JP5681192B2 - 多孔性非セラミック基材上に原子層堆積コーティングを適用する方法 - Google Patents

多孔性非セラミック基材上に原子層堆積コーティングを適用する方法 Download PDF

Info

Publication number
JP5681192B2
JP5681192B2 JP2012530934A JP2012530934A JP5681192B2 JP 5681192 B2 JP5681192 B2 JP 5681192B2 JP 2012530934 A JP2012530934 A JP 2012530934A JP 2012530934 A JP2012530934 A JP 2012530934A JP 5681192 B2 JP5681192 B2 JP 5681192B2
Authority
JP
Japan
Prior art keywords
substrate
porous non
porous
reactor
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012530934A
Other languages
English (en)
Other versions
JP2013505368A (ja
JP2013505368A5 (ja
Inventor
エイチ.ドッジ ビル
エイチ.ドッジ ビル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2013505368A publication Critical patent/JP2013505368A/ja
Publication of JP2013505368A5 publication Critical patent/JP2013505368A5/ja
Application granted granted Critical
Publication of JP5681192B2 publication Critical patent/JP5681192B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C29/00Finishing or dressing, of textile fabrics, not provided for in the preceding groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/005Applying monomolecular films on textile products like fibres, threads or fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

(関連出願の相互参照)
本出願は、共に2009年9月22日に出願された米国特許仮出願第61/244,713号及び同第61/244,696号の利益を主張し、当該特許出願の開示は参照によりその全体が本明細書に組み込まれる。
(発明の分野)
本発明は、処理された多孔性非セラミック基材の製造に関し、より詳細には、これを達成するための流入原子層堆積法に関する。
原子層堆積(ALD)法は、もともと薄膜エレクトロルミネセンス(TFEL)フラットパネルディスプレイ用に開発された。ALDに対する関心は、原子レベルで膜の組成及び厚さを制御して、非常に薄くて柔軟性のある膜を製造するその能力に起因して、ケイ素ベースマイクロ電子機器(ウエハ)を中心に長年にわたって著しく高まっている。ALDはまた、自己制限的で連続的な表面反応プロセスにより高アスペクト比表面をコーティングするその能力でよく知られている。しかしながら、こうした高アスペクト比表面をコーティングするプロセスの能力は、反応性ガスがこうした領域に拡散して、次の前駆体を加える前にこのガスが完全に放出されるのに必要な時間という大きな課題を抱えている。この拡散問題は、この技術が多孔性材料まで拡張されるのを大きく妨げてきた。
本発明は、全てのガスがコーティングされるべき多孔性非セラミック材料を貫通することを求めることにより、上で述べられた拡散問題に対処する。これにより、対象となる材料の表面を出たり入ったりして拡散する必要性が排除されるので、所要時間が減少し、内側表面の不完全なコーティング被覆(coating coverage)が起こる可能性が最小限に抑えられる。
一態様において、本発明は、多孔性非セラミック基材上にコンフォーマルコーティングを堆積させる方法を提供し、この方法は、
入口と出口とを有する反応器を提供する工程と、
多孔性非セラミック基材が入口を出口から分離するように、少なくとも1つの多孔性非セラミック基材の少なくとも一部を配置する工程と、
第1及び第2の反応性ガスを多孔性非セラミック基材を通して出口まで流して、多孔性非セラミック基材の内部表面における一連の2回以上の自己制限的な反応を行って、内部表面の少なくとも一部の上にコンフォーマルコーティングを形成するように、入口における第1及び第2の反応性ガスの順次導入の少なくとも1回の繰り返しを実施する工程と、を含む。
定義
本開示に関連して、用語「多孔性」とは、基材が、少なくともガスが通過することができるのに十分な開口部(即ち「細孔」)を含むことを意味する。
用語「微小多孔性」とは、ガスが基材の細孔内を通過することができるように、基材が、1,000マイクロメートル以下の中央断面内寸(「メジアン細孔径」、例えば、円筒状細孔の場合の直径)を有する細孔を含むことを意味する。好ましい微小多孔性基材は、0.01マイクロメートル以上1,000マイクロメートル以下、より好ましくは0.1マイクロメートル以上100マイクロメートル以下、更により好ましくは0.2マイクロメートル以上20マイクロメートル以下、最も好ましくは0.3マイクロメートル以上3マイクロメートル以下、又は更に1マイクロメートルのメジアン細孔径を有する細孔を含む。本明細書を通して用いられる場合、メジアン細孔径は、ASTM規格F316−03に記載されているバブルポイント圧測定法を用いて決定された。
用語「非多孔性」とは、基材が細孔を実質的に含まないことを意味する。
用語「非セラミック」とは、コンフォーマルコーティングの堆積の前の基材に関し、基材が、無機金属酸化物、金属窒化物、金属炭化物、又はその他のセラミック物質を実質的に含まないことを意味する。好ましい「非セラミック」基材は、セラミック物質を完全に含まない、より好ましくは、繊維性有機材料(例えば、ポリマー繊維、天然繊維、炭素繊維等)から本質的になる、更により好ましくは、有機材料のみからなる。
用語「コンフォーマルコーティング」とは、下にある基材の形状に良好に接着してこれとぴったり合う、材料の比較的薄いコーティングを意味する。
本発明の方法で使用するのに適した反応器の断面図。 実施例1の実験の間のプロセスの繰り返しの回数と比較した、基材全体の圧力低下の増加を比較したグラフ。
本方法は、非セラミック基材の内部表面の少なくとも一部の上にコンフォーマルコーティングを提供する。本方法の多くの好都合な実施形態では、コンフォーマルコーティングは、金属酸化物、金属窒化物、金属硫化物、又はこれらの組み合わせを含む。これらの例の金属は、様々な種類のものであってもよいが、ケイ素、チタン、アルミニウム、ジルコニウム、及びイットリウムが特に適していると考えられる。好ましくは、金属は、ケイ素、チタン、又はアルミニウムであり、より好ましくは、金属はアルミニウムである。いくつかの好ましい実施形態では、コンフォーマルコーティングは酸化アルミニウムを含む。
原子層制御成長技術を介して適用され得るコーティングが好ましい。コーティングのうち、かかる方法で容易に適用されるのは、二成分物質、即ち、Qの形の物質であり、Q及びRは異なる原子を表し、x及びyは、静電気的に中性の物質を反映する数字である。好適な二成分物質は、種々の無機酸化物(例えば、二酸化ケイ素、及びジルコニア、アルミナ、シリカ、酸化ホウ素、イットリア、酸化亜鉛、酸化マグネシウム、TiO等などの金属酸化物など)、無機窒化物(例えば、窒化ケイ素、AlN及びBNなど)、無機硫化物(例えば、硫化ガリウム、硫化タングステン及び硫化モリブデンなど)、並びに無機リン酸である。更に、コバルト、パラジウム、プラチナ、亜鉛、レニウム、モリブデン、アンチモン、セレン、タリウム、クロム、プラチナ、ルテニウム、イリジウム、ゲルマニウム及びタングステンなどの種々の金属コーティングが有用である。
自己制限的で連続的なコーティングの適用の有用な議論は、例えば、米国特許第6,713,177号、同第6,913,827号、及び同第6,613,383号に見出すことができる。
ALD反応の分野に精通している者は、上述のコンフォーマルコーティングを生成するために、第1及び第2の反応性ガスのどちらが本発明の方法による自己制限的な反応にとって適切な選択であるのかを容易に決定することができる。例えば、アルミニウム含有化合物が所望の場合、トリメチルアルミニウム又はトリイソブチルアルミニウムガスを、2種類の反応性ガスの1つとして使用してもよい。所望のアルミニウム含有化合物が酸化アルミニウムの場合、その繰り返しにおけるもう1つの反応性ガスは、水蒸気又はオゾンであり得る。所望のアルミニウム含有化合物が窒化アルミニウムの場合、その繰り返しにおけるもう一方の反応性ガスは、アンモニア又は窒素/水素プラズマであり得る。所望のアルミニウム含有化合物が硫化アルミニウムの場合、その繰り返しにおけるもう一方の反応性ガスは、硫化水素であり得る。
同様に、アルミニウム化合物の代わりにケイ素化合物がコンフォーマルコーティングにおいて望ましい場合、2種類の反応性ガスの1つは、例えば、テトラメチルシラン又は四塩化ケイ素であり得る。上記で組み込まれた参照は、所望の最終結果に応じた好適な反応性ガスに関する更なるガイダンスを提供する。
本方法の単一繰り返しは、ある目的に適している場合がある分子単層を形成することができるが、本方法の多くの有用な実施形態は、実施工程を少なくとも8回、10回、20回、又はそれ以上の繰り返しだけ繰り返す。各繰り返しは、コンフォーマルコーティングに厚みを加える。したがって、いくつかの実施形態では、繰り返しの回数は、多孔性非セラミック基材に所定の気孔率又は平均内部細孔径が得られるように選択される。いくつかの実施形態では、実施する繰り返しの回数を制御することによって、所望の気孔率(例えば、所望の平均内部細孔径)を達成するために、コンフォーマルコーティングを用いて多孔性非セラミック基材の気孔率を制御可能に低減する(例えば、基材の見掛け孔径を制御する)ことができる。例えば、コンフォーマルコーティングは、多孔性非セラミック基材の気孔率を5%以上、25%以上、又は更に50%以上低減することができる。同様に、基材が細孔を含む場合、コンフォーマルコーティングは、平均内部細孔径を5nm以上低減してもよい。
ある用途では、本方法を適用する目的は、基材の内部表面上に親水性を得るためである。こうした用途では、上記工程は、例えば、72ダイン/cm(0.072N/m)(一般に用いられる親水性の定義)といった目標とする表面エネルギーが達成されるまで繰り返される。更に、出口に最も近い多孔性非セラミック基材の外部表面は、72ダイン/cm(0.072N/m)を超える表面エネルギーを有することもまた望ましくあり得、そのような場合には、上記実施工程は、目標が達成されるまで繰り返される必要がある。反対に、いくつかの特定の実施形態では、内部表面を親水性とする一方で、出口に最も近い多孔性非セラミック基材の外部表面を疎水性(例えば、72ダイン/cm(0.072N/m)未満)のままとするのが望ましい場合がある。
本発明の方法は、基材に損傷を与えない任意の有用な温度で行うことができる。いくつかの実施形態では、本方法は、例えば、約300℃以下、約200℃以下、約70℃以下、又は更に約60℃以下の温度で行われる。
本発明の多くの有用な実施形態では、多孔性非セラミック基材は多孔性ポリマー基材である。そのような実施形態では、第1及び第2の反応性ガスの導入は、基材又は細孔の熱変形を引き起こさないように、多孔性ポリマー基材の融解温度を下回る温度で行われるのが好都合な場合が多い。例えば、本発明の方法は、基材の構造的一体性にとって望ましい場合は、例えば、300℃未満で行われることができる。
多孔性ポリマー基材を使用する場合、熱誘起相分離(TIPS)、蒸気誘起相分離(VIPS)などの誘起相分離法、又は、米国特許出願公開第2008/0241503号に記載の相分離を誘起する共キャスティング法(co-casting method)によって多孔性にされた基材を使用することが好都合であり得る。
ポリマー材料から多孔性基材を形成する他の方法は、本発明を用いる当業者には明らかであろう。例えば、ステッチボンドウェブ又はヒドロエンタングルド(hydro-entangled)ウェブなどの短繊維不織布、並びにメルトブローンウェブ又はスパンボンドウェブなどのスパンレイド不織布を使用してもよい。他の用途では、天然繊維、炭素繊維、融解された金属、又はガラスなどの非ポリマー非セラミック材料が好適であり得る。
本発明は、少なくとも1つの多孔性非セラミック基材の少なくとも一部を、多孔性ポリマー基材が反応器の入口を出口から分離するように配置することを必要とするが、これは、多孔性非セラミック基材の物理トポロジーを制限するものではない。最終用途に応じて、多孔性非セラミック基材は、平坦、プリーツ状、管状、細い中空糸の形態、単一若しくは束にされた(potted)繊維カートリッジ、又は任意のその他の有用な形体であってもよい。
本方法を用いる場合、少なくとも第2の多孔性非セラミック基材の少なくとも一部を、第2の多孔性非セラミック基材もまた入口を出口から分離するように配置することが可能であり、また好都合である場合がある。3つ以上の多孔性非セラミック基材を、本方法を用いて同時に成功裏に処理することができることが証明されている。
多孔性非セラミック基材はバッチ処理で処理されることができ、又は多孔性非セラミック基材は不定長の材料のウェブの形態であってもよく、また配置手段は、ロールツーロールプロセスを可能とするタイプであり得る。かかるロールツーロールプロセスは、ステップアンドリピートタイプのものであってもよく、又は連続移動プロセスであり得る。
本方法の1つの好都合な変形は、反応器自体が最終消費者を対象とした製品の中に組み込まれるようなバッチ反応器の中でプロセスを実行することである。例えば、反応器はフィルタ本体の形態であってもよく、フィルタ本体、及びコンフォーマルコーティングがその場で提供される多孔性非セラミックは、最終消費者に販売されるフィルタの一部であり得る。いくつかの実施形態では、複数のフィルタを、直列又は並列に接続された流路の中で同時に処理することができる。
多くの好都合な実施形態では、多孔性非セラミック基材は、コンフォーマルコーティングがひとたび内部表面に適用されてしまえば、その最終用途に適している。しかしながら、コンフォーマルコーティングに二次加工を実施するのが有用な場合がある。二次加工は、反応器の中又は別の好都合な装置の中のいずれかで行われることができる。例えば、多孔性非セラミック基材の内側表面が親水性にされている場合でさえも、多孔性非セラミック基材の外側表面の一方又は両方を、最終的なサイズコーティングで処理して疎水性にすることができる。この技術は、例えば、液体水を通さずにガス及び水蒸気だけを通す必要がある気管内チューブのための通気フィルタを調製するために用いることができる。
実施することができる別の二次加工は、コンフォーマルコーティングに化学部分をグラフトすることである。例えば、ポリエチレンイミン配位基及びビグアニド配位基から選択されるグラフト化配位基(grafted ligand group)を用いた本発明によるコンフォーマルコーティングを有する多孔性非セラミック基材を提供するために外挿することができる技術の議論は、米国特許出願公開第2010/0075131号及び同第2010/0075560号に見出すことができる。放射又は粒子エネルギーによるグラフティングを用いて、シランなどの他の有用な配位子、抗体などの生物活性部分、キレート剤、及び触媒コーティングを結合させることもまた可能である。
