US20120171403A1 - Articles including a porous substrate having a conformal layer thereon - Google Patents

Articles including a porous substrate having a conformal layer thereon Download PDF

Info

Publication number
US20120171403A1
US20120171403A1 US13/390,900 US201013390900A US2012171403A1 US 20120171403 A1 US20120171403 A1 US 20120171403A1 US 201013390900 A US201013390900 A US 201013390900A US 2012171403 A1 US2012171403 A1 US 2012171403A1
Authority
US
United States
Prior art keywords
substrate
article according
canceled
conformal coating
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/390,900
Inventor
Bill H. Dodge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US13/390,900 priority Critical patent/US20120171403A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DODGE, BILL H
Publication of US20120171403A1 publication Critical patent/US20120171403A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C29/00Finishing or dressing, of textile fabrics, not provided for in the preceding groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/005Applying monomolecular films on textile products like fibres, threads or fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric

Definitions

  • the present invention is related to articles having a porous non-ceramic substrate with a conformal coating on its interior surfaces.
  • ALD Atomic Layer Deposition
  • the present invention enables the use of ALD coatings in porous substrates which in turn makes possible diverse articles of manufacture such as filters, extraction columns, catalytic reactors, and the like having a conformal coating on at least a portion of its interior surfaces.
  • the present invention provides an article of manufacture including a body having an inlet and an outlet, and at least a portion of at least one porous non-ceramic substrate positioned such that the porous polymeric substrate separates the inlet from the outlet.
  • the porous non-ceramic substrate has a conformal coating on at least a portion of its interior surfaces.
  • the invention provides an article of manufacture including a porous non-ceramic substrate having a conformal coating on all its interior surfaces through its entire thickness.
  • porous means that the substrate contains openings (i.e. “pores”) sufficient that at least a gas can pass through it.
  • microporous means that the substrate contains pores having a median internal cross-sectional dimension (a “median pore size,” e.g. a diameter for the case of cylindrical pores) of no greater than 1,000 micrometers such that a gas may pass through the substrate within the pores.
  • Preferred microporous substrates include pores having a median pore size of from 0.01 to 1,000 micrometers, inclusive, more preferably from 0.1 to 100 micrometers, inclusive, even more preferably from 0.2 to 20 micrometers, inclusive, and most preferably from 0.3 to 3 micrometers or even 1 micrometer, inclusive.
  • median pore size was determined using the bubble point pressure measurement method described in ASTM Standard F316-03.
  • nonporous means that the substrate is substantially free of pores.
  • non-ceramic with reference to a substrate prior to deposition of the conformal coating means that the substrate does not substantially include inorganic metal oxides, metal nitrides, metal carbides, or other ceramic materials.
  • Preferred “non-ceramic” substrates are completely free of ceramic materials, and more preferably consist essentially of fibrous organic materials (e.g. polymeric fibers, natural fibers, carbon fibers, and the like), and even more preferably consist only of organic materials
  • conformal coating means a relatively thin coating of material that adheres well to and conforms closely to the shape of an underlying substrate.
  • FIG. 1 shows a cross-section view through an article according to the present invention.
  • FIG. 2 shows a graph comparing an increase in pressure drop across the substrates compared to the number of process iterations during the experiment of Example 1.
  • the articles of the invention possess a conformal coating on at least a portion of the interior surfaces of non-ceramic substrate.
  • the conformal coating is applied to at least a region through the entire thickness of the substrate.
  • the conformal coating is applied to all interior surfaces of the substrate.
  • the conformal coating comprises a metal oxide, a metal nitride, a metal sulfide, or a combination thereof.
  • the metal in these instances may be of various sorts, but silicon, titanium, aluminum, zirconium, and yttrium are considered particularly suitable.
  • the metal is silicon, titanium, or aluminum; more preferably, the metal is aluminum.
  • the conformal coating comprises aluminum oxide.
  • Coatings that can be applied via atomic layer controlled growth techniques are preferred.
  • coatings that are readily applied in such a manner are binary materials, i.e., materials of the form Q x R y , where Q and R represent different atoms and x and y are numbers that reflect an electrostatically neutral material.
  • the suitable binary materials are various inorganic oxides (such as silicon dioxide and metal oxides such as zirconia, alumina, silica, boron oxide, yttria, zinc oxide, magnesium oxide, TiO 2 and the like), inorganic nitrides (such as silicon nitride, AlN and BN), inorganic sulfides (such as gallium sulfide, tungsten sulfide and molybdenum sulfide), as well as inorganic phosphides.
  • inorganic oxides such as silicon dioxide and metal oxides such as zirconia, alumina, silica, boron oxide, yttria, zinc oxide, magnesium oxide, TiO 2 and the like
  • inorganic nitrides such as silicon nitride, AlN and BN
  • inorganic sulfides such as gallium sulfide, tungsten sulfide and molybdenum sulfide
  • various metal coatings are useful, including cobalt, palladium, platinum, zinc, rhenium, molybdenum, antimony, selenium, thallium, chromium, platinum, ruthenium, iridium, germanium and tungsten.
  • first and second reactive gases are appropriate choices for the self-limiting reactions in order to create the conformal coatings discussed above.
  • trimethylaluminum or triisobutylaluminum gases may be used as one of the two reactive gases.
  • the desired aluminum containing compound is aluminum oxide
  • the other reactive gas in the iterations can be water vapor or ozone.
  • the desired aluminum containing compound is aluminum nitride
  • the other reactive gas in the iterations can be ammonia or a nitrogen/hydrogen plasma.
  • the desired aluminum containing compound is aluminum sulfide
  • the other reactive gas in the iterations can be hydrogen sulfide.
  • one of the two reactive gases can be, e.g., tetramethylsilane or silicon tetrachloride.
  • the method will iterate the performing step for at least 8, 10, 20 or more iterations.
  • Each iteration adds thickness to the conformal coating. Therefore, in some embodiments, the number of iterations is selected to achieve a predetermined porosity or average internal pore diameter in the porous non-ceramic substrate.
  • the conformal coating can be used to controllably reduce the porosity of the porous non-ceramic substrate (e.g., to control the apparent pore size of the substrate) to achieve a desired porosity (e.g., a desired average internal pore diameter).
  • the conformal coating may reduce the porosity of the porous non-ceramic substrate by 5% or more, 25% or more, or even 50% or more.
  • the conformal coating may reduce the average internal pore diameter by 5 nm or more.
  • the purpose of applying the method is to achieve hydrophilicity on the interior surfaces of the substrate.
  • the step is iterated until a target surface energy such as, e.g., 72 dyne/cm (one commonly used definition of hydrophilic nature) is achieved.
  • a target surface energy such as, e.g., 72 dyne/cm (one commonly used definition of hydrophilic nature) is achieved.
  • the exterior surface of the porous non-ceramic substrate nearest the outlet it may also be desirable for the exterior surface of the porous non-ceramic substrate nearest the outlet to have a surface energy greater than 72 dyne/cm as well, and in these circumstances the performing step should be iterated until that target is achieved.
  • the application of the conformal coating to the articles of the invention can be carried out at any useful temperature that does not damage the substrate.
  • the method is carried out, e.g., at a temperature of about 300° C. or less, about 200° C. or less, about 70° C. or less, or even about 60° C. or less.
  • the porous non-ceramic substrate is a porous polymeric substrate.
  • the introducing of the first and the second reactive gases be done at a temperature below the melting temperature of the porous polymeric substrate so as not to cause thermal distortion of the substrate or pores.
  • the method of the present invention can be operated at, e.g., below 300° C. if that is desirable for the structural integrity of the substrate.
  • a porous polymeric substrate When a porous polymeric substrate is employed, it may be convenient to use a substrate that has been rendered porous using an induced phase separation technique such as thermally induced phase separation (TIPS), vapor induced phase separation (VIPS), or the co-casting method of inducing phase separation discussed in U.S. Patent Application Publication No. US 2008/0241503.
  • TIPS thermally induced phase separation
  • VIPS vapor induced phase separation
  • co-casting method of inducing phase separation discussed in U.S. Patent Application Publication No. US 2008/0241503.
  • porous substrates from polymeric materials
  • staple non-wovens such as stitchbonded or hydro-entangled webs may be used, as well as spunlaid non-wovens such as melt-blown or spun-bonded webs.
  • non-polymeric non-ceramic materials such natural fabrics, carbon fibers, fritted metal, or glass can be suitable.
  • the physical topology of the porous non-ceramic substrate is not critical.
  • the porous non-ceramic substrate may be flat, pleated, tubular, in the form of a thin hollow fiber, either singular or as a potted fiber cartridge, or any other useful configuration.
  • the porous non-ceramic substrate can be treated in a batch process, or the porous non-ceramic substrate may by in the form of a web of material of indefinite length and the positioning means can be of a type that permits a roll-to-roll process.
  • a roll-to-roll process may be of the step-and-repeat sort, or it can be a continuous motion process.
  • One convenient variant of the method is to perform the process in a batch reactor such that the reactor itself is incorporated into the product intended for the end consumer.
  • the reactor may be in the form of a filter body, and both the filter body and the porous non-ceramic with its conformal coatings applied in situ can be part of a filter to be sold to the end user.
  • multiple filters can be simultaneously treated in series or parallel connected flow paths.
  • the porous non-ceramic substrate is suited to its end use once the conformal coating has been applied on the interior surfaces.
  • This technique could be used to prepare, e.g., a vent filter for an endotracheal tube that should pass only gas and water vapor, not liquid water.
  • Another secondary operation that can be performed is to graft chemical moieties to the conformal coating.
  • grafted ligand groups e.g., selected from polyethyleneimine ligand groups and biguanide ligand groups
  • Grafting by radiant or particle energy can also be used to attach other useful ligands such as silanes, biologically active moieties such as antibodies, chelating agents, and catalytic coatings.
  • Porous non-ceramic substrates provided with conformal coatings according to the method of the present invention lend themselves to numerous uses. For example, the filtration of both liquids and gases may be enhanced by the use of the treated substrates.
  • conformal coatings that provide hydrophilicity to a porous filter element can act to reduce resistance and enhance flow through a filter. This is especially useful when the filter is to be used under gravity flow conditions and low pressure applications.
  • the physical size and spacing of the pores can be selected as well as the conformal coating to achieve particular effects.
  • the porous non-ceramic substrate can be fine fiber meltblown or nanofiber webs that have fiber-to-fiber spacings that can prevent the liquid from passing through the openings below a certain pressure, i.e., “liquid hold out”.
  • Certain conformal coatings as described above can be used to reduce scale deposits from forming in filter elements made according to the present invention. This can be accomplished by applying, in a secondary operation, coating designed to reduce compatibility with the scale materials. Silver or other antimicrobial materials can also be bound to some of the described coatings to help prevent the formation and growth of bio-film on the surfaces of the porous non-ceramic substrate or to treat the liquid being filtered. Further, it is believed that, e.g., metal oxide coatings themselves, without secondary treatment, could allow such filters to operate at higher service temperatures, potentially enabling applications involving hot water or water/steam.
  • a filter can be provided having several filter elements, each provided with variations of the present invention adapting them to restrict or adsorb different chemical contaminants, providing “depth filtration.”
  • air filters could be provided according to the present invention with sufficient heat resistance for, e.g., the filtration of diesel exhaust.
  • Secondary antimicrobial, adsorptive, or catalytic coatings could adapt, e.g., melt-blown substrates for use as masks for biomedical use or as personal protective gear.
  • nano-gold catalysts could be bound to the conformal coating to allow it to act as a carbon monoxide remover in a protective mask.
  • the method of the present invention lends itself to the treatment of porous insulation.
  • Anti-microbial materials applied in a secondary operation could reduce the potential for biological contamination in, e.g., moist environments. It is contemplated that with sufficient iterations, insulation with flame retardant properties could be provided.
  • porous non-ceramic substrates according to the present invention especially with a biocompatiblizing layer added in a secondary operation, could be used a tissue scaffolds for diverse medical applications.
  • porous non-ceramic substrates may be particularly suitable for some applications.
  • PVDF polyvinylidene fluoride
  • nylon made hydrophilic can be particularly suitable for applications in protein purification and water purification (e.g., through attachment of quat silane); and non-woven made hydrophilic can be particularly suitable for applications such as cleaning wipes for infection prevention, depth filtration, and ample preparation devices for food safety.
  • FIG. 1 a cross-section view through an article 20 of the present invention is illustrated.
  • the depicted article 20 is suited to batch processes in connection with the invention, and has a body 22 including an inlet 24 and an outlet 26 .
  • the inlet 24 and the outlet 26 are on opposite sides of three separate portions of porous non-ceramic substrate 30 a, 30 b, and 30 c such that reactive gasses introduced at inlet 24 in direction D 1 must pass through all of portions of porous non-ceramic substrate 30 a, 30 b, and 30 c to make their way to the outlet 26 in direction D 2 .
  • portions of substrate 30 a, 30 b, and 30 c are conveniently gripped at their edges by double-sided flanges 32 a, 32 b, 32 c, and 32 d, although skilled artisans will recognize that other expedients can be used for this purpose.
  • a microporous polypropylene substrate was prepared using a Thermally Induced Phase Separation (TIPS) process generally as described in U.S. Pat. Nos. 5,120,594 (Mrozinski) and 4,726,989 (Mrozinski). More specifically, a nucleated polypropylene/mineral oil blend was prepared and extruded into a smooth, chilled casting wheel where the material underwent solid-liquid phase separation. A continuous substrate of this material was collected and passed through a 1,1,1-trichloroethane bath to remove the mineral oil. The microporous polypropylene substrate thus formed had a thickness of 244 ⁇ m (9.6 mil).
  • TIPS Thermally Induced Phase Separation
  • microporous polypropylene substrate was then tested according to ASTM Standard F316-03 and found to have an isopropanol alcohol bubble point pressure of 69.7 kPa (10.11 psi) corresponding to a bubble point pore size of 0.90 ⁇ m. Further, it had a porosity of 83.3%, and a pure water permeability of 477 L/(m 2 -h-kPa).
  • the substrate was strongly hydrophobic, having a surface energy of 29 dyne/cm.
  • microporous substrate was prepared from an ethyelene-chlorotrifluoroethylene copolymer (ECTFE), commercially available under the trade name and grade designation HALAR 902 by Solvay Advanced Polymers, L.L.C., of Alpharetta, Ga. This was accomplished by a TIPS process generally as described in U.S. Patent Application Publication No. US 2009/0067807. More specifically, microporous ECTFE substrate was made using a twin screw extruder equipped with a melt pump, neck tube, and sheeting die positioned above a patterned casting wheel positioned above a water-filled quench bath.
  • ECTFE ethyelene-chlorotrifluoroethylene copolymer
  • the microporous ECTFE substrate was made by melt extruding a casting dope comprising ECTFE a diluent, and a solvent; casting and then quenching the dope; solvent washing to remove the diluent; drying to remove the solvent; and stretching the resulting substrate to a finished thickness of 48 ⁇ m (1.9 mil).
  • the microporous ECTFE substrate was then tested according to ASTM Standard F316-03.
  • Another microporous substrate a nonwoven (meltblown) polypropylene web
  • a nonwoven (meltblown) polypropylene web was prepared as follows. Polypropylene pellets commercially available as Total 3960 from Total Petrochemical of Houston, TX were used to form meltblown web using conventional techniques, specifically extrusion of the molten polypropylene at a rate of 7.6 lb/hr and a melt temperature of 285° C. (nominal) through a 10 inch wide meltblowing die of the Naval Research Lab (NRL) type towards a collecting drum set a distance of 12 inches (30.5 cm) from the die. The resulting web was collected at 10 ft/min (305 cm/min). The observed basis weight was 67 g/m 2 .
  • EFD effective fiber diameter
  • microporous substrate in the form of a graphite felt with a nominal thickness of 0.25 inch (6.35 mm), commercially available as “GRADE GH” from Fiber Materials, Inc., of Biddeford, Me., was obtained.
  • microporous substrate in the form of a fiberglass mat commercially available as “1210NC” from 3M Company of St. Paul, Minn., was obtained.
  • a reactor generally as depicted in FIG. 1 was constructed using three 6 inch (15.24 cm) diameter double side flanges commercially available as ConFlat Double Side Flanges (600-400-D CF) from Kimball Physics Inc. of Wilton, N.H.. To this stack of flanges on what was to be the upstream side was attached one 6 inch (15.24 cm) diameter ConFlat Double Side Flange (600DXSP12) from Kimball Physics Inc., which has one 1 ⁇ 8′′ (0.32 cm) NPT side hole. This side hole was used to attach a Baratron (10 ton) pressure gauge, commercially available from MKS Instruments of Andover, Mass., so that the pressure during the process could be monitored.
  • a Baratron (10 ton) pressure gauge commercially available from MKS Instruments of Andover, Mass.
  • This stack of elements was capped on each end with a 6 inch diameter (15.24 cm) ConFlat Zero-Length Reducer Flange (600 ⁇ 275-150-0-T1) commercially available from Kimball Physics Inc. At each of the junctions in the stack, appropriate sized copper gaskets were used so as to make a good vacuum seal.
  • a 25 ISO to 275 CF Reducer (QF25X275) was attached to the outlet side. That element was connected to the bottom of a 275 ConFlat 4 way Cross (275-150-X), itself also equipped with a 25 ISO to 275 CF Reducer.
  • This expedient allowed an easier set up for faster removal of the main reactor body from the supporting system for sample loading and removal.
  • the 275 ConFlat 4 way Cross was then connected to a XDS-5 Scroll pump (equipped with purging capability) via flexible Stainless Steel vacuum hose equipped with a gate valve for the vacuum source and control, a SRS PPR300 Residual Gas Analyzer with bypass sampling and a MKS Baratron (10 torr) gauge for post membrane pressure readout.
  • a valved roughing/bypass line with a 1/16 inch (0.16 cm) drilled orifice was installed around the gate valve to allow for reduced pumping but was also found to be useful as a secondary pumping line to allow for greater reactor pressure during surface treatments.
  • Inlets for the first and the second reactive gases were disposed with the 1 ⁇ 8′′ NPT side holes in the 2.75 inch (7 cm) diameter ConFlat Double Side Flanges as discussed above. By having each of the first and the second reactive enter at its own port, any possibility of reaction occurring in the inlet lines is minimized. Further, the inlet line for the first reactive gas was equipped with a “T” connection that allowed for the addition of process nitrogen (N 2 ) into the line to maintain a continuous positive flow of gas out of the port to assure that there was no back streaming of any of the second reactive gas into the supply line for the first reactive gas.
  • N 2 process nitrogen
  • the line for the first reactive gas was directed through a normally closed valve, and the line for the second reactive gas was directed through a normally open valve.
  • These control ports two valves were set up to be activated in tandem by the same switch to assure that the two lines could not both be adding precursor gases to the reactor at the same time.
  • Each of the lines was secondarily controlled on and off by a separate valving system equipped with an in-line needle valve of the SS Metering Bellows-Sealed Valve type to precisely control the rate of flow of each of the precursor gases.
  • Upstream of each of these metering valves was a flow control valve commercially available as 316 L VIM/VAR UHP Diaphragm-Sealed Valve, commercially available from Swagelok Company of Solon, Ohio.
  • Upstream of each of these flow control valves was a reactive gas supply tank in the form of a 300 mL capacity stainless steel bubbler, commercially available as catalog no. Z527068 from Sigma-Aldrich, of St. Louis, Mo..
  • This reactor/apparatus as described above was equipped with diverse band heaters, heating tapes and cartridge heaters of conventional types to control the temperatures of the reactor and its gas supplies.
  • Each of the double-sided flanges of the reactor was used to support a disc cut from the porous polypropylene membrane discussed above as Substrate A.
  • Each of the three samples of the discs were placed inside the reactor by attaching the discs to the copper gaskets with double stick tape and placing the copper gaskets in the normal sealing locations between the 6 inch (15.24 cm) diameter ConFlat Double Side Flanges.
  • the ConFlat Double Side Flange seals penetrated the membranes and formed an air tight seal via the conventional copper gasket sealing mechanism. This sealed reactor wall also helped to hold the membranes in place, and sealed the edges of the membranes to prevent any of the reactive gases from bypassing the membranes.
  • the reactor with the membranes in place was then attached to the vacuum and gas handling systems as previously described above.
  • the first reactive gas supply tank was filled with trimethylaluminium (TMA) 97%, commercially available as catalog number 257222 from Sigma-Aldrich of St. Louis, Mo.
  • the second reactive gas supply tank was filled with ACS reagent water commercially available as catalog number 320072 from Sigma-Aldrich.
  • the system was slowly put under vacuum via the vacuum bypass valve to a pressure of between 1 to 10 ton. Once the vacuum was fully drawn, and with the vacuum system still operating, the reactor was flushed with a N 2 purge at a flow rate of 10 to 25 sccm to remove residual excess water and atmospheric gases and/or contaminants. While this was occurring, the reactor, first and second inlet lines, and purge gas lines were heated to 50° C. with the heaters.
  • the first gas supply tank was similarly heated to 30° C.
  • the first reactive gas was released from the first reactive gas supply tank.
  • the needle valve on the first reactive gas line was adjusted so that the gas flow, given the influence of the vacuum system, corresponded to an N 2 equivalent flow rate of 1 to 25 sccm flowing through the discs to the exit.
  • the flow of that the first reactive gas was terminated and the system was again flushed with a N 2 purge at a flow rate of 10 to 25 sccm.
  • the second reactive gas was released from the second supply tank in a similar manner (albeit a different port) until once again the three discs were fully saturated.
  • Another flush with a N 2 purge at a flow rate of 10 to 25 sccm was performed. This cycle of additions, i.e., first reactive gas-purge-second reactive gas-purge) was continued the discs had undergone 35 iterations.
  • Example 2 An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate B instead of Substrate A; the reactor, the first and second inlet lines, and purge gas lines were heated to 60° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened and the surface energy of each of the three discs of Sample B was assessed. Each disc was found to have a surface energy over 86 dyne/cm, indicating a high degree of hydrophilicity.
  • Example 2 An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate C instead of Substrate A; the reactor, the first and second inlet lines, and purge gas lines were heated to 60° C. with the heaters; and the number of iterations was 17 instead of 35. After the 17 iterations had been performed, the reactor was opened and the surface energy of each of the three discs of Sample C was assessed. Each disc was found to have a surface energy over 86 dyne/cm, indicating a high degree of hydrophilicity.
  • Example 2 An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate D instead of Sample A; the reactor was heated to 60° C. with the heaters; the first and second inlet lines and purge gas lines were heated to 70° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened. An X-ray analysis was performed to demonstrate that the substrate had been coated.
  • Example 2 An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate E instead of Sample A; the reactor was heated to 60° C. with the heaters; the first and second inlet lines and purge gas lines were heated to 70° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened. An X-ray analysis was performed to demonstrate that the substrate had been coated.

Abstract

An article of manufacture includes a body having an inlet and an outlet, and at least a portion of at least one porous non-ceramic substrate positioned such that the porous polymeric substrate separates the inlet from the outlet. The porous non-ceramic substrate has a conformal coating on at least a portion of its interior surfaces.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application Nos. 61/244,696 and 61/244,713, both filed Sep. 22, 2009, the disclosures of which are incorporated by reference herein in their entirety.
  • TECHNICAL FIELD
  • The present invention is related to articles having a porous non-ceramic substrate with a conformal coating on its interior surfaces.
  • BACKGROUND
  • The Atomic Layer Deposition (ALD) process was originally developed for thin film electroluminescent (TFEL) flat-panel displays. Interest in ALD has increased significantly over the years, focusing on silicon-based microelectronics (wafers) due to its ability to produce very thin, conformable films with control of the composition and thickness of these films at the atomic level. ALD is also well known for its ability to coat high aspect ratio surfaces due to its self-limiting, sequential surface reaction process. However, the process' ability to coat these high aspect ratio surfaces is challenged by the time needed for the reactive gases to diffuse into these areas and be completely purged out prior to the addition of the next precursor. This diffusion problem has largely prevented the extension of this technology to porous materials, and by extension to manufactured articles having porous substrates with ALD coatings.
  • SUMMARY
  • The present invention enables the use of ALD coatings in porous substrates which in turn makes possible diverse articles of manufacture such as filters, extraction columns, catalytic reactors, and the like having a conformal coating on at least a portion of its interior surfaces. In one aspect, the present invention provides an article of manufacture including a body having an inlet and an outlet, and at least a portion of at least one porous non-ceramic substrate positioned such that the porous polymeric substrate separates the inlet from the outlet. The porous non-ceramic substrate has a conformal coating on at least a portion of its interior surfaces. In a second aspect, the invention provides an article of manufacture including a porous non-ceramic substrate having a conformal coating on all its interior surfaces through its entire thickness.
  • DEFINITIONS
  • In connection with this disclosure, the word “porous” means that the substrate contains openings (i.e. “pores”) sufficient that at least a gas can pass through it.
  • The word “microporous” means that the substrate contains pores having a median internal cross-sectional dimension (a “median pore size,” e.g. a diameter for the case of cylindrical pores) of no greater than 1,000 micrometers such that a gas may pass through the substrate within the pores. Preferred microporous substrates include pores having a median pore size of from 0.01 to 1,000 micrometers, inclusive, more preferably from 0.1 to 100 micrometers, inclusive, even more preferably from 0.2 to 20 micrometers, inclusive, and most preferably from 0.3 to 3 micrometers or even 1 micrometer, inclusive. As used throughout this specification, median pore size was determined using the bubble point pressure measurement method described in ASTM Standard F316-03.
  • The word “nonporous” means that the substrate is substantially free of pores.
  • The word “non-ceramic” with reference to a substrate prior to deposition of the conformal coating means that the substrate does not substantially include inorganic metal oxides, metal nitrides, metal carbides, or other ceramic materials. Preferred “non-ceramic” substrates are completely free of ceramic materials, and more preferably consist essentially of fibrous organic materials (e.g. polymeric fibers, natural fibers, carbon fibers, and the like), and even more preferably consist only of organic materials
  • The word “conformal coating” means a relatively thin coating of material that adheres well to and conforms closely to the shape of an underlying substrate.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-section view through an article according to the present invention.
  • FIG. 2 shows a graph comparing an increase in pressure drop across the substrates compared to the number of process iterations during the experiment of Example 1.
  • DETAILED DESCRIPTION
  • The articles of the invention possess a conformal coating on at least a portion of the interior surfaces of non-ceramic substrate. In many convenient embodiments, the conformal coating is applied to at least a region through the entire thickness of the substrate. Preferably, the conformal coating is applied to all interior surfaces of the substrate. In many convenient embodiments, the conformal coating comprises a metal oxide, a metal nitride, a metal sulfide, or a combination thereof. The metal in these instances may be of various sorts, but silicon, titanium, aluminum, zirconium, and yttrium are considered particularly suitable. Preferably, the metal is silicon, titanium, or aluminum; more preferably, the metal is aluminum. In some preferred embodiments, the conformal coating comprises aluminum oxide.
  • Coatings that can be applied via atomic layer controlled growth techniques are preferred. Among coatings that are readily applied in such a manner are binary materials, i.e., materials of the form Qx Ry, where Q and R represent different atoms and x and y are numbers that reflect an electrostatically neutral material. Among the suitable binary materials are various inorganic oxides (such as silicon dioxide and metal oxides such as zirconia, alumina, silica, boron oxide, yttria, zinc oxide, magnesium oxide, TiO2 and the like), inorganic nitrides (such as silicon nitride, AlN and BN), inorganic sulfides (such as gallium sulfide, tungsten sulfide and molybdenum sulfide), as well as inorganic phosphides. In addition, various metal coatings are useful, including cobalt, palladium, platinum, zinc, rhenium, molybdenum, antimony, selenium, thallium, chromium, platinum, ruthenium, iridium, germanium and tungsten.
  • Useful discussions of the application of self-limiting sequential coatings can be found, for example, in U.S. Pat. Nos. 6,713,177; 6,913,827; and 6,613,383.
  • Those familiar with the field of ALD reactions can readily determine which first and second reactive gases are appropriate choices for the self-limiting reactions in order to create the conformal coatings discussed above. For example, if an aluminum containing compound is desired, trimethylaluminum or triisobutylaluminum gases may be used as one of the two reactive gases. When the desired aluminum containing compound is aluminum oxide, the other reactive gas in the iterations can be water vapor or ozone. When the desired aluminum containing compound is aluminum nitride, the other reactive gas in the iterations can be ammonia or a nitrogen/hydrogen plasma. When the desired aluminum containing compound is aluminum sulfide, the other reactive gas in the iterations can be hydrogen sulfide.
  • Likewise, if instead of aluminum compounds, silicon compounds are wanted in the conformal coating, one of the two reactive gases can be, e.g., tetramethylsilane or silicon tetrachloride. The references incorporated above give further guidance about suitable reactive gases depending on the end result desired.
  • While a single iteration with the discussed reactive gases can lay down a molecular layer that may be suitable for some purposes, many useful embodiments of the method will iterate the performing step for at least 8, 10, 20 or more iterations. Each iteration adds thickness to the conformal coating. Therefore, in some embodiments, the number of iterations is selected to achieve a predetermined porosity or average internal pore diameter in the porous non-ceramic substrate. In some embodiments, by controlling the number of iterations performed, the conformal coating can be used to controllably reduce the porosity of the porous non-ceramic substrate (e.g., to control the apparent pore size of the substrate) to achieve a desired porosity (e.g., a desired average internal pore diameter). For example, the conformal coating may reduce the porosity of the porous non-ceramic substrate by 5% or more, 25% or more, or even 50% or more. Similarly, if the substrate comprises pores, the conformal coating may reduce the average internal pore diameter by 5 nm or more.
  • In some applications, the purpose of applying the method is to achieve hydrophilicity on the interior surfaces of the substrate. In these applications, the step is iterated until a target surface energy such as, e.g., 72 dyne/cm (one commonly used definition of hydrophilic nature) is achieved. Further, it may also be desirable for the exterior surface of the porous non-ceramic substrate nearest the outlet to have a surface energy greater than 72 dyne/cm as well, and in these circumstances the performing step should be iterated until that target is achieved. Contrariwise, in some specialized embodiments it may be desirable to have the interior surfaces hydrophilic while the exterior surface of the porous non-ceramic substrate nearest the outlet is left hydrophobic (e.g., less than 72 dyne/cm).
  • The application of the conformal coating to the articles of the invention can be carried out at any useful temperature that does not damage the substrate. In some embodiments, the method is carried out, e.g., at a temperature of about 300° C. or less, about 200° C. or less, about 70° C. or less, or even about 60° C. or less.
  • In many useful embodiments of the invention, the porous non-ceramic substrate is a porous polymeric substrate. In such embodiments, it is often convenient that the introducing of the first and the second reactive gases be done at a temperature below the melting temperature of the porous polymeric substrate so as not to cause thermal distortion of the substrate or pores. For example, the method of the present invention can be operated at, e.g., below 300° C. if that is desirable for the structural integrity of the substrate.
  • When a porous polymeric substrate is employed, it may be convenient to use a substrate that has been rendered porous using an induced phase separation technique such as thermally induced phase separation (TIPS), vapor induced phase separation (VIPS), or the co-casting method of inducing phase separation discussed in U.S. Patent Application Publication No. US 2008/0241503.
  • Other ways of forming porous substrates from polymeric materials will commend themselves to the ordinary artisan for use with the present invention. For example, staple non-wovens such as stitchbonded or hydro-entangled webs may be used, as well as spunlaid non-wovens such as melt-blown or spun-bonded webs. For other applications, non-polymeric non-ceramic materials such natural fabrics, carbon fibers, fritted metal, or glass can be suitable.
  • In connection with the present invention, the physical topology of the porous non-ceramic substrate is not critical. Depending on end use, the porous non-ceramic substrate may be flat, pleated, tubular, in the form of a thin hollow fiber, either singular or as a potted fiber cartridge, or any other useful configuration.
  • When making articles according to the present invention in reactors having an inlet and an outlet, it is possible, and sometimes convenient, to position at least a portion of at least a second porous non-ceramic substrate such that the second porous non-ceramic substrate also separates the inlet from the outlet. It has been demonstrated that three or more porous non-ceramic substrates can be successfully treated simultaneously using the method.
  • The porous non-ceramic substrate can be treated in a batch process, or the porous non-ceramic substrate may by in the form of a web of material of indefinite length and the positioning means can be of a type that permits a roll-to-roll process. Such a roll-to-roll process may be of the step-and-repeat sort, or it can be a continuous motion process.
  • One convenient variant of the method is to perform the process in a batch reactor such that the reactor itself is incorporated into the product intended for the end consumer. For example, the reactor may be in the form of a filter body, and both the filter body and the porous non-ceramic with its conformal coatings applied in situ can be part of a filter to be sold to the end user. In some embodiments, multiple filters can be simultaneously treated in series or parallel connected flow paths.
  • In many convenient embodiments, the porous non-ceramic substrate is suited to its end use once the conformal coating has been applied on the interior surfaces. However, it is sometimes useful to perform a secondary operation on the conformal coating. This can be done either within the reactor or in another convenient apparatus. For example, even in cases where the internal surfaces of the porous non-ceramic substrate have been rendered hydrophilic, one or both of the external surfaces of the porous non-ceramic substrate can be treated with a final size coating to render them hydrophobic. This technique could be used to prepare, e.g., a vent filter for an endotracheal tube that should pass only gas and water vapor, not liquid water.
  • Another secondary operation that can be performed is to graft chemical moieties to the conformal coating. For example, a discussion of a technique which can be extrapolated to provide a porous non-ceramic substrate with its conformal coating according to the present invention with grafted ligand groups, e.g., selected from polyethyleneimine ligand groups and biguanide ligand groups, can be found in U.S. Patent Application Publication Nos. US 2010/0075131 and US 2010/0075560. Grafting by radiant or particle energy can also be used to attach other useful ligands such as silanes, biologically active moieties such as antibodies, chelating agents, and catalytic coatings.
  • Porous non-ceramic substrates provided with conformal coatings according to the method of the present invention lend themselves to numerous uses. For example, the filtration of both liquids and gases may be enhanced by the use of the treated substrates. With regard to, e.g., water filtration, conformal coatings that provide hydrophilicity to a porous filter element can act to reduce resistance and enhance flow through a filter. This is especially useful when the filter is to be used under gravity flow conditions and low pressure applications. The physical size and spacing of the pores can be selected as well as the conformal coating to achieve particular effects. For example, the porous non-ceramic substrate can be fine fiber meltblown or nanofiber webs that have fiber-to-fiber spacings that can prevent the liquid from passing through the openings below a certain pressure, i.e., “liquid hold out”.
  • Certain conformal coatings as described above can be used to reduce scale deposits from forming in filter elements made according to the present invention. This can be accomplished by applying, in a secondary operation, coating designed to reduce compatibility with the scale materials. Silver or other antimicrobial materials can also be bound to some of the described coatings to help prevent the formation and growth of bio-film on the surfaces of the porous non-ceramic substrate or to treat the liquid being filtered. Further, it is believed that, e.g., metal oxide coatings themselves, without secondary treatment, could allow such filters to operate at higher service temperatures, potentially enabling applications involving hot water or water/steam.
  • The filtration of other liquids besides water and its solutions can benefit from treated substrates according to the present invention as well. For example, conformal coatings that enable higher service temperatures could allow filtration of heated oils. Some conformal coatings could provide chemical resistance in acidic or high pH environments. A filter can be provided having several filter elements, each provided with variations of the present invention adapting them to restrict or adsorb different chemical contaminants, providing “depth filtration.”
  • The treatments discussed above also lend themselves to applications in air filtration. As discussed above, conformal coatings could enable higher service temperatures in air filtration applications as well. It is contemplated that with sufficient iterations, air filters could be provided according to the present invention with sufficient heat resistance for, e.g., the filtration of diesel exhaust. Secondary antimicrobial, adsorptive, or catalytic coatings could adapt, e.g., melt-blown substrates for use as masks for biomedical use or as personal protective gear. For example, nano-gold catalysts could be bound to the conformal coating to allow it to act as a carbon monoxide remover in a protective mask.
  • Beyond filtration, the method of the present invention lends itself to the treatment of porous insulation. Anti-microbial materials applied in a secondary operation could reduce the potential for biological contamination in, e.g., moist environments. It is contemplated that with sufficient iterations, insulation with flame retardant properties could be provided.
  • Further, it is contemplated that porous non-ceramic substrates according to the present invention, especially with a biocompatiblizing layer added in a secondary operation, could be used a tissue scaffolds for diverse medical applications.
  • Certain porous non-ceramic substrates according to the present invention may be particularly suitable for some applications. For example, polyvinylidene fluoride (PVDF) made hydrophilic can be particularly suitable for applications in filtration, substrates for anion exchange membranes, vent filters for endotracheal tubes, and sample preparation devices for food safety; nylon made hydrophilic can be particularly suitable for applications in protein purification and water purification (e.g., through attachment of quat silane); and non-woven made hydrophilic can be particularly suitable for applications such as cleaning wipes for infection prevention, depth filtration, and ample preparation devices for food safety.
  • Referring now to FIG. 1, a cross-section view through an article 20 of the present invention is illustrated. The depicted article 20 is suited to batch processes in connection with the invention, and has a body 22 including an inlet 24 and an outlet 26. The inlet 24 and the outlet 26 are on opposite sides of three separate portions of porous non-ceramic substrate 30 a, 30 b, and 30 c such that reactive gasses introduced at inlet 24 in direction D1 must pass through all of portions of porous non-ceramic substrate 30 a, 30 b, and 30 c to make their way to the outlet 26 in direction D2. In the depicted embodiment, portions of substrate 30 a, 30 b, and 30 c are conveniently gripped at their edges by double- sided flanges 32 a, 32 b, 32 c, and 32 d, although skilled artisans will recognize that other expedients can be used for this purpose.
  • EXAMPLES
  • Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.
  • Method of Testing the Surface Energies of Samples
  • Several samples of porous substrates having a conformal layer or coating thereon are described below in connection with the Examples. Where the surface energy of the sample is discussed, that reading was obtained in the following way: Dyne test solutions were obtained in various levels. Solutions according to ASTM Standard D-2578 ranging in level from 30 to 70 dynes/cm were purchased from Jemmco, LLC of Mequon, Wis. Solutions ranging in level from 72 to 86 dynes/cm were prepared by mixing the amount of MgCl2.6H2O shown on Table 1 with sufficient deionized water to make a total of 25 grams of solution.
  • TABLE 1
    Grams of MgCl2•6H2O
    Level of dyne test solution being added to DI water to make a total
    made (dyne/cm) of 25 grams of solution
    72 0.00
    74 2.26
    76 4.93
    78 7.39
    80 9.56
    82 11.40
    84 12.94
    86 14.24
  • Using these dyne test solutions, the substrate needing testing as discussed below was subjected to the Drop Test discussed in section 12 of ASTM Standard ASTM D7541-09.
  • Preparation of Substrate A
  • A microporous polypropylene substrate was prepared using a Thermally Induced Phase Separation (TIPS) process generally as described in U.S. Pat. Nos. 5,120,594 (Mrozinski) and 4,726,989 (Mrozinski). More specifically, a nucleated polypropylene/mineral oil blend was prepared and extruded into a smooth, chilled casting wheel where the material underwent solid-liquid phase separation. A continuous substrate of this material was collected and passed through a 1,1,1-trichloroethane bath to remove the mineral oil. The microporous polypropylene substrate thus formed had a thickness of 244 μm (9.6 mil). The microporous polypropylene substrate was then tested according to ASTM Standard F316-03 and found to have an isopropanol alcohol bubble point pressure of 69.7 kPa (10.11 psi) corresponding to a bubble point pore size of 0.90 μm. Further, it had a porosity of 83.3%, and a pure water permeability of 477 L/(m2-h-kPa). The substrate was strongly hydrophobic, having a surface energy of 29 dyne/cm.
  • Preparation of Substrate B
  • Another microporous substrate was prepared from an ethyelene-chlorotrifluoroethylene copolymer (ECTFE), commercially available under the trade name and grade designation HALAR 902 by Solvay Advanced Polymers, L.L.C., of Alpharetta, Ga. This was accomplished by a TIPS process generally as described in U.S. Patent Application Publication No. US 2009/0067807. More specifically, microporous ECTFE substrate was made using a twin screw extruder equipped with a melt pump, neck tube, and sheeting die positioned above a patterned casting wheel positioned above a water-filled quench bath. Using this set-up, the microporous ECTFE substrate was made by melt extruding a casting dope comprising ECTFE a diluent, and a solvent; casting and then quenching the dope; solvent washing to remove the diluent; drying to remove the solvent; and stretching the resulting substrate to a finished thickness of 48 μm (1.9 mil). The microporous ECTFE substrate was then tested according to ASTM Standard F316-03. It was found to have an isopropyl alcohol bubble point pressure of 186.1 kPa (26.99 psi) corresponding to a bubble point pore size of 0.34 μm, a porosity of 65.3%, and a pure water permeability of 48 L/(m2-h-kPa). The membrane was hydrophobic, having a surface energy of 37 dyne/cm.
  • Preparation of Substrate C
  • Another microporous substrate, a nonwoven (meltblown) polypropylene web, was prepared as follows. Polypropylene pellets commercially available as Total 3960 from Total Petrochemical of Houston, TX were used to form meltblown web using conventional techniques, specifically extrusion of the molten polypropylene at a rate of 7.6 lb/hr and a melt temperature of 285° C. (nominal) through a 10 inch wide meltblowing die of the Naval Research Lab (NRL) type towards a collecting drum set a distance of 12 inches (30.5 cm) from the die. The resulting web was collected at 10 ft/min (305 cm/min). The observed basis weight was 67 g/m2. The air temperature and velocity were adjusted to achieve an effective fiber diameter (EFD) of 7.9 microns. This EFD was calculated according to the method set forth in Davies, C. N., “The Separation of Airborne Dust and Particles,” Institution of Mechanical Engineers, London Proceedings 1B, 1952.
  • Preparation of Substrate D
  • Another microporous substrate in the form of a graphite felt with a nominal thickness of 0.25 inch (6.35 mm), commercially available as “GRADE GH” from Fiber Materials, Inc., of Biddeford, Me., was obtained.
  • Preparation of Substrate E
  • Another microporous substrate in the form of a fiberglass mat, commercially available as “1210NC” from 3M Company of St. Paul, Minn., was obtained.
  • Reactor
  • A reactor generally as depicted in FIG. 1 was constructed using three 6 inch (15.24 cm) diameter double side flanges commercially available as ConFlat Double Side Flanges (600-400-D CF) from Kimball Physics Inc. of Wilton, N.H.. To this stack of flanges on what was to be the upstream side was attached one 6 inch (15.24 cm) diameter ConFlat Double Side Flange (600DXSP12) from Kimball Physics Inc., which has one ⅛″ (0.32 cm) NPT side hole. This side hole was used to attach a Baratron (10 ton) pressure gauge, commercially available from MKS Instruments of Andover, Mass., so that the pressure during the process could be monitored. This stack of elements was capped on each end with a 6 inch diameter (15.24 cm) ConFlat Zero-Length Reducer Flange (600×275-150-0-T1) commercially available from Kimball Physics Inc. At each of the junctions in the stack, appropriate sized copper gaskets were used so as to make a good vacuum seal.
  • To this stack of elements, first a 2.75 inch (7 cm) diameter ConFlat Double Side Flanges (275-150-D CF) was attached to the inlet side, followed by a 2.75 inch (7cm) diameter ConFlat Double Side Flanges with two ⅛ ″ (0.32 cm) NPT Side Holes (275DXSP12 modified for 2 side holes versus standard 1 side hole), and further followed by a 2.75 inch (7 cm) diameter ConFlat Solid/Blank Flange. The two side holes are used for introducing the reactive gases as will be discussed below.
  • To this stack of elements, first a 25 ISO to 275 CF Reducer (QF25X275) was attached to the outlet side. That element was connected to the bottom of a 275 ConFlat 4 way Cross (275-150-X), itself also equipped with a 25 ISO to 275 CF Reducer. This expedient allowed an easier set up for faster removal of the main reactor body from the supporting system for sample loading and removal. The 275 ConFlat 4 way Cross was then connected to a XDS-5 Scroll pump (equipped with purging capability) via flexible Stainless Steel vacuum hose equipped with a gate valve for the vacuum source and control, a SRS PPR300 Residual Gas Analyzer with bypass sampling and a MKS Baratron (10 torr) gauge for post membrane pressure readout. A valved roughing/bypass line with a 1/16 inch (0.16 cm) drilled orifice was installed around the gate valve to allow for reduced pumping but was also found to be useful as a secondary pumping line to allow for greater reactor pressure during surface treatments.
  • Inlets for the first and the second reactive gases were disposed with the ⅛″ NPT side holes in the 2.75 inch (7 cm) diameter ConFlat Double Side Flanges as discussed above. By having each of the first and the second reactive enter at its own port, any possibility of reaction occurring in the inlet lines is minimized. Further, the inlet line for the first reactive gas was equipped with a “T” connection that allowed for the addition of process nitrogen (N2) into the line to maintain a continuous positive flow of gas out of the port to assure that there was no back streaming of any of the second reactive gas into the supply line for the first reactive gas.
  • As further protection against the inadvertent cross-contamination of the inlet lines for the first and the second reactive gases, the line for the first reactive gas was directed through a normally closed valve, and the line for the second reactive gas was directed through a normally open valve. These control ports two valves were set up to be activated in tandem by the same switch to assure that the two lines could not both be adding precursor gases to the reactor at the same time.
  • Each of the lines was secondarily controlled on and off by a separate valving system equipped with an in-line needle valve of the SS Metering Bellows-Sealed Valve type to precisely control the rate of flow of each of the precursor gases. Upstream of each of these metering valves was a flow control valve commercially available as 316 L VIM/VAR UHP Diaphragm-Sealed Valve, commercially available from Swagelok Company of Solon, Ohio. Upstream of each of these flow control valves was a reactive gas supply tank in the form of a 300 mL capacity stainless steel bubbler, commercially available as catalog no. Z527068 from Sigma-Aldrich, of St. Louis, Mo.. This reactor/apparatus as described above was equipped with diverse band heaters, heating tapes and cartridge heaters of conventional types to control the temperatures of the reactor and its gas supplies.
  • Example 1
  • Each of the double-sided flanges of the reactor was used to support a disc cut from the porous polypropylene membrane discussed above as Substrate A. Each of the three samples of the discs were placed inside the reactor by attaching the discs to the copper gaskets with double stick tape and placing the copper gaskets in the normal sealing locations between the 6 inch (15.24 cm) diameter ConFlat Double Side Flanges. As the reactor was sealed together and tightened to form the reactor body, the ConFlat Double Side Flange seals penetrated the membranes and formed an air tight seal via the conventional copper gasket sealing mechanism. This sealed reactor wall also helped to hold the membranes in place, and sealed the edges of the membranes to prevent any of the reactive gases from bypassing the membranes.
  • The reactor with the membranes in place was then attached to the vacuum and gas handling systems as previously described above. The first reactive gas supply tank was filled with trimethylaluminium (TMA) 97%, commercially available as catalog number 257222 from Sigma-Aldrich of St. Louis, Mo. The second reactive gas supply tank was filled with ACS reagent water commercially available as catalog number 320072 from Sigma-Aldrich. The system was slowly put under vacuum via the vacuum bypass valve to a pressure of between 1 to 10 ton. Once the vacuum was fully drawn, and with the vacuum system still operating, the reactor was flushed with a N2 purge at a flow rate of 10 to 25 sccm to remove residual excess water and atmospheric gases and/or contaminants. While this was occurring, the reactor, first and second inlet lines, and purge gas lines were heated to 50° C. with the heaters. The first gas supply tank was similarly heated to 30° C.
  • After the system had been purged and the heaters had stabilized at their respective set points, the first reactive gas was released from the first reactive gas supply tank. The needle valve on the first reactive gas line was adjusted so that the gas flow, given the influence of the vacuum system, corresponded to an N2 equivalent flow rate of 1 to 25 sccm flowing through the discs to the exit. After the first reactive gas had fully saturated the surfaces of the three discs (as detected by the RGA with the presence of the precursors and the reduction of byproduct gases exiting the final membrane), the flow of that the first reactive gas was terminated and the system was again flushed with a N2 purge at a flow rate of 10 to 25 sccm. Once the purge was complete, the second reactive gas was released from the second supply tank in a similar manner (albeit a different port) until once again the three discs were fully saturated. Another flush with a N2 purge at a flow rate of 10 to 25 sccm was performed. This cycle of additions, i.e., first reactive gas-purge-second reactive gas-purge) was continued the discs had undergone 35 iterations.
  • At the completion of each iteration, the pressure differential within the reactor between the inlet and the outlet sides of the discs were observed at the end of the final purge with dry nitrogen. This data was recorded to determine the delta Pressure being caused by the addition of aluminum oxide throughout the membrane at a consistent gas flow rate. It was discovered that as the half cycles progressed there was a detectable increase in pressure across the membranes for the process gas. This increase in delta pressure is illustrated by the graph shown in FIG. 2.
  • After the 35 iterations had been performed, the reactor was opened and the surface energy of each of the three discs of Sample A was assessed. Each disc was found to have a surface energy over 86 dyne/cm, indicating a high degree of hydrophilicity.
  • Example 2
  • An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate B instead of Substrate A; the reactor, the first and second inlet lines, and purge gas lines were heated to 60° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened and the surface energy of each of the three discs of Sample B was assessed. Each disc was found to have a surface energy over 86 dyne/cm, indicating a high degree of hydrophilicity.
  • Example 3
  • An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate C instead of Substrate A; the reactor, the first and second inlet lines, and purge gas lines were heated to 60° C. with the heaters; and the number of iterations was 17 instead of 35. After the 17 iterations had been performed, the reactor was opened and the surface energy of each of the three discs of Sample C was assessed. Each disc was found to have a surface energy over 86 dyne/cm, indicating a high degree of hydrophilicity.
  • Example 4
  • An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate D instead of Sample A; the reactor was heated to 60° C. with the heaters; the first and second inlet lines and purge gas lines were heated to 70° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened. An X-ray analysis was performed to demonstrate that the substrate had been coated.
  • Example 5
  • An experiment was performed generally according to the procedure of Example 1, except that the substrate used was Substrate E instead of Sample A; the reactor was heated to 60° C. with the heaters; the first and second inlet lines and purge gas lines were heated to 70° C. with the heaters; and the number of iterations was 20 instead of 35. After the 20 iterations had been performed, the reactor was opened. An X-ray analysis was performed to demonstrate that the substrate had been coated.
  • The complete disclosures of the publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims (38)

1. An article of manufacture comprising:
a body having an inlet and an outlet, and
at least a portion of at least one porous non-ceramic substrate positioned such that the porous non-ceramic substrate separates the inlet from the outlet,
wherein the porous non-ceramic substrate has a conformal coating on at least a portion of its interior surfaces,
wherein the porous non-ceramic substrate is a porous polymeric substrate.
2. The article according to claim 1 wherein the conformal coating has at least 8 molecular layers.
3. The article according to claim 1 wherein the conformal coating has at least 20 molecular layers.
4. The article according to claim 1 wherein the conformal coating has a surface energy of greater than 72 dyne/cm.
5. The article according to claim 2 wherein the exterior surface of the porous non-ceramic substrate nearest the outlet has a surface energy less than 72 dyne/cm.
6. (canceled)
7. The article according to claim 1 wherein the porous polymeric substrate is a TIPS substrate.
8. The article according to claim 1 wherein the porous polymeric substrate is a non-woven substrate.
9. The article according to claim 1 further comprising at least a second porous non-ceramic substrate positioned such that the second porous non-ceramic substrate also separates the inlet from the outlet.
10. (canceled)
11. (canceled)
12. The article according to claim 1 wherein the conformal coating comprises a metal oxide, metal nitride, metal sulfide, or a combination thereof.
13. The article according to claim 12 wherein the metal is selected from the group consisting of silicon, titanium, aluminum, zirconium, and yttrium.
14. (canceled)
15. (canceled)
16. (canceled)
17. The article according to claim 12 further comprising a fluid contact layer formed of at least one ligand chemically grafted to the conformal coating.
18. (canceled)
19. An article of manufacture comprising:
a porous non-ceramic substrate having a conformal coating on all its interior surfaces through its entire thickness,
wherein the porous non-ceramic substrate is a porous polymeric substrate.
20. The article according to claim 19 wherein the conformal coating extends to the external surfaces.
21. The article according to claim 1 wherein the conformal coating has at least 8 molecular layers.
22. (canceled)
23. The article according to claim 1 wherein the conformal coating has a surface energy of greater than 72 dyne/cm.
24. (canceled)
25. The article according to claim 19 wherein the porous polymeric substrate is a TIPS substrate.
26. The article according to claim 19 wherein the porous polymeric substrate is a non-woven substrate.
27. The article according to claim 19 wherein the conformal coating comprises a metal oxide, metal nitride, metal sulfide, or a combination thereof.
28. The article according to claim 27 wherein the metal is selected from the group consisting of silicon, titanium, aluminum, zirconium, and yttrium.
29. (canceled)
30. (canceled)
31. (canceled)
32. The article according to claim 19 further comprising a fluid contact layer formed of at least one ligand chemically grafted to the conformal coating.
33. (canceled)
34. The article according to claim 19 wherein the conformal coating reduces the porosity of the porous non-ceramic substrate by a predetermined amount.
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
US13/390,900 2009-09-22 2010-09-17 Articles including a porous substrate having a conformal layer thereon Abandoned US20120171403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/390,900 US20120171403A1 (en) 2009-09-22 2010-09-17 Articles including a porous substrate having a conformal layer thereon

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24469609P 2009-09-22 2009-09-22
US24471309P 2009-09-22 2009-09-22
PCT/US2010/049250 WO2011037831A2 (en) 2009-09-22 2010-09-17 Articles including a porous substrate having a conformal layer thereon
US13/390,900 US20120171403A1 (en) 2009-09-22 2010-09-17 Articles including a porous substrate having a conformal layer thereon

Publications (1)

Publication Number Publication Date
US20120171403A1 true US20120171403A1 (en) 2012-07-05

Family

ID=43796159

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/392,213 Expired - Fee Related US8859040B2 (en) 2009-09-22 2010-09-15 Method of applying atomic layer deposition coatings onto porous non-ceramic substrates
US13/390,900 Abandoned US20120171403A1 (en) 2009-09-22 2010-09-17 Articles including a porous substrate having a conformal layer thereon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/392,213 Expired - Fee Related US8859040B2 (en) 2009-09-22 2010-09-15 Method of applying atomic layer deposition coatings onto porous non-ceramic substrates

Country Status (7)

Country Link
US (2) US8859040B2 (en)
EP (2) EP2480703A4 (en)
JP (2) JP5681192B2 (en)
KR (2) KR101714814B1 (en)
CN (2) CN102575346B (en)
BR (2) BR112012005212A2 (en)
WO (2) WO2011037798A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140048424A1 (en) * 2011-04-27 2014-02-20 Ohio University Methods and devices for the detection of biofilms
US20140220244A1 (en) * 2013-02-07 2014-08-07 Uchicago Argonne Llc Ald reactor for coating porous substrates
US20160279348A1 (en) * 2015-03-26 2016-09-29 Becton, Dickinson And Company Anti-run dry membrane
US10201667B2 (en) 2015-03-26 2019-02-12 Becton, Dickinson And Company IV membrane attachment systems and methods
US10252940B2 (en) 2013-07-16 2019-04-09 3M Innovative Properties Company Roll processing of film
US20190366273A1 (en) * 2018-05-31 2019-12-05 Uchicago Argonne, Llc Systems and methods for oleophobic composite membranes
US10646648B2 (en) 2015-04-01 2020-05-12 Becton, Dickinson And Company IV flow management systems and methods
US10702689B2 (en) 2015-03-26 2020-07-07 Becton, Dickinson And Company Auto-stop vent plug
US10870917B2 (en) 2016-07-08 2020-12-22 Uchicago Argonne, Llc Functionalized foams
US10954139B2 (en) 2015-12-11 2021-03-23 Uchicago Argonne, Llc Oleophilic foams for oil spill mitigation
US11111578B1 (en) 2020-02-13 2021-09-07 Uchicago Argonne, Llc Atomic layer deposition of fluoride thin films
US20220044830A1 (en) * 2020-08-05 2022-02-10 Uchicago Argonne, Llc Coated fuel pellets, methods of making and using same
US11351478B2 (en) 2018-09-06 2022-06-07 Uchicago Argonne, Llc Oil skimmer with oleophilic coating
US11548798B2 (en) 2019-04-23 2023-01-10 Uchicago Argonne, Llc Compressible foam electrode
DE102022106876A1 (en) 2022-03-23 2023-09-28 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Filter structure as well as its production and use
US11901169B2 (en) 2022-02-14 2024-02-13 Uchicago Argonne, Llc Barrier coatings
US11896935B2 (en) 2017-08-17 2024-02-13 Uchicago Argonne, Llc Filtration membranes

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037798A1 (en) * 2009-09-22 2011-03-31 3M Innovative Properties Company Method of applying atomic layer deposition coatings onto porous non-ceramic substrates
KR20180020322A (en) * 2009-11-11 2018-02-27 나노-누벨레 피티와이 엘티디 Porous materials
EP2688508A1 (en) 2011-03-24 2014-01-29 3M Innovative Properties Company Dental adhesive comprising a coated polymeric component
EP2773793B1 (en) * 2011-10-31 2017-11-29 3M Innovative Properties Company Methods for applying a coating to a substrate in rolled form
CN104411642B (en) 2012-03-15 2018-04-03 麻省理工学院 Filter based on graphene
WO2014121450A1 (en) * 2013-02-05 2014-08-14 Wang Dongjun Roll-to-roll type atomic layer deposition equipment and method of use thereof
CN103111549A (en) * 2013-02-05 2013-05-22 苏州红荔汽车零部件有限公司 Automatic production line of U-shaped connecting pipe fitting of automobile seat framework
US9598769B2 (en) 2013-07-24 2017-03-21 Uchicago Argonne, Llc Method and system for continuous atomic layer deposition
US9901879B2 (en) 2013-11-01 2018-02-27 Massachusetts Institute Of Technology Mitigating leaks in membranes
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
KR20200103890A (en) * 2015-02-13 2020-09-02 엔테그리스, 아이엔씨. Coatings for enhancement of properties and performance of substrate articles and apparatus
EP3115099B1 (en) 2015-07-07 2019-09-04 I3 Membrane GmbH Method for electrofiltration and electro sorption by means of a metal coated polymermembrane and apparatus therefor
US10124299B2 (en) * 2015-09-08 2018-11-13 Gwangju Institute Of Science And Technology Membrane based on graphene and method of manufacturing same
EP3454979A4 (en) 2016-05-11 2020-01-01 Massachusetts Institute of Technology Graphene oxide membranes and related methods
KR102218855B1 (en) * 2017-07-12 2021-02-23 주식회사 엘지화학 Apparatus and method for coating surface of porous substrate
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
EP3969157A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Durable graphene oxide membranes
KR20200141002A (en) * 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
US11117346B2 (en) 2019-07-18 2021-09-14 Hamilton Sundstrand Corporation Thermally-conductive polymer and components
US20210346841A1 (en) * 2020-05-11 2021-11-11 Hamilton Sundstrand Corporation Aircraft air management systems for deactivating contaminants
FR3112796B1 (en) 2020-07-21 2022-11-25 Inst Polytechnique Grenoble Process for functionalizing a substrate based on a polymer by chemical deposition of a thin layer
JP2022178059A (en) 2021-05-19 2022-12-02 日本航空電子工業株式会社 multiband antenna
JP2022178055A (en) 2021-05-19 2022-12-02 日本航空電子工業株式会社 multiband antenna
WO2023097166A1 (en) 2021-11-29 2023-06-01 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration
CN116695091B (en) * 2023-08-01 2023-09-29 南京原磊纳米材料有限公司 Hydrophobic conductive film and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272606A1 (en) * 2006-05-25 2007-11-29 Freese Donald T Multi-functional coatings on microporous substrates
US20090081356A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Process for forming thin film encapsulation layers
US20090137043A1 (en) * 2007-11-27 2009-05-28 North Carolina State University Methods for modification of polymers, fibers and textile media
US20090304774A1 (en) * 2008-05-14 2009-12-10 Xinhua Liang Implantable devices having ceramic coating applied via an atomic layer deposition method
US20110226697A1 (en) * 2009-09-18 2011-09-22 Nano Terra Inc. Functional Nanofibers and Methods of Making and Using the Same
US20120058697A1 (en) * 2009-04-01 2012-03-08 Strickland Aaron D Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
US20120171376A1 (en) * 2009-09-22 2012-07-05 Dodge Bill H Method of applying atomic layer deposition coatings onto porous non-ceramic substrates

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726989A (en) 1986-12-11 1988-02-23 Minnesota Mining And Manufacturing Microporous materials incorporating a nucleating agent and methods for making same
US5120594A (en) 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
JP3682465B2 (en) * 1999-03-31 2005-08-10 独立行政法人産業技術総合研究所 Resin molded product surface layer modification method and apparatus therefor, and resin molded product with modified surface layer, resin molded product surface layer colored method and apparatus and surface molded resin product with colored surface layer, and Resin molded product with added functionality by modifying the surface layer
US6613383B1 (en) 1999-06-21 2003-09-02 Regents Of The University Of Colorado Atomic layer controlled deposition on particle surfaces
JP2001279453A (en) * 2000-03-29 2001-10-10 Japan Vilene Co Ltd Discharge treating device for porous body and method for it
US6713177B2 (en) 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
FR2818291B1 (en) * 2000-12-19 2003-11-07 Snecma Moteurs DENSIFICATION OF HOLLOW POROUS SUBSTRATES BY CHEMICAL STEAM INFILTRATION
EP1425110B1 (en) * 2001-07-18 2014-09-03 The Regents of the University of Colorado A method of depositing an inorganic film on an organic polymer
US6878419B2 (en) * 2001-12-14 2005-04-12 3M Innovative Properties Co. Plasma treatment of porous materials
US7157117B2 (en) * 2002-06-26 2007-01-02 Sigma Laboratories Of Arizona, Llc Functionalization of porous materials by vacuum deposition of polymers
EP1534874A4 (en) * 2002-07-17 2008-02-27 Hitco Carbon Composites Inc Continuous chemical vapor deposition process and process furnace
US7045205B1 (en) * 2004-02-19 2006-05-16 Nanosolar, Inc. Device based on coated nanoporous structure
US8304019B1 (en) * 2004-02-19 2012-11-06 Nanosolar Inc. Roll-to-roll atomic layer deposition method and system
US20060234210A1 (en) 2004-04-14 2006-10-19 Affinergy, Inc. Filtration device and method for removing selected materials from biological fluids
JP4534565B2 (en) 2004-04-16 2010-09-01 株式会社デンソー Method for producing ceramic porous
FI117247B (en) 2004-06-24 2006-08-15 Beneq Oy Selective alloying of material
CN101218013A (en) * 2005-05-25 2008-07-09 戈尔企业控股股份有限公司 Multi-functional coatings on microporous substrates
EP1937884B1 (en) 2005-10-11 2014-01-01 NV Bekaert SA Coated porous metal medium
KR20080078860A (en) * 2005-12-30 2008-08-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Functionalized substrates
KR20080092983A (en) 2006-02-07 2008-10-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Gas-phase functionalization of carbon nanotubes
US20070281089A1 (en) 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
EP1884578A1 (en) 2006-07-31 2008-02-06 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object
US20080119098A1 (en) * 2006-11-21 2008-05-22 Igor Palley Atomic layer deposition on fibrous materials
WO2008136882A2 (en) 2007-02-14 2008-11-13 The Board Of Trustees Of The Leland Stanford Junior University Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
US7842214B2 (en) 2007-03-28 2010-11-30 3M Innovative Properties Company Process for forming microporous membranes
JP5060224B2 (en) 2007-09-12 2012-10-31 株式会社東芝 Signal processing apparatus and method
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
CA2712413A1 (en) * 2008-01-24 2009-07-30 Nestec S.A. Capsule with integrated antimicrobial filter
US9492771B2 (en) 2008-09-19 2016-11-15 3M Innovative Properties Company Ligand graft functionalized substrates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272606A1 (en) * 2006-05-25 2007-11-29 Freese Donald T Multi-functional coatings on microporous substrates
US20090081356A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Process for forming thin film encapsulation layers
US20090137043A1 (en) * 2007-11-27 2009-05-28 North Carolina State University Methods for modification of polymers, fibers and textile media
US20090304774A1 (en) * 2008-05-14 2009-12-10 Xinhua Liang Implantable devices having ceramic coating applied via an atomic layer deposition method
US20120058697A1 (en) * 2009-04-01 2012-03-08 Strickland Aaron D Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
US20110226697A1 (en) * 2009-09-18 2011-09-22 Nano Terra Inc. Functional Nanofibers and Methods of Making and Using the Same
US20120171376A1 (en) * 2009-09-22 2012-07-05 Dodge Bill H Method of applying atomic layer deposition coatings onto porous non-ceramic substrates

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140048424A1 (en) * 2011-04-27 2014-02-20 Ohio University Methods and devices for the detection of biofilms
US20140220244A1 (en) * 2013-02-07 2014-08-07 Uchicago Argonne Llc Ald reactor for coating porous substrates
US11326255B2 (en) * 2013-02-07 2022-05-10 Uchicago Argonne, Llc ALD reactor for coating porous substrates
US10252940B2 (en) 2013-07-16 2019-04-09 3M Innovative Properties Company Roll processing of film
US10702689B2 (en) 2015-03-26 2020-07-07 Becton, Dickinson And Company Auto-stop vent plug
US10232130B2 (en) * 2015-03-26 2019-03-19 Becton, Dickinson And Company Anti-run dry membrane
US10201667B2 (en) 2015-03-26 2019-02-12 Becton, Dickinson And Company IV membrane attachment systems and methods
US10926029B2 (en) 2015-03-26 2021-02-23 Becton, Dickinson And Company IV membrane attachment systems and methods
US10973993B2 (en) * 2015-03-26 2021-04-13 Becton, Dickinson And Company Anti-run dry membrane
US11826557B2 (en) 2015-03-26 2023-11-28 Becton, Dickinson And Company Anti-run dry membrane
US20160279348A1 (en) * 2015-03-26 2016-09-29 Becton, Dickinson And Company Anti-run dry membrane
US11744941B2 (en) 2015-03-26 2023-09-05 Becton, Dickinson And Company IV membrane attachment systems and methods
US10646648B2 (en) 2015-04-01 2020-05-12 Becton, Dickinson And Company IV flow management systems and methods
US11617831B2 (en) 2015-04-01 2023-04-04 Becton, Dickinson And Company IV flow management systems and methods
US10954139B2 (en) 2015-12-11 2021-03-23 Uchicago Argonne, Llc Oleophilic foams for oil spill mitigation
US10870917B2 (en) 2016-07-08 2020-12-22 Uchicago Argonne, Llc Functionalized foams
US11896935B2 (en) 2017-08-17 2024-02-13 Uchicago Argonne, Llc Filtration membranes
US20190366273A1 (en) * 2018-05-31 2019-12-05 Uchicago Argonne, Llc Systems and methods for oleophobic composite membranes
US11590456B2 (en) * 2018-05-31 2023-02-28 Uchicago Argonne, Llc Systems and methods for oleophobic composite membranes
US11351478B2 (en) 2018-09-06 2022-06-07 Uchicago Argonne, Llc Oil skimmer with oleophilic coating
US11548798B2 (en) 2019-04-23 2023-01-10 Uchicago Argonne, Llc Compressible foam electrode
US11111578B1 (en) 2020-02-13 2021-09-07 Uchicago Argonne, Llc Atomic layer deposition of fluoride thin films
US20220044830A1 (en) * 2020-08-05 2022-02-10 Uchicago Argonne, Llc Coated fuel pellets, methods of making and using same
US11901169B2 (en) 2022-02-14 2024-02-13 Uchicago Argonne, Llc Barrier coatings
DE102022106876A1 (en) 2022-03-23 2023-09-28 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Filter structure as well as its production and use

Also Published As

Publication number Publication date
JP2013505368A (en) 2013-02-14
KR101720821B1 (en) 2017-03-28
WO2011037831A2 (en) 2011-03-31
WO2011037831A3 (en) 2011-06-23
JP5681192B2 (en) 2015-03-04
EP2480703A4 (en) 2013-10-30
CN102782179A (en) 2012-11-14
EP2480702A2 (en) 2012-08-01
EP2480702A4 (en) 2013-10-30
BR112012005997A2 (en) 2016-03-22
CN102575346A (en) 2012-07-11
CN102782179B (en) 2015-11-25
WO2011037798A1 (en) 2011-03-31
KR20120073280A (en) 2012-07-04
CN102575346B (en) 2015-01-28
BR112012005212A2 (en) 2016-03-15
EP2480703A1 (en) 2012-08-01
KR101714814B1 (en) 2017-03-09
US20120171376A1 (en) 2012-07-05
JP2013505156A (en) 2013-02-14
US8859040B2 (en) 2014-10-14
KR20120085262A (en) 2012-07-31

Similar Documents

Publication Publication Date Title
US8859040B2 (en) Method of applying atomic layer deposition coatings onto porous non-ceramic substrates
JP6909883B2 (en) Coatings to enhance the properties and performance of substrate articles and equipment
US11344850B2 (en) Nanocomposite membranes and methods of forming the same
Spagnola et al. Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers
US6043177A (en) Modification of zeolite or molecular sieve membranes using atomic layer controlled chemical vapor deposition
TWI507559B (en) Multilayer coating, method for fabricating a multilayer coating, and uses for the same
Nakao et al. Preparation of microporous membranes by TEOS/O3 CVD in the opposing reactants geometry
US9243322B2 (en) Methods for applying a coating to a substrate in rolled form
RU2322285C2 (en) Method and device for separating gases
Triani et al. Nanostructured TiO 2 membranes by atomic layer deposition
CA2801912A1 (en) Low-temperature synthesis of silica
WO2013142344A1 (en) Methods and apparatus for atmospheric pressure atomic layer deposition
JP2017170435A (en) Separation membrane and separation method
WO2017135822A1 (en) Preparation of inorganic tight nanofiltration membranes
Ikeda et al. High hydrogen permeance silica membranes prepared by a chemical vapor deposition method
JP2008246295A (en) Manufacturing method of hydrogen separation membrane
Suraj et al. Microporous Silica Membrane Prepared using TMOS/O~ 3 CVD in Opposing Reactants Geometry
US20160289124A1 (en) Thermal chemical vapor deposition product and process of using a thermal chemical vapor deposition product
JP2008119566A (en) Gas separation apparatus
KR20160083412A (en) Filter for removing moisture and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DODGE, BILL H;REEL/FRAME:027719/0815

Effective date: 20120213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION