、実施例1の表示に加えて、眼底画像も画面上に表示させる。また、眼底画像上に複数の断層画像のBスキャン位置を重畳して表示し、断層画像と対応付けて表示させる。更に、本実施例では、さらに診断用断層像の撮影方向を考慮して、第1断層像と第2断層像の表示配置を決定する。
本実施例における表示制御部105は、複数の断層画像と共に眼底画像を表示画面領域に表示させる。また、表示制御部105は制御部103から得たBスキャンの位置の情報に基づいて、眼底画像上にBスキャンの位置を重畳表示する。更に、眼底画像において示された各Bスキャンの位置と、各断層画像との対応関係を示す表示を行う。
本実施例の表示制御部105により表示装置130に表示される画面の例を図6に基づいて説明する。図6(a)は、眼底画像604と第1断層像と第2断層像の撮位置605を表示する例でもある。ここで、撮影位置605は、図に示す通りに十字型のマークであり、第1断層像撮影方向と第2断層像撮影方向をそれれ示している。図6(a)の例では、眼底における網膜のY方向(垂直方向)の線分が第の断層画像のBスキャン位置を示す。さらに、網膜のX方向(水平方向)の線分は、第2の断層像のBスキャン位置を直交する第の断層画像のBスキャン位置を示す。色の違いにより、両者を区別できるようにしている。図6(a)は、色の代わりに、点線と実線を用いて二つの断層画像を区別している。なお、これに限らず、対応する断層画像の枠の色と眼底画像上のBスキャン位置を示す線分の色を対応付けるようにしてもよい。
また図6(a)は実施例1と異なり、第1の断層画像602は水平方向のスキャンにより得られる断層画像であり、第2の断層画像603は垂直方向のスキャンにより得られる断層画像である。つまり図6(a)の例では、本撮影の主走査方向が図面における縦方向であり、視神経乳頭部と黄斑を結ぶ基準線と直交している。通常は基準線と平行に主走査を行うが、病変の状態によっては、本撮影の主走査方向を基準線と斜交する向きに取る場合があり、図6(a)はそのような本撮影を行う前に仮撮影された断層画像の表示の一例である。このように、あえて眼底画像上におけるBスキャンの方向と断層画像上におけるBスキャンの方向を変えているのは、第の断層画像602のように傾けずに表示する方が業界における常識となっているからであり、また画像の確認がし易いということによる。病変を見やすくすることを目的に主走査方向を設定するので、主走査方向の画像を診断し易い形で提示するのが診断上必要だからである。なおここで仮撮影とは、最終的に撮影された断層画像を撮影するための位置決めその他の撮影条件を設定するための撮影を指す。本撮影は、かかる仮撮影の後に行われる撮影を指す。
図6(b)はその他の表示画面の例であり、実施例1における図(b)と同じく、二つの断層画像が交差する場合にその交差位置を互いの断層画像に重畳して表示させている。図6(b)で配置決定部107は、図6(a)とは異なり、眼底画像上におけるBスキャンの方向とそれに対応する断層画像のBスキャンの方向とが表示画面上で平行になるように各断層画像を配置する。このように、眼底画像上におけるBスキャンの方向と断層画像上におけるBスキャンの方向とが合っているため、眼底画像と断層画像との対応を直感的に分かり易い形でユーザに示すことができる。
以上図6のように、眼底画像と断層画像を表示することでユーザは眼底画像と断層画像を視覚的に比較することができる。また、眼底画像におけるBスキャンの位置と断層画像とを対応付けて表示することにより、眼底画像における断層画像の位置を参照することができ、より診断に有効な情報を得ることができる。
〔変形例〕
なお、上述の図6に例示する表示に限らず、種々の表示形態を取ることが可能である。一例として、表示制御部105が操作部等の入力による指示に応じて眼底画像と断層画像のいずれか一方を表示するように表示の切り替え制御を行うことが考えられる。この場合、ユーザが操作部により眼底画像を選択する旨の入力を行うことに応じて、指示取得部102はその旨の指示を制御部103に送信し、制御部103は指示された一方を選択し、表示の切り替えを行う旨表示制御部105に指示を送信する。ここで、制御部10が選択手段として機能する。これに応じて表示制御部105が眼底画像を表示させる第の表示モードに切り替わる。また第の表示モードで表示がされている場合において、眼底画像上に表示されたBスキャン位置を選択する指示の入力に応じて、指示取得部102はその旨の指示を制御部103に送信する。また制御部103は表示の切り替えを行う旨表示制御部105に指示を送信する。これに応じて表示制御部105が選択されたBスキャンに対応する断層画像を表示させる。眼底画像と複数の断層画像を同時に画面上に表示させた状態とすることが画面領域の制約上難しい場合など、一度に表示すべき断層画像の枚数が多い場合にはこのような表示の切り替えは特に有効な表示形態である。
眼底カメラ202が撮影して得られた眼底画像の代わりに、眼底を示す画像として、三次元断層画像を深さ方向に積算して得られる積算画像を表示してもよい。
また、眼底画像を表示させず、表示制御部105により撮影対象における複数の断層画像の関係を示す画像を表示させることが考えられる。この画像の1例は眼底画像に対応する円と、円内にBスキャン位置に対応する線分を記載した画像である。このような表示は、眼底画像は断層画像と別途確認したい場合、断層画像の位置関係を明示したい要求がある場合には有効な表示である。
上述の実施例1または2で示した表示処理は、本撮影前の仮撮影で得られた画像の表示に適用して特に意義を有する。本番の撮影前には仮撮影した画像を表示装置130に表示させ、ユーザが撮影条件の調整を行うが、この仮撮影に複数の異なるBスキャン方向の断層画像を得る場合に、Bスキャンの位置関係を直感的に理解させることができる。
本実施例は、本撮影前の仮撮またはプレスキャンで得られた画像の表示制御について本発明を適用する例を示す。
断層撮影システム100の利用態様を説明する。ユーザは、撮影条件の調整のために仮撮りとして撮影され表示装置130に表示された断層画像や眼底画像を観察しながら、撮影条件を調整する指示を行う。指示に応じて制御部103が新たな撮影パラメータを生成し、断層撮影装置120へと撮影の指示を行う。この点で指示取得部102は撮影対象の断層画像を撮影する際の撮影条件を調整するための調整手段として機能する。調整手段への入力に応じて調整された撮影条件に対応する断層画像へと加工して表示制御部105が表示装置130に画像を表示させる。このようにユーザによる撮影条件の調整を行いつつ仮撮の再撮影指示を指示取得部102を介して断層撮影装置120へ行い、撮影条件が整った段階で本撮影の指示が入力される。ここで、調整後に行われた仮撮及び本撮影が本実施例における再撮影に該当する。
実施例1における断層像撮システムと異なる処理が実行されるステップS50の処理について説明する。
ステップS50において、制御部103は、指示取得部102によってプレスキャン撮影を終了する指示が入力されたかどうかを確認する。プレスキャン撮影を終了する指示として、指示取得部102が操作者から診断用断層像撮のスキャンの開始の指示がある。診断用断層像撮のスキャンの開始の指示は、指示取得部に不図示のボタンの押下にするが、これに制限することなく、キーボードのキーの押下でも良いし、画面のGUIのボタンをクリックするのでもよい。
診断用断層像撮開始の指示があると、その指示は指示送信部として機能する画像取得部101を介して断層撮影装置120へと転送され、断層撮影装置120は複数の断層像の撮を開始する。診断用断層像の主走査は、第1撮影のパラメータと同じ、副走査は、第2撮影のパラメータと同じにすることで、位置をずらして複数の断層像の取得をする。さらに、撮された診断用断層像は記憶部106に記憶する。なお、断層像撮影を終了する指示が入力された場合でも、プレスキャン撮影を終了する。
プレスキャン撮影を終了するのであれば、図に示す処理は終了する。プレスキャン撮影を続くのであれば、処理はステップS10へ戻り、新たな撮影指示を取得する。
図7は、網膜上の領域に対して診断用断層画像を撮する際の仮撮影画像の表示例である。図7では、第1の断層画像708に、第2の断層画像での交差位置を示す印(点線)709が表示されている。さらに、第2の断層画像710に、第1の断層画像での交差位置を示す印(点線)711と、診断用断層画像の撮影範囲を示す枠712が表示されている。なお、図7では、眼底画像714上で診断用断層像の撮影範囲が枠713として表示されている。眼底画像714はステップS40で断層撮影装置120が撮影して、ステップS50で制御部103が取得することで得られる。さらに、ステップS60で制御部103は眼底画像、断層画像、撮影範囲等の撮影条件の情報を表示制御部105へ転送する。表示制御部105はかかる入力に基づいて眼底画像及び断層画像において診断用断層画像の撮影範囲を重畳表示させる。
また、指示取得部102がユーザから撮影範囲、仮撮のBスキャン位置、コヒーレンスゲート等の撮影条件を変更する指示を取得した場合、制御部103は指示に応じた撮影パラメータを生成し、画像取得部101を介して再撮影を指示する。断層撮影装置120により再撮影された断層画像は画像取得部101を介して画像処理装置110に入力され、図7に例示される態様で表示装置130に表示されることとなる。
このように、本発明に係る表示を仮撮影の断層画像の表示に適用することにより、複数の断層画像の関係をより直感的に把握しながら、撮影範囲、Bスキャンの主走査方向の選択、Bスキャンの位置の設定、コヒーレントゲートの調整等を容易に行うことができる。また、撮影範囲と眼底画像または断層画像との関係を把握し易い表示画面を提供することができる。
〔変形例〕
実施例2における図6(a)の例示される表示のように、常に主走査方向と平行なBスキャンにより得られる断層画像を傾けずに表示させる。例えばBスキャンの主走査方向を変更しながら仮撮を行い、主走査方向を決定するといった方式で装置を利用する場合には、調整の操作をより容易に行わせることができる。主走査方向の調整は病変の形状等に応じて行われるものであるため、このような表示により病変などを撮するための調整を容易にさせるという効果がある。
本実施例では、断層撮影装置として複数の信号光により複数の位置を同時に走査可能ないわゆるマルチビーム型の光干渉断層撮影装置を用い、診断に用いる本撮影の断層画像の撮影する前のプレスキャン画像の表示制御について説明する。
本実施例に係る画像処理装置110の基本構成は実施例1と同様であるので、説明は省略するが、断層撮影装置は前述した実施例と異なる構成となるため、以下に図8を参照して本実施例における断層撮影装置820の構成について説明する。なお、断層撮影装置820と共通する構成を同じ識別番号にして、説明を省略する。断層撮影装置820は3本の信号光を備える。
図8において低コヒーレンス光源であるSLD301a、 SLD301b、 SLD301cから発せられた光はファイバカプラ303に入射する。ファイバカプラ303は入射した光束を信号光束Bmと参照光束Brに分離し、信号光束Bmは光ファイバにより走査光学系304に、参照光束Brは参照光コリメータ308に出力される。ここでは、SLD301aの光から分離された信号光はBm1、参照光はBr1とする。同様に、SLD301b、SLD301cの光から分離された信号光と参照光は、それぞれ、Bm2とBr2、Bm3とBr3とする。
ファイバカプラ303から出力された参照光束Brの各々の参照光は光ファイバにより参照光コリメータ308を介して参照ミラー309a、 参照ミラー309b、 参照ミラー309cで反射される。その後再びファイバカプラ303に到達し、ここで信号光束Bmと干渉して干渉光が生成され、信号検出部310に入力される。すなわち、各光束を構成する3つの信号光は各々干渉して3つの干渉光が信号検出部310に入力されることとなる。
参照ミラー制御部312は参照ミラー309a、参照ミラー309b、参照ミラー309cの位置を駆動制御する。
信号検出部310は各干渉光を検出し、電気的な3つの干渉信号として信号処理部311に出力する。信号処理部311は各干渉信号をフーリエ変換等の信号処理によって網膜RTのZ方向に沿った反射率に対応する3つのA−スキャンを生成し、網膜RTの3つの断層画像を再構成する。
図9は走査光学系304における信号光の配列の一例を示したものである。図9(a)は信号光Bm1、Bm2、及びBm3をスキャン方向に対して垂直に入射する例であり、図9(c)は水平に入力する例を示している。また図9(b)および(d)は網膜RT上での各信号光のスキャン方向と配列を図示したものである。図9(e)は図9(a)乃至図9(d)のX軸方向及びY軸方向を示す。
次に、図10のフローチャートを参照して、本実施例の画像処理装置110が実行する具体的な処理の手順を説明する。
〔ステップS1010〕ステップS1010において指示取得部102は、不図示の操作者が入力する、診断用断層画像の撮影位置や撮影のスキャン方向、コヒーレンスゲートの位置(撮深度)等の指示情報を取得する。撮影位置の指示として、網膜を撮影位置の部位とする。本実施例では3本の信号光を用いるが3つの撮影位置は一つの指示で入力する。なお、各信号光の測定位置の指示を夫々独立にしてもよい。さらに、3本の信号光の配置の指示を取得する。本実施例では、図(a)の配置で、網膜をX方向にスキャンをして撮影を行う場合の説明をする。撮影指示は、画像処理装置110に備えられた不図示のキーボードやマウスを介して、操作者によって入力される。得られた指示は、制御部103へと送信される。
〔ステップS1020〕ステップS1020において、制御部103は診断用の断層画像の撮影パラメータを調整するためにプレスキャン用の第1の撮影スキャンパラメータと第2の撮影スキャンパラメータを決定する。ここでは、第1の撮影スキャンパラメータは、ステップS1010で得られた撮影指示の撮影位置、撮影範囲(スキャン距離)、深度、方向などと同じにする。第2の撮影スキャンパラメータは、第1の撮影スキャンと互いのスキャンラインの中点にて直交する様に第2のスキャンの撮影位置と方向を決定する。撮影範囲(スキャン距離)は、第1スキャンと同じとする。第1の撮スキャン方向は網膜のX方向とし、第2の撮スキャン方向は網膜のY方向にする。なお、X軸方向の正負は問わない。さらに、3つの信号光が第1の撮影スキャン方向でスキャンをするので、第2の撮影スキャンは、3つの第1の撮影スキャンと交差する。ここで、本撮影における主走査方向は水平方向とする。
なお、本実施では上記の様に第1影のパラメータと第2パラメータを決定の例を説明したが、決定のされ方はこれに限られない。
本実施例では、1つの走査光学系で3本の信号光をスキャンするので、第2の撮影スキャンでも3本の信号光で行う。
〔ステップS1030〕ステップS1030において、制御部103は、ステップS1020で定められた第1パラメータと第2パラメータを画像取得部101へ転送する。画像取得部101は断層撮影装置820に撮影パラメータを送信する。
〔ステップS1040〕ステップS1040において、断層撮影装置820は、第1の撮影パラメータと第2の撮影パラメータに基づいて、網膜の断層画像と眼底画像を撮影する。本実施例では、図9(a)の信号光配置で、第1の撮影では網膜をX方向にスキャンをするので、それぞれの信号光Bm1、Bm2、Bm3は夫々異なる位置を走査し、形成される3つの画像はそれぞれ撮影対象の異なる断面を撮影した断層画像となる。次に、同じ信号光配置で第2の撮影パラメータで網膜をY方向でスキャンをするので、信号光Bm1、Bm2、Bm3は網膜上のほぼ同じ位置か、実質的に同じ位置の断層画像を得る。このように、第1の撮影パラメータによるスキャンから3つの断層画像が得られ、第2の撮影パラメータによるスキャンから3つの断層画像が得られる。
〔ステップS1050〕ステップS1050において、制御部103は、第1の撮影による3つの断層画像と第2の撮影による3つの断層画像とを画像取得部101を介して取得する。取得された断層画像は画像生成部104へと転送する。
〔ステップS1060〕ステップS1060において、画像生成部104は、画像取得部101が取得した断層画像から診断に耐える画質とするための画像を生成する。ここでの生成処理として、コントラスト調整をする。なお、コントラスト調整のほか、ガンマ補正処理、または擬似カラー化などの処理を施しても良い。ステップS1060で形成された断層画像は、制御部103によって表示制御部105へと転送される。
〔ステップS1070〕ステップS1070において、表示制御部105は、生成された断層画像の表示制御を行う。ここでは、第1の撮影は本撮影における主走査方向と平行であるので、表示制御部105の配置決定部107は、第1の撮影により得られる3つの断層画像上における深さ方向が表示画面領域の縦方向と平行になるように配置する。加えて当該3つの断層画像を縦に並べて配置する。
第二の撮影により得られる3つの断層画像の撮影位置はほぼ同じであるので、かつ表示領域をより有効に利用するため、真中の信号光、つまり信号光Bm1より得られた断層画像のみを表示させる。第2の撮影方向は診断用画像の主走査方向と直交するので、その関係を表す表示を行う。表示制御部105の配置決定部107は、断層画像上における網膜の深さ方向が表示画面領域の横方向と平行になるように、かつ深い位置の画素が表示画面領域の右側となるように断層画像を配置する。本ステップにより配置された断層画像の表示例は後述する。
〔ステップS1080〕ステップS1080において、制御部103は、指示取得部102によってプレスキャン撮影を終了する指示が入力されたかどうかを確認する。プレスキャン撮影を終了する旨の入力を取得した場合には、処理は終了する。プレスキャン撮影を続ける旨の入力を取得した場合には、処理はステップS1010へ戻り、新たな撮影指示に応じて断層画像が撮影され、表示装置に表示される。
上述の処理により表示装置130に表示される画面の例を図11に基づき説明する。図11(a)は表示画面の一例であり、表示装置130の表示領域1101に、診断用の撮パラメータと同じ撮影方向と撮影範囲で撮された信号光Bm1の断層画像1102と、信号光Bm2の断層画像1103と、信号光Bm3の断層画像1104を示す。表示画面領域1101に対して断層画像1102、断層画像1103、断層画像1104の奥行き方向(網膜のZ軸方向)が表示画面の縦方向と平行となるように配置されている。また、第二の撮影方向に対応して信号光Bm1により得られた断層画像1105が、表示画面領域1101に対して90度傾けて配置されている。断層画像上における網膜の深さ方向は表示画面の縦方向と直交するように配置され、かつ深い側は表示領域の右側となるように配置されている。
さらに、表示制御部105は各断層画像のBスキャン位置を重畳した眼底画像1106と表示させる。眼底画像1106は、ステップS1140で断層撮影装置820が撮影して、ステップS1150において制御部103が取得し、ステップS1060で断層画像と共に画像処理がなされる。その後ステップS1070において表示制御部105は眼底画像1106上に各断層画像のBスキャン位置1107を重畳して表示させる。表示画面の水平方向に3本引かれたBスキャン位置は夫々断層画像1102、断層画像1103、断層画像1104に対応し、鉛直方向に引かれたBスキャン位置は断層画像1105に対応する。
図11(b)はその他の表示画面の例であり、各断層画像が交差する位置を断層画像上において示してもよい。この場合、ステップS1160において、表示制御部105はそれぞれの信号光Bm1、信号光Bm2、信号光Bm3の断層画像に信号光Bm1による垂直方向にBスキャン位置を取った断層画像と交差する位置を示す印を追加する。さらに、画像生成部104は信号光Bm1の第2撮影に対応する断層画像に、それぞれの信号光Bm1、信号光Bm2と信号光Bm3による第1の撮影で得られる断層画像と交差する位置を示す印を追加する。図11(b)では、信号光Bm1に対応する断層画像1110に信号光Bm1の第2信号光を交差する位置に点線1116を表示させる。そして、信号光Bm1による第2の撮影で得られる断層画像1112に、断層画像1109、断層画像1110、断層画像1111と交差する位置を、それぞれ点線1114、点線1113、点線1115で示している。
図11(c)はその他の表示画面の例であり、信号光Bm1による第2の撮影でえられる断層画像111に、各信号光Bm1、信号光Bm2、信号光Bm3による本撮影の撮影範囲を示している。ステップS160において、表示制御部105がその情報を追加する。図11(c)では、信号光Bm1による第2の撮影で得られる断層画像1117に、信号光Bm1、信号光Bm2、信号光Bm3のそれぞれに対応する撮影範囲を、それぞれ枠1119、枠1118と枠1120として示す。例として、枠1119と枠1120は一点鎖線で示している。枠1118は実線にしている。各信号光の撮影範囲には、重なり部分が生じている。さらに、眼底画像1121に、それぞれの信号光の診断用断層像測定領域を、枠1122として示している。
以上で述べた構成によれば、複数の信号光を同時に利用して診断用の断層像撮影を行う際に、それぞれの信号光に対応する撮影パラメータの調整に用いるプレスキャンの断層画像の相対関係をユーザに容易に把握させることができる。
〔変形例〕
上述の実施例では、第2の撮影による断層画像を表示する際に信号光Bm1による断層画像を表示する例を説明をしたが、本発明はこの選択に限ることなく、信号光Bm2や、信号光Bm3による断層画像を利用して表示してもよい。さらに、一つ以上の断層画像を表示してもよい。
さらになお、断層撮影装置820を用いて1本の信号光で断層画像を撮影してもよい。この場合は、例えば信号光Bm1のみを点灯して測定を行い、プレスキャンの断層像の表示の際に、信号光Bm2や信号光Bm3の断層像を非表示とする。
ここでの説明の都合上では3本の信号光を用いて診断用断層画像を撮する場合の説明を行ったが、2本でも、3本以上の信号光を利用する断層撮影装置であっても良い。これらの場合は、それぞれの信号光でプレスキャンを行い、それぞれの断層画像を表示すれば良い。
また上述の実施例に限らず、3つの信号光を夫々独立に走査することが可能な光干渉断層撮影装置に本発明を適用してもよい。そのような場合には調整の手間が増えるため、より本発明の表示が有効である。
本実施例では、それぞれの複数の信号光のコヒーレンスゲート位置(撮深度)関係をよりよく提示するために、複数の信号光のうちどの信号光の断層画像を選択的に表示させる例を示す。また、複数の信号光の第2断層像を合成して新たな第2断層像を生成して表示させる例を示す。
本実施例に係る画像処理装置110の基本構成は実施例3の図1と同じなので、説明は省略する。断層撮影装置は実施例4の断層撮影装置820と同じであるので、説明は省略する。
次に、図1のフローチャートを参照して、本実施例の画像処理装置110が実行する具体的な処理の手順を説明する。ただし、実施例4と異なるステップのみ説明し、共通する処理については説明を省略する。
〔ステップS110〕ステップS110において、指示取得部102は、不図示の操作者が入力する診断用断層像の撮影位置や撮影のBスキャン方向、コヒーレンスゲートの位置(撮深度)等の指示情報を取得する。本実施例では、それぞれの信号光でのコヒーレンスゲート調整を個別に指定することとする。得られた指示は、制御部103へと送信される。
〔ステップS140〕ステップS140において、断層撮影装置820は、第1撮影のパラメータと第2撮影のパラメータに基づいて、網膜の断層画像を撮影する。合わせて、眼底カメラ202により眼底画像の撮影も行う。本実施例では、実施例4と同様に図9(a)の信号光配置で、第1の撮影パラメータは主走査方向をX方向としてスキャンをするので、それぞれの信号光Bm1、Bm2、Bm3は異なる断面での断層画像を撮する。次に、同じ信号光配置で第2撮影のパラメータで網膜をY方向でスキャンをするので、信号光Bm1、Bm2、Bm3は網膜上のほぼ同じ位置か同じ位置での断層画像を行う。そして、第1の撮影パラメータでのスキャンから3つの第1の断層画像が得られる。さらに、第2の撮影パラメータでのスキャンから3つの第2の断層画像が得られる。
本実施例では、各信号光のコヒーレンスゲートの位置、つまり、参照光の光路長の調整を行なう。そのため、制御部103は参照ミラー制御部312を制御し、信号光Bm1、Bm2とBm3のそれぞれの参照ミラー309a、309bと309cの位置を調整する。そして、それぞれの信号光についての第1断層像と第2断層像は、調整された同じコヒーレンスゲートの位置(撮深度)で撮される。
〔ステップS160〕ステップS160において、画像生成部104は、3つの第1断層画像と3つの第2断層像の形成を行なう。本実施例では、コントラスト調整などの画像形成処理に加えて、複数の信号光の第2断層像を利用して、合成された第2断層像の生成処理を行う。生成処理として、以下の一つまたは複数の処理を合わせて施してもよい。
・複数の信号光の第2断層像の一部分を切り出して、合成第2断層像を生成する。この場合は、信号光の切り出す領域として、その信号光で診断用断層像を撮する領域と同じ領域にする
・すべての信号光の第2断層像を混合する。この場合は、すべての信号光の第2断層像の平均断層像を生成してもよいし、信号光ごとにその第2断層像に重みを付けて平均断層像を生成しても良い。例えば、信号光1の重みを2にして、その他の信号光の第2断層像に重み1にするなどでも良い。
なお、本発明は以上の生成処理に限定することではなく、複数の信号光の第2断層像を利用して合成第2断層像を生成してもよい。
〔ステップS170〕ステップS170において表示制御部105は、形成された3つの第1断層像と、3つの第2断層像と、合成された第2断層画像の表示制御を行う。表示制御部105の配置決定部107は、3つの第1断層画像の奥行き(深度)方向が表示領域に対して垂直、かつ深い位置の画素が表示領域の下方向に描画するように各断層画像の配置を決定し、その3つの第1断層像を並べて表示装置130に表示させる。表示制御部105は、3つの信号光の第2断層像と、ステップS1060で合成された第2断層画像のうち、一つの表示制御を行う。ここでは、合成された第2断層像の表示制御をすることにする。それぞれの信号光による第2断層画像の撮方向は診断用撮パラメータの撮影方向と直交するので、その関係を表示制御部105が表す。具体的には、表示制御部105の配置決定部107は、合成された第2断層像の奥行き(深度)方向が表示領域に対して水平に、かつ深い位置の画素が表示領域の右方向に描画するように各画像の配置を決定し、その第2断層像を表示装置130に表示する。
なお、表示する第2断層像は、合成された第2断層像に限定する必要はない。さらに、本発明の画像処理装置を利用する間に表示する第2断層像を入れ替えてもよい。例えば、ステップS110では、ある信号光の撮パラメータ、例えばコヒーレンスゲートの位置(撮深度)、を操作して調整されている間にその信号光の第2断層像を提示してもよい。
図12は、本実施例の表示制御部105による表示装置130での表示例を示す。図12(a)は、表示装置130の表示領域1201に、診断用断層像情報パラメータと同じ撮影方向と撮影範囲で撮された信号光Bm1の第1断層像1202と、信号光Bm2の第1断層像1203と、信号光Bm3の第1断層像1204を示す。表示領域1201に対して第1断層像1202、第1断層像1203と第1断層像1204の奥行き方向(網膜のZ方向)は垂直に描画される。表示領域1201に対して、3つの信号光の第2断層像から合成された第2断層像1205の奥行き方向(網膜のZ方向)は水平に描画されて、かつ深いほうは表示領域の右側にある。合成された第2断層像1205の領域1206、領域1207と領域1208は、それぞれ信号光1、信号光2と信号光3の第2断層像、かつ同じ領域から取り入れられている。
図12(b)は、信号光2がコヒーレンスゲートの位置調整のため操作対象になっている場合で、表示装置130の表示領域1201に、信号光2の第2断層像1209が表示されている。
以上で述べた構成によれば、信号光の第1断層像と第2断層像の表示制御をすることによって、それぞれの信号光の網膜上の撮位置の相対関係だけでなく、コヒーレンスゲートの相対関係の把握も容易にすることができる。
図13は、各信号光についてコヒーレンスゲートの位置を表示するその他の例を示す図である。図13(a)は、図11(b)に示す表示画面にコヒーレンスゲートの相対関係を示す表示を加えたものである。図11(b)と重複する部分は説明を省略する。図13(a)では、第の断層像1302、1303、1304と第の断層像1105との交差位置が点線で表示されており、かかる交差位置の表示とあわせて、コヒーレンスゲートの位置が太い実線で表示されている。この表示により、異なる信号光に対応し異なる走査位置の断層画像のコヒーレンスゲートの相対位置関係が分かりやすく表示される。ユーザは係る表示により、コヒーレンスゲートの調整を容易にすることができる。
図13(b)、図13(c)は別の例であり、1つのBスキャン像の撮影中にコヒーレンスゲートを動的に変更できる場合の表示例である。図13(b)では第の断層像1310には第の断層像それぞれについて、コヒーレンスゲートの位置が実線で示されている。1つの断層像の撮影中にコヒーレンスゲートが変更される場合があることを考慮して、変動の幅を細い実線で、変動の中で常にコヒーレンスゲートの範囲に含まれていた部分が太い実線で示されている。かかる表示により、1つの断層像の撮影中にコヒーレンスゲートが変更される場合にも、その変動の幅と、変動によらず撮影範囲内に含まれていた範囲とを分かりやすく提示することができるとともに、異なる断層画像間で比較することが可能である。
また図13(c)では、コヒーレンスゲートの変動の幅を細い実線で示されている。また、表示領域1101に表示されている第の断層像1302、1303、1304においてAスキャンの位置が点線で示されている。そして、Aスキャンを示す点線に対応するコヒーレンスゲートの位置がコヒーレンスゲートの変動の幅の表示に重畳して点線で示されている。指定されたAスキャンの位置が変更されることに応じてコヒーレンスゲートの表示も細い実線で示された幅の範囲内で変更される。また、図13(c)のように第の断層像は表示させなくてもよい。
かかる表示制御はもちろん表示制御部105により行われる。かかる表示により、ユーザは断層画像の各位置におけるコヒーレンスゲートを容易に確認することができる。また、異なる断層画像間でもコヒーレンスゲートの位置関係を確認することができる。
前述した実施例において、それぞれの信号光での撮中の相対関係をわかりやするための表示制御方法を説明した。本実施例では、どの信号光が調整されているかの把握が容易にするための表示制御について説明する。
本実施例に係る画像処理装置110の基本構成は実施例1の図1と同じなので、説明は省略する。さらに、断層撮影装置は実施例4の図8と同じなので、説明は省略する。さらに、画像処理装置110が実行する処理の手順は実施例4の図1と同様なので説明を省略する。ただし、ステップS170が異なるので、以下に詳細な説明をする。
〔ステップS170〕ステップS170において、表示制御部105は、形成された3つの第1断層像と、3つの第2断層像と、合成された第2断層像の表示制御を行う。ここでは、どの信号光の撮影パラメータが調整されているかを提示するために、以下の一つまたは複数の表示制御で断層像の表示制御を行う。
・調整操作対象の信号光の第1断層像を拡大表示する
・調整操作対象の信号光の第1断層像を第2断層像に寄せて表示する
・調整操作対象の信号光の第1断層像を最前に表示する
・調整操作対象の信号光の第1断層像の枠の色や形を変えて表示する
なお、本発明は以上の表示制御に限定することではなく、調整操作対象の信号光の第1断層像が目立つように強調表示されていれば良い。
図14は、本実施例の画像処理装置110の表示装置130での表示例を示す。図14(a)は、第1断層像1402の信号光が調整操作対象になっているので、拡大表示されている例である。図14 (b)は、第1断層像1403の信号光が調整操作対象になっているので、第2断層像の表示位置に寄せている。図14 (c)は、第1断層像1404の信号光が調整操作対象になっているので、最前に表示されている。図14(d)は、第1断層像1405の信号光が調整操作対象になっているので、その断層像の枠の形状がその他の信号光の第1断層像の枠と異なっている。
以上で述べた構成によれば、調整操作対象になっている信号光の第1断層像の表示制御を行うことにより、どの信号光が調整操作の対象になっているかの把握が容易になる。
〔変形例〕
(その他の実施例)
上述の実施例において、画像取得部101はOCT断層画像と共に眼底カメラで撮影された眼底画像を取得することとしていたが、ここで眼底画像は眼底カメラで撮影された画像に限られない。たとえば、SLO(共焦点)により撮影された画像であってもよい。この場合SLOで撮影された画像も本発明における眼底画像に含まれるものとする。
上述の実施例においては、光干渉断層撮影システムまたは画像処理装置内の各機能ブロックに対応する回路が本発明を実現する実施例を説明したが、本発明の実施形態はこれに限られない。例えば、画像処理装置内で行われている処理を複数の装置で分散させシステムとして実現しても、一つの機能ブロックとしてまとめられている処理を複数の回路または装置で分散させて実現してもよい。なお、光干渉断層撮影装置に上述の実施例における画像処理装置及び表示装置の機能を組み込んで光干渉断層撮影装置により本発明を実現することとしてもよい。
また本発明は、前述の実施例の機能を実現するソフトウェアのプログラムコードを記録した記録媒体をシステムや装置に供給し、そのシステムや装置の演算装置が記録媒体に格納されたプログラムコードをCPUが実行することによって実現される。またコンピュータが読み出したプログラムコードを実行することにより、コンピュータ上で稼動しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した実施例の機能が実現される場合も含まれる。このCPUはコンピュータ内に複数含まれていてもよく、この場合複数のCPUで分散させて本発明を実現することとしてもよい。
またこの場合、記録媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムまたはプログラムコードを記録した記録媒体が本発明を構成することになる。
さらに記録媒体から読み出したプログラムコードが、コンピュータ付属の機能拡張カードや機能拡張ユニット内のメモリに書き込まれ、前記拡張カードや拡張ユニット内の演算装置が実際の処理の一部か全部を行い、前述の実施例の機能が実現される場合も含む。この場合、本発明はハードウェアにより実装された回路とソフトウェア及びハードウェアの協働により実現される機能とにより実現される。
なお、上述した本実施の形態における記述は、本発明に係る好適な眼底断層像撮影装置の制御装置の一例であり、本発明はこれに限定されるものではない。
100 断層撮影システム
110 画像処理装置
101 画像取得部
102 指示取得部
103 制御部
104 画像生成部
105 表示制御部
107 配置決定部
120 断層撮影装置
130 表示装置

Claims (6)

  1. 第一の断面による第一のOCT断層画像と、前記第一の断面を挟んで対向する位置の第二及び第三の断面による第二及び第三のOCT断層画像と、前記第一の断面と交差する第四の断面による第四のOCT断層画像と、前記第四の断面を挟んで対向する第五及び第六の断面による第五及び第六のOCT断層画像とを取得する取得手段と、
    前記第一、第二及び第三のOCT断層画像を前記第一、第二及び第三の断面の並び順に従う並び順で配置されるように配置を決定する配置決定手段と、
    前記配置されるOCT断層画像のうち、1のOCT断層画像を他の断層画像に対して異なる表示状態で表示されるように前記第一、第二及び第三のOCT断層画像の表示状態を決定する決定手段と、
    前記画像配置手段により決定された配置で、かつ前記決定手段により決定された表示状態で、前記第一、第二及び第三の断層画像を表示部に表示させる表示制御手段と、を有し、
    前記表示制御手段は、前記第一、第二及び第三のOCT断層画像とともに、前記第四、第五及び第六のOCT断層画像を前記表示部に表示させることを特徴とするOCT断層画像の画像処理装置。
  2. 前記取得手段は、それぞれ互いに略平行である前記第一の断面、第二の断面及び第三の断面によるOCT断層画像を取得することを特徴とする請求項1に記載の画像処理装置。
  3. 第一、第二または第三のOCT断層画像のうち少なくとも1つのOCT断層画像を選択する選択手段を更に有し、
    前記決定手段は、前記選択手段により選択されたOCT断層画像を他の断層画像よりも大きな表示サイズに決定することを特徴とする請求項1又は2に記載の画像処理装置。
  4. 前記第一、第二及び第三のOCT断層画像のうち少なくともいずれかのOCT断層画像について深さ方向への撮影範囲の調整手段を更に有し、
    前記表示制御手段は、前記調整手段による調整に応じて前記撮影範囲が変更された前記OCT断層画像を表示部に表示させる
    ことを特徴とする請求項1乃至のいずれか1項に記載の画像処理装置。
  5. 前記取得手段が、低コヒーレンス光源から発せられた複数の測定光の光束を撮影対象の複数の位置に同時に入射させ、該入射させた測定光の戻り光と、該測定光のそれぞれに対応する参照光とに基づく干渉光により断層画像を得る
    ことを特徴とする請求項1乃至のいずれか1項に記載の画像処理装置。
  6. 第一の断面による第一のOCT断層画像と、前記第一の断面を挟んで対向する位置の第二及び第三の断面による第二及び第三のOCT断層画像と、前記第一の断面と交差する第四の断面による第四のOCT断層画像と、前記第四の断面を挟んで対向する第五及び第六の断面による第五及び第六のOCT断層画像とを取得する取得ステップと
    前記第一、第二及び第三のOCT断層画像を前記第一、第二及び第三の断面の並び順に従う並び順で配置されるように配置を決定する配置決定ステップと
    前記配置されるOCT断層画像のうち、1のOCT断層画像を他の断層画像に対して異なる表示状態で表示されるように前記第一、第二及び第三のOCT断層画像の表示状態を決定する状態決定ステップと
    前記配置決定ステップにおいて決定された配置で、かつ前記状態決定ステップにおいて決定された表示状態で、前記第一、第二及び第三の断層画像を表示部に表示させる表示制御ステップとを有し、
    前記表示制御ステップにおいて、前記第一、第二及び第三のOCT断層画像とともに、前記第四、第五及び第六のOCT断層画像を前記表示部に表示させることを特徴とするOCT断層画像の制御方法。
JP2011032218A 2010-03-31 2011-02-17 画像処理装置、及び、制御方法 Active JP5754976B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011032218A JP5754976B2 (ja) 2010-03-31 2011-02-17 画像処理装置、及び、制御方法
EP11716072.1A EP2552296B1 (en) 2010-03-31 2011-03-25 Oct image processing apparatus, control method and program
CN201180018081.2A CN102858231B (zh) 2010-03-31 2011-03-25 图像处理设备、oct摄像设备、断层图像摄像系统、控制方法和程序
PCT/JP2011/001765 WO2011121959A2 (en) 2010-03-31 2011-03-25 Image processing apparatus, oct imaging apparatus, tomographic imaging system, control method, and program
KR1020127027156A KR101413100B1 (ko) 2010-03-31 2011-03-25 Oct단층화상의 표시 제어장치
US13/634,342 US9201004B2 (en) 2010-03-31 2011-03-25 Image processing apparatus, OCT imaging apparatus, tomographic imaging system, control method, and program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010082811 2010-03-31
JP2010082811 2010-03-31
JP2011032218A JP5754976B2 (ja) 2010-03-31 2011-02-17 画像処理装置、及び、制御方法

Publications (3)

Publication Number Publication Date
JP2011224347A JP2011224347A (ja) 2011-11-10
JP2011224347A5 JP2011224347A5 (ja) 2014-04-03
JP5754976B2 true JP5754976B2 (ja) 2015-07-29

Family

ID=44342940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032218A Active JP5754976B2 (ja) 2010-03-31 2011-02-17 画像処理装置、及び、制御方法

Country Status (6)

Country Link
US (1) US9201004B2 (ja)
EP (1) EP2552296B1 (ja)
JP (1) JP5754976B2 (ja)
KR (1) KR101413100B1 (ja)
CN (1) CN102858231B (ja)
WO (1) WO2011121959A2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508841B1 (de) * 2011-04-06 2016-03-23 Agfa HealthCare N.V. Verfahren und System zur optischen Kohärenztomographie
JP2013075035A (ja) * 2011-09-30 2013-04-25 Canon Inc 光断層像撮像方法、光断層像撮像装置およびプログラム
JP2014045869A (ja) * 2012-08-30 2014-03-17 Canon Inc 撮影装置、画像処理装置、及び画像処理方法
DE102012022058A1 (de) * 2012-11-08 2014-05-08 Carl Zeiss Meditec Ag Flexibles, multimodales Retina-Bildaufnahme- und Messsystem
JP6281177B2 (ja) * 2013-01-23 2018-02-21 株式会社ニデック 眼科撮影装置
JP6217185B2 (ja) * 2013-07-02 2017-10-25 株式会社ニデック 眼科撮影装置及び眼科画像処理プログラム
JP6653174B2 (ja) * 2013-12-25 2020-02-26 興和株式会社 断層像撮影装置
US9211064B2 (en) 2014-02-11 2015-12-15 Welch Allyn, Inc. Fundus imaging system
US9237847B2 (en) 2014-02-11 2016-01-19 Welch Allyn, Inc. Ophthalmoscope device
JP6499398B2 (ja) * 2014-04-01 2019-04-10 キヤノン株式会社 眼科装置および制御方法
JP2016101298A (ja) * 2014-11-28 2016-06-02 株式会社トプコン 眼科撮影装置
US11045088B2 (en) 2015-02-27 2021-06-29 Welch Allyn, Inc. Through focus retinal image capturing
US10799115B2 (en) 2015-02-27 2020-10-13 Welch Allyn, Inc. Through focus retinal image capturing
US10136804B2 (en) 2015-07-24 2018-11-27 Welch Allyn, Inc. Automatic fundus image capture system
CN105635561A (zh) * 2015-07-31 2016-06-01 宇龙计算机通信科技(深圳)有限公司 一种图像获取系统及方法
JP6632285B2 (ja) * 2015-09-17 2020-01-22 キヤノン株式会社 眼科撮影装置及びその制御方法、並びに、プログラム
JP6712106B2 (ja) * 2015-10-13 2020-06-17 株式会社吉田製作所 光干渉断層画像生成装置
US10772495B2 (en) 2015-11-02 2020-09-15 Welch Allyn, Inc. Retinal image capturing
US9675244B1 (en) * 2015-12-02 2017-06-13 Novartis Ag Location indicator for optical coherence tomography in ophthalmic visualization
JP6803077B2 (ja) * 2015-12-17 2020-12-23 国立大学法人 東京大学 画像処理装置および画像処理方法
WO2017120217A1 (en) 2016-01-07 2017-07-13 Welch Allyn, Inc. Infrared fundus imaging system
JP6243957B2 (ja) * 2016-04-18 2017-12-06 キヤノン株式会社 画像処理装置、眼科システム、画像処理装置の制御方法および画像処理プログラム
US10602926B2 (en) 2016-09-29 2020-03-31 Welch Allyn, Inc. Through focus retinal image capturing
EP3525658A1 (en) * 2016-10-14 2019-08-21 Novartis AG Optical coherence tomography cross view imaging
EP3547897A4 (en) * 2016-11-30 2020-06-10 University of Southern California OPTICAL COHERENCE TOMOGRAPHY (OCT) SYSTEM WITH IMPROVED IMAGE QUALITY
EP3573511B1 (en) * 2017-01-28 2021-06-30 Cylite Pty Ltd Optical coherence metrology and tomography with improved registration
US10653310B2 (en) * 2017-02-28 2020-05-19 Canon Kabushiki Kaisha Imaging apparatus, control method for an imaging apparatus, and program
JP6940960B2 (ja) * 2017-02-28 2021-09-29 キヤノン株式会社 撮像装置、撮像装置の作動方法およびプログラム
CN107223276B (zh) * 2017-04-26 2020-03-20 深圳市汇顶科技股份有限公司 眼球遥控系统及电子装置
JP6526154B2 (ja) * 2017-11-08 2019-06-05 キヤノン株式会社 画像処理装置、眼科システム、画像処理装置の制御方法及び画像処理プログラム
JP2018083106A (ja) * 2018-01-24 2018-05-31 株式会社ニデック 眼科撮影装置および撮影制御プログラム
JP6701250B2 (ja) * 2018-03-15 2020-05-27 キヤノン株式会社 眼科撮影装置及びその制御方法、並びにプログラム
CN108577802B (zh) * 2018-05-18 2021-02-26 深圳市斯尔顿科技有限公司 结合oct成像的眼科手术显微镜系统
CN108852617B (zh) * 2018-05-18 2021-06-25 深圳市斯尔顿科技有限公司 一种眼科手术显微镜系统
US11096574B2 (en) 2018-05-24 2021-08-24 Welch Allyn, Inc. Retinal image capturing
JP2023039761A (ja) * 2021-09-09 2023-03-22 キヤノン株式会社 放射線検査装置、放射線検査方法及びプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321501A (en) * 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
DE10225316A1 (de) 2002-06-06 2003-12-18 Philips Intellectual Property Verfahren zur Optimierung der Darstellung von mittels Bedienelemente frei platzier-und skalierbaren Objekten einer Benutzeroberfläche auf einem Bildschirm
GB2429522A (en) * 2005-08-26 2007-02-28 Univ Kent Canterbury Optical mapping apparatus
JP4916779B2 (ja) * 2005-09-29 2012-04-18 株式会社トプコン 眼底観察装置
JP4850495B2 (ja) * 2005-10-12 2012-01-11 株式会社トプコン 眼底観察装置及び眼底観察プログラム
JP4855150B2 (ja) 2006-06-09 2012-01-18 株式会社トプコン 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
CN100403087C (zh) * 2006-09-26 2008-07-16 浙江大学 基于数字微镜器件的无串扰并行oct成像方法及系统
JP5085086B2 (ja) 2006-10-04 2012-11-28 株式会社トプコン 眼底観察装置、眼底画像表示装置及びプログラム
US8223143B2 (en) * 2006-10-27 2012-07-17 Carl Zeiss Meditec, Inc. User interface for efficiently displaying relevant OCT imaging data
JP4996917B2 (ja) * 2006-12-26 2012-08-08 株式会社トプコン 光画像計測装置及び光画像計測装置を制御するプログラム
JP4921201B2 (ja) 2007-02-23 2012-04-25 株式会社トプコン 光画像計測装置及び光画像計測装置を制御するプログラム
US7997729B2 (en) * 2007-10-19 2011-08-16 Oti Ophthalmic Technologies Inc. Method for correcting patient motion when obtaining retina volume using optical coherence tomography
JP5739323B2 (ja) * 2008-04-14 2015-06-24 オプトビュー,インコーポレーテッド 光干渉断層法のアイレジストレーション法
JP5127649B2 (ja) 2008-09-29 2013-01-23 富士フイルム株式会社 液体吐出装置
GB0907277D0 (en) * 2009-04-29 2009-06-10 Univ Kent Kanterbury Method for depth resolved wavefront sensing, depth resolved wavefront sensors and method and apparatus for optical imaging
JP5436076B2 (ja) 2009-07-14 2014-03-05 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP5455203B2 (ja) 2009-08-03 2014-03-26 森下仁丹株式会社 フィルム製剤およびその製造方法
JP5426960B2 (ja) * 2009-08-04 2014-02-26 キヤノン株式会社 撮像装置及び撮像方法

Also Published As

Publication number Publication date
EP2552296A2 (en) 2013-02-06
CN102858231A (zh) 2013-01-02
US9201004B2 (en) 2015-12-01
WO2011121959A2 (en) 2011-10-06
KR20120138813A (ko) 2012-12-26
WO2011121959A4 (en) 2012-03-08
JP2011224347A (ja) 2011-11-10
EP2552296B1 (en) 2017-07-05
WO2011121959A3 (en) 2012-01-12
KR101413100B1 (ko) 2014-07-01
CN102858231B (zh) 2016-06-01
US20130002711A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5754976B2 (ja) 画像処理装置、及び、制御方法
JP2011224347A5 (ja)
JP5921068B2 (ja) 画像処理装置、制御方法及び光干渉断層撮影システム
US8804127B2 (en) Image acquisition apparatus, image acquisition system, and method of controlling the same
JP6115007B2 (ja) 眼科画像処理装置及びプログラム
JP5289219B2 (ja) 撮影装置及びその制御方法
JP6296683B2 (ja) 眼科装置および制御方法
JP6598466B2 (ja) 断層撮像装置、断層撮像方法、およびプログラム
JP5998493B2 (ja) 眼科画像処理装置及びプログラム
JP5948757B2 (ja) 眼底撮影装置
WO2016017664A1 (ja) 断層像撮影装置
JP6557229B2 (ja) 断層像撮影装置
JP5975650B2 (ja) 画像形成方法及び装置
JP2018089305A (ja) 眼科装置
JP6461937B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP6461936B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP7086708B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2013166072A (ja) 画像処理装置及び画像処理方法
JP7387343B2 (ja) 画像処理装置、画像処理プログラム
JP6758825B2 (ja) 画像処理装置およびその作動方法
JP2017153826A (ja) 眼科画像処理装置、眼科画像処理プログラム
JP6406878B2 (ja) 画像処理装置及び画像処理方法
JP2019154495A (ja) 情報処理装置、情報処理方法及びプログラム
JP2019054990A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP2017153825A (ja) 眼科画像処理装置、眼科画像処理プログラム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R151 Written notification of patent or utility model registration

Ref document number: 5754976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151