本発明の方法によりコンフォーマルコーティングが施された多孔性非セラミック基材は、多くの用途に役立つ。例えば、液体及びガスの両方の濾過は、処理された基材を使用することによって促進され得る。例えば、水の濾過に関しては、多孔性フィルタ要素に親水性を提供するコンフォーマルコーティングは、抵抗を減少させて、フィルタを通る流れを促進するように作用し得る。これは、フィルタが重力流条件下及び低圧仕様で使用される場合に特に有用である。細孔の物理的寸法及び間隔、並びにコンフォーマルコーティングは、特定の効果を得るように選択され得る。例えば、多孔性非セラミック基材は、液体が一定圧力未満で開口部を通過するのを防止することができる繊維間の間隔を有する(即ち、液体抵抗)、微細なメルトブローン繊維又はナノ繊維ウェブであり得る。
上述のようなある種のコンフォーマルコーティングを使用して、本発明に従って作製されるフィルタ要素の中にスケール沈積が起こるのを低減することができる。これは、二次加工において、スケール物質との相溶性を低減するように設計されたコーティングを適用することによって達成され得る。銀又は他の抗菌性材料もまた、多孔性非セラミック基材の表面上に細菌膜(bio-film)が形成され、増殖するのを防止するのを助けるように、又は濾過される液体を処理するように、記載されているコーティングの一部と結合することができる。更に、例えば、金属酸化物コーティング自体が、二次処理なしに、かかるフィルタがより高い使用温度で作動するのを可能にして、温水又は水/蒸気を含む用途を潜在的に可能にすることができると考えられている。
水及び水溶液以外の他の液体の濾過も同様に、本発明による処理された基材の利益を享受することができる。例えば、高い使用温度を可能にするコンフォーマルコーティングは、加熱された油の濾過を可能にすることができる。一部のコンフォーマルコーティングは、酸性又は高pH環境において耐化学性をもたらすことができる。様々な汚染化学物質を制限又は吸収して「深層濾過」を提供することができるように適合させる本発明の変更が、それぞれに与えられた数個のフィルタ要素を有するフィルタを提供することができる。
上述の処理は、空気濾過にも役立つ。上述のように、コンフォーマルコーティングは、空気濾過用途においても同様に、高い使用温度を可能にすることができる。十分な繰り返しにより、例えば、ディーゼル排気の濾過に関して十分な耐熱性を有する空気フィルタを、本発明に従って提供することができることが想到される。二次的な抗菌、吸着、又は触媒コーティングは、例えば、メルトブローン基材を、生物医学的用途のための又は個人的保護装置としてのマスクとしての使用に適合させることができる。例えば、ナノ金触媒は、コンフォーマルコーティングに結合されて、このコンフォーマルコーティングを保護マスクの一酸化炭素除去剤として機能させるようにすることができる。
濾過の他に、本発明の方法は、多孔性断熱材の処理に役立つ。二次加工で適用される抗菌性材料は、例えば、湿潤環境における生物学的汚染の可能性を低減することができる。十分な繰り返しにより、難燃性を有する断熱材を提供することができると考えられる。
更に、本発明による多孔性非セラミック基材、特に二次加工で生体適合性層が付与された多孔性非セラミック基材を、種々の医学的用途用の組織スキャフォールドとして使用することができる。
本発明に従って調製された特定の多孔性非セラミック基材は、いくつかの用途に関して特に適している場合がある。例えば、親水性にされたポリフッ化ビニリデン(PVDF)は、濾過、アニオン交換膜のための基材、気管内チューブのための通気フィルタ、及び食品安全のための試料調製装置における用途に特に適している可能性があり、親水性にされたナイロンは、タンパク質精製及び浄水(例えば、4級アンモニウム塩シランの付着を介する)における用途に特に適している可能性があり、また親水性にされた不織布は、感染予防のためのクリーニングワイプス、深層濾過、及び食品安全のための大きな(ample)調製装置などの用途に特に適している可能性がある。
ここで図1を参照すると、本発明と共に使用するのに適している反応器20の断面図が示されている。図示される反応器20は、本発明に関連したバッチ処理に適しており、入口24と出口26とを備える反応器本体22を有する。入口24及び出口26は、入口24でD1の方向に導入された反応性ガスが、多孔性非セラミック基材30a、30b、及び30cの一部の全てを必ず通過して、出口26に向けてD2の方向に方向付けられるように、多孔性非セラミック基材30a、30b、及び30cの3つの個別部分の対向側にある。図の実施形態では、基材30a、30b、及び30cの一部は、両面フランジ32a、32b、32c、及び32dによってそれらの縁部で好都合に把持されているが、この目的のために他の手段を用いることができることが当業者には認識されよう。
本発明の目的及び利点は、以下の実施例によって更に例示されるが、これらの実施例において列挙された特定の材料及びその量は、他の諸条件及び詳細と同様に、本発明を過度に制限するものと解釈されるべきではない。
試料の表面エネルギーの試験方法
ALDコーティングされた多孔性非セラミック基材のいくつかの試料を、実施例と共に以下に記載する。試料の表面エネルギーについて論じる場合、以下の方法で測定値を得た。様々な濃度のダインテスト溶液(dyne test solutions)を得た。ASTM規格D−2578に準拠した30〜70ダイン/cm(0.030〜0.070N/m)の濃度範囲の溶液を、Jemmco,LLC(Mequon,WI)から購入した。表1に示される量のMgCl・6HOを十分な脱イオン水と混合することによって、72〜86ダイン/cm(0.072〜0.086N/m)の濃度範囲の溶液を調製し、合計で25グラムの溶液を作製した。
Figure 0005681192
これらのダインテスト溶液を使用して、以下の通りにテストする必要がある基材を、ASTM規格ASTM D7541−09のセクション12に記載の落下試験に供した。
基材Aの調製
米国特許第5,120,594号(Mrozinski)及び同第4,726,989号(Mrozinski)に概ね記載されている通りに、熱誘導相分離(TIPS)法を用いて微小多孔性ポリプロピレン基材を調製した。より詳細には、核化ポリプロピレン/鉱油ブレンドを調製し、滑らかで冷却されたキャスティングホイールに押し出し、そこでこの材料は固液相分離を生じた。この材料の連続基材を収集し、1,1,1−トリクロロエタン槽を通過させて鉱油を除去した。こうして形成された微小多孔性ポリプロピレン基材は、244μm(9.6ミル)の厚さを有した。次に、微小多孔性ポリプロピレン基材をASTM規格F316−03に準拠してテストし、0.90μmのバブルポイント孔径に応じた69.7kPa(10.11psi)のイソプロピルアルコールバブルポイント圧を有することが分かった。更に、気孔率は83.3%であり、純水透過性能は477L/(m−h−kPa)であった。基材は強疎水性であり、29ダイン/cm(0.029N/m)の表面エネルギーを有していた。
基材Bの調製
別の微小多孔性基材を、Solvay Advanced Polymers,L.L.C.(Alpharetta,GA)から商品名及び等級表示(grade designation)HALAR 902で市販のエチレン−クロロトリフルオロエチレンコポリマー(ECTFE)から調製した。これは、米国特許出願公開第2009/0067807号に概ね記載されているTIPSプロセスによって行われた。より詳細には、微小多孔性ECTFE基材は、水を充填した急冷槽の上に配置されたパターン化されたキャスティングホイールの上方に位置する、融解ポンプ、ネックチューブ、及びシートダイを備えた2軸押出成形機を使用して作製された。この設備を使用して、ECTFEと、希釈剤と、溶媒と、を含む流延用ドープ(casting dope)を溶融押し出しし、このドープをキャストした後急冷し、希釈剤を除去するために溶媒洗浄し、得られた基材を48μm(1.9ミル)の最終厚さまで延伸することによって、微小多孔性ECTFE基材を作製した。次に、この微小多孔性ECTFE基材をASTM規格F316−03に準拠してテストした。0.34μmのバブルポイント孔径に応じた186.1kPa(26.99psi)のイソプロピルアルコールバブルポイント圧、65.3%の気孔率、及び48L/(m−h−kPa)の純水透過性能を有することが分かった。この膜は疎水性であり、37ダイン/cm(0.037N/m)の表面エネルギーを有していた。
基材Cの調製
別の微小多孔性基材である不織布(メルトブローン)ポリプロピレンウェブを以下の通りに調製した。Total Petrochemical(Houston,TX)からTotal 3960として市販のポリプロピレンペレットを使用して、従来技術を用いて、具体的には、溶融ポリプロピレンを、7.6ポンド/時間(0.96g/s)の速度及び285℃(公称)の溶解温度で、Naval Research Lab(NRL)タイプの幅10インチ(25.4cm)のメルトブローンダイを通して、ダイから12インチ(30.5cm)の距離に置かれた収集ドラムに向けて押し出すことにより、メルトブローンウェブを形成した。得られたウェブは10フィート/分(305cm/分)で収集された。観察された坪量は67g/mであった。空気の温度及び速度を調整して、有効繊維直径(EFD)7.9マイクロメートルを得た。このEFDは、「The Separation of Airborne Dust and Particles」(Institution of Mechanical Engineers,London Proceedings 1B,1952)に記載の方法に従って計算された。
基材Dの調製
Fiber Materials,Inc.(Biddeford,ME)から「GRADE GH」として市販の、公称厚さが0.25インチ(6.35mm)であるグラファイトフェルトの形態の別の微小多孔性基材を得た。
基材Eの調製
3M Company(St.Paul,MN)から「1210NC」として市販の、ガラス繊維マットの形態の別の微小多孔性基材を得た。
反応器
図1に全体的に示されているような反応器を、Kimball Physics Inc.(Wilton,NH)からConFlat Double Side Flanges(600−400−D CF)として市販の、直径6インチ(15.24cm)の両面フランジを3枚使用して作製した。フランジの積層体の上流側になる方に、Kimball Physics Inc.から入手の、1/8”(0.32cm)NPT側孔を1つ有する直径6インチ(15.24cm)のConFlat Double Side Flange(600DXSP12)を1つ取り付けた。この側孔は、プロセスの間の圧力をモニタすることができるように、MKS Instruments(Andover,MA)から市販のBaratron(10torr(1.3kPa)圧力計を取り付けるために使用された。この要素の積層体の各末端部を、Kimball Physics Inc.から市販の直径6インチ(15.24cm)のConFlat Zero−Length Reducer Flange(600x275−150−0−T1)で塞いだ。積層体の接合点のそれぞれにおいて、適切な寸法の銅ガスケットを使用して良好な真空封止を形成した。
要素のこの積層体に、最初に、直径2.75インチ(7cm)のConFlat両面フランジ(275−150−D CF)を入口側に取り付け、続いて、直径2.75インチ(7cm)の2つの1/8”(0.32cm)NPT側孔(標準的な1つの側孔に対して2つの側孔に用に変更された275DXSP12)を備えるConFlat両面フランジを取り付け、更に引き続き直径2.75インチ(7cm)のConFlat Solid/Blankフランジを取り付けた。2つの側孔は、以下に説明するように、反応性ガスを導入するために使用される。
要素のこの積層体に、最初に、25 ISO〜275 CFのReducer(QF25X275)を出口側に取り付けた。この要素は、それ自体も25 ISO〜275 CFのReducerを備える275 ConFlat 4 way Cross(275−150−X)の底部に接続された。この方法により、試料の装填及び除去のために、主要反応器本体を支持システムからより迅速に取り外すのを目的とした容易な設定が可能となった。次に、275 ConFlat 4 way Crossを、真空源及び制御装置のための仕切り弁が備え付けてある可撓性ステンレス鋼真空ホース、バイパスサンプリングを有するSRS PPR300 Residual Gas Analyzer、及び次の膜圧読み取りのためのBaratron(10torr(1.33kPa))ゲージを介して、XDS−5 Scrollポンプ(洗浄機能を備える)に接続した。1/16インチ(0.16cm)のドリルで開けられたオリフィスを有する弁付き粗/バイパスラインを、ポンピングの減速を可能にするために仕切り弁の周りに設置したが、表面処理中に反応器の圧力を大きくするのを可能にするための二次ポンプラインとしても有用であることが分かった。
第1及び第2の反応性ガスの入口には、上述のような直径2.75インチ(7cm)のConFlat両面フランジの1/8”(0.32cm)NPT側孔が配置された。第1及び第2の反応性ガスをそれぞれのポートから入れることにより、入口ラインの中で生じる反応のあらゆる可能性が最小限に抑えられる。更に、第1の反応性ガスの入口ラインは、ポートから出るガスの連続したポジティブフローを維持して、第1の反応性ガスの供給ラインの中に第2の反応性ガスが逆流しないのを確実にするために、ラインにプロセス窒素(N)を加えるのを可能にする「T字型」接続部を備えていた。
第1及び第2の反応性ガスの入口ラインの不慮の交差汚染に対する更なる保護として、第1の反応性ガスのラインは、普段は閉じている弁を通って方向付けられ、第2の反応性ガスのラインは、普段は開いている弁を通って方向付けられた。こうした制御ポートの2つの弁は、2つのラインが前駆体ガスを反応器に同時に加えることができないのを確実にするために、同じスイッチによって相前後して作動されるように設定された。
ラインのそれぞれは、前駆体ガスのそれぞれの流速を正確に制御するためのSS Metering Bellows−Sealed Valveタイプのインラインニードル弁を備えた別個の弁システムによって、オンとオフとを二次的に制御された。これら絞り弁のそれぞれの上流は、Swagelok Company(Solon,OH)から316L VIM/VAR UHP Diaphragm−Sealed Valveとして市販の流速制御弁であった。これら流速制御弁のそれぞれの上流は、Sigma−Aldrich(St.Louis,MO)からカタログ番号Z527068として市販の、容量300mLのステンレス鋼バブラーの形態の反応性ガス供給タンクであった。上述されたこの反応器/装置は、反応器及びそのガス供給の温度を制御するために、従来型の様々なバンドヒータ、加熱テープ、及びカートリッジヒータを具備していた。
その中にコンフォーマルコーティングを有する多孔性基材の代表的な実施形態をこれまで説明し、更に実施例として以下にも例示しているが、これらは、本発明の範囲を多少なりとも限定する意図はない。それとは逆に、本明細書中の説明を読むことによって、本開示の趣旨及び/又は添付の請求項の範囲を逸脱することなく当業者に示唆され得る様々な他の実施形態、修正、及びそれらの等価物に頼ることができることが明確に分かる。
(実施例1)
反応器の両面フランジのそれぞれを使用して、基材Aとして上記された多孔性ポリプロピレン膜から切断されるディスクを支持した。両面接着テープでディスクを銅ガスケットに取り付け、この銅ガスケットを直径6インチ(15.24cm)のConFlat Double Side Flangesの間の通常の封止位置に設置することによって、ディスクの3つの試料のそれぞれを反応器の中に置いた。反応器が一緒に封止され、堅く締められて反応器本体を形成すると、ConFlat Double Side Flangeシールは膜を貫通し、従来の銅ガスケット封止機構を介して気密のシールを形成した。この封止された反応器の壁もまた、膜を定位置に保持するのを助け、また膜の縁部を封止して反応性ガスが膜を迂回するのを防止した。
膜が定位置に取り付けられた反応器は、次に、先述のように真空及びガスハンドリングシステムに取り付けられた。第1の反応性ガスの供給タンクを、Sigma−Aldrich(St.Louis,MO)からカタログ番号257222として市販の97%のトリメチルアルミニウム(TMA)で充填した。第2の反応性ガスの供給タンクを、Sigma−Aldrichからカタログ番号320072として市販のACS試薬水で充填した。このシステムを、真空バイパス弁を介して1〜10torr(0.13〜1.3kPa)の圧力まで徐々に真空にした。完全に真空に引かれると、真空システムがまだ動作している状態で、反応器をNパージで流速10〜25sccmでフラッシングして、残留余剰水及び大気ガス並びに/又は汚染物質を除去した。この間に、反応器、第1及び第2の入口ライン、及びパージガスラインを加熱器で50℃に加熱した。第1のガス供給タンクも同様に30℃に加熱した。
システムがパージされ、加熱器がそれらのそれぞれの設定点で安定した後、第1の反応性ガスを第1の反応性ガス供給タンクから放出した。第1の反応性ガスラインのニードル弁は、ガス流が、真空システムの影響を受けて、Nの等価流速である1〜25sccmと一致して、ディスクを通って出口まで流れるように調整された。第1の反応性ガスが3枚のディスクの表面を十分に飽和した後(前駆体の存在及び最後の膜を出て行く副生成物のガスの還元でRGAによって検出される)、第1の反応性ガスの流れは終了し、システムを10〜25sccmの流速でNパージで再度フラッシングした。パージが完了した時点で、再び3枚のディスクが十分に飽和されるまで、第2の反応性ガスを同じような方法で(異なるポートであるが)第2の供給タンクから放出した。10〜25sccmの流速でNパージによる別のフラッシングを行った。この添加サイクル(即ち、第1の反応性ガス−バージ−第2の反応性ガス−バージ)を継続し、ディスクは35回の繰り返しを受けた。
各繰り返しの完了時、乾燥窒素での最終パージの終わりに、ディスクの入口側と出口側との間で反応器内圧力差が観察された。このデータを記録して、一定のガス流速で膜全体に酸化アルミニウムを添加したことにより生じたデルタ圧を決定した。サイクルが進行するにつれて、プロセスガスに対する膜全体の検出可能な圧力の上昇が存在したことが判明した。このデルタ圧の上昇は、図2のグラフで示されている。
35回の繰り返しを行った後、反応器を開き、試料Aの3枚のディスクのそれぞれの表面エネルギーを評価した。各ディスクは86ダイン/cm(0.086N/m)を超える表面エネルギーを有し、高度の親水性を示すことが判明した。
(実施例2)
実験は、使用した基材が基材Aでなく基材Bであり、反応器、第1及び第2の入口ライン、及びパージガスラインを加熱器で60℃に加熱し、繰り返しの回数が35回でなく20回であったことを除いて、概ね実施例1の手順に従って実施された。20回の繰り返しを行った後、反応器を開き、試料Bの3枚のディスクのそれぞれの表面エネルギーを評価した。各ディスクは86ダイン/cm(0.086N/m)を超える表面エネルギーを有し、高度の親水性を示すことが判明した。
(実施例3)
実験は、使用した基材が基材Aでなく基材Cであり、反応器、第1及び第2の入口ライン、及びパージガスラインを加熱器で60℃に加熱し、繰り返しの回数が35回でなく17回であったことを除いて、概ね実施例1の手順に従って実施された。17回の繰り返しを行った後、反応器を開き、試料Cの3枚のディスクのそれぞれの表面エネルギーを評価した。各ディスクは86ダイン/cm(0.086N/m)を超える表面エネルギーを有し、高度の親水性を示すことが判明した。
(実施例4)
実験は、使用した基材が基材Aでなく基材Dであり、反応器を加熱器で60℃に加熱し、第1及び第2の入口ライン及びパージガスラインを加熱器で70℃に加熱し、繰り返しの回数が35回でなく20回であったことを除いて、概ね実施例1の手順に従って実施された。20回の繰り返しを行った後、反応器を開いた基材がコーティングされたことを実証するためにX線分析を行った。
(実施例5)
実験は、使用した基材が基材Aでなく基材Eであり、反応器を加熱器で60℃に加熱し、第1及び第2の入口ライン及びパージガスラインを加熱器で70℃に加熱し、繰り返しの回数が35回でなく20回であったことを除いて、概ね実施例1の手順に従って実施された。20回の繰り返しを行った後、反応器を開いた。基材がコーティングされたことを実証するためにX線分析を行った。
本明細書中に引用される刊行物の完全な開示は、それぞれが個々に組み込まれたかのように、その全体が参照により組み込まれる。本発明の範囲及び趣旨から逸脱しない本発明の様々な変更や改変は、当業者には明らかとなるであろう。本発明は、本明細書で述べる例示的な実施形態及び実施例によって不当に限定されるものではないこと、また、こうした実施例及び実施形態は、本明細書において以下に記述する「特許請求の範囲」によってのみ限定されると意図する本発明の範囲に関する例示のためにのみ提示されることを理解すべきである。
本発明はまた、以下の内容を包含する。
(1)
多孔性非セラミック基材上にコンフォーマルコーティングを堆積させる方法であって、
入口と出口とを有する反応器を提供する工程と、
多孔性非セラミック基材が前記入口を前記出口から分離するように、少なくとも1つの前記多孔性非セラミック基材の少なくとも一部を配置する工程と、
第1及び第2の反応性ガスを前記多孔性非セラミック基材を通して出口まで流して、前記多孔性非セラミック基材の内部表面における一連の2回以上の自己制限的な反応を行って、前記内部表面の少なくとも一部の上にコンフォーマルコーティングを形成するように、前記入口における前記第1及び第2の反応性ガスの順次導入の少なくとも1回の繰り返しを実施する工程と、を含む、方法。
(2)
前記実施工程が、少なくとも8回の繰り返しで行われる、項目1に記載の方法。
(3)
前記実施工程が、少なくとも20回の繰り返しで行われる、項目2に記載の方法。
(4)
前記実施工程が、前記内部表面の表面エネルギーが72ダイン/cmを超えるまで繰り返される、項目1に記載の方法。
(5)
前記出口に最も近い前記多孔性非セラミック基材の外部表面が、72ダイン/cm未満の表面エネルギーを有する、項目4に記載の方法。
(6)
前記多孔性非セラミック基材が多孔性ポリマー基材であり、前記導入が、前記多孔性ポリマー基材の融解温度を下回る温度で行われる、項目1に記載の方法。
(7)
第2の多孔性非セラミック基材もまた前記入口を前記出口から分離するように、少なくとも前記第2の多孔性非セラミック基材の少なくとも一部を配置することを更に含む、項目1に記載の方法。
(8)
前記多孔性非セラミック基材が、不定長の材料のウェブの形態であり、前記配置手段がロールツーロールプロセスを可能とするものである、項目1に記載の方法。
(9)
前記ロールツーロールプロセスが、ステップアンドリピートプロセスである、項目8に記載の方法。
(10)
前記ロールツーロールプロセスが、連続移動プロセスである、項目8に記載の方法。
(11)
前記反応器がフィルタ本体の形態である、項目1に記載の方法。
(12)
前記第1又は第2の反応性ガスの少なくとも一方が、非反応性搬送ガス成分を含む、項目10に記載の方法。
(13)
前記多孔性非セラミック基材が多孔性ポリマー基材である、項目1に記載の方法。
(14)
前記多孔性ポリマー基材がTIPS基材である、項目13に記載の方法。
(15)
前記多孔性ポリマー基材が不織布基材である、項目13に記載の方法。
(16)
前記コンフォーマルコーティングが、金属酸化物、金属窒化物、金属硫化物、又はこれらの組み合わせを含む、項目1に記載の方法。
(17)
前記金属が、ケイ素、チタン、アルミニウム、ジルコニウム、及びイットリウムからなる群から選択される、項目16に記載の方法。
(18)
前記金属が、ケイ素、チタン、及びアルミニウムからなる群から選択される、項目17に記載の方法。
(19)
前記金属がアルミニウムである、項目18に記載の方法。
(20)
前記コンフォーマルコーティングが酸化アルミニウムを含む、項目16に記載の方法。
(21)
前記第1及び第2の反応性ガスの前記導入の間の温度が、約300℃以下である、項目1に記載の方法。
(22)
前記第1及び第2の反応性ガスの前記導入の間の温度が、約60℃以下である、項目21に記載の方法。
(23)
前記コンフォーマルコーティングに化学部分をグラフティングする工程を更に含む、項目1に記載の方法。
(24)
コンフォーマルコーティングが、前記多孔性非セラミック基材の内部表面全体に形成される、項目1に記載の方法。
(25)
実施する繰り返しの回数を制御することにより、前記コンフォーマルコーティングを使用して前記多孔性非セラミック基材の気孔率を低減して所望の気孔率を達成する、項目1に記載の方法。

Claims (4)

  1. 多孔性疎水性ポリマー基材上にコンフォーマルコーティングを堆積させる方法であって、
    入口と出口とを有する反応器を提供する工程と、
    多孔性疎水性ポリマー基材が前記入口を前記出口から分離するように、少なくとも1つの前記多孔性疎水性ポリマー基材の少なくとも一部を配置する工程と、
    第1及び第2の反応性ガスを前記多孔性疎水性ポリマー基材を通して出口まで流して、前記多孔性疎水性ポリマー基材の内部表面における一連の2回以上の自己制限的な反応を行って、前記内部表面の少なくとも一部の上にコンフォーマルコーティングを形成するように、前記入口における前記第1及び第2の反応性ガスの順次導入の少なくとも1回の繰り返しを実施する工程と、を含み、
    前記実施工程が、前記内部表面の表面エネルギーが72ダイン/cm(0.072N/m)を超えるまで繰り返される、
    方法。
  2. 前記導入が、前記多孔性疎水性ポリマー基材の融解温度を下回る温度で行われる、請求項1に記載の方法。
  3. 前記多孔性疎水性ポリマー基材が、不定長の材料のウェブの形態であり、前記配置手段がロールツーロールプロセスを可能とするものである、請求項1に記載の方法。
  4. 前記コンフォーマルコーティングが、金属酸化物、金属窒化物、金属硫化物、又はこれらの組み合わせを含む、請求項1に記載の方法。
JP2012530934A 2009-09-22 2010-09-15 多孔性非セラミック基材上に原子層堆積コーティングを適用する方法 Expired - Fee Related JP5681192B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24469609P 2009-09-22 2009-09-22
US24471309P 2009-09-22 2009-09-22
US61/244,713 2009-09-22
US61/244,696 2009-09-22
PCT/US2010/048902 WO2011037798A1 (en) 2009-09-22 2010-09-15 Method of applying atomic layer deposition coatings onto porous non-ceramic substrates

Publications (3)

Publication Number Publication Date
JP2013505368A JP2013505368A (ja) 2013-02-14
JP2013505368A5 JP2013505368A5 (ja) 2013-10-03
JP5681192B2 true JP5681192B2 (ja) 2015-03-04

Family

ID=43796159

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012530934A Expired - Fee Related JP5681192B2 (ja) 2009-09-22 2010-09-15 多孔性非セラミック基材上に原子層堆積コーティングを適用する方法
JP2012530946A Pending JP2013505156A (ja) 2009-09-22 2010-09-17 上部にコンフォーマル層を有する多孔性基材を含む物品

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012530946A Pending JP2013505156A (ja) 2009-09-22 2010-09-17 上部にコンフォーマル層を有する多孔性基材を含む物品

Country Status (7)

Country Link
US (2) US8859040B2 (ja)
EP (2) EP2480703A4 (ja)
JP (2) JP5681192B2 (ja)
KR (2) KR101714814B1 (ja)
CN (2) CN102575346B (ja)
BR (2) BR112012005212A2 (ja)
WO (2) WO2011037798A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714814B1 (ko) * 2009-09-22 2017-03-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다공성 비세라믹 기판상에 원자층 증착 코팅을 도포하는 방법
WO2011057341A1 (en) * 2009-11-11 2011-05-19 Nano-Nouvelle Pty Ltd Porous materials
US20140017637A1 (en) 2011-03-24 2014-01-16 3M Iinnovative Properties Company Dental adhesive comprising a coated polymeric component
CN103782153A (zh) * 2011-04-27 2014-05-07 俄亥俄州大学 用于检测生物膜的方法和装置
KR101985043B1 (ko) * 2011-10-31 2019-05-31 쓰리엠 이노베이티브 프로퍼티즈 캄파니 롤 형태의 기판에 코팅을 도포하는 방법
CN104411642B (zh) 2012-03-15 2018-04-03 麻省理工学院 基于石墨烯的过滤器
CN103111549A (zh) * 2013-02-05 2013-05-22 苏州红荔汽车零部件有限公司 汽车座椅骨架u型连接管件的生产自动线
WO2014121450A1 (zh) * 2013-02-05 2014-08-14 Wang Dongjun 卷对卷式原子层沉积设备及其使用方法
US11326255B2 (en) * 2013-02-07 2022-05-10 Uchicago Argonne, Llc ALD reactor for coating porous substrates
CN105378148B (zh) 2013-07-16 2018-03-27 3M创新有限公司 膜的卷处理
US9598769B2 (en) 2013-07-24 2017-03-21 Uchicago Argonne, Llc Method and system for continuous atomic layer deposition
CN106413859B (zh) 2013-11-01 2019-07-05 麻省理工学院 减轻膜中的渗漏
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
WO2016131024A1 (en) * 2015-02-13 2016-08-18 Entegris, Inc. Coatings for enhancement of properties and performance of substrate articles and apparatus
US10232130B2 (en) 2015-03-26 2019-03-19 Becton, Dickinson And Company Anti-run dry membrane
US10201667B2 (en) 2015-03-26 2019-02-12 Becton, Dickinson And Company IV membrane attachment systems and methods
US10702689B2 (en) 2015-03-26 2020-07-07 Becton, Dickinson And Company Auto-stop vent plug
US10646648B2 (en) 2015-04-01 2020-05-12 Becton, Dickinson And Company IV flow management systems and methods
ES2759992T3 (es) 2015-07-07 2020-05-12 I3 Membrane Gmbh Procedimiento para electrosorción y electrofiltración mediante una membrana de polímeros revestida con metal, y procedimiento para ello
US10124299B2 (en) * 2015-09-08 2018-11-13 Gwangju Institute Of Science And Technology Membrane based on graphene and method of manufacturing same
US10550010B2 (en) 2015-12-11 2020-02-04 Uchicago Argonne, Llc Oleophilic foams for oil spill mitigation
CN109070018B (zh) 2016-05-11 2022-01-11 麻省理工学院 氧化石墨烯膜和相关方法
WO2018009882A1 (en) 2016-07-08 2018-01-11 Uchicago Argonne, Llc Functionalized foams
KR102218855B1 (ko) * 2017-07-12 2021-02-23 주식회사 엘지화학 다공성 기재의 표면 코팅 장치 및 방법
US11896935B2 (en) 2017-08-17 2024-02-13 Uchicago Argonne, Llc Filtration membranes
US11590456B2 (en) * 2018-05-31 2023-02-28 Uchicago Argonne, Llc Systems and methods for oleophobic composite membranes
US11351478B2 (en) 2018-09-06 2022-06-07 Uchicago Argonne, Llc Oil skimmer with oleophilic coating
US11548798B2 (en) 2019-04-23 2023-01-10 Uchicago Argonne, Llc Compressible foam electrode
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
JP2022533140A (ja) 2019-05-15 2022-07-21 ヴィア セパレイションズ,インコーポレイテッド 耐久性のある酸化グラフェン膜
KR20200141002A (ko) * 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
US11117346B2 (en) * 2019-07-18 2021-09-14 Hamilton Sundstrand Corporation Thermally-conductive polymer and components
US11111578B1 (en) 2020-02-13 2021-09-07 Uchicago Argonne, Llc Atomic layer deposition of fluoride thin films
US20210346841A1 (en) * 2020-05-11 2021-11-11 Hamilton Sundstrand Corporation Aircraft air management systems for deactivating contaminants
FR3112796B1 (fr) * 2020-07-21 2022-11-25 Inst Polytechnique Grenoble Procédé de fonctionnalisation d’un substrat à base d’un polymère par dépôt chimique d’une couche mince
US20220044830A1 (en) * 2020-08-05 2022-02-10 Uchicago Argonne, Llc Coated fuel pellets, methods of making and using same
JP2022178059A (ja) 2021-05-19 2022-12-02 日本航空電子工業株式会社 マルチバンドアンテナ
JP2022178055A (ja) 2021-05-19 2022-12-02 日本航空電子工業株式会社 マルチバンドアンテナ
WO2023097166A1 (en) 2021-11-29 2023-06-01 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration
US11901169B2 (en) 2022-02-14 2024-02-13 Uchicago Argonne, Llc Barrier coatings
DE102022106876A1 (de) 2022-03-23 2023-09-28 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Filterstruktur sowie deren Herstellung und Verwendung
CN116695091B (zh) * 2023-08-01 2023-09-29 南京原磊纳米材料有限公司 一种疏水导电性薄膜及其制备方法和应用

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726989A (en) 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US5120594A (en) 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
JP3682465B2 (ja) 1999-03-31 2005-08-10 独立行政法人産業技術総合研究所 樹脂成形物表面層の改質方法およびそのための装置および表面層が改質された樹脂成形物、および樹脂成形物表面層の着色方法およびそのための装置および表面層が着色された樹脂成形物、および表面層の改質により機能性を付与された樹脂成形物
US6613383B1 (en) 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
JP2001279453A (ja) 2000-03-29 2001-10-10 Japan Vilene Co Ltd 多孔質体の放電処理装置及び多孔質体の放電処理方法
US6713177B2 (en) 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
FR2818291B1 (fr) * 2000-12-19 2003-11-07 Snecma Moteurs Densification de substrats poreux creux par infiltration chimique en phase vapeur
CA2452656C (en) * 2001-07-18 2010-04-13 The Regents Of The University Of Colorado A method of depositing an inorganic film on an organic polymer
US6878419B2 (en) * 2001-12-14 2005-04-12 3M Innovative Properties Co. Plasma treatment of porous materials
US7157117B2 (en) * 2002-06-26 2007-01-02 Sigma Laboratories Of Arizona, Llc Functionalization of porous materials by vacuum deposition of polymers
CA2492597A1 (en) * 2002-07-17 2004-01-22 Hitco Carbon Composites, Inc. Continuous chemical vapor deposition process and process furnace
US8304019B1 (en) * 2004-02-19 2012-11-06 Nanosolar Inc. Roll-to-roll atomic layer deposition method and system
US7045205B1 (en) * 2004-02-19 2006-05-16 Nanosolar, Inc. Device based on coated nanoporous structure
US20060234210A1 (en) 2004-04-14 2006-10-19 Affinergy, Inc. Filtration device and method for removing selected materials from biological fluids
JP4534565B2 (ja) 2004-04-16 2010-09-01 株式会社デンソー セラミック多孔質の製造方法
FI117247B (fi) 2004-06-24 2006-08-15 Beneq Oy Materiaalin seostaminen selektiivisesti
KR101393173B1 (ko) 2005-05-25 2014-05-21 고어 엔터프라이즈 홀딩즈, 인코포레이티드 미세다공성 기재 상의 다작용성 코팅
WO2007042373A1 (en) 2005-10-11 2007-04-19 Nv Bekaert Sa Coated porous metal medium
US7553417B2 (en) * 2005-12-30 2009-06-30 3M Innovative Properties Company Functionalized substrates
CN101873992B (zh) 2006-02-07 2013-11-06 哈佛大学校长及研究员协会 碳纳米管的气相官能化
US20070272606A1 (en) * 2006-05-25 2007-11-29 Freese Donald T Multi-functional coatings on microporous substrates
US20070281089A1 (en) 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
EP1884578A1 (en) 2006-07-31 2008-02-06 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object
US20080119098A1 (en) * 2006-11-21 2008-05-22 Igor Palley Atomic layer deposition on fibrous materials
WO2008136882A2 (en) * 2007-02-14 2008-11-13 The Board Of Trustees Of The Leland Stanford Junior University Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
US7842214B2 (en) 2007-03-28 2010-11-30 3M Innovative Properties Company Process for forming microporous membranes
JP5060224B2 (ja) 2007-09-12 2012-10-31 株式会社東芝 信号処理装置及びその方法
US20090081356A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Process for forming thin film encapsulation layers
US20090137043A1 (en) 2007-11-27 2009-05-28 North Carolina State University Methods for modification of polymers, fibers and textile media
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
PL2244743T3 (pl) * 2008-01-24 2017-01-31 Nestec S.A. Kapsułka ze zintegrowanym filtrem przeciwbakteryjnym
US9279120B2 (en) * 2008-05-14 2016-03-08 The Regents Of The University Of Colorado, A Body Corporate Implantable devices having ceramic coating applied via an atomic layer deposition method
CN102186908B (zh) 2008-09-19 2013-10-16 3M创新有限公司 配体接枝官能化基材
WO2010120531A2 (en) 2009-04-01 2010-10-21 Cornell University Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
WO2011035195A1 (en) 2009-09-18 2011-03-24 Nano Terra Inc. Functional nanofibers and methods of making and using the same
KR101714814B1 (ko) * 2009-09-22 2017-03-09 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다공성 비세라믹 기판상에 원자층 증착 코팅을 도포하는 방법

Also Published As

Publication number Publication date
JP2013505368A (ja) 2013-02-14
KR20120073280A (ko) 2012-07-04
KR101720821B1 (ko) 2017-03-28
US20120171403A1 (en) 2012-07-05
CN102575346A (zh) 2012-07-11
CN102782179B (zh) 2015-11-25
WO2011037798A1 (en) 2011-03-31
EP2480702A4 (en) 2013-10-30
WO2011037831A3 (en) 2011-06-23
KR20120085262A (ko) 2012-07-31
BR112012005997A2 (pt) 2016-03-22
BR112012005212A2 (pt) 2016-03-15
WO2011037831A2 (en) 2011-03-31
EP2480703A4 (en) 2013-10-30
US20120171376A1 (en) 2012-07-05
CN102782179A (zh) 2012-11-14
US8859040B2 (en) 2014-10-14
EP2480702A2 (en) 2012-08-01
JP2013505156A (ja) 2013-02-14
CN102575346B (zh) 2015-01-28
KR101714814B1 (ko) 2017-03-09
EP2480703A1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5681192B2 (ja) 多孔性非セラミック基材上に原子層堆積コーティングを適用する方法
US11344850B2 (en) Nanocomposite membranes and methods of forming the same
Ott et al. Modification of porous alumina membranes using Al2O3 atomic layer controlled deposition
Zhang et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes
Spagnola et al. Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers
US20070080107A1 (en) Nanoporous membrane and method of fabricating the same
US9243322B2 (en) Methods for applying a coating to a substrate in rolled form
US8993063B2 (en) Low-temperature synthesis of silica
JP2009536916A (ja) ナノ多孔性炭素質膜及びそれに関する方法
Triani et al. Nanostructured TiO 2 membranes by atomic layer deposition
Tran et al. Plasma-enhanced atomic layer deposition of titania on alumina for its potential use as a hydrogen-selective membrane
JP2017170435A (ja) 分離膜及び分離方法
NL2016222B1 (en) Preparation of inorganic tight nanofiltration membranes.
CN118001940A (zh) 一种反渗透膜及反渗透膜的制备方法
JP2008119566A (ja) ガス分離装置
TW202300455A (zh) 純化碘矽烷之方法
Suraj et al. Microporous Silica Membrane Prepared using TMOS/O~ 3 CVD in Opposing Reactants Geometry
Karman et al. 3D structuration of MOF layers for gas sensors enhancement and its application in microreactors
Ravindranath Synthesis of boron nitride/vycor composite membrane structures by an optimized LPCVD process
Nakao Development of thermo-and steam-stable silica membranes for hydrogen permselective membrane reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150108

R150 Certificate of patent or registration of utility model

Ref document number: 5681192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees