JP5706707B2 - 磁気抵抗効果素子の形成方法 - Google Patents

磁気抵抗効果素子の形成方法 Download PDF

Info

Publication number
JP5706707B2
JP5706707B2 JP2011028586A JP2011028586A JP5706707B2 JP 5706707 B2 JP5706707 B2 JP 5706707B2 JP 2011028586 A JP2011028586 A JP 2011028586A JP 2011028586 A JP2011028586 A JP 2011028586A JP 5706707 B2 JP5706707 B2 JP 5706707B2
Authority
JP
Japan
Prior art keywords
width
ion
layer
forming
beam etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011028586A
Other languages
English (en)
Other versions
JP2011166157A (ja
Inventor
▲恵▼娟 王
▲恵▼娟 王
▲丹▼ ▲赴▼
▲丹▼ ▲赴▼
敏 鄭
敏 鄭
明輝 余
明輝 余
民 李
民 李
承▲埼▼ 韓
承▲埼▼ 韓
Original Assignee
ヘッドウェイテクノロジーズ インコーポレイテッド
ヘッドウェイテクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘッドウェイテクノロジーズ インコーポレイテッド, ヘッドウェイテクノロジーズ インコーポレイテッド filed Critical ヘッドウェイテクノロジーズ インコーポレイテッド
Publication of JP2011166157A publication Critical patent/JP2011166157A/ja
Application granted granted Critical
Publication of JP5706707B2 publication Critical patent/JP5706707B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/308Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices lift-off processes, e.g. ion milling, for trimming or patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)

