JP5730028B2 - 熱源システム - Google Patents

熱源システム Download PDF

Info

Publication number
JP5730028B2
JP5730028B2 JP2011006025A JP2011006025A JP5730028B2 JP 5730028 B2 JP5730028 B2 JP 5730028B2 JP 2011006025 A JP2011006025 A JP 2011006025A JP 2011006025 A JP2011006025 A JP 2011006025A JP 5730028 B2 JP5730028 B2 JP 5730028B2
Authority
JP
Japan
Prior art keywords
heat
condenser
heat pump
evaporator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011006025A
Other languages
English (en)
Other versions
JP2012145309A (ja
Inventor
和島 一喜
一喜 和島
勇三 高添
勇三 高添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011006025A priority Critical patent/JP5730028B2/ja
Publication of JP2012145309A publication Critical patent/JP2012145309A/ja
Application granted granted Critical
Publication of JP5730028B2 publication Critical patent/JP5730028B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、電動ヒートポンプと吸収式冷凍機もしくは吸収式ヒートポンプ、又は、電動ヒートポンプと吸着式冷凍機もしくは吸着式ヒートポンプを用いた熱源システムに関するものである。
例えば60〜70℃とされた低温排熱から排熱回収を行う場合、熱交換器等による温熱回収では、せいぜい50〜60℃の低温温熱しか得ることができない。また、ヒートポンプによって低温排熱から熱回収すれば80〜90℃の高温温熱を得ることができるが、この方法では冷熱を取り出すことができない。
温熱を駆動用熱源として冷熱を取り出す方法として、吸収式冷凍機または吸着式冷凍機を用いることが考えられる。しかし、50〜60℃程度の低温排熱では十分な冷熱を取り出すことができない。
下記の特許文献1には、圧縮式ヒートポンプによって得られた温熱を熱源水として吸収式ヒートポンプの蒸発器にて熱回収する構成が開示されている。
下記の特許文献2には、低段側を圧縮式冷凍機を用いた冷凍サイクルとし、高段側を吸収式ヒートポンプを用いたヒートポンプサイクルとして、冷却と加熱を同時に行う方法が開示されている。
特開昭62−190364号公報 特開昭60−020065号公報
しかし、特許文献1では、圧縮式ヒートポンプによって得られた温熱を吸収式ヒートポンプにて利用することが開示されているが、吸収式ヒートポンプの駆動用熱源(再生器に供給する熱)は外部から導かれる蒸気・燃料等の高温の熱エネルギーとされている(特許文献1の3頁左上欄2〜3行)。これでは、駆動用熱源のためにガスや油等の燃焼熱を必要とするので、エネルギー効率の向上の妨げになる。
また、特許文献2には、圧縮式冷凍機と吸収式ヒートポンプとの組合せについて記載されているものの、具体的な構成については一切開示されていない。
本発明は、このような事情に鑑みてなされたものであって、50〜60℃とされた低温排熱からの供給熱より熱回収して効率良く冷熱および/または温熱を出力できる熱源システムを提供することを目的とする。
上記課題を解決するために、本発明の熱源システムは以下の手段を採用する。
すなわち、本発明にかかる熱源システムは、電動モータによって駆動されて冷媒を圧縮する圧縮機、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器、該凝縮器によって凝縮された液冷媒を膨張させる膨張弁、及び、該膨張弁によって膨張された冷媒を蒸発させる蒸発器を備えた蒸気圧縮式の電動ヒートポンプと、温熱が供給されて溶液を加熱濃縮して再生させる再生器、該再生器から導かれた冷媒を凝縮させる凝縮器、該凝縮器にて凝縮された液冷媒を蒸発させる蒸発器、及び、該蒸発器によって蒸発した冷媒を溶液に吸収させる吸収器を備えた吸収式冷凍機とを備え、前記電動ヒートポンプは、前記蒸発器にて50〜60℃の低温排熱からの供給熱より熱回収するとともに、前記凝縮器から80〜90℃の温熱を出力し、前記吸収式冷凍機は、前記再生器にて前記電動ヒートポンプの前記凝縮器から出力された80〜90℃の温熱を得るとともに、前記蒸発器から冷熱を出力することを特徴とする。
本発明の熱源システムは、50〜60℃とされた低温排熱からの供給熱より熱回収して、電動ヒートポンプの凝縮器から温熱を出力するとともに、吸収式冷凍機の蒸発器から冷熱(例えば7℃程度)を出力する。
本発明では、電動ヒートポンプから得られる80〜90℃の温熱を吸収式冷凍機の再生器に供給することとして、電動ヒートポンプから得られる温熱を吸収式冷凍機の駆動用熱源として用いることとした。これにより、吸収式冷凍機を駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く冷熱および温熱を得ることができる。
さらに、本発明の熱源システムでは、前記吸収式冷凍機は、前記凝縮器が60〜70℃の温熱を出力するとともに、前記蒸発器が50〜60℃以下の前記低温排熱からの供給熱より熱回収するように構成された吸収式一種ヒートポンプに切替可能とされていることを特徴とする。
吸収式冷凍機を吸収式一種ヒートポンプとしても利用できるようにした。これにより、冷熱および温熱を需要に応じて切り替えることができる。
また、本発明の熱源システムは、電動モータによって駆動されて冷媒を圧縮する圧縮機、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器、該凝縮器によって凝縮された液冷媒を膨張させる膨張弁、及び、該膨張弁によって膨張された冷媒を蒸発させる蒸発器を備えた蒸気圧縮式の電動ヒートポンプと、温熱が供給されて溶液を加熱濃縮して再生させる再生器、該再生器から導かれた冷媒を凝縮させて温熱を出力する凝縮器、該凝縮器にて凝縮された液冷媒を蒸発させる蒸発器、及び、該蒸発器によって蒸発した冷媒を溶液に吸収させる吸収器を備えた吸収式一種ヒートポンプとを備え、前記電動ヒートポンプは、前記蒸発器にて50〜60℃の低温排熱からの供給熱より熱回収するとともに、前記凝縮器から80〜90℃程度の温熱を出力し、前記吸収式一種ヒートポンプは、前記再生器にて前記電動ヒートポンプの前記凝縮器から出力された80〜90℃の温熱を得るとともに、前記蒸発器にて50〜60℃の前記低温排熱からの供給熱より熱回収し、前記凝縮器から60〜70℃の温熱を出力することを特徴とする。
本発明の熱源システムは、50〜60℃とされた低温排熱から電動ヒートポンプの蒸発器および吸収式一種ヒートポンプの蒸発器で熱回収して、吸収式一種ヒートポンプの凝縮器から60〜70℃の温熱(中温熱)を出力する。
本発明では、電動ヒートポンプから得られる80〜90℃の温熱を再生器に供給することとして、電動ヒートポンプから得られる温熱を吸収式一種ヒートポンプの駆動用熱源として用いることとした。これにより、吸収式一種ヒートポンプを駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く温熱(中温熱)を得ることができる。
また、本発明の参考例としての熱源システムは、電動モータによって駆動されて冷媒を圧縮する圧縮機、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器、該凝縮器によって凝縮された液冷媒を膨張させる膨張弁、及び、該膨張弁によって膨張された冷媒を蒸発させる蒸発器を備えた蒸気圧縮式の電動ヒートポンプと、溶液を加熱濃縮して再生させる再生器、該再生器から導かれた冷媒を凝縮させる凝縮器、前記凝縮器にて凝縮された液冷媒を蒸発させる蒸発器、及び、該蒸発器によって蒸発した冷媒を溶液に吸収させて温熱を出力する吸収器を備えた吸収式二種ヒートポンプとを備え、前記電動ヒートポンプは、前記蒸発器にて50〜60℃の低温排熱からの供給熱より熱回収するとともに、前記凝縮器から80〜90℃の温熱を出力し、前記吸収式二種ヒートポンプは、前記再生器および前記蒸発器にて前記電動ヒートポンプの前記凝縮器から出力された80〜90℃程度の温熱を得るとともに、前記吸収器から100℃以上の温熱を出力することを特徴とする。
本発明の参考例としての熱源システムは、50〜60℃程度とされた低温排熱から電動ヒートポンプの蒸発器で熱回収して、吸収式二種ヒートポンプの吸収器から例えば130℃とされた100℃以上の温熱(高温熱)を出力する。
本発明の参考例では、電動ヒートポンプから得られる温熱を再生器および蒸発器に供給することとして、電動ヒートポンプから得られる温熱を吸収式二種ヒートポンプの駆動用熱源として用いることとした。これにより、吸収式二種ヒートポンプを駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く温熱(高温熱)を得ることができる。
さらに、本発明の熱源システムは、前記吸収式冷凍機に代えて吸着式冷凍機とされ、又は、前記吸収式一種ヒートポンプもしくは前記吸収式二種ヒートポンプに代えて吸着式ヒートポンプとされていることを特徴とする。
このように、吸収式に代えて、シリカゲル等を用いた吸着式としても良い。
50〜60℃の低温熱源からの供給熱より熱回収した電動ヒートポンプから得られる80〜90℃の温熱を吸収式冷凍機の再生器に供給して駆動用熱源として用いることで、吸収式冷凍機を駆動するためにガスや油等の燃焼熱を必要とせず、高効率に冷熱および/または温熱を得ることができる。
本発明の熱源システムにかかる第1参考実施形態を示し、(a)概略構成図、(b)は熱収支を示す図である。 本発明の熱源システムにかかる第実施形態を示し、(a)概略構成図、(b)は熱収支を示す図である。 本発明の熱源システムにかかる第2参考実施形態を示し、(a)概略構成図、(b)は熱収支を示す図である。 本発明の熱源システムにかかる第実施形態の概略構成図である。 図4の熱源システムにて低温温水のみを供給する場合を示した概略構成図である。 図4の熱源システムにて低温温水および中温温水を供給する場合を示した概略構成図である。 図4の熱源システムにて低温温水、高温温水および冷水を供給する場合を示した概略構成図である。 図4の熱源システムにて低温温水、中温温水および高温温水を供給する場合を示した概略構成図である。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1参考実施形態]
以下、本発明の第1参考実施形態について、図1を用いて説明する。
図1(a)に示すように、熱源システム1Aは、電動ヒートポンプ2と、吸収式冷凍機3とを備えている。
電動ヒートポンプ2は、ターボ冷凍機とされている。ターボ冷凍機は、図示しないが、電動モータによって駆動されて冷媒を圧縮するターボ圧縮機5と、ターボ圧縮機5によって圧縮された冷媒を凝縮させる凝縮器7と、凝縮された液冷媒を膨張させる膨張弁9と、膨張された冷媒を蒸発させる蒸発器11とを備えている。
なお、ヒートポンプ2としては、典型的には、本実施形態のようにターボ圧縮機を用いたターボ冷凍機が挙げられるが、スクリュー式やスクロール式の圧縮機を用いた他の蒸気圧縮式のヒートポンプでもよい。
ターボ圧縮機5は、一定速で回転する固定速であっても良いし、インバータ駆動による周波数可変とされた可変速であっても良い。
蒸発器11は、低温水配管13によって、60〜70℃以下の低温排熱と熱交換する熱回収用熱交換器15と熱的に接続されている。低温水配管13内には熱媒としての低温水が流通し、低温水ポンプ17によって熱回収用熱交換器15と蒸発器11との間で循環するようになっている。蒸発器11には熱回収用熱交換器15から得た例えば50℃の低温水が流入し、蒸発器11内で冷媒から蒸発潜熱を奪い例えば45℃まで冷却された低温水が熱回収用熱交換器15に返送されるようになっている。このように、蒸発器11は、熱回収用熱交換器15から熱回収するようになっている。
凝縮器7は、温熱出力配管19によって、温熱負荷(高温)21と熱的に接続されている。高温水出力配管19内には熱媒としての高温水が流通し、高温水ポンプ23によって凝縮器7と温熱負荷(高温)21との間で循環するようになっている。凝縮器7からは温熱負荷(高温)21に向けて例えば90℃の高温水が出力されるようになっており、温熱負荷(高温)21にて例えば85℃まで温度低下した高温水が凝縮器7に返送されるようになっている。このように、凝縮器7は、80〜90℃とされた高温水を出力するようになっている。
高温水出力配管19には、吸収式冷凍機3へ高温水を供給する高温水供給配管25が接続されている。この高温水供給配管25によって高温水の一部が分岐され、吸収式冷凍機3の再生器30へと導かれ、再生器30を通過した後に高温水出力配管19へと返送されるようになっている。
吸収式冷凍機3は、温熱が供給されて溶液を加熱濃縮して再生させる再生器30と、再生器30から導かれた冷媒を凝縮させる凝縮器32と、凝縮器32にて凝縮された液冷媒を蒸発させる蒸発器35と、蒸発器35によって蒸発した冷媒を溶液に吸収させる吸収器37とを備えている。
再生器30には、上述したように、高温水供給配管25を介して例えば90℃とされた高温水が供給されるようになっている。すなわち、電動ヒートポンプ2が出力した高温水を吸収式冷凍機3の駆動用熱源としている。
凝縮器32は、冷却水によって冷却されるようになっている。冷却水は、冷却水ポンプ39によって、冷却塔41、吸収器37、凝縮器32との間を循環するようになっている。凝縮器32を通過して冷却塔41に流入する前の冷却水温度は例えば37.5℃とされており、冷却塔41によって例えば32℃まで冷却された冷却水が吸収器37へと流入するようになっている。
蒸発器35は、冷水配管43によって、冷熱負荷45と熱的に接続されている。冷水配管43内には熱媒としての冷水が流通し、冷水ポンプ47によって蒸発器35と冷熱負荷45との間で循環するようになっている。蒸発器35からは冷熱負荷45に向けて例えば7℃の冷水が出力されるようになっており、冷熱負荷45にて例えば12℃まで温度上昇した冷水が蒸発器35に返送されるようになっている。このように、吸収式冷凍機3の蒸発器35は、例えば7℃とされた冷水を出力するようになっている。
このように、上記構成の熱源システム1Aは、50〜60℃の低温排熱から電動ヒートポンプ2によって熱回収し、80〜90℃の高温水を温熱負荷(高温)21に供給するとともに、電動ヒートポンプ2によって出力された80〜90℃の高温水を駆動用熱源として動作する吸収式冷凍機3から冷水を出力するものである。
図1(b)には、本実施形態の熱源システム1Aの熱収支が示されている。同図に示されているように、低温排熱の60〜70℃の熱量を「1」とすると、低温水配管13から導かれる低温水との熱交換による熱損失によって熱回収用熱交換器15にて50℃まで低下する。50℃まで低下した「1」の熱量は、電動ヒートポンプ2によって熱回収され、ターボ圧縮機5の動力の入力熱量を「0.2」とすると、電動ヒートポンプ2は熱量「1.2」の90℃の温熱を出力する。この電動ヒートポンプ2の温熱出力のうちの半分である熱量「0.6」を温熱負荷(高温)21へ供給し、残りの半分の熱量「0.6」を吸収式冷凍機3の駆動用熱源として使用する。そして、吸収式冷凍機3のCOPを0.8とすると、熱量「0.5」の7℃の冷熱を冷熱負荷45へ供給することができる。一方、冷却塔41では熱量「1.1」が排熱される。
熱源システム全体としてのCOPは、入力熱量がターボ圧縮機5の「0.2」であり、温熱負荷(高温)21への温熱出力が「0.6」、冷熱負荷45への冷熱出力が「0.5」なので、5.5((0.6+0.5)/0.2)となる。
以上の通り、本実施形態にかかる熱源システム1Aによれば、50〜60℃とされた低温排熱からの供給熱より熱回収して、電動ヒートポンプ2の凝縮器7から温熱を出力するとともに、吸収式冷凍機3の蒸発器35から冷熱(例えば7℃)を、COP5.5という高効率にて出力することができる。
また、電動ヒートポンプ2から得られる80〜90℃の高温水を吸収式冷凍機3の再生器30に供給することとして、電動ヒートポンプ2から得られる高温水を吸収式冷凍機3の駆動用熱源として用いることとしたので、吸収式冷凍機3を駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く冷熱および温熱を得ることができる。
[第実施形態]
次に、本発明の第実施形態について、図2を用いて説明する。
本実施形態は、第1参考実施形態の吸収式冷凍機3が吸収式一種ヒートポンプに変更されており、冷熱出力をせずに中温水を出力する構成となっている点で第1参考実施形態と相違する。それ以外の共通する構成については同一符号を付しその説明を省略する。
図2(a)に示されているように、熱源システム1Bは、第1参考実施形態と同様に低温排熱から排熱回収して80〜90℃の高温水を出力する電動ヒートポンプ2と、吸収式一種ヒートポンプ4とを備えている。
電動ヒートポンプ2の温熱出力である高温水は、高温水出力配管19を介して、その全量が吸収式一種ヒートポンプ4の再生器35へと供給されるようになっている。このように高温水の全てが吸収式一種ヒートポンプ4へ供給されるようになっているので、本実施形態の熱源システム1Bは高温水を外部の温熱負荷に供給する構成とはなっていない。
吸収式一種ヒートポンプ4の蒸発器35には、熱回収用熱交換器15にて熱交換した50℃程度の低温水が供給されるようになっている。このように、蒸発器35にて低温排熱から熱回収するようになっている。
吸収器37および凝縮器32と温熱負荷(中温)53とは、中温水配管51によって熱的に接続されている。すなわち、中温水ポンプ52によって、吸収器37および凝縮器32を通り加熱された中温水が温熱負荷(中温)53へと供給されるようになっている。温熱負荷(中温)53へは例えば60〜70℃の中温水が供給され、例えば55℃まで温度低下した中温水が吸収器37へと返送されるようになっている。
このように、本実施形態の熱源システム1Bは、50〜60℃の低温排熱からの供給熱より電動ヒートポンプ2によって熱回収し、80〜90℃の高温水を駆動用熱源として吸収式一種ヒートポンプ4に供給し、吸収式一種ヒートポンプ4が例えば60℃とされた中温水を温熱負荷(中温)53へ供給するものである。
図2(b)には、本実施形態の熱源システム1Bの熱収支が示されている。同図に示されているように、低温排熱から熱量「2」を得て、熱回収用熱交換器15によって熱交換した後の50℃の低温水を電動ヒートポンプ2及び吸収式一種ヒートポンプ4にそれぞれ熱量「1」ずつ供給する。電動式ヒートポンプ2は熱量「1.2」の90℃の高温水を駆動用熱源として吸収式一種ヒートポンプ4へ供給する。吸収式一種ヒートポンプ4は、電動ヒートポンプ2から得た熱量「1.2」と、低温排熱から熱回収した熱量「1」とによって、熱量「2.2」の60℃の中温水を温熱負荷(中温)53に出力する。
このように、本実施形態によれば、50℃程度とされた低温排熱からの供給熱より電動ヒートポンプ2の蒸発器11および吸収式一種ヒートポンプ4の蒸発器35で熱回収して、吸収式一種ヒートポンプ4の凝縮器32から60℃程度の温熱(中温熱)を出力する。
また、電動ヒートポンプ2から得られる90℃程度の温熱を再生器30に供給することとして、電動ヒートポンプ2から得られる温熱を吸収式一種ヒートポンプ4の駆動用熱源として用いることとしたので、吸収式一種ヒートポンプ4を駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く温熱(中温熱)を得ることができる。
[第2参考実施形態]
次に、本発明の第2参考実施形態について、図3を用いて説明する。
本実施形態は、第1参考実施形態の吸収式冷凍機3が吸収式二種ヒートポンプに変更されており、冷熱出力をせずに100℃以上の高温水を出力する構成となっている点で第1参考実施形態と相違する。それ以外の共通する構成については同一符号を付しその説明を省略する。
また、本実施形態は、第実施形態の吸収式一種ヒートポンプ4を吸収式二種ヒートポンプに変更した点が相違する。第実施形態よりも更に高温の温水を出力できることが本実施形態の特徴となっている。
図3(a)に示されているように、熱源システム1Cは、第1参考実施形態と同様に低温排熱から排熱回収して80〜90℃の高温水を出力する電動ヒートポンプ2と、吸収式二種ヒートポンプ6とを備えている。
電動ヒートポンプ2の温熱出力である高温水は、高温水出力配管19から、高温水供給配管25を介して吸収式二種ヒートポンプ6の再生器35へ供給されるともに、蒸発器35へも供給されるようになっている。このように高温水の全てが吸収式二種ヒートポンプ6へ供給されるようになっているので、本実施形態の熱源システム1Cは高温水を外部の温熱負荷に供給する構成とはなっていない。
吸収式二種ヒートポンプ6の凝縮器32は、冷却水によって冷却されるようになっている。冷却水は、冷却水ポンプ39によって、冷却塔41と凝縮器32との間を循環するようになっている。凝縮器32を通過して冷却塔41に流入する前の冷却水温度は例えば37.5℃とされており、冷却塔41によって例えば32℃まで冷却された冷却水が凝縮器32へと返送されるようになっている。
吸収器37と温熱負荷(高温)55とは、高温水配管57によって熱的に接続されている。すなわち、高温水ポンプ59によって、吸収器37を通り加熱された高温水が温熱負荷(高温)55へと供給されるようになっている。温熱負荷(高温)55へは例えば130℃程度とされた100℃以上の高温水が供給され、例えば120℃まで温度低下した高温水が吸収器37へと返送されるようになっている。
このように、本実施形態の熱源システム1Cは、50〜60℃の低温排熱からの供給熱より電動ヒートポンプ2によって熱回収し、80〜90℃の高温水を駆動用熱源として吸収式二種ヒートポンプ6に供給し、吸収式二種ヒートポンプ6が例えば130℃とされた高温水を温熱負荷(高温)55へ供給するものである。
図3(b)には、本実施形態の熱源システム1Cの熱収支が示されている。同図に示されているように、低温排熱から熱量「1」を得て、熱回収用熱交換器15によって熱交換した後の50℃の低温水を電動ヒートポンプ2に供給する。電動式ヒートポンプ2は熱量「1.2」の90℃の高温水を駆動用熱源として吸収式二種ヒートポンプ6へ供給する。吸収式二種ヒートポンプ6は、電動ヒートポンプ2から得た熱量「1.2」によって、熱量「0.6」の130℃の高温水を温熱負荷(高温)55に出力する。
このように、本実施形態によれば、50〜60℃とされた低温排熱から電動ヒートポンプ2の蒸発器11で熱回収して、吸収式二種ヒートポンプ6の吸収器37から例えば130℃とされた100℃以上の温熱(高温水)を出力する。
また、電動ヒートポンプ2から得られる90℃の高温水を再生器30および蒸発器35に供給することとして、電動ヒートポンプ2から得られる温熱を吸収式二種ヒートポンプ6の駆動用熱源として用いることとした。これにより、吸収式二種ヒートポンプ6を駆動するためにガスや油等の燃焼熱を必要とすることがない。したがって、効率良く温熱(高温熱)を得ることができる。
[第実施形態]
次に、本発明の第実施形態について、図4〜図8を用いて説明する。
本実施形態は、第1参考実施形態の吸収式冷凍機3を、第実施形態の吸収式一種ヒートポンプ4へ切り替え可能としている。したがって、第1参考実施形態および第実施形態と共通する構成については同一符号を付しその説明を省略する。
本実施形態の熱源システム1Dは、第1参考実施形態と同様に、電動ヒートポンプ2と、吸収式冷凍機3とを備えている。また、吸収式冷凍機3は、以下に説明するように各種三方弁によって熱媒の流路を変更することで、第実施形態で示した吸収式一種ヒートポンプとして動作させることができるようになっている。
図4に示されているように、低温水配管13から低温用三方弁60a,60bを介して低温水分岐管61へと分岐し、温熱負荷(低温)62に低温水が供給されるようになっている。
また、低温水配管13には、熱回収用三方弁64a,64bが設けられており、これら三方弁64a,64bによって、吸収式冷凍機3が一種ヒートポンプとして作動したときに熱回収できるようになっている。
高温水出力配管19には、高温水供給用三方弁66a,66bが設けられており、温熱負荷(高温)21と再生器30へ向かう高温水の流量を分配するようになっている。
吸収式冷凍機3の蒸発器35に接続された冷水配管43には、冷水用三方弁68a,68bが設けられており、冷凍機として動作するときは冷水を蒸発器11から冷熱負荷45へと供給し、一種ヒートポンプとして動作するときは低温排熱から熱回収するように低温水が熱回収用熱交換器15から蒸発器35へと導かれるようになっている。
温熱負荷(中温)53と吸収器37との間には、中温水用三方弁70が設けられており、吸収式冷凍機3が冷凍機として動作するときは冷却塔41から導かれた冷却水を吸収器37へと導くようにし、一種ヒートポンプとして動作するときは吸収器37と温熱負荷(中温)53と接続するようになっている。
凝縮器32と冷却塔41との間には、冷却水用三方弁72が設けられており、吸収式冷凍機3が冷凍機として動作するときには凝縮器32と冷却塔41とを接続し、一種ヒートポンプとして動作するときは凝縮器と温熱負荷(中温)53とを接続するようになっている。
なお、上述した各三方弁は、2つの二方弁で代用することとしてもよい。
本実施形態の熱源システム1Dは、以下に説明するように、50℃程度の低温水、60℃程度の中温水、90℃程度の高温水、7℃程度の冷水を出力できるようになっている。
50℃程度の低温水のみを利用する場合には、図5にて太線で示したように、低温用三方弁60a,60bを切り替えて、低温排熱から回収した全量の低温水を温熱負荷(低温)62へと供給するようにする。
50℃程度の低温水と90℃程度の高温水を利用する場合には、図6にて太線で示したように、低温用三方弁60a,60bの弁開度を調整して、低温排熱から回収した一部の低温水を温熱負荷(低温)62へと供給するとともに、残部の低温水を電動ヒートポンプ2の蒸発器11へと供給する。高温水は、温熱負荷(高温)21にて、電動ヒートポンプ2の凝縮器7から得られる。
50℃程度の低温水と90℃程度の高温水と冷水を利用する場合、すなわち第1実施形態のように使用する場合には、図7にて太線で示したように、低温用三方弁60a,60bの弁開度を調整して、低温排熱から回収した一部の低温水を温熱負荷(低温)62へと供給するとともに、残部の低温水を電動ヒートポンプ2の蒸発器11へと供給する。高温水は、温熱負荷(高温)21にて、電動ヒートポンプ2の凝縮器7から得られる。また、電動ヒートポンプ2からの90℃程度の高温水は、高温水供給用三方弁66a,66bの開度を調整することによって、吸収式冷凍機2の再生器30へと供給される。
冷水用三方弁68a,68bは、冷熱負荷45へと冷水を供給するように、蒸発器35と冷熱負荷45とを接続する。
また、中温水用三方弁70と冷却水用三方弁72は、冷却水が、凝縮器32、冷却塔41および吸収器37を循環するように弁方向が決定される。
50℃程度の低温水と90℃程度の高温水と60℃程度の中温水を利用する場合、すなわち第2実施形態のように使用する場合には、図8にて太線で示したように、低温用三方弁60a,60bの弁開度を調整して、低温排熱から回収した一部の低温水を温熱負荷(低温)62へと供給するとともに、残部の低温水を電動ヒートポンプ2の蒸発器11へと供給する。高温水は、温熱負荷(高温)21にて、電動ヒートポンプ2の凝縮器7から得られる。また、電動ヒートポンプ2からの90℃程度の高温水は、高温水供給用三方弁66a,66bの開度を調整することによって、吸収式冷凍機2の再生器30へと供給される。
熱回収用三方弁64a,64bは、低温排熱から一種ヒートポンプの蒸発器35が熱回収するように弁開度が調整される。そして、蒸発器35へと低温水が導かれるように、冷水用三方弁68a,68bは、熱回収用熱交換器15と蒸発器35とが接続されるように弁方向が決定される。
また、中温水用三方弁70と冷却水用三方弁72は、凝縮器32にて加熱された中温水が、温熱負荷(中温)53、吸収器37を通り循環するように弁方向が決定される。
以上の通り、本実施形態によれば、吸収式冷凍機2を吸収式一種ヒートポンプとしても利用できるようにしたので、冷熱および温熱(中温水および高温水)を需要に応じて切り替えることができる。
また、低温排熱から回収した低温水を温熱負荷(低温)62にて利用することもできる。
なお、上述した各実施形態では、吸収式冷凍機または吸収式ヒートポンプとして説明したが、吸収式に代えて、シリカゲル等を用いた吸着式冷凍機または吸着式ヒートポンプを用いることもできる。
1A,1B,1C,1D 熱源システム
2 電動ヒートポンプ
3 吸収式冷凍機
4 吸収式一種ヒートポンプ
5 ターボ圧縮機
6 吸収式二種ヒートポンプ
7 凝縮器
9 膨張弁
11 蒸発器
30 再生器
32 凝縮器
35 蒸発器
37 吸収器

Claims (3)

  1. 電動モータによって駆動されて冷媒を圧縮する圧縮機、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器、該凝縮器によって凝縮された液冷媒を膨張させる膨張弁、及び、該膨張弁によって膨張された冷媒を蒸発させる蒸発器を備えた蒸気圧縮式の電動ヒートポンプと、
    温熱が供給されて溶液を加熱濃縮して再生させる再生器、該再生器から導かれた冷媒を凝縮させる凝縮器、該凝縮器にて凝縮された液冷媒を蒸発させる蒸発器、及び、該蒸発器によって蒸発した冷媒を溶液に吸収させる吸収器を備えた吸収式冷凍機と、
    を備え、
    前記電動ヒートポンプは、前記蒸発器にて50〜60℃の低温排熱からの供給熱より熱回収するとともに、前記凝縮器から80〜90℃の温熱を出力し、
    前記吸収式冷凍機は、前記再生器にて前記電動ヒートポンプの前記凝縮器から出力された80〜90℃の温熱を得るとともに、前記蒸発器から冷熱を出力し、
    さらに、前記吸収式冷凍機は、前記凝縮器が60〜70℃の温熱を出力するとともに、前記蒸発器が50〜60℃の前記低温排熱からの供給熱より熱回収するように構成された吸収式一種ヒートポンプに切替可能とされていることを特徴とする熱源システム。
  2. 電動モータによって駆動されて冷媒を圧縮する圧縮機、該圧縮機によって圧縮された冷媒を凝縮させる凝縮器、該凝縮器によって凝縮された液冷媒を膨張させる膨張弁、及び、該膨張弁によって膨張された冷媒を蒸発させる蒸発器を備えた蒸気圧縮式の電動ヒートポンプと、
    温熱が供給されて溶液を加熱濃縮して再生させる再生器、該再生器から導かれた冷媒を凝縮させて温熱を出力する凝縮器、該凝縮器にて凝縮された液冷媒を蒸発させる蒸発器、及び、該蒸発器によって蒸発した冷媒を溶液に吸収させる吸収器を備えた吸収式一種ヒートポンプと、
    を備え、
    前記電動ヒートポンプは、前記蒸発器にて50〜60℃の低温排熱からの供給熱より熱回収するとともに、前記凝縮器から80〜90℃の温熱を出力し、
    前記吸収式一種ヒートポンプは、前記再生器にて前記電動ヒートポンプの前記凝縮器から出力された80〜90℃の温熱を得るとともに、前記蒸発器にて50〜60℃の前記低温排熱からの供給熱より熱回収し、前記凝縮器から60〜70℃の温熱を出力することを特徴とする熱源システム。
  3. 前記吸収式冷凍機に代えて吸着式冷凍機とされ、又は、前記吸収式一種ヒートポンプに代えて吸着式ヒートポンプとされていることを特徴とする請求項1又は2に記載の熱源システム。
JP2011006025A 2011-01-14 2011-01-14 熱源システム Active JP5730028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006025A JP5730028B2 (ja) 2011-01-14 2011-01-14 熱源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006025A JP5730028B2 (ja) 2011-01-14 2011-01-14 熱源システム

Publications (2)

Publication Number Publication Date
JP2012145309A JP2012145309A (ja) 2012-08-02
JP5730028B2 true JP5730028B2 (ja) 2015-06-03

Family

ID=46789037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006025A Active JP5730028B2 (ja) 2011-01-14 2011-01-14 熱源システム

Country Status (1)

Country Link
JP (1) JP5730028B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090592A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种冷热外平衡机组
CN103090591A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热内平衡系统
CN103075848A (zh) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热平衡系统
CN103090587A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热外平衡系统
KR102275972B1 (ko) * 2020-11-26 2021-07-12 삼중테크 주식회사 과냉각 연계를 가지는 하이브리드 흡착식 냉동기 및 이의 구동 방법
KR102329430B1 (ko) * 2020-11-26 2021-11-22 삼중테크 주식회사 듀얼 응축기를 가지는 하이브리드 흡착식 냉동기 및 이의 구동 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269041A (en) * 1975-12-08 1977-06-08 Mayekawa Mfg Co Ltd Combination heat pump
JPS61140760A (ja) * 1984-12-11 1986-06-27 三菱重工業株式会社 ヒ−トポンプ
JPH11190567A (ja) * 1997-12-25 1999-07-13 Denso Corp 冷凍装置
JP4184197B2 (ja) * 2003-09-02 2008-11-19 リンナイ株式会社 ハイブリッド吸収式ヒートポンプシステム
JP4885467B2 (ja) * 2005-03-25 2012-02-29 川重冷熱工業株式会社 吸収ヒートポンプ
JP2009098823A (ja) * 2007-10-16 2009-05-07 Hitachi Ltd 電子装置システム
JP4951596B2 (ja) * 2008-07-31 2012-06-13 株式会社日立製作所 冷却システム及び電子装置
IT1393132B1 (it) * 2009-03-09 2012-04-11 Eubios S P A Impianto per la termo-regolazione di un primo ed un secondo fluido per la climatizzazione di ambienti

Also Published As

Publication number Publication date
JP2012145309A (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5730028B2 (ja) 熱源システム
JP2011133123A (ja) 冷凍サイクル装置
JP4471992B2 (ja) 多元ヒートポンプ式蒸気・温水発生装置
JP2011075180A (ja) 吸収式冷凍機
KR101360975B1 (ko) 선박의 엔진 폐열을 이용한 흡착식 냉방시스템
KR100509775B1 (ko) 흡수 냉각기의 고단 발생기를 위한 열교환기
JP2011099640A (ja) ハイブリッドヒートポンプ
JP2007263482A (ja) 複合ヒートポンプシステム
JP2007211681A (ja) 動力回収システム
JP5808105B2 (ja) 熱源システムおよびその制御方法
JP2010223439A (ja) 太陽熱利用蒸気発生システムとそれを利用した太陽熱利用吸収冷凍機
JP5402186B2 (ja) 冷凍装置
JP3952284B2 (ja) 空調装置
JP3664587B2 (ja) 冷房装置
JP2008020094A (ja) 吸収式ヒートポンプ装置
JP3821286B2 (ja) 吸収式と圧縮式とを組合せた冷凍装置とその運転方法
JPH0754211B2 (ja) 吸収式ヒートポンプサイクルを利用したコ・ゼネレーションシステム
JP4546188B2 (ja) 排熱利用空調システム
JP5402187B2 (ja) 冷凍装置
JP4100462B2 (ja) 熱利用システム
JP4308076B2 (ja) 吸収冷凍機
KR100827569B1 (ko) 히트펌프를 구비한 흡수식 냉동장치
JP3986633B2 (ja) 熱利用システム
JP2009115065A (ja) エネルギー変換システム
KR100658321B1 (ko) 열흡수식 동력발생장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R151 Written notification of patent or utility model registration

Ref document number: 5730028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350