Description

本発明は、磁気抵抗効果(MR:magneto resistive) 素子の形成方法に関する。
磁気トンネル接合(MTJ:magnetic tunnel junction)センサとも称されるMTJ素子は、磁気記録デバイスの根幹をなす要素であり、記録密度の向上が常に望まれている。新規なデバイスに求められる高い性能を満たすためには、センサを小型化することが必要となる。限界寸法(CD:critical dimension)の小さなセンサを形成する方法としては、いくつかの手法が挙げられる。その1つとしては、フォトレジストマスク層に印刷されるパターンのマスク寸法を縮小させることにより、限界寸法を小さくする手法である。この手法では、次に、エッチング法を用いてマスクパターンをMTJ積層膜に転写することにより、フォトレジストパターンの限界寸法と同様の限界寸法を有する複数のMTJ素子を形成する。第2の手法は、パターン転写処理を行いMTJ素子の形状を画定したのちに、例えば反応性イオンエッチング(RIE:reactive ion etch)を用いてサイドウォールをトリミングすることにより、センサの寸法を減少させる手法である。しかしながら、これらの手法はいずれも実用限界があり、高性能な記録デバイスにおいて必要とされる、約50nm未満の限界寸法を再現性よく形成することができない。
従来技術を定型的に調査したところ、以下の特許文献1〜5を発見した。特許文献1〜4は、特定の入射角のイオンビームエッチングを用いて磁気記録媒体の表面を改質することに関するものである。また、特許文献5は、2つのイオンビームエッチング工程を用いることによりセンサをパターニングする方法を開示している。この方法では、第2のIBE工程における入射角が、第1のIBE工程において用いられる入射角よりも大きくなっている。また、この第2のIBE工程は、第1のIBE工程に由来する再堆積した材料を除去する。
米国特許第7438982号明細書 米国特許第7616404号明細書 米国特許第7615292号明細書 米国特許出願公開第2008/0078739号明細書 米国特許第7561384号明細書
しかしながら、これらの特許文献1〜4はいずれも、センサの側壁を成形することについては言及していない。また特許文献5は、第2のIBE工程が、センサにおける複数の層の磁気特性に与える悪影響について何ら対処していない。すなわち、上述した従来技術の方法は、いずれも、50nm未満の限界寸法を有する高性能センサを得るための解決方法を提供するものではない。したがって、磁気記録デバイスにおいてさらなる進歩を可能とするために、新規な方法が求められる。
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、フリー層幅(FLW:free layer width)の限界寸法を50nm未満に縮小させるための磁気抵抗効果素子の形成方法を提供することにある。第2の目的は、50nm未満の限界寸法を得ると共に、高いMR比であることなどの磁気センサとして求められる磁気特性の向上を図ることもできる磁気抵抗効果素子の形成方法を提供することにある。第3の目的は、50nm未満の限界寸法を得ると共に、磁気抵抗効果素子の側壁の傾斜角度の調整を容易に行うことのできる磁気抵抗効果素子の形成方法を提供することにある。
本発明の第1の磁気抵抗効果素子の形成方法は、(a)基体の上に、ピンド層と、フリー層と、ピンド層とフリー層との間に位置する非磁性スペーサ層と、最上部のキャップ層とを含むMTJスタックを形成する第1の工程と、(b)MTJスタックをパターニングすることにより、上面および上面と基体とを繋ぐ側壁を有するMTJ素子を形成し、フリー層が、MTJ素子の上面に平行な面に沿って第1の幅を有するものとする第2の工程と、(c)基体に垂直な面に対して20°未満の入射角のイオンビームを用いた第1のイオンビームエッチングを行うことにより、フリー層が第1の幅よりも狭い第2の幅を有するように側壁のトリミングを行う第3の工程と、(d)基体に垂直な面に対して60°を超える入射角のイオンビームを用い、弧を描くような掃引動作を伴いながら第2のイオンビームエッチングを行うことにより、第1のイオンビームエッチングの際に生じた残渣を除去すると共に、フリー層が第2の幅よりも狭い第3の幅を有するように側壁のトリミングをさらに行う第4の工程と、(e)基体に垂直な面に対して20°未満の入射角のイオンビームを用いた第3のイオンビームエッチングを行うことにより、第2のイオンビームエッチングの際に生じた側壁における損傷部分を除去すると共に、フリー層が第3の幅よりも狭い第4の幅を有するように側壁のトリミングをさらに行う第5の工程とを含むものである。ここでは、第1から第3のイオンビームエッチングを、300eV未満のエネルギーを用いて行う。
本発明の第2の磁気抵抗効果素子の形成方法は、(a)基体の上に、シード層と、AFM層と、ピンド層と、フリー層と、ピンド層とフリー層との間に位置する非磁性スペーサ層と、最上部のキャップ層とを含むMTJスタックを形成する第1の工程と、(b)MTJスタックをパターニングすることにより、上面および上面と基体とを繋ぐ側壁を有するMTJ素子を形成し、フリー層が、MTJ素子の上面に平行な面に沿って第1の幅を有するものとする第2の工程と、(c)基体に対して垂直な主成分を含む入射角のイオンビームを用いた第1のイオンビームエッチングを行うことにより、フリー層が第1の幅よりも狭い第2の幅を有するように側壁のトリミングを行う第3の工程と、(d)基体に対して平行な主成分を含む入射角のイオンビームを用い、弧を描くような掃引動作を伴いながら第2のイオンビームエッチングを行うことにより、第1のイオンビームエッチングの際に生じた残渣を除去すると共に、フリー層が第2の幅よりも狭い第3の幅を有するように側壁のトリミングをさらに行う第4の工程と、(e)基体に対して垂直な主成分を含む入射角のイオンビームを用いた第3のイオンビームエッチングを行うことにより、第2のイオンビームエッチングの際に生じた側壁における損傷部分を除去すると共に、フリー層が第3の幅よりも狭い第4の幅を有するように側壁のトリミングをさらに行う第5の工程とを含むものである。ここでは、第1から第3のイオンビームエッチングを、300eV未満のエネルギーを用いて行う。
より具体的には、上記目的を達成するために、例えば、まず再生ヘッドの第1シールド層などの基体の上に、MTJスタックを成膜する。MTJスタックは、例えば、ボトムスピンバルブ構造、トップスピンバルブ構造、またはデュアルスピンバルブ構造を有し、その最上層としてキャップ層を有している。このキャップ層の上に、フォトレジスト層をコーティングしたのち、これを周知の方法を用いてパターニングすることにより、例えば、上面視で円形または楕円形の形状を有する島状の、複数のフォトレジストパターンを形成する。次に、このフォトレジストパターンを、好ましくは反応性イオンエッチング(RIE)を用いてMTJスタックに転写する。これにより、側壁と、最終的な記録デバイスにおけるエアベアリング面(ABS)となる面に沿った第1の幅とを有する、MTJ素子を得る。
本発明の主要な特徴のひとつは、MR比やMTJスタックにおける他の磁気特性を保ちつつ、側壁および第1の幅を実質的により小さな幅にトリミングするという、複数工程に亘るイオンビームエッチング処理である。MTJスタックは、例えば、ピンド層とフリー層との間に、誘電材料により構成された非磁性スペーサ層が形成された、TMR構造を有している。あるいは、例えば、フリー層とピンド層との間に非磁性金属層が形成されたGMR構造を有している。
複数工程に亘るIBE処理のうちの第1のIBE工程は、MTJスタックの層面に垂直な面に対して20°未満という小さな入射角を有するイオンビームエッチングを行うものである。アルゴン(Ar)などを含む300eV未満の低いエネルギーを有する不活性ガスイオンを用い、フリー層幅(FLW)を第1の幅よりも狭い第2の幅にトリミングする。ここでは、IBE処理全体においてトリミングされるべきMTJ幅の合計(第1の幅と最終幅との差分)のうち、約60%から90%が除去される。次に、300eV未満の低いエネルギーを有し、かつ、基体に垂直な面に対する角度が60°よりも大きな入射角を有するイオンビームを用い、掃引動作を伴いながら第2のIBE工程を行う。この第2のIBE工程では、イオンビームを、MTJ素子の側壁に沿って複数回往復するように移動させることにより、FLWが第3の幅となるようにさらにトリミングするとともに、第1のIBE工程から残存する再付着物(残渣)を除去する。次に、300eV未満の低いエネルギーと、垂直面からの角度が20°未満の低い入射角とを用いて、FLWが所望の最終幅となるようにトリミングする。ここでは、IBE処理全体においてトリミングされるべきMTJ幅の合計(第1の幅と最終幅との差分)のうち、約10%から40%が除去される。第3のIBE工程の特に重要な機能の1つは、側壁の、第2のIBE工程の際に形成された損傷部分を除去することである。この際、MTJ素子の側壁に対して垂直な方向のイオンビームの成分は十分に弱いので、MTJ素子の各層に対するダメージはわずかである。その結果、第1から第3のIBE工程により、例えば、最大で約20nmトリミングされ、これによりFLW(第1の幅)が、例えば50nm前後から約30nmの最終幅へと縮小する。
本発明では、第1から第3のIBE工程ののち、例えば、周知の方法を用いてMTJ素子の側壁に隣接する絶縁層を形成する。MTJスタックのフリー層に縦バイアスを加えるためのハードバイアス層を、例えば、MTJ素子に近接して形成する。さらに、MTJ素子の上面との電気的に接続するためのリード層を形成し、MTJ素子の上に、第2のシールド層を成膜する。
本発明の磁気抵抗効果素子の形成方法によれば、MTJ素子の側壁を、少なくとも3つのIBE工程により段階的にトリミングを行うようにしたので、フリー層幅の限界寸法を、より縮小することができる。
本発明の第1の実施の形態としてのTMRセンサの構成を表す断面図である。 図1に示したMTJ素子の形成方法における一工程を表す断面図である。 図2に続く一工程を表す断面図である。 図3の工程を表す上面図である。 図3に続く一工程を表す断面図である。 図5に続く一工程を表す断面図である。 本発明の実験例2,3における、フォトリソ工程でのFLWの限界寸法とトリミング後に得られるFLWとの関係を表す断面図である。
本発明は、磁気抵抗センサの磁気特性を保ちつつ、例えば50nm未満のフリー層幅(FLW:free layer width)が得られるように、MTJ素子(磁気抵抗センサ)の側壁およびフリー層幅をトリミングする方法である。なお、例示的な本実施の形態ではボトムスピンバルブ構造に基づいて説明しているが、本発明は、トップスピンバルブ構造およびデュアルスピンバルブ構造の場合も含んでいる。また、MTJ素子のサイドウォールは、パターニングされたMTJ素子の周囲における連続的な境界であると理解されるように、単数の意味で用いられている。さらに、図面では1つのMTJ素子のみが示されているが、当業者であれば、行方向および列方向に配列された複数のMTJ素子が一般的なデバイスパターン状に形成されていることを理解することができる。
以下、図1を参照して、本発明の一実施の形態におけるTMRセンサの構成について説明する。図1は、TMRセンサにおける、エアベアリング面と平行な断面の構成を表している。
図1に示したように、このTMRセンサは、対向配置された基体としての下部シールド層10と上部シールド層27との間に、磁気トンネル接合構造を有するMTJ素子1が狭持されたものである。下部シールド層10は、例えば2μmの厚さを有するNiFe層であり、例えば、アルティック(Al・TiC)からなる基板上に形成される。MTJ素子1の両側には、下部シールド層10の上面およびMTJ素子1の端面(側壁)18を連続して覆うシード層19と、このシード層19の表面19s上に位置するハードバイアス層24と、このハードバイアス層24を覆うリード層25とが、MTJ素子1をトラック幅方向(X軸方向)に挟むように設けられている。さらに、MTJ素子1およびリード層25と、上部シールド層27との間にはギャップ層26が挿入されている。
MTJ素子1は、例えば、シード層11と、AFM層12と、ピンド層13と、非磁性スペーサ層14と、フリー層18と、キャップ層16とが下部シールド層10の上に順次積層されたボトムスピンバルブ構造を有している。
シード層11は、その上に形成される層において滑らかで均質な粒状構造を促進する役割を果たすものである。シード層11は、例えば、Ta/Ru,Ta/NiCr,Ta/CuもしくはTa/Crからなる2層構造、または、Taからなる単層構造を有するものである。但し、他の材料を用いてもよい。
シード層11の上に形成されるAFM層12は、その上のピンド層13(その中でも特に外側層であるAP2層(図示せず)の磁化方向を固定するように機能するものであり、例えば4nm(40Å)以上30nm(300Å)以下の厚さを有する。AFM層12は、IrMnからなることが望ましいが、必要に応じてPtMn,NiMn,OsMn,RuMn,RhMn,PdMn,RuRhMn,またはMnPtPdを用いてもよい。
ピンド層13は、例えば「AP2/Ru/AP1」により表されるシンセティック反平行(SyAP:Synthetic Anti-Parallel)構造を有している。具体的には、強磁性材料からなるAP2層(図示せず)と、Ru(ルテニウム)などからなる非磁性の結合層(図示せず)と、強磁性材料からなるAP1層(図示せず)とがAFM層12の側から順に積層されたものである。AP1層は、内側ピンド層とも呼ばれるものである。AP1層は、例えば、CoFe,CoFeB,またはそれらの組み合わせから構成されている。結合層は、AP2層とAP1層との間の交換結合を促進させるためのもので、例えばRu(ルテニウム),Rh(ロジウム)またはIr(イリジウム)から構成される。AP2層は、外側ピンド層とも称され、AFM層12と接している。AP2層は、例えば、Feが約10原子%含まれるCoFeからなり、例えば1nm以上5nm以下の厚さを有する。AP2層の磁気モーメントは、AP1層の磁気モーメントとは反平行の方向に固定されている。例えば、AP1層が「−X」方向の磁気モーメントを有している場合、AP2層は「+X」方向に配向した磁気モーメントを有している。また、AP2層とAP1層との厚さは、わずかに異なっている。これにより、ピンド層13は、全体として、後工程においてパターニングされるTMRセンサ1の容易軸方向に沿って小さなネット磁気モーメントを発現するようになっている。
非磁性スペーサ層14は、ピンド層13の上に形成されている。非磁性スペーサ層14は、例えば、Cu(銅)または他の金属から構成され、これによりMTJ素子1は、巨大磁気抵抗(GMR:giant magnetoresistive)構造を有するものとなる。このGMR構造のMTJ素子1は、例えば、電流狭窄パス(CCP:current confining path)構造を有してもよい。CPP構造は、金属酸化物などの誘電材料が2つの金属層の間に挟まれ、それらの第1および第2の金属層の間に流れる電流を2つの金属層の層面に対して垂直方向に制限すべく、その内部にメタルパスを有する構造である。あるいは、非磁性スペーサ層14を、例えば、MgO,TiOx,AlTiO,MgZnO,Al23,ZnO,ZrOxまたはHfOxから構成してもよい。この場合、MTJ素子1は、トンネル磁気抵抗(TMR:tunneling magnetoresistive)構造を有するものとなる。MgOxからなる非磁性スペーサ層14は、ピンド層14の上に第1のMg層(図示せず)を形成したのち、この第1のMg層に対して自然酸化(NOX:natural oxidation)法またはラジカル酸化(ROX:radical oxidation)法を用いて第1のMg層を酸化させ、さらの酸化した第1のMg層の上に、第2のMg層を成膜したのち、熱処理を行うことで得る。熱処理工程を経た後の非磁性スペーサ層14は、酸化させた第1のMg層の酸素が第2のMg層の内部へと拡散することにより、ほぼ均一な組成のMgOトンネルバリア層となる。
フリー層15は、非磁性スペーサ層14の上に形成され、例えば、CoFe,CoFeB,NiFeまたはそれらの組み合わせにより構成されている。所望により、単一成分からなるフリー層15として他の強磁性材料を選択し、または、CoFe,CoFeBおよびNiFeのうちの少なくとも1つを含む、複合体としてもよい。エアベアリング面に沿ったフリー層15の幅(FLW)は、MTJ素子1の性能を支配する限界寸法である。一般的に、FLWおよびトラック幅(TW:track width)が小さいほど、センサデバイスの記録密度をより高くすることが可能となる。トラック幅とは、キャップ層16の上面16sに沿うリード層(図示せず)間の間隔を意味するものとして理解される。側壁18が下部シールド層10に対してほぼ垂直である場合、トラック幅はFLWに等しいと考えられる。一方、キャップ層16の上面16sの幅がエアベアリング面におけるシード層11の幅未満となるように側壁18が傾斜している場合、トラック幅はFLW未満となる。
キャップ層16は、MTJ素子1の最上層として用いられ、例えば、Ta,Ru/TaまたはRu/Ta/Ruから構成されている。
次に、図1に加え、図2〜図6を参照して本実施の形態におけるTMRセンサ1の形成方法について説明する。図2は、TMRセンサの形成方法における一工程を表す断面図である。
まず、所定の基板上に下部シールド層10を形成する。そののち、下部シールド層10の上にシード層11、AFM層12、ピンド層13、非磁性スペーサ層14、フリー層15、キャップ層16をそれぞれ上記の所定材料を用いて所定の構造となるように順次積層することによりのちにMTJ素子1となるMTJスタックを形成する。MTJスタックの形成は、例えば、所定のスパッタ蒸着装置を用いたスパッタリング法により行う。MTJスタックを構成するすべての層は、例えば、スパッタ装置の同一のDCスパッタチャンバ内で成膜される。スパッタ装置としては、複数のターゲットを有する超高真空DCマグネトロンスパッタチャンバと共に、少なくとも一つの酸化チャンバを備えたものが好ましい(例えばアネルバ社製のC−7100)。スパッタ条件としては、例えば、チャンバ内圧力を例えば5×10-8torr以上5×10-9torr以下、スパッタガスをアルゴン(Ar)ガスとすることである。なお、圧力が低いほど、より均一な膜の成膜が可能となる。なお、キャップ層16は、例えば、イオンビームエッチング、反応性イオンエッチング、および化学機械研磨(CMP:chemical mechanical polishing)処理の際に特定のエッチングレートを有する、1つ以上のハードマスク材料から構成されるようにしてもよい。
次いで、このMTJスタックを真空オーブン内に入れ、その積層膜に対するアニール処理を行う。このアニール処理は、例えば250℃以上350℃以下の温度範囲において、少なくとも2000×103/4π[A/m]、好ましくは8000×103/4π[A/m]の強度の磁界を印加しつつ、2〜10時間に亘って行う。アニール処理における時間や温度等の条件を適切に設定することにより、ピンド層13およびフリー層15の磁化方向が設定される。
次に、MTJスタックをパターニングすることにより、図2に示したように、上面16sと、下部シールド層10の表面と接する側壁18とを有するMTJ素子1を形成する。フリー層15が、MTJ素子1の上面16sと平行な面に沿って(X軸に沿って)限界寸法として第1の幅w1を有するものとする。
この工程では、まず、キャップ層16の上面16sの上にフォトレジスト層17をコーティングしたのち、これをパターニングすることにより、上面視で円形または楕円形(いずれも図示せず)などの形状を有する島状のレジストパターンを形成する。このレジストパターンはフォトマスクとして機能するものであり、その上面視形状の幅は、フォトCD(フォトマスクの限界寸法)と呼ばれ、一般的に走査型電子顕微鏡(SEM:scanning electron microscope)を用いて測定することができる。次に、このレジストパターンを、エッチング処理(好ましくは反応性イオンエッチング)を用いて、MTJスタックに転写する。これにより、MTJスタックのシード層11、AFM層12、ピンド層13、非磁性スペーサ層14、フリー層15、キャップ層16の各端縁からなる側壁18が形成される。本実施の形態では、側壁18は、ほぼ鉛直(下部シールド層10に対して垂直)であり、フォトレジスト層17のフォトCDが、MTJスタックに複製されている。しかしながら、側壁18は、傾斜部を有してもよく、この場合、キャップ層16の幅は、X軸方向においてシード層11の幅未満となる。
本実施の形態の主要な特徴は、符号w1(図1)により示された当初のFLWを、符号w4(後出の図5)により示される実質的により小さな幅となるようにトリミングするために用いられる、複数工程に亘るIBE処理にある。なお、トラック幅は、CD≦FLWの関係を有するMTJスタックの上面において測定されるため、トラック幅がFLW未満となる場合もある。このIBE処理は、従来の単一工程によるイオンビームエッチングを用いたトリミング法、または互いに異なるイオンビーム入射角を有する2段階によるトリミング処理と比較して、図2に示す部分的に形成されたMTJ素子1における保磁力Hcおよび面積抵抗RAを含めた磁気特性が、トリミングされたMTJ素子1の積層構造(図5)において実質的に維持されるとともに、MR比が飛躍的に向上するように行われる。
第1のIBE工程(図2)は、イオンビームエッチング(IBE)を行うことにより、フリー層15が第1の幅w1よりも狭い第2の幅w2となるように、MTJ素子1の端部のトリミングを行うものである。ここでは、300eV未満の低いエネルギーを有するイオンビーム20を用いて行われる。このイオンビーム20は、下部シールド層10に鉛直な面に対して、0°よりも大きく、20°よりも小さな入射角αにより側壁18に導かれる。すなわち、イオンビーム20は、下部シールド層10およびMTJ素子1の上面16sに対して垂直な成分を有している。
この大きな角度のイオンビーム20が照射される第1のIBE工程により、IBE処理全体においてトリミングされるべきFLW(限界寸法)の合計の、60%から90%が除去される。したがって、w1−w4により表されるトリミング幅の大部分が、この第1のIBE工程により除去されることになる。側壁18が鉛直である場合、トリミングは、その側壁18の部位に依存せずにほぼ等しいエッチングレートにより行われる。しかしながら、側壁18が角度を有して傾斜していることにより鉛直ではない場合、例えばトリミングを、MTJ素子1のより広い部位に沿って選択的に行い、より鉛直な側壁18を形成するようにしてもよい。イオンビーム20は、好ましくは、10sccm以上50sccm以下の流速のアルゴン(Ar)、ネオン(Ne)、またはキセノン(Xe)などの不活性ガスと、100mA以上600mA以下のイオン電流と、100ワット以上600ワット以下の高周波(RF)電力とを用いて発生させる。その結果、側壁18には相当量の残留物がしばしば再付着する。
図3は、図2に続く一工程を表す断面図である。図3に示すように、第1のIBE工程を経たのちのFLWは、第1の幅w1よりも小さな第2の幅w2となっている(w2<w1)。第1のIBE工程ののち、第2のIBE工程を行う。この第2のIBE工程は、第1のIBE工程において生じた残留物を除去すると共に、フリー層15が第2の幅w2よりも狭い第3の幅w3を有するようにMTJ素子1の端部のトリミングをさらに行うものである。第2のIBE工程では、図3に示したように、下部シールド層10の上面および上面16sに垂直な面に対して60°を超えて90°未満の入射角βのイオンビーム21を、XZ面内において弧を描くような掃引動作を伴いながら側壁18に照射することにより行う。イオンビーム21は、イオンビーム20と同様に300eV未満の低いエネルギーを有するものであり、所定の不活性ガスと、100mA以上600mA以下のイオン電流と、100ワット以上600ワット以下の高周波(RF)電力とを用いて発生されるものである。イオンビーム21は、下部シールド層10に対して平行な成分を有していると考えられる。第2の重要な要素としては、イオンビーム21が掃引動作により側壁18に向けられ、これにより第1のIBE工程に由来する残留物が除去されるとともに、FLWが幅w3にまでさらにトリミングされることが挙げられる。MTJ素子1の端部を効果的にトリミングするには、大きな入射角が必要である。
図4は、部分的に形成されたMTJ素子1と、第2のIBE工程の際のイオンビーム21の掃引動作とを表す上面図である。本実施の形態では、フォトレジスト層17(およびその下方のMTJ素子1の積層構造)の形状は、例えば円形である。第2のIBE工程では、イオンビーム21を、XZ面内において最大で約40°の回転角で反時計方向40aに回転させたのち、その動作を、同一の円弧上に沿って最大で約40°の回転角で時計方向40bに反転させる。所望により、開始位置からの第1の動作を、時計方向40bの回転とし、そののちの動作を、開始位置へと戻る反時計方向40aの動作としてもよい。反時計方向40aに続いて時計方向40bへの動作(または、これとは逆方向の動作)を含む掃引動作は、5から10サイクル/分の掃引レートにて、複数回(複数サイクル)行われる。側壁18から残留物を効果的に除去するには、3〜10の掃引サイクル数とするとよい。
第2のIBE工程ののち、図5に示したように、フリー層15が幅w3を有するMTJ素子1に対し、第3のIBE工程を施す。この第3のIBE工程は、第2のIBE工程において生じた側壁18における損傷部分を除去すると共に、フリー層15が第3の幅w3よりも狭い第4の幅w4(最終幅)を有するようにMTJ素子1の端部のトリミングをさらに行うものである。第3のIBE工程は、図5に示したように、下部シールド層10の上面および上面16sに垂直な面に対して20°未満の入射角δのイオンビーム22を側壁18に照射することにより行う。イオンビーム22は、イオンビーム20,21と同様に300eV未満の低いエネルギーを有するものであり、所定の不活性ガスと、100mA以上600mA以下のイオン電流と、100ワット以上600ワット以下の高周波(RF)電力とを用いて発生されるものである。第3のIBE工程では、第1から第3のIBE工程の全体を通じてトリミングされるべき幅(w1−w4)のうちの約10%から40%に相当する分を除去する。イオンビーム22は、下部シールド層10およびMTJ素子1の上面16sに対して垂直な成分を有している。第3のIBE工程は、MTJ素子1の磁気特性を低下させる可能性のあるダメージをさらに発生させることなく、第2のIBE工程に由来する側壁18の損傷部分を除去する点において、重要な役割を果たすものである。特に、第3のIBE工程は、第2のIBE工程の際にイオンビーム21を照射された非磁性スペーサ層14の損傷部分を除去し、これにより、MTJ素子1がTMR構造を有する場合とGMR構造を有する場合との双方において、高いMR比を保つことを可能としている。当業者であれば、第3のIBE工程におけるイオンビーム22のX軸方向成分は十分に弱いことから、側壁18に対しては大きなダメージは生じないことを理解することができる。さらに、第3のIBE工程におけるイオンビーム22のY軸方向(縦)成分は、側壁18の第2のIBE工程に起因する損傷部分を除去するのに主に関与する。
図6に示したように、MTJ素子1は、第1から第3のIBE工程が完了したのち、幅w4により示す最終的なFLWを有することとなる。本実施の形態に係るIBE処理によるトリミングの利点とは、幅w4に等しいFLWを、実質的に50nm未満、場合によっては30nmに達する値を有しつつ、再現性よく形成することができることにある。従来技術の場合、50nmを大幅に下回る値のFLWは、製造環境において再現性よく形成することができない。このようなことから、本出願人は、30nmに迫る限界寸法を可能とするセンサ技術の方法を発見した。この方法は、デバイス性能の飛躍的な向上につながるものである。さらに、例えば、側壁18の傾斜部を、下部シールド層10に対して90°の角度から90°未満に至る範囲の角度を有するように調整することにより、エアベアリング面に沿うキャップ層16の幅を、シード層11の幅未満としてもよい。特定のセンサ構造では、高いアスペクト比(高さ/幅)を有するMTJ積層構造がイオンミリングの際に崩壊し易くなることを防止するために、側壁の傾斜部が90°未満の角度を有する場合がある。側壁18の傾斜部は、例えば、上記イオンビームエッチングを用いたトリミング処理の際の、第1〜第3のIBE工程のうちの少なくとも1つにおける入射角α,β,δを変化させることにより変更することができる。特に、第2のIBE工程を最適化することにより、下部シールド層10に対する側壁18の角度が、より鉛直となるようにしてもよい。
図1に示したように、このMTJ素子1を含む再生ヘッドは、これ以降、例えば周知の作製手順を経ることにより作製される。例えば、上面19sを有するシード層19を、下部シールド層10および側壁18を覆うように成膜する。次に、シード層19の上に、フリー層15に対して縦バイアスを加えるための十分な厚さを有するハードバイアス層24を形成する。次に、ハードバイアス層24の上に、リード層25を形成する。次に、例えばリフトオフ法を用いてフォトレジスト層17を除去したのち、キャップ層16の上面16sの上に、ギャップ層26と第2のシールド層27とを順次形成する。図1は、側壁18が90°とは異なる傾斜部を有する場合である。他の実施の形態(図示せず)の場合、例えば、下部シールド層10の上に形成されるMTJ素子アレイの密度を最大限にするために、側壁18が下部シールド層10に対して鉛直な傾斜部を有している。なお、本発明は他のハードバイアス層の構造を含むものであり、図1に示した実施の形態に限定されない。
次に、本発明に関する実験例について説明する。
ここでは、本発明に係る複数工程によるIBE処理の効果を検証するため、従前の方法に基づくTMRセンサと、上記実施の形態に基づくMTJ素子を備えたTMRセンサとを作製した。各実験例1〜3は、AlTiCから構成された基体の上に、以下の構成を有するボトムスピンバルブ構造「Ru/Ta/IrMn/CoFe/Ru/CoFeB/MgO/CoFeB/Ru/Ta」を形成したものである。なお、Ru/Taはシード層、IrMnはAFM層、CoFe/Ru/CoFeBはピンド層、MgOはトンネルバリア層、CoFeBはフリー層、Ru/Taは複合キャップ層である。データは、以下に説明する円形の各種デバイスについて採取した。
実験例3は、従来技術に係る方法を用いて形成されたセンサとしての基準サンプルである。この実験例3では、まず、MTJスタックに対してパターン転写を行ったのちFLWを形成し、このFLWを、単一のIBE工程によりトリミングした。単一のIBE工程では、基体に垂直に形成された面に対して8°の入射角を有するイオンビームを照射した。表1に示したように、実験例3の上に形成されたMTJスタックは、1.2Ω×μm2の面積抵抗RA、62%の抵抗変化率dR/Rを発現することが可能であった。実験例3から得られたFLWの測定値を、図7に示す。図7は、フォトリソ工程後の限界寸法(nm)と、実際に得られたMTJ素子のFLW(nm)との関係を表している。
図7は、例えば、当初のパターニング後のFLWが52nm(符号50)であった場合、そののちの単一のIBE工程を用いることにより得られるトリミング後のFLWの最小値は、約43nm(9nmの減少)であることを示している。同様に、パターニング後のFLWが61nm(符号52)であった場合、単一のIBE工程を経たのち約52nmに減少した。なお、フォトリソ工程後のFLWの測定値は、測長走査型電子顕微鏡(CD−SEM:critical dimension scanning electron microscope)を用いた断面図に基づいて測定し、トリミング後のFLWの測定値は、透過型電子顕微鏡(TEM:transmission electron microscopy)を用いた断面図に基づいて得た。
Figure 0005706707
実験例1は、実験例3の一部を変更した例である。ここでは、まず、鉛直面に対して8°の入射角のイオンビームを有する第1のIBE工程によりFLWを所望の幅にトリミングする。そののち、第2のIBE工程として、掃引動作を伴いながら70°の入射角を有するイオンビームを照射して、第2のIBE工程に由来する残留物を除去した。なお、単一のIBE工程によるトリミングののちには残留物が残ることから、このような第2のIBE工程において残留物を除去することが望ましい。
実験例2は、本発明のIBE処理に基づき作製されたものである。第1の工程では、鉛直面に対して8°の入射角を有するイオンビームを用い、所望量の約80%の分だけFLWを縮小させた。続く第2の工程では、70°の入射角のイオンビームを掃引動作を伴いながらMTJ素子に照射し、第1の工程に由来する残留物を除去した。最後に、300eV未満の低いエネルギーを有すると共に入射角が8°であるイオンビームによるイオンビームエッチングをさらに行い、所望量の最後の20%の分のFLWを縮小させた(第3のIBE工程)。これにより、FLWを、フォトリソ工程での限界寸法(フォトCD)である53nmから、最終的な限界寸法である35nmまで(図7の符号51)へと、約20nm減少させることができ、または、62nmから40nm(符号53)へと減少させることができた。すなわち、本発明に係る第1から第3のIBE工程によるIBE処理を経たことにより、50nmから70nmの範囲の当初のフォトCDについて、約20nmの限界寸法の減少を得ることができた。面積抵抗RAは1.2Ω×μm2に保たれ、抵抗変化率dR/Rは、単一のIBE工程によるトリミングを経たのちに得られる実験例3の62%の値にほぼ等しい、61%となっている。したがって、本発明によるIBE処理は、保磁力Hcおよび面積抵抗RAを含めた他の磁気特性を損なわずに、従来技術において得られたMTJ素子よりも小さなFLWを有するMTJ素子を実現する場合に有用である。なお、70nmよりも大きなフォトCDから開始した場合であっても、20nm前後の同様なFLWの減少が得られる。ただし、本発明は、70nm未満のフォトCDの場合に最も効果が現れる。したがって、例えば50nm未満のFLWの寸法を、先進のデバイスに求められる、より高い歩留まりや、より良好な信頼性を有しつつ作製することができる。また実験例1では、第3のIBE工程が含まれていないため、MTJ素子の側壁の露出部分、特にMgOトンネルバリア層に多少の損傷が存在したままの状態となっている。そのため、面積抵抗RAが1.2Ω×μm2に保たれているものの、抵抗変化率dR/Rは48%にまで減少しており、実験例2に比較して低くなっている。
本実施の形態において説明した3工程に亘るIBE処理は、新たな装置や材料については不要であることから、既存の製造ラインに容易に組み込むことができる。さらに、このプロセスは、2段階工程によるIBEプロセスに由来する損傷の形跡が存在する、従前の技術製品に基づくセンサデバイスに適用することができる。これにより、面内通電(CIP:current-in-plane)−GMRセンサ、垂直通電(CPP:current-perpendicular-to-plane)−GMRセンサ、およびTMRセンサの磁気特性を向上させることができる。
本発明を好適な実施の形態を参照して具体的に示し説明したが、本発明は上記実施の形態および実験例において説明した態様に限定されず、本発明の趣旨から外れることがない限りにおいて、種々の変形が可能である。
1…MTJ素子、10…下部シールド層、11…シード層、12…AFM層、13…ピンド層、14…非磁性スペーサ層、15…フリー層、16…キャップ層、18…側壁、19…シード層、24…ハードバイアス層、25…リード層、26…ギャップ層、27…上部シールド層。

Claims (20)

  1. (a)基体の上に、ピンド層と、フリー層と、前記ピンド層と前記フリー層との間に位置する非磁性スペーサ層と、最上部のキャップ層とを含むMTJ(磁気トンネル接合)スタックを形成する第1の工程と、
    (b)前記MTJスタックをパターニングすることにより、上面および前記上面と前記基体とを繋ぐ側壁を有するMTJ素子を形成し、前記フリー層が、前記MTJ素子の上面に平行な面に沿って第1の幅を有するものとする第2の工程と、
    (c)前記基体に垂直な面に対して20°未満の入射角のイオンビームを用いた第1のイオンビームエッチング(IBE)を行うことにより、前記フリー層が前記第1の幅よりも狭い第2の幅を有するように前記側壁のトリミングを行う第3の工程と、
    (d)前記基体に垂直な面に対して60°を超える入射角のイオンビームを用い、弧を描くような掃引動作を伴いながら第2のイオンビームエッチングを行うことにより、前記第1のイオンビームエッチングの際に生じた残渣を除去すると共に、前記フリー層が前記第2の幅よりも狭い第3の幅を有するように前記側壁のトリミングをさらに行う第4の工程と、
    (e)前記基体に垂直な面に対して20°未満の入射角のイオンビームを用いた第3のイオンビームエッチングを行うことにより、前記第2のイオンビームエッチングの際に生じた前記側壁における損傷部分を除去すると共に、前記フリー層が前記第3の幅よりも狭い第4の幅を有するように前記側壁のトリミングをさらに行う第5の工程と
    を含み、
    前記第1から第3のイオンビームエッチングを、300eV未満のエネルギーを用いて行う
    磁気抵抗効果素子の形成方法。
  2. 前記第1から第3のイオンビームエッチングを、不活性ガスを用いて行う
    請求項1記載の磁気抵抗効果素子の形成方法。
  3. 前記第1から第3のイオンビームエッチングを、100mA以上600mA以下のイオン電流と、100ワット以上600ワット以下のRF電力とを用いて行う
    請求項2記載の磁気抵抗効果素子の形成方法。
  4. 前記掃引動作は、開始位置から時計方向または反時計方向に40°の回転角の範囲で前記基体を回転させる第1の動作と、前記開始位置へ戻るように反対方向へ前記基体を回転させる第2の動作とを交互に複数回行うものである
    請求項1記載の磁気抵抗効果素子の形成方法。
  5. 前記第1のイオンビームエッチングを、前記第1の幅から前記第4の幅への寸法の減少分のうち60%から90%に相当する分を除去するように行う
    請求項1記載の磁気抵抗効果素子の形成方法。
  6. 前記第3のイオンビームエッチングを、前記第1の幅から前記第4の幅への寸法の減少分のうち10%から40%に相当する分を除去するように行う
    請求項1記載の磁気抵抗効果素子の形成方法。
  7. 前記第1の幅を50nm以上70nm以下とし、前記第1の幅と前記第4の幅との差分を20nmとする
    請求項1記載の磁気抵抗効果素子の形成方法。
  8. 前記MTJ素子としてCIP−GMRセンサ、CPP−GMRセンサまたはTMRセンサを形成する
    請求項1記載の磁気抵抗効果素子の形成方法。
  9. 前記基体の表面に対する前記側壁の角度を、
    前記第1から前記第3のイオンビームエッチングのうちの少なくとも1つにおける前記イオンビームの前記入射角を変化させることにより変化させる
    請求項1記載の磁気抵抗効果素子の形成方法。
  10. 前記MTJ素子のトラック幅を、前記側壁の角度が前記基体の表面に対して垂直である場合に、前記第4の幅と等しくなるようにする
    請求項9記載の磁気抵抗効果素子の形成方法。
  11. (a)基体の上に、シード層と、AFM層と、ピンド層と、フリー層と、前記ピンド層と前記フリー層との間に位置する非磁性スペーサ層と、最上部のキャップ層とを含むMTJ(磁気トンネル接合)スタックを形成する第1の工程と、
    (b)前記MTJスタックをパターニングすることにより、上面および前記上面と前記基体とを繋ぐ側壁を有するMTJ素子を形成し、前記フリー層が、前記MTJ素子の上面に平行な面に沿って第1の幅を有するものとする第2の工程と、
    (c)前記基体に対して垂直な主成分を含む入射角のイオンビームを用いた第1のイオンビームエッチング(IBE)を行うことにより、前記フリー層が前記第1の幅よりも狭い第2の幅を有するように前記側壁のトリミングを行う第3の工程と、
    (d)前記基体に対して平行な主成分を含む入射角のイオンビームを用い、弧を描くような掃引動作を伴いながら第2のイオンビームエッチングを行うことにより、前記第1のイオンビームエッチングの際に生じた残渣を除去すると共に、前記フリー層が前記第2の幅よりも狭い第3の幅を有するように前記側壁のトリミングをさらに行う第4の工程と、
    (e)前記基体に対して垂直な主成分を含む入射角のイオンビームを用いた第3のイオンビームエッチングを行うことにより、前記第2のイオンビームエッチングの際に生じた前記側壁における損傷部分を除去すると共に、前記フリー層が前記第3の幅よりも狭い第4の幅を有するように前記側壁のトリミングをさらに行う第5の工程と
    を含み、
    前記第1から第3のイオンビームエッチングを、300eV未満のエネルギーを用いて行う
    磁気抵抗効果素子の形成方法。
  12. 前記第1から第3のイオンビームエッチングを、不活性ガスを用いて行う
    請求項11記載の磁気抵抗効果素子の形成方法。
  13. 前記第1から第3のイオンビームエッチングを、100mA以上600mA以下のイオン電流と、100ワット以上600ワット以下のRF電力とを用いて行う
    請求項12記載の磁気抵抗効果素子の形成方法。
  14. 前記掃引動作は、開始位置から時計方向または反時計方向に40°の回転角の範囲で前記基体を回転させる第1の動作と、前記開始位置へ戻るように反対方向へ前記基体を回転させる第2の動作とを交互に複数回行うものである
    請求項11記載の磁気抵抗効果素子の形成方法。
  15. 前記第1のイオンビームエッチングにおける前記イオンビームの前記基体に垂直な面に対する入射角を20°未満とし、
    前記第1のイオンビームエッチングを、前記第1の幅から前記第4の幅への寸法の減少分のうち60%から90%に相当する分を除去するように行う
    請求項11記載の磁気抵抗効果素子の形成方法。
  16. 前記第2のイオンビームエッチングにおける前記イオンビームの前記基体に垂直な面に対する入射角を、60°よりも大きく90°未満とする
    請求項11記載の磁気抵抗効果素子の形成方法。
  17. 前記第3のイオンビームエッチングにおける前記イオンビームの前記基体に垂直な面に対する入射角を20°未満とし、
    前記第3のイオンビームエッチングを、前記第1の幅から前記第4の幅への寸法の減少分のうち10%から40%に相当する分を除去するように行う
    請求項11記載の磁気抵抗効果素子の形成方法。
  18. 前記第1の幅を、50nm以上70nm以下とし、前記第1の幅と前記第4の幅との差分を20nmとする
    請求項11記載の磁気抵抗効果素子の形成方法。
  19. 前記MTJ素子としてCIP−GMRセンサ、CPP−GMRセンサまたはTMRセンサを形成する
    請求項11記載の磁気抵抗効果素子の形成方法。
  20. 前記基体の表面に対する前記側壁の角度を、
    前記第1から前記第3のイオンビームエッチングのうちの少なくとも1つにおける前記イオンビームの前記入射角を変化させることにより変化させる
    請求項11記載の磁気抵抗効果素子の形成方法。
JP2011028586A 2010-02-12 2011-02-14 磁気抵抗効果素子の形成方法 Expired - Fee Related JP5706707B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/658,662 2010-02-12
US12/658,662 US8728333B2 (en) 2010-02-12 2010-02-12 Method to fabricate small dimension devices for magnetic recording applications

Publications (2)

Publication Number Publication Date
JP2011166157A JP2011166157A (ja) 2011-08-25
JP5706707B2 true JP5706707B2 (ja) 2015-04-22

Family

ID=44368921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028586A Expired - Fee Related JP5706707B2 (ja) 2010-02-12 2011-02-14 磁気抵抗効果素子の形成方法

Country Status (2)

Country Link
US (1) US8728333B2 (ja)
JP (1) JP5706707B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416540B1 (en) * 2008-06-26 2013-04-09 Western Digital (Fremont), Llc Method for defining a magnetoresistive junction using multiple mills at a plurality of angles
US8233248B1 (en) 2009-09-16 2012-07-31 Western Digital (Fremont), Llc Method and system for providing a magnetic recording transducer using a line hard mask
US8871102B2 (en) * 2011-05-25 2014-10-28 Western Digital (Fremont), Llc Method and system for fabricating a narrow line structure in a magnetic recording head
JP2013140891A (ja) * 2012-01-05 2013-07-18 Toshiba Corp 磁気抵抗効果素子の製造方法
US8867178B2 (en) * 2012-10-16 2014-10-21 HGST Netherlands B.V. Read sensor with a hard bias layer having a high static field resistance
US8865008B2 (en) * 2012-10-25 2014-10-21 Headway Technologies, Inc. Two step method to fabricate small dimension devices for magnetic recording applications
TWI517463B (zh) * 2012-11-20 2016-01-11 佳能安內華股份有限公司 磁阻效應元件之製造方法
WO2014080823A1 (ja) * 2012-11-26 2014-05-30 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及びデバイスの製造方法
US8901687B2 (en) 2012-11-27 2014-12-02 Industrial Technology Research Institute Magnetic device with a substrate, a sensing block and a repair layer
WO2014142922A1 (en) * 2013-03-14 2014-09-18 Intel Corporation Cross point array mram having spin hall mtj devices
US9034564B1 (en) 2013-07-26 2015-05-19 Western Digital (Fremont), Llc Reader fabrication method employing developable bottom anti-reflective coating
US9070869B2 (en) * 2013-10-10 2015-06-30 Avalanche Technology, Inc. Fabrication method for high-density MRAM using thin hard mask
JP6030099B2 (ja) * 2014-08-18 2016-11-24 東京エレクトロン株式会社 残渣層除去方法及び残渣層除去装置
KR102354468B1 (ko) 2015-01-23 2022-01-24 삼성전자주식회사 패턴 형성 방법, 이를 이용한 반도체 소자의 제조방법, 및 이를 이용하여 제조된 반도체 소자
US9660177B2 (en) * 2015-09-09 2017-05-23 Headway Technologies, Inc. Method to minimize MTJ sidewall damage and bottom electrode redeposition using IBE trimming
KR102465539B1 (ko) 2015-09-18 2022-11-11 삼성전자주식회사 자기 터널 접합 구조체를 포함하는 반도체 소자 및 그의 형성 방법
KR102494102B1 (ko) * 2016-03-10 2023-02-01 삼성전자주식회사 자기 메모리 장치의 제조 방법
KR102615694B1 (ko) 2016-11-02 2023-12-21 삼성전자주식회사 정보 저장 소자 및 그 제조방법
US10359699B2 (en) * 2017-08-24 2019-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Self-adaptive halogen treatment to improve photoresist pattern and magnetoresistive random access memory (MRAM) device uniformity
US10374153B2 (en) * 2017-12-29 2019-08-06 Spin Memory, Inc. Method for manufacturing a magnetic memory device by pre-patterning a bottom electrode prior to patterning a magnetic material
US10388860B2 (en) * 2017-12-30 2019-08-20 Spin Memory, Inc. Method for manufacturing high density magnetic random access memory devices using diamond like carbon hard mask
US10520818B1 (en) 2018-09-18 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Critical dimension (CD) uniformity of photoresist island patterns using alternating phase shifting mask
US10714681B2 (en) * 2018-10-19 2020-07-14 International Business Machines Corporation Embedded magnetic tunnel junction pillar having reduced height and uniform contact area
US11715491B2 (en) * 2021-06-30 2023-08-01 Headway Technologies, Inc. Method of ultra-fine critical dimension patterning for magnetic head devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259145A (en) * 1979-06-29 1981-03-31 International Business Machines Corporation Ion source for reactive ion etching
EP0106497B1 (en) * 1982-09-10 1988-06-01 Nippon Telegraph And Telephone Corporation Ion shower apparatus
EP0339554A3 (de) * 1988-04-26 1989-12-20 Hauzer Holding B.V. Hochfrequenz-Ionenstrahlquelle
JP4142993B2 (ja) * 2003-07-23 2008-09-03 株式会社東芝 磁気メモリ装置の製造方法
JP4005976B2 (ja) 2004-03-03 2007-11-14 Tdk株式会社 磁気記録媒体
JP2005276275A (ja) 2004-03-23 2005-10-06 Tdk Corp 磁気記録媒体
US7560038B2 (en) * 2004-09-22 2009-07-14 Sae Magnetics (H.K.) Ltd. Thin film forming method and system
JP2006179051A (ja) 2004-12-21 2006-07-06 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗センサ及びその製造方法
JP4550713B2 (ja) * 2005-10-21 2010-09-22 株式会社東芝 磁気抵抗効果素子の製造方法
JP2007287239A (ja) * 2006-04-17 2007-11-01 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドとその形成方法
JP4626600B2 (ja) 2006-09-29 2011-02-09 Tdk株式会社 磁気記録媒体の製造方法
JP4164110B2 (ja) 2006-12-25 2008-10-08 Tdk株式会社 磁気記録媒体、磁気記録再生装置及び磁気記録媒体の製造方法
JP2008186506A (ja) * 2007-01-29 2008-08-14 Hitachi Global Storage Technologies Netherlands Bv 薄膜磁気ヘッド及びその製造方法
JP2008192222A (ja) * 2007-02-02 2008-08-21 Hitachi Global Storage Technologies Netherlands Bv 磁気検出素子及びその製造方法
US20090084757A1 (en) * 2007-09-28 2009-04-02 Yuri Erokhin Uniformity control for ion beam assisted etching
JP2010009651A (ja) * 2008-06-25 2010-01-14 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドの製造方法

Also Published As

Publication number Publication date
US20110198314A1 (en) 2011-08-18
US8728333B2 (en) 2014-05-20
JP2011166157A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5706707B2 (ja) 磁気抵抗効果素子の形成方法
US8865008B2 (en) Two step method to fabricate small dimension devices for magnetic recording applications
JP5599738B2 (ja) 磁気抵抗効果素子およびその形成方法
US9214170B2 (en) TMR device with low magnetostriction free layer
US9021685B2 (en) Two step annealing process for TMR device with amorphous free layer
US7780820B2 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
JP5630963B2 (ja) 複合シード層およびこれを有する磁気再生ヘッド、ならびにtmrセンサおよびccp−cpp−gmrセンサの形成方法
JP5674297B2 (ja) Tmr素子およびその形成方法
JP5395357B2 (ja) 電流路狭窄層の形成方法およびccp−cpp型gmr素子の製造方法
JP5815204B2 (ja) Tmr素子およびその形成方法
JP5232540B2 (ja) 磁気センサ構造および磁気センサ構造のccpスペーサの形成方法
JP5059351B2 (ja) スピンバルブ構造体およびその製造方法、ならびに磁気再生ヘッドおよびその製造方法
US9437225B2 (en) Reader designs of shield to shield spacing improvement
JP5763892B2 (ja) ハードバイアス構造の形成方法
JP2008004944A (ja) 強磁性構造、スピンバルブ構造およびその製造方法、磁気抵抗効果素子およびその製造方法
JP2007172824A (ja) 磁気再生ヘッドおよびその製造方法
US8553370B2 (en) TMR reader structure having shield layer
JP5647406B2 (ja) フリー層およびその形成方法、磁気抵抗効果素子
JP2010087293A (ja) 磁気抵抗効果素子の製造方法
JP2004319042A (ja) 薄膜磁気ヘッドウエハの製造方法、薄膜磁気ヘッドの製造方法及び薄膜磁気ヘッドウエハ
JP2010009645A (ja) 磁気抵抗効果素子製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 5706707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees