JP5650908B2 - Resin composition and copper foil with resin obtained using the resin composition - Google Patents

Resin composition and copper foil with resin obtained using the resin composition Download PDF

Info

Publication number
JP5650908B2
JP5650908B2 JP2009520611A JP2009520611A JP5650908B2 JP 5650908 B2 JP5650908 B2 JP 5650908B2 JP 2009520611 A JP2009520611 A JP 2009520611A JP 2009520611 A JP2009520611 A JP 2009520611A JP 5650908 B2 JP5650908 B2 JP 5650908B2
Authority
JP
Japan
Prior art keywords
resin
component
weight
parts
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009520611A
Other languages
Japanese (ja)
Other versions
JPWO2009001850A1 (en
Inventor
佐藤 哲朗
哲朗 佐藤
敏文 松島
敏文 松島
哲広 松永
哲広 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2009520611A priority Critical patent/JP5650908B2/en
Publication of JPWO2009001850A1 publication Critical patent/JPWO2009001850A1/en
Application granted granted Critical
Publication of JP5650908B2 publication Critical patent/JP5650908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Description

本件出願に係る発明は、プリント配線板の絶縁層構成用の樹脂組成物及び樹脂付銅箔並びに樹脂付銅箔の製造方法等に関する。   The invention according to the present application relates to a resin composition for forming an insulating layer of a printed wiring board, a copper foil with resin, a method for producing a copper foil with resin, and the like.

樹脂付銅箔は、プリント配線板製造の分野で、種々の使用目的の下で用いられてきた。例えば、特許文献1には、周辺の銅箔が露出した余白部があるように樹脂を銅箔の表面に形成した樹脂付銅箔を採用して、樹脂付銅箔の裏面での打痕の発生を防止することが開示され。樹脂付銅箔の形態をプレス加工時の打痕の防止に用いている。   Resin-coated copper foil has been used for various purposes in the field of printed wiring board manufacture. For example, Patent Document 1 adopts a resin-attached copper foil in which a resin is formed on the surface of the copper foil so that there is a blank portion where the surrounding copper foil is exposed, It is disclosed to prevent the occurrence. The form of resin-coated copper foil is used to prevent dents during press working.

また、特許文献2には、ビルドアッププリント配線板でビルドアップ層を形成するため樹脂付銅箔をコア層に積層する製造方法において、積層時コア層IVH近傍の銅箔凹みを抑え、レジスト用ドライフィルムの密着性が良好で気泡の発生が無く、結果として精細パターンが精度良く得ることを目的として、コア層IVHに樹脂付銅箔の樹脂層の樹脂成分を流入させ、影響の無い凹みに抑えるために、必要な厚さの銅箔の樹脂付銅箔を用いることが開示されている。   Patent Document 2 discloses a method for laminating a resin-coated copper foil on a core layer in order to form a build-up layer with a build-up printed wiring board. The resin component of the resin layer of the copper foil with resin is caused to flow into the core layer IVH for the purpose of obtaining a fine pattern with good accuracy as a result of good adhesion of the dry film and no generation of bubbles, resulting in a dent without any influence. In order to suppress, it is disclosed to use a copper foil with resin of a copper foil having a necessary thickness.

その他、樹脂付銅箔は、その樹脂層に、骨格材を用いないため耐マイグレーション性に優れ、ガラスクロスを骨格材として用いたプリプレグと異なりクロス目が基板表面に浮き出すのを防止する用途等に用いられてきた。例えば、特許文献3には、高電圧で使用しても絶縁劣化の虞れが無く、しかもコストアップが充分に抑制できるようにしたプリント配線板等の提供を目的として、ガラス繊維基板材と配線層及び配線パターンの間に、ガラス繊維を含んでいない絶縁膜を設け、配線層及び配線パターンがガラス繊維基板材内にあるガラス繊維に接触することがないようにするにあたり、前記ガラス繊維を含まない絶縁膜が、絶縁樹脂付銅箔の絶縁樹脂部分で形成され、前記配線パターンが形成された銅箔層が、この絶縁樹脂付銅箔の銅箔部分で形成されていることを特徴とするプリント配線板を採用することが開示されている。この結果、耐マイグレーション性が向上し、絶縁層と配線層及び配線パターンの接着強度が向上し、高い信頼性と長寿命化を得ることができるとしている。   In addition, resin-coated copper foil is excellent in migration resistance because it does not use a skeleton material in its resin layer, and it is used to prevent cross eyes from being raised on the substrate surface unlike a prepreg using a glass cloth as a skeleton material. Has been used. For example, Patent Document 3 discloses that a glass fiber substrate material and a wiring are provided for the purpose of providing a printed wiring board or the like that can be prevented from insulation deterioration even when used at a high voltage and that can sufficiently suppress an increase in cost. An insulating film not containing glass fiber is provided between the layer and the wiring pattern, and the glass fiber is included in order to prevent the wiring layer and the wiring pattern from coming into contact with the glass fiber in the glass fiber substrate material. A non-insulating film is formed of an insulating resin portion of a copper foil with an insulating resin, and the copper foil layer on which the wiring pattern is formed is formed of a copper foil portion of the copper foil with an insulating resin. Employing a printed wiring board is disclosed. As a result, the migration resistance is improved, the adhesive strength between the insulating layer, the wiring layer and the wiring pattern is improved, and high reliability and long life can be obtained.

以上のことから理解できるように、樹脂付銅箔は、プリント配線板の形状起因の欠点を補う用途で使用されてきた。ところが近年は、その樹脂付銅箔を構成する銅箔のロープロファイル化が要求されてきた。即ち、銅箔の樹脂層を形成する側の銅箔の表面粗さの低い製品が望まれてきた。銅箔をエッチング加工して回路を形成する際のエッチング精度を向上させ、ファインピッチ回路の形成を容易に出来るからである。また、高周波信号の伝送を行う場合に、伝送ロスの少ないプリント配線板を提供できるからである。   As can be understood from the above, copper foils with resin have been used for applications that compensate for defects due to the shape of the printed wiring board. However, in recent years, there has been a demand for a low profile copper foil constituting the resin-coated copper foil. That is, a product having a low surface roughness of the copper foil on the side where the resin layer of the copper foil is formed has been desired. This is because the etching accuracy when forming a circuit by etching the copper foil can be improved, and a fine pitch circuit can be easily formed. In addition, when a high frequency signal is transmitted, a printed wiring board with less transmission loss can be provided.

このような要求に対して、銅箔の張り合わせ面に粗化処理を施していない無粗化銅箔の使用が行われるようになってきた。当初、この無粗化銅箔は、FR−4グレードのプリプレグ等の絶縁層構成材料に対して、加熱を行いプレス加工して張り合わせられ銅張積層板に加工して用いられていた。このような一般的な方法で銅張積層板を製造すると、無粗化銅箔とプリプレグ等の絶縁層構成材料との間での密着安定性に関しての問題があった。   In response to such a demand, use of a non-roughened copper foil in which the roughening treatment is not performed on the bonding surface of the copper foil has been performed. Initially, this non-roughened copper foil was used by heating and pressing the insulating layer constituting material such as FR-4 grade prepreg to form a copper-clad laminate. When a copper clad laminate was produced by such a general method, there was a problem regarding adhesion stability between the non-roughened copper foil and the insulating layer constituting material such as prepreg.

そこで、特許文献4に開示しているように、無粗化銅箔を樹脂付き銅箔の形で用いることが提唱されてきた。この特許文献4には、粗化銅箔を用いた場合と匹敵する引き剥し強さと、エッチング処理後に銅粒子が樹脂中に残らない回路形成に優れた銅張積層板用銅箔の提供を目的として、無粗化銅箔に2層以上の接着層を設けてなる銅張積層板用銅箔において、前記接着層の1層目がポリビニルアセタール樹脂100重量部にエポキシ樹脂 1〜50未満重量部を含有することを特徴とする銅張積層板用銅箔が開示されている。   Therefore, as disclosed in Patent Document 4, it has been proposed to use a non-roughened copper foil in the form of a copper foil with resin. This Patent Document 4 aims to provide a copper foil for a copper clad laminate excellent in peel strength comparable to that obtained when a roughened copper foil is used and in circuit formation in which copper particles do not remain in the resin after etching treatment. As the copper foil for copper clad laminates, in which two or more adhesive layers are provided on the non-roughened copper foil, the first layer of the adhesive layer is 100 parts by weight of polyvinyl acetal resin and less than 1 to 50 parts by weight of epoxy resin The copper foil for copper clad laminated boards characterized by containing is disclosed.

また、樹脂付銅箔に対しては、その樹脂層に対する難燃化の要求も行われてきた。この要求に応えるため、本件出願人は、好適な樹脂付銅箔として、特許文献5に開示の発明を提案した。この特許文献5では、ハロゲン元素を含まず、且つ高い難燃性を有し、優れた耐水性、耐熱性、および基材と銅箔との間の良好な引き剥がし強さを有する樹脂付き銅箔を提供することを目的として、窒素が5〜25重量%であるエポキシ樹脂硬化剤を含むエポキシ系樹脂と、熱硬化性を有するマレイミド化合物とを含み、ハロゲン元素を含有しない組成を有するものであることを特徴とする樹脂化合物を樹脂付銅箔の樹脂層構成用に用いた。   Moreover, the request | requirement of the flame retardance with respect to the resin layer has also been performed with respect to the copper foil with resin. In order to meet this requirement, the present applicant has proposed the invention disclosed in Patent Document 5 as a suitable copper foil with resin. In this patent document 5, copper with a resin that does not contain a halogen element, has high flame retardancy, has excellent water resistance, heat resistance, and good peel strength between the substrate and the copper foil. For the purpose of providing a foil, the composition contains an epoxy resin containing an epoxy resin curing agent having a nitrogen content of 5 to 25% by weight and a thermosetting maleimide compound, and does not contain a halogen element. A resin compound characterized in that it was used for the resin layer construction of a resin-coated copper foil.

更に、特許文献6には、エッチング残やハローイング現象の原因となる銅箔の粗化処理を行わなくても銅箔表面に強固に密着し、銅箔と基材との高い接着性が図られ、かつ取扱いに優れた接着剤および接着剤付き銅箔が開示されている。この特許文献6に言う接着剤は、樹脂成分総量に対してエポキシ樹脂40〜70重量%、ポリビニルアセタール樹脂20〜50重量%、メラミン樹脂またはウレタン樹脂0.1〜20重量%を含有し、該エポキシ樹脂の5〜80重量%がゴム変成エポキシ樹脂であることを特徴とするものである。   Furthermore, Patent Document 6 shows that the copper foil is firmly adhered to the surface without roughening the copper foil, which causes etching residue and haloing phenomenon, and the high adhesion between the copper foil and the substrate is shown. And an adhesive and a copper foil with adhesive are disclosed. The adhesive referred to in Patent Document 6 contains 40 to 70% by weight of an epoxy resin, 20 to 50% by weight of a polyvinyl acetal resin, and 0.1 to 20% by weight of a melamine resin or a urethane resin with respect to the total resin component, 5 to 80% by weight of the epoxy resin is a rubber-modified epoxy resin.

特開平11−348177号公報JP-A-11-348177 特開2001−24324号公報JP 2001-24324 A 特開2001−244589号公報JP 2001-244589 A 特開平11−10794号公報Japanese Patent Laid-Open No. 11-10794 特開2002−179772号公報JP 2002-179772 A 特開平08−193188号公報Japanese Patent Laid-Open No. 08-193188

しかしながら、上記特許文献4に開示の発明では、無粗化銅箔に2層以上の接着層を設ける必要があり、第1層の樹脂層を形成し、更に第2層の樹脂層を形成するため樹脂層の製造工程が長くなり、生産コストが上昇すると共に、生産性が低くなる。   However, in the invention disclosed in Patent Document 4, it is necessary to provide two or more adhesive layers on the non-roughened copper foil, and the first resin layer is formed, and the second resin layer is further formed. Therefore, the manufacturing process of the resin layer is lengthened, the production cost is increased, and the productivity is lowered.

また、上記特許文献5に開示の発明では、銅箔の樹脂層の形成面の粗度が低くなると、硬化した樹脂層と銅箔との間の引き剥がし強さが不十分となり、ファインピッチ回路形成用の銅張積層板への使用には不満が残るものであり、より一層の引き剥がし強さの向上および低粗度銅箔の使用可能な樹脂組成物が望まれてきた。   Further, in the invention disclosed in Patent Document 5, when the roughness of the formation surface of the resin layer of the copper foil is low, the peel strength between the cured resin layer and the copper foil becomes insufficient, and the fine pitch circuit There remains dissatisfaction with the use of the copper clad laminate for forming, and there has been a demand for a resin composition that can further improve the peel strength and use a low-roughness copper foil.

更に、近年は、無粗化銅箔を用いることが一般化しており、樹脂付銅箔の銅箔としても利用されている。係る場合、無粗化銅箔と樹脂層との引き剥がし強さで0.6kgf/cm以上あれば使用可能と言われてきたが、より一層の絶縁樹脂基材との密着性の向上が望まれている。この観点からのみ考えれば、上述の特許文献6に開示の樹脂組成は、粗化処理を行っていない銅箔表面でも強固に密着し、銅箔と基材との高い接着性が図られる接着剤及び接着剤付き銅箔が開示されている。ところが、特許文献6に開示の接着剤として用いる樹脂組成物は難燃性が劣るため、プリント配線板用としての使用が困難であった。   Furthermore, in recent years, the use of non-roughened copper foil has become common, and it is also used as a copper foil for resin-coated copper foil. In such a case, it has been said that it can be used if the peel strength between the non-roughened copper foil and the resin layer is 0.6 kgf / cm or more, but further improvement in adhesion to the insulating resin substrate is desired. It is rare. Considering only from this viewpoint, the resin composition disclosed in Patent Document 6 described above is an adhesive that firmly adheres even to the surface of the copper foil that has not been subjected to roughening treatment, and achieves high adhesion between the copper foil and the base material. And an adhesive-attached copper foil. However, since the resin composition used as the adhesive disclosed in Patent Document 6 has poor flame retardancy, it has been difficult to use it for printed wiring boards.

以上のことから、本件発明は、この密着性向上の要求に応え、且つ、難燃性、耐吸湿性等の諸特性に優れた硬化樹脂層の形成が可能な樹脂組成物及び樹脂付銅箔の提供を目的とする。   From the above, the present invention is a resin composition and a copper foil with a resin that can form a cured resin layer that meets the demand for improved adhesion and is excellent in various properties such as flame retardancy and moisture absorption resistance. The purpose is to provide.

そこで、本件発明者等は、鋭意研究の結果、上述のような問題点を解決することのできる樹脂組成物に想到した。以下、この本件発明の概要に関して述べる。   Accordingly, as a result of intensive studies, the present inventors have come up with a resin composition that can solve the above-described problems. The outline of the present invention will be described below.

本件発明に係る樹脂組成物:本件発明に係るプリント配線板製造用の樹脂組成物は、プリント配線板の絶縁層を形成するために用いる樹脂組成物であって、以下のA成分〜F成分の各成分を、以下の範囲の含有量(樹脂組成物重量を100重量部としたときの重量部として記載)で含むことを特徴とする。 Resin composition according to the present invention: The resin composition for producing a printed wiring board according to the present invention is a resin composition used for forming an insulating layer of a printed wiring board, and comprises the following components A to F: Each component is contained in a content in the following range (described as parts by weight when the weight of the resin composition is 100 parts by weight).

A成分: エポキシ当量が200以下で、25℃で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上を3重量部〜20重量部。
B成分: エポキシ樹脂の硬化反応に寄与する水酸基又はカルボキシル基のうち少なくとも1つ以上の架橋可能な官能基を有する線状ポリマーを3重量部〜30重量部。
C成分: 架橋剤を3重量部〜10重量部(但し、A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部)。
D成分: 4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを5重量部〜20重量部。
E成分: 臭素化エポキシ樹脂を当該臭素化エポキシ樹脂由来の臭素原子が樹脂組成物重量を100重量%としたとき12重量%〜18重量%の範囲で含有するように定めた重量部。
F成分: トリスヒドロキシフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂の群から選ばれる1種以上を3重量部〜20重量部。
Component A: 3 parts by weight to 20 parts by weight of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and liquid at 25 ° C. Department.
Component B: 3 to 30 parts by weight of a linear polymer having at least one crosslinkable functional group among hydroxyl groups or carboxyl groups contributing to the curing reaction of the epoxy resin.
Component C: 3 parts by weight to 10 parts by weight of a crosslinking agent (provided that 0 part by weight to 10 parts by weight when the component A functions as a crosslinking agent for the component B).
Component D: 5 to 20 parts by weight of 4,4′-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane.
Component E: parts by weight of brominated epoxy resin determined so that bromine atoms derived from the brominated epoxy resin contain in the range of 12% by weight to 18% by weight when the weight of the resin composition is 100% by weight.
F component: 3 parts by weight to 20 parts by weight of at least one selected from the group consisting of trishydroxyphenylmethane type epoxy resin, phenol novolac type epoxy resin, and ortho cresol novolac type epoxy resin.

若しくは、
A成分: エポキシ当量が200以下で、25℃で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上を3重量部〜20重量部。
B成分: エポキシ樹脂の硬化反応に寄与する水酸基またはカルボキシル基のうち少なくとも1つ以上の架橋可能な官能基を有する線状ポリマーを3重量部〜30重量部。
C成分: 架橋剤を3重量部〜10重量部(但し、A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部)。
D成分: 4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを5重量部〜20重量部。
E成分: リン含有エポキシ樹脂を当該リン含有エポキシ樹脂由来のリン原子が樹脂組成物重量を100重量%としたとき0.5重量%〜3.0重量%の範囲で含有するように定めた重量部。
F成分: トリスヒドロキシフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂の群から選ばれる1種以上を3重量部〜20重量部。
Or
Component A: 3 parts by weight to 20 parts by weight of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and liquid at 25 ° C. Department.
Component B: 3 to 30 parts by weight of a linear polymer having at least one crosslinkable functional group among hydroxyl groups or carboxyl groups contributing to the curing reaction of the epoxy resin.
Component C: 3 parts by weight to 10 parts by weight of a crosslinking agent (provided that 0 part by weight to 10 parts by weight when the component A functions as a crosslinking agent for the component B).
Component D: 5 to 20 parts by weight of 4,4′-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane.
Component E: Weight determined to contain the phosphorus-containing epoxy resin in the range of 0.5 to 3.0% by weight when the phosphorus atom derived from the phosphorus-containing epoxy resin is 100% by weight of the resin composition Department.
F component: 3 parts by weight to 20 parts by weight of at least one selected from the group consisting of trishydroxyphenylmethane type epoxy resin, phenol novolac type epoxy resin, and ortho cresol novolac type epoxy resin.

上述の前記E成分であるリン含有エポキシ樹脂は、分子内に2以上のエポキシ基を備える9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体であることが好ましい。   The phosphorus-containing epoxy resin which is the above-mentioned E component is preferably a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having two or more epoxy groups in the molecule.

本件発明に係るプリント配線板製造用の樹脂組成物は、前記B成分である架橋可能な官能基を有する線状ポリマーにポリビニルアセタール樹脂、ポリアミドイミド樹脂を用いることが好ましい。   In the resin composition for producing a printed wiring board according to the present invention, it is preferable to use a polyvinyl acetal resin or a polyamide-imide resin for the linear polymer having a crosslinkable functional group as the component B.

本件発明に係るプリント配線板製造用の樹脂組成物は、前記C成分である架橋剤にウレタン系樹脂を用いることが好ましい。   In the resin composition for producing a printed wiring board according to the present invention, it is preferable to use a urethane-based resin for the crosslinking agent which is the C component.

本件発明に係るプリント配線板製造用の樹脂組成物は、F成分の多官能エポキシ樹脂としてオルトクレゾールノボラック型エポキシ樹脂を用いることが好ましい。   In the resin composition for producing a printed wiring board according to the present invention, an ortho-cresol novolac type epoxy resin is preferably used as the F component polyfunctional epoxy resin.

また、本件発明に係るプリント配線板製造用の樹脂組成物は、G成分として硬化促進剤を添加することも好ましい。   Moreover, it is also preferable to add a hardening accelerator as a G component to the resin composition for printed wiring board manufacture which concerns on this invention.

本件発明に係る樹脂付銅箔の製造方法: 本件出願に係る樹脂付銅箔の製造方法において、以下の工程a、工程bの手順で樹脂層の形成に用いる樹脂ワニスを調製し、当該樹脂ワニスを銅箔の表面に塗布し、乾燥させることで平均厚さ5μm〜100μmの半硬化樹脂膜として樹脂付銅箔とすることを特徴とするプリント配線板製造用の樹脂付銅箔の製造方法である。 Manufacturing method of resin-coated copper foil according to the present invention: In the manufacturing method of resin-coated copper foil according to the present application, a resin varnish used for forming a resin layer is prepared by the following steps a and b, and the resin varnish A method for producing a resin-coated copper foil for producing a printed wiring board, characterized in that a resin-coated copper foil is obtained as a semi-cured resin film having an average thickness of 5 μm to 100 μm by applying to the surface of the copper foil and drying. is there.

工程a: 前記A成分、B成分、C成分(A成分がB成分の架橋剤として機能する場合には省略可)、D成分、E成分、F成分、G成分の内、A成分〜F成分を必須成分とした樹脂組成物の重量を100重量%としたとき、E成分由来の臭素原子を12重量%〜18重量%の範囲又はリン原子を0.5重量%〜3.0重量%の範囲で含有するように各成分を混合して樹脂組成物とする。
工程b: 前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂固形分量が25重量%〜50重量%の樹脂ワニスとする。
Step a: A component to F component among the A component, B component, C component (may be omitted when the A component functions as a crosslinking agent for the B component), D component, E component, F component, G component When the weight of the resin composition containing as an essential component is 100% by weight, the bromine atom derived from the E component is in the range of 12% to 18% by weight or the phosphorus atom is 0.5% to 3.0% by weight. Each component is mixed so that it may be contained in a range to obtain a resin composition.
Process b: The said resin composition is melt | dissolved using an organic solvent, and it is set as the resin varnish whose resin solid content is 25 to 50 weight%.

そして、前記工程aの樹脂組成物に、G成分として硬化促進剤を添加することも好ましい。   And it is also preferable to add a hardening accelerator as G component to the resin composition of the said process a.

そして、ここで用いる前記銅箔は、その半硬化樹脂層の形成面が表面粗さ(Rzjis)が3.0μm以下の低粗度表面を備えるものを用いることが好ましい。   And as for the said copper foil used here, it is preferable to use what the formation surface of the semi-hardened resin layer is provided with the low-roughness surface whose surface roughness (Rzjis) is 3.0 micrometers or less.

また、前記銅箔の半硬化樹脂層を形成する表面にシランカップリング処理層を備えることが好ましい。   Moreover, it is preferable to equip the surface which forms the semi-hardened resin layer of the said copper foil with a silane coupling process layer.

本件発明に係るプリント配線板: 本件出願に係るプリント配線板は、上述の樹脂組成物を用いて絶縁層を構成したことを特徴とするものである。 Printed wiring board according to the present invention: The printed wiring board according to the present application is characterized in that an insulating layer is formed using the above-described resin composition.

本件出願に係る樹脂組成物は、上述のA成分、B成分、C成分(A成分がB成分の架橋剤として機能する場合には省略可)、D成分、E成分、F成分、G成分の内、A成分〜F成分を必須成分とし、G成分を必要に応じて添加した組成を備える。そして、このときの各成分として、特性の成分及び適正な配合量を採用する。特に、D成分である4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを用いる点に特徴を有する。このような樹脂組成を採用することにより、無粗化銅箔とこの樹脂組成物とで構成した樹脂層とは、プレスして硬化させると、当該無粗化銅箔と硬化樹脂層との間で、引き剥がし強さとして0.8kgf/cm以上のレベルに密着性が向上し、同時に難燃性、耐吸湿性等の諸特性に優れた硬化樹脂層が得られる。従って、本件発明に係る樹脂組成物を用いて、銅箔の表面に半硬化樹脂層を形成した樹脂付銅箔を製造すると、ファインピッチ回路の形成に用いる低粗度の銅箔の使用が積極的に可能で、高品質の樹脂付き銅箔を得ることができる。   The resin composition according to the present application includes the above-mentioned A component, B component, C component (can be omitted when the A component functions as a crosslinking agent for the B component), D component, E component, F component, and G component. Among them, the A component to the F component are essential components, and the G component is added as necessary. And as a component at this time, a characteristic component and an appropriate blending amount are adopted. In particular, it is characterized in that 4,4'-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane, which is component D, is used. By adopting such a resin composition, when the non-roughened copper foil and the resin layer composed of this resin composition are pressed and cured, the non-roughened copper foil and the cured resin layer are between Thus, the adhesiveness is improved to a level of 0.8 kgf / cm or more as the peel strength, and at the same time, a cured resin layer excellent in various properties such as flame retardancy and moisture absorption resistance can be obtained. Accordingly, when a resin-coated copper foil having a semi-cured resin layer formed on the surface of the copper foil is produced using the resin composition according to the present invention, the use of the low-roughness copper foil used for forming the fine pitch circuit is positively used. It is possible to obtain a high-quality copper foil with resin.

以下、本件発明を実施するための最良の形態に関して、項目毎に述べることとする。   Hereinafter, the best mode for carrying out the present invention will be described for each item.

<樹脂組成物の形態>
本件出願に係る樹脂組成物は、プリント配線板の絶縁層構成用に用いるものであり、銅箔との密着性に優れ、硬化した後の硬化樹脂層は難燃性、耐吸湿性等の諸特性に優れたものになる。以下、本件出願に係る樹脂組成物で形成した絶縁樹脂層と銅箔との密着性を中心に述べる。そして、この樹脂組成物は、以下のA成分〜F成分の各成分を含むことを特徴とする。以下、各成分ごとに説明する。
<Form of resin composition>
The resin composition according to the present application is used for forming an insulating layer of a printed wiring board, has excellent adhesion to a copper foil, and a cured resin layer after curing has various properties such as flame retardancy and moisture absorption resistance. Excellent characteristics. Hereinafter, the adhesion between the insulating resin layer formed of the resin composition according to the present application and the copper foil will be mainly described. And this resin composition is characterized by including each component of the following A component-F component. Hereinafter, each component will be described.

A成分: このA成分は、所謂ビスフェノール系エポキシ樹脂である。そして、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上を混合して用いることが好ましい。ここで、ビスフェノール系エポキシ樹脂を選択使用しているのは、25℃で液状のエポキシ樹脂で取り扱いが容易であり、半硬化状態の樹脂層を備える樹脂付銅箔を製造すると、樹脂付銅箔のソリ(カール現象)の抑制効果が顕著に得られるからである。また、硬化後の樹脂膜と銅箔との良好な密着性を得る事ができるからである。なお、液状エポキシが高純度の場合には、過冷を受けると常温に戻しても結晶化状態が維持され、外観上は固形に見えるものもある。この場合には、液状に戻して使用することが可能であるため。ここで言う液状エポキシ樹脂に含めて考える。更に、ここで25℃という温度を明記したのは、室温付近でという意味を明確にするためである。 A component: This A component is what is called a bisphenol-type epoxy resin. And it is preferable to mix and use 1 type, or 2 or more types chosen from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol AD type epoxy resin. Here, the bisphenol-based epoxy resin is selectively used because it is easy to handle with a liquid epoxy resin at 25 ° C., and a resin-coated copper foil provided with a semi-cured resin layer is produced. This is because the effect of suppressing the warpage (curling phenomenon) is remarkably obtained. Moreover, it is because the favorable adhesiveness of the resin film after hardening and copper foil can be obtained. When the liquid epoxy is highly pure, if it is supercooled, the crystallized state is maintained even when the liquid epoxy is returned to room temperature, and the appearance may be solid. In this case, it is possible to return to liquid and use it. It considers including in the liquid epoxy resin said here. Furthermore, the temperature of 25 ° C. is specified here in order to clarify the meaning of around room temperature.

そして、エポキシ当量が200以下の場合には、25℃の温度で液体状態を維持できるので樹脂組成物の調製が容易で、樹脂付銅箔を製造したときのカール現象の抑制にも寄与できる。ここで、エポキシ当量の下限値を明記していないが、ビスフェノールF型の最小単位のエポキシ当量が最も小さいことを考えれば、下限値は150程度である。なお、ここで言うエポキシ当量とは、1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)である。更に、上述のビスフェノール系エポキシ樹脂であれば、1種を単独で用いても、2種以上を混合で用いても構わない。しかも、2種以上を混合して用いる場合には、その混合比に関しても特段の限定はない。   And when an epoxy equivalent is 200 or less, since a liquid state can be maintained at the temperature of 25 degreeC, preparation of a resin composition is easy, and it can contribute also to suppression of the curl phenomenon when manufacturing copper foil with resin. Here, the lower limit value of the epoxy equivalent is not specified, but considering that the epoxy equivalent of the smallest unit of the bisphenol F type is the smallest, the lower limit value is about 150. In addition, the epoxy equivalent said here is the gram number (g / eq) of resin containing 1 gram equivalent of epoxy groups. Furthermore, if it is the above-mentioned bisphenol-type epoxy resin, 1 type may be used independently or 2 or more types may be used in mixture. In addition, when two or more kinds are mixed and used, there is no particular limitation with respect to the mixing ratio.

このビスフェノール系エポキシ樹脂は、本件発明で言う樹脂組成物を100重量部としたとき、3重量部〜20重量部の配合割合で用いられる。当該エポキシ樹脂が3重量部未満の場合には、硬化後の硬化樹脂層が脆くなり樹脂割れを生じやすくなる。一方、20重量部を越えると、室温で半硬化状態の樹脂面に粘着性を生じるためハンドリング性に欠け、汚染性も大きくなるため好ましくない。   This bisphenol-based epoxy resin is used in a blending ratio of 3 parts by weight to 20 parts by weight when the resin composition referred to in the present invention is 100 parts by weight. When the said epoxy resin is less than 3 weight part, the cured resin layer after hardening becomes weak and it becomes easy to produce a resin crack. On the other hand, if it exceeds 20 parts by weight, the resin surface in a semi-cured state at room temperature will be sticky, so that handling properties will be lacking and contamination will be increased.

B成分: このB成分は、架橋可能な官能基を有する線状ポリマーである。ここで、架橋可能な官能基を有する線状ポリマーは、水酸基、カルボキシル基等のエポキシ樹脂の硬化反応に寄与する官能基を備えるものである。そして、この架橋可能な官能基を有する線状ポリマーは、沸点が50℃〜200℃の温度の有機溶剤に可溶であることが好ましい。ここで言う官能基を有する線状ポリマーとして、ポリビニルアセタール樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂、ポリアミドイミド樹脂等が使用できる。中でも、ポリビニルアセタール樹脂、ポリアミドイミド樹脂の使用が好ましい。樹脂ワニスに加工したときの粘度調整が容易だからである。 Component B: Component B is a linear polymer having a crosslinkable functional group. Here, the linear polymer which has a crosslinkable functional group is provided with the functional group which contributes to the curing reaction of epoxy resins, such as a hydroxyl group and a carboxyl group. And it is preferable that the linear polymer which has this crosslinkable functional group is soluble in the organic solvent of the temperature of 50 to 200 degreeC of boiling points. As the linear polymer having a functional group, a polyvinyl acetal resin, a phenoxy resin, a polyethersulfone resin, a polyamideimide resin, or the like can be used. Among these, the use of polyvinyl acetal resin and polyamideimide resin is preferable. This is because it is easy to adjust the viscosity when processed into a resin varnish.

この架橋可能な官能基を有する線状ポリマーは、樹脂組成物を100重量部としたとき、3重量部〜30重量部の配合割合で用いる。当該線状ポリマーが3重量部未満の場合には、熱間プレス時に樹脂流れが大きくなり、絶縁樹脂層の厚さ制御が困難になる。この結果、製造した銅張積層板の端部から樹脂粉の発生が多く見られるようになり、粉塵発生防止の観点から好ましくない。一方、30重量部を超えると、樹脂流れが小さくなるが、製造した銅張積層板の絶縁層内にボイド等の欠陥を生じやすくなる。   The linear polymer having a crosslinkable functional group is used in a blending ratio of 3 to 30 parts by weight when the resin composition is 100 parts by weight. When the linear polymer is less than 3 parts by weight, the resin flow becomes large during hot pressing, making it difficult to control the thickness of the insulating resin layer. As a result, a large amount of resin powder is generated from the end of the produced copper-clad laminate, which is not preferable from the viewpoint of preventing dust generation. On the other hand, if it exceeds 30 parts by weight, the resin flow becomes small, but defects such as voids are likely to occur in the insulating layer of the produced copper-clad laminate.

また、ここで言う沸点が50℃〜200℃の温度の有機溶剤に可溶であることが望ましいとしているが、ここで言う有機溶剤とは、メタノール、エタノール、メチルエチルケトン、トルエン、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、エチルセロソルブ等の群から選ばれる1種の単独溶剤又は2種以上の混合溶剤である。沸点が50℃未満の場合には、加熱による溶剤の気散が著しく、樹脂ワニスの状態から半硬化樹脂とする場合に、良好な半硬化状態の樹脂層が得にくくなる。一方、沸点が200℃を超える場合には、半硬化状態での残留溶剤量が多くなり、通常要求される揮発速度を満足せず、工業生産性を満足しない。   Moreover, although it is said that it is desirable that the boiling point here is soluble in an organic solvent having a temperature of 50 ° C. to 200 ° C., the organic solvent referred to here is methanol, ethanol, methyl ethyl ketone, toluene, propylene glycol monomethyl ether, One kind of single solvent or two or more kinds of mixed solvents selected from the group of dimethylformamide, dimethylacetamide, cyclohexanone, ethyl cellosolve and the like. When the boiling point is less than 50 ° C., the solvent is greatly diffused by heating, and when the resin varnish is changed to a semi-cured resin, it is difficult to obtain a good semi-cured resin layer. On the other hand, when the boiling point exceeds 200 ° C., the amount of residual solvent in the semi-cured state increases, so that the normally required volatilization rate is not satisfied and industrial productivity is not satisfied.

C成分: このC成分は、B成分と架橋反応を起こさせるための架橋剤である。この架橋剤には、ウレタン系樹脂を使用することが好ましい。この架橋剤を添加する場合には、A成分とB成分との混合量に応じて添加されるものであり、本来厳密にその配合割合を明記する必要性はないものと考える。しかしながら、樹脂組成物を100重量部としたとき、10重量部以下の配合割合で用いる事が好ましい。10重量部を超えて、ウレタン系樹脂であるC成分が存在すると、半硬化状態での樹脂層の耐吸湿性が劣化し、硬化後の樹脂層が脆くなるからである。一方、このC成分を3重量部未満の配合割合で用いると、上記A成分とB成分との混合量を考慮すると、架橋剤としての効果を十分に発揮しなくなる。従って、3重量部以上配合することが好ましい。 C component: This C component is a crosslinking agent for causing a crosslinking reaction with the B component. As this crosslinking agent, it is preferable to use a urethane-based resin. When this crosslinking agent is added, it is added according to the mixing amount of the component A and the component B, and it is considered that there is no need to specify the blending ratio strictly strictly. However, when the resin composition is 100 parts by weight, it is preferably used at a blending ratio of 10 parts by weight or less. If the C component which is a urethane-based resin is present exceeding 10 parts by weight, the moisture absorption resistance of the resin layer in the semi-cured state is deteriorated, and the cured resin layer becomes brittle. On the other hand, if this C component is used in a blending ratio of less than 3 parts by weight, the effect as a cross-linking agent will not be sufficiently exerted in consideration of the mixing amount of the A component and B component. Therefore, it is preferable to blend 3 parts by weight or more.

しかし、C成分を省略することが出来る場合もあり、C成分は必須の成分ではない。即ち、A成分がB成分の架橋剤として機能する場合には、C成分の添加を省略することができる。より具体的に言えば、ポリアミドイミド樹脂はエポキシ樹脂と架橋する性質があり、B成分にポリアミドイミド樹脂を用いる場合には、ポリアミドイミドのアミンの部分がエポキシ樹脂と架橋するため架橋剤の添加が不要になる場合がある。そして、A成分がB成分の架橋剤として機能していても、反応に十分な量のB成分が存在しない場合には、C成分を併用することも可能である。係る場合には、C成分の添加量は、樹脂組成物を100重量部としたとき、0重量部〜10重量部の範囲で用いることが出来る。この範囲であれば、半硬化状態での樹脂層の耐吸湿性、硬化後の樹脂層のフレキシビリティ等の特性に悪影響を与えないからである。また、より好ましくは、A成分がB成分の架橋剤として機能する場合のC成分を、0重量部〜3重量部未満の配合割合で用いる。上述のA成分及びB成分の配合量から判断して、C成分が3重量部を超えても顕著な樹脂特性の向上は得られないからである。   However, the C component may be omitted, and the C component is not an essential component. That is, when the A component functions as a crosslinking agent for the B component, the addition of the C component can be omitted. More specifically, the polyamide-imide resin has a property of cross-linking with the epoxy resin. When the polyamide-imide resin is used for the B component, the amine part of the polyamide-imide cross-links with the epoxy resin, so that a cross-linking agent is added. May be unnecessary. And even if A component functions as a crosslinking agent of B component, C component can also be used together, when B component of a sufficient quantity for reaction does not exist. In such a case, the amount of component C added can be in the range of 0 to 10 parts by weight when the resin composition is 100 parts by weight. This is because, within this range, the moisture absorption resistance of the resin layer in the semi-cured state and the properties such as the flexibility of the resin layer after curing are not adversely affected. More preferably, the component C in the case where the component A functions as a crosslinking agent for the component B is used in a blending ratio of 0 to less than 3 parts by weight. Judging from the blending amounts of the A component and the B component described above, even if the C component exceeds 3 parts by weight, a remarkable improvement in the resin properties cannot be obtained.

D成分: このD成分は、エポキシ樹脂硬化剤であり、4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを用いる。本件発明に係る樹脂組成物では、半硬化状態の樹脂層の無粗化銅箔の張り合わせ面への密着性、内層回路を備えた内層コア材へ当該樹脂付銅箔の樹脂層を張り合わせる際の硬化した樹脂表面及び内層回路表面への密着性を向上させるという観点から、4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを選択的に用いる事が重要である。なお、エポキシ樹脂に対するエポキシ樹脂硬化剤の添加量は、反応当量からの計算量又は実験上得られる最適量を採用することが好ましい。本件発明に係る樹脂組成物を100重量部として、このエポキシ樹脂硬化剤を5重量部〜20重量部の範囲で含有する。エポキシ樹脂硬化剤が5重量部未満の場合には、上記エポキシ樹脂の最低限量を用いても十分に硬化した樹脂層が得られにくくなる。一方、20重量部を超えてエポキシ樹脂硬化剤を添加すると、硬化剤としての量が過剰になり、且つ、硬化速度が速すぎて脆い硬化樹脂層となる。 D component: This D component is an epoxy resin curing agent, and 4,4'-diaminodiphenyl sulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane is used. In the resin composition according to the present invention, when the resin layer of the resin-coated copper foil is bonded to the inner layer core material provided with the inner layer circuit, the adhesiveness of the semi-cured resin layer to the bonding surface of the non-roughened copper foil 4,4′-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane is selectively used from the viewpoint of improving the adhesion to the cured resin surface and inner layer circuit surface. It is important to use it. In addition, it is preferable to employ | adopt the optimal amount obtained from the calculation amount from a reaction equivalent, or experiment, as the addition amount of the epoxy resin hardening | curing agent with respect to an epoxy resin. The epoxy resin curing agent is contained in the range of 5 to 20 parts by weight based on 100 parts by weight of the resin composition according to the present invention. When the epoxy resin curing agent is less than 5 parts by weight, it becomes difficult to obtain a sufficiently cured resin layer even if the minimum amount of the epoxy resin is used. On the other hand, when the epoxy resin curing agent is added in excess of 20 parts by weight, the amount as a curing agent becomes excessive, and the curing rate is too high, resulting in a brittle cured resin layer.

E成分: このE成分は、難燃性エポキシ樹脂であり、ハロゲン系の難燃性エポキシ樹脂及びハロゲンフリー系の難燃性エポキシ樹脂の双方の使用が可能である。以下、これらを分別して説明する。 E component: This E component is a flame retardant epoxy resin, and both a halogen-based flame retardant epoxy resin and a halogen-free flame retardant epoxy resin can be used. Hereinafter, these will be described separately.

ハロゲン系の難燃性エポキシ樹脂としては、所謂臭素化エポキシ樹脂を用いることが好ましい。臭素化エポキシ樹脂とは、エポキシ骨格の中に臭素を含んだエポキシ樹脂の総称するものである。そして、本件出願に係る樹脂組成物の臭素原子含有量を、樹脂組成物重量を100重量%としたとき、E成分由来の臭素原子が12重量%〜18重量%の範囲となるようにすることができる臭素化エポキシ樹脂であれば、いずれの使用も可能である。特に、分子内に2以上のエポキシ基を備えるテトラブロモビスフェノールA又はそのテトラブロモビスフェノールAの誘導体として得られるエポキシ樹脂を用いることが好ましい。臭素化エポキシ樹脂の中でも、半硬化状態での樹脂品質の安定性に優れ、硬化した後においても、難燃性効果が高く、得られる樹脂硬化物の機械物性が向上するため好ましい。参考のために、テトラブロモビスフェノールAの構造式を、化1として例示しておく。そして、化2には、テトラブロモビスフェノールAからの誘導体として得られるビスフェノール系臭素化エポキシ樹脂の構造式を例示する。 As the halogen-based flame retardant epoxy resin, a so-called brominated epoxy resin is preferably used. The brominated epoxy resin is a general term for epoxy resins containing bromine in the epoxy skeleton. And when the bromine atom content of the resin composition according to the present application is 100% by weight of the resin composition, the bromine atom derived from component E is in the range of 12% by weight to 18% by weight. Any brominated epoxy resin can be used. In particular, it is preferable to use an epoxy resin obtained as a tetrabromobisphenol A having two or more epoxy groups in the molecule or a derivative of the tetrabromobisphenol A. Among brominated epoxy resins, the resin quality is excellent in the semi-cured state, and after curing, the flame retardancy effect is high, and the mechanical properties of the resulting cured resin are improved, which is preferable. For reference, the structural formula of tetrabromobisphenol A is exemplified as Chemical Formula 1 . Chemical formula 2 illustrates the structural formula of a bisphenol brominated epoxy resin obtained as a derivative from tetrabromobisphenol A.

Figure 0005650908
Figure 0005650908

Figure 0005650908
Figure 0005650908

また、E成分の臭素化エポキシ樹脂として、化3に示す構造式を備える化合物も好ましい。化2に示すビスフェノール系臭素化エポキシ樹脂と同様に、半硬化状態での樹脂品質の安定性に優れ、同時に高い難燃性の付与が可能であるため好ましい。 A compound having the structural formula shown in Chemical formula 3 is also preferred as the brominated epoxy resin of component E. Like the bisphenol brominated epoxy resin shown in Chemical Formula 2 , it is preferable because it is excellent in the stability of the resin quality in a semi-cured state and at the same time can impart high flame retardancy.

Figure 0005650908
Figure 0005650908

そして、本件出願に係る樹脂組成物を構成するE成分は、1種類の臭素化エポキシ樹脂を単独で用いても、2種類以上の臭素化エポキシ樹脂を混合して用いても構わない。但し、E成分の総量を考慮して、樹脂組成物重量を100重量%としたとき、E成分由来の臭素原子が12重量%〜18重量%の範囲となるように添加量を定める。   And as E component which comprises the resin composition which concerns on this application, one type of brominated epoxy resin may be used independently, or two or more types of brominated epoxy resins may be mixed and used. However, in consideration of the total amount of the E component, when the resin composition weight is 100% by weight, the addition amount is determined so that the bromine atom derived from the E component is in the range of 12% by weight to 18% by weight.

ここで臭素化エポキシ樹脂を用いる場合の樹脂組成物は、樹脂組成物重量を100重量%としたとき、E成分由来の臭素原子を12重量%〜18重量%の範囲で含有するとしているのは、硬化後の樹脂層としての難燃性を確保する観点からである。当該臭素原子の含有量が12重量%未満の場合には、良好な難燃性を得ることが出来難くなる。一方、当該臭素原子の含有量が18重量%を超えて含有させても、硬化後の樹脂層の難燃性が向上せず、資源の無駄となる。臭素化エポキシ樹脂は、その種類によりエポキシ骨格内に含有する臭素原子量が異なるため、上述のように臭素原子の含有量を記載して、E成分の添加量に代えた。   Here, the resin composition in the case of using a brominated epoxy resin contains bromine atoms derived from the component E in the range of 12 to 18% by weight when the weight of the resin composition is 100% by weight. From the viewpoint of ensuring flame retardancy as a cured resin layer. When the bromine atom content is less than 12% by weight, it becomes difficult to obtain good flame retardancy. On the other hand, even if the bromine atom content exceeds 18% by weight, the flame retardancy of the cured resin layer is not improved, and resources are wasted. Since brominated epoxy resins differ in the amount of bromine atoms contained in the epoxy skeleton depending on the type thereof, the bromine atom content is described as described above and replaced with the added amount of the E component.

次に、ハロゲンフリー系の難燃性エポキシ樹脂としては、所謂リン含有エポキシ樹脂を用いることが好ましい。リン含有エポキシ樹脂とは、エポキシ骨格の中にリンを含んだエポキシ樹脂の総称である。そして、本件出願に係る樹脂組成物のリン原子含有量を、樹脂組成物重量を100重量%としたとき、E成分由来のリン原子を0.5重量%〜3.0重量%の範囲とできるリン含有エポキシ樹脂であれば、いずれの使用も可能である。しかしながら、分子内に2以上のエポキシ基を備える9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体であるリン含有エポキシ樹脂を用いることが、半硬化状態での樹脂品質の安定性に優れ、同時に難燃性効果が高いため好ましい。参考のために、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドの構造式を化4に示す。 Next, it is preferable to use a so-called phosphorus-containing epoxy resin as the halogen-free flame-retardant epoxy resin. The phosphorus-containing epoxy resin is a general term for epoxy resins containing phosphorus in an epoxy skeleton. And when the phosphorus atom content of the resin composition according to the present application is 100% by weight of the resin composition, the phosphorus atom derived from the E component can be in the range of 0.5% to 3.0% by weight. Any phosphorus-containing epoxy resin can be used. However, it is possible to use a phosphorus-containing epoxy resin which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having two or more epoxy groups in the molecule, so that the resin quality in a semi-cured state It is preferable because of its excellent stability and high flame retardancy effect. For reference, the structural formula of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is shown in Chemical Formula 4 .

Figure 0005650908
Figure 0005650908

そして、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体であるリン含有エポキシ樹脂を具体的に例示すると、化5に示す構造式を備える化合物の使用が好ましい。半硬化状態での樹脂品質の安定性に優れ、同時に難燃性効果が高いため好ましい。 And when the phosphorus containing epoxy resin which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative is illustrated concretely, use of the compound provided with the structural formula shown in Chemical formula 5 is preferable. It is preferable because it is excellent in stability of the resin quality in a semi-cured state and at the same time has a high flame retardant effect.

Figure 0005650908
Figure 0005650908

また、E成分のリン含有エポキシ樹脂として、化6に示す構造式を備える化合物も好ましい。化5に示すリン含有エポキシ樹脂と同様に、半硬化状態での樹脂品質の安定性に優れ、同時に高い難燃性の付与が可能であるため好ましい。 Further, as the E component phosphorus-containing epoxy resin, a compound having the structural formula shown in Chemical Formula 6 is also preferable. Like the phosphorus-containing epoxy resin shown in Chemical formula 5 , it is preferable because it is excellent in the stability of the resin quality in the semi-cured state and at the same time it is possible to impart high flame resistance.

Figure 0005650908
Figure 0005650908

更に、E成分のリン含有エポキシ樹脂として、化7に示す構造式を備える化合物も好ましい。化5及び化6に示すリン含有エポキシ樹脂と同様に、半硬化状態での樹脂品質の安定性に優れ、同時に高い難燃性の付与が可能であるため好ましい。 Furthermore, as the E component phosphorus-containing epoxy resin, a compound having the structural formula shown in Chemical Formula 7 is also preferable. Similar to the phosphorus-containing epoxy resins shown in Chemical Formula 5 and Chemical Formula 6 , it is preferable because it is excellent in the stability of the resin quality in a semi-cured state and at the same time can impart high flame retardancy.

Figure 0005650908
Figure 0005650908

この9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドからの誘導体として得られるエポキシ樹脂は、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドにナフトキノンやハイドロキノンを反応させて、化8(HCA−NQ)又は化9(HCA−HQ)に示す化合物とした後に、そのOH基の部分にエポキシ樹脂を反応させてリン含有エポキシ樹脂としたものが挙げられる。 The epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is converted to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. After reacting naphthoquinone or hydroquinone to obtain a compound represented by Chemical Formula 8 (HCA-NQ) or Chemical Formula 9 (HCA-HQ), an epoxy resin is reacted with the OH group portion to obtain a phosphorus-containing epoxy resin. Can be mentioned.

Figure 0005650908
Figure 0005650908

Figure 0005650908
Figure 0005650908

ここでリン含有エポキシ樹脂を用いる場合の樹脂組成物は、E成分としてのリン含有エポキシ樹脂の1種類を単独で用いても、2種類以上のリン含有エポキシ樹脂を混合して用いても構わない。但し、E成分としてのリン含有エポキシ樹脂の総量を考慮して、樹脂組成物重量を100重量%としたとき、E成分由来のリン原子を0.5重量%〜3.0重量%の範囲となるように添加量を定める。リン含有エポキシ樹脂は、その種類によりエポキシ骨格内に含有するリン原子量が異なるため、上述のようにリン原子の含有量を記載して、E成分の添加量に代えた。   Here, the resin composition in the case of using the phosphorus-containing epoxy resin may be used alone or in combination of two or more phosphorus-containing epoxy resins as the E component. . However, considering the total amount of the phosphorus-containing epoxy resin as the E component, when the resin composition weight is 100% by weight, the phosphorus atom derived from the E component is in the range of 0.5% to 3.0% by weight. The addition amount is determined so that Since the phosphorus-containing epoxy resin has different amounts of phosphorus atoms contained in the epoxy skeleton depending on the type, the phosphorus atom content is described as described above, and the amount added is changed to the addition amount of the E component.

F成分: このF成分は、多官能エポキシ樹脂である。ここで言う多官能エポキシ樹脂とは、例えば、トリスヒドロキシフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂等である。そして、このF成分に関しては、樹脂組成物を100重量部としたとき、3重量部〜20重量部の配合割合で用いる。F成分が3重量部未満の場合には、耐熱特性を向上させ難い。一方、F成分が20重量部を超えた場合、硬化樹脂が脆くなる。 F component: This F component is a polyfunctional epoxy resin. The polyfunctional epoxy resin referred to here is, for example, a trishydroxyphenylmethane type epoxy resin, a phenol novolac type epoxy resin, an orthocresol novolak type epoxy resin, or the like. And about this F component, when a resin composition is 100 weight part, it is used by the mixture ratio of 3 weight part-20 weight part. When the F component is less than 3 parts by weight, it is difficult to improve the heat resistance. On the other hand, when the F component exceeds 20 parts by weight, the cured resin becomes brittle.

以上に述べてきたA成分〜F成分で構成される樹脂組成物は、ハロゲン系の難燃性樹脂組成物とハロゲンフリー系の難燃性樹脂組成物とに分別できる。以下、これらを具体的組成として示しておく。   The resin composition composed of the A component to the F component described above can be classified into a halogen-based flame retardant resin composition and a halogen-free flame retardant resin composition. Hereinafter, these are shown as specific compositions.

本件発明に係るプリント配線板製造用のハロゲン系の難燃性樹脂組成物は、樹脂組成物重量を100重量部としたとき、A成分が3重量部〜20重量部、B成分が3重量部〜30重量部、C成分が3重量部〜10重量部(A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部とする事も出来る。)、D成分が5重量部〜20重量部、F成分が3重量部〜20重量部であり、E成分由来の臭素原子を12重量%〜18重量%の範囲で含有するようにE成分の添加量を定めたものである。   In the halogen-based flame retardant resin composition for producing a printed wiring board according to the present invention, the component A is 3 to 20 parts by weight and the component B is 3 parts by weight when the weight of the resin composition is 100 parts by weight. -30 parts by weight, C component is 3 parts by weight to 10 parts by weight (in the case where A component functions as a crosslinking agent for B component, it can be 0 to 10 parts by weight), D component is 5 parts by weight Part to 20 parts by weight, F component is 3 parts by weight to 20 parts by weight, and the addition amount of the E component is determined so as to contain bromine atoms derived from the E component in the range of 12 to 18% by weight. is there.

そして、本件発明に係るプリント配線板製造用のハロゲンフリー系の難燃性樹脂組成物は、樹脂組成物重量を100重量部としたとき、A成分が3重量部〜20重量部、B成分が3重量部〜30重量部、C成分が3重量部〜10重量部(A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部とする事も出来る。)、D成分が5重量部〜20重量部、F成分が3重量部〜20重量部であり、E成分由来のリン原子を0.5重量%〜3.0重量%の範囲で含有するようにE成分の添加量を定めたものである。   The halogen-free flame-retardant resin composition for producing a printed wiring board according to the present invention has a component A of 3 parts by weight to 20 parts by weight and a component B of 100 parts by weight when the resin composition weight is 100 parts by weight. 3 parts by weight to 30 parts by weight, 3 parts by weight to 10 parts by weight of the C component (in the case where the A component functions as a crosslinking agent for the B component, it can be 0 to 10 parts by weight), the D component Is 5 parts by weight to 20 parts by weight, the F component is 3 parts by weight to 20 parts by weight, and contains the phosphorus atom derived from the E component in the range of 0.5% by weight to 3.0% by weight. The amount to be added is determined.

更に、本件発明に係るプリント配線板製造用の樹脂組成物は、G成分として硬化促進剤を添加することも好ましい。従って、このG成分は、任意の添加成分である。そして、単に樹脂硬化を促進するだけであれば、硬化促進剤として機能するあらゆる化合物の使用が可能であるが、一般的な熱プレス条件を用いて、本樹脂系を硬化させるのにスムーズに進行させるという観点から、イミダゾール系の硬化促進剤である2−メチルイミダゾール又は2−エチル−4−メチルイミダゾールを用いることが好ましい。   Furthermore, the resin composition for producing a printed wiring board according to the present invention preferably includes a curing accelerator as a G component. Therefore, this G component is an optional additive component. Any compound that functions as a curing accelerator can be used if it only accelerates resin curing, but it proceeds smoothly to cure the resin system using general hot press conditions. From the viewpoint of making it, it is preferable to use 2-methylimidazole or 2-ethyl-4-methylimidazole which is an imidazole-based curing accelerator.

以上、本件発明に係るプリント配線板製造用の樹脂組成物に関して述べてきたが、本件発明の技術的思想の趣旨を逸脱しない限りにおいて、他の成分の添加、追加配合が可能であることを、念のために明記しておく。   As mentioned above, the resin composition for producing a printed wiring board according to the present invention has been described, but other components can be added and added without departing from the spirit of the technical idea of the present invention. It is clearly stated just in case.

<樹脂付銅箔の形態>
本件出願に係るプリント配線板製造用の樹脂付銅箔は、銅箔の片面に半硬化状態の樹脂層を備えたものである。そして、この樹脂層を上述の樹脂組成物を用いて、平均厚さ5μm〜100μmの半硬化樹脂膜として形成したものである。このように上述の樹脂組成物を用いて形成した樹脂層は、銅箔との密着性に優れ、耐熱特性にも優れる。
<Form of copper foil with resin>
The resin-coated copper foil for producing a printed wiring board according to the present application is provided with a semi-cured resin layer on one side of the copper foil. Then, this resin layer is formed as a semi-cured resin film having an average thickness of 5 μm to 100 μm using the above resin composition. Thus, the resin layer formed using the above-mentioned resin composition is excellent in adhesiveness with copper foil, and is excellent in heat resistance.

ここで、当該樹脂層の平均厚さが5μm未満の場合には、内層回路を備える内層コア材の外層に対し、当該樹脂付銅箔を張り合わせるときに、内層回路の形成する凹凸形状との張り合わせが不可能になる。一方、当該樹脂層の平均厚さが100μmを超えるものとしても問題はないが、塗布して厚い樹脂膜を形成することは困難で生産性に欠ける。しかも、樹脂層を厚くすれば、プリプレグと比較して差異の無いものとなり、樹脂付銅箔の形態の製品を採用する意義が没却する。   Here, when the average thickness of the resin layer is less than 5 μm, when the resin-coated copper foil is bonded to the outer layer of the inner layer core material including the inner layer circuit, the uneven shape formed by the inner layer circuit Bonding becomes impossible. On the other hand, there is no problem even if the average thickness of the resin layer exceeds 100 μm, but it is difficult to apply and form a thick resin film, and productivity is lacking. In addition, if the resin layer is thickened, there is no difference compared to the prepreg, and the significance of adopting a product in the form of a resin-coated copper foil is lost.

そして、銅箔には、電解法又は圧延法等の、その製造方法には拘泥せず、あらゆる製造方法の使用が可能である。そして、その厚さに関しても、特段の限定はない。また、この銅箔の樹脂層を形成する面には、粗化処理を必ずしも施す必要はない。上記樹脂組成物は、無粗化の銅箔を用いての樹脂付銅箔の製造に好適だからである。従って、粗化処理があれば、銅箔と樹脂層との密着性は向上するが、銅箔の表面に粗化処理を施さなくても問題がない。無粗化の銅箔の張り合わせ面は、平坦な表面であるため、ファインピッチ回路の形成能が向上する。更に、当該銅箔の表面には、防錆処理を施しても構わない。防錆処理に関しては、公知の亜鉛、亜鉛系合金等を用いた無機防錆、又は、ベンゾイミダゾール、トリアゾール等の有機単分子被膜による有機防錆等を採用することが可能である。更に、当該銅箔の樹脂層を形成する最表面には、シランカップリング処理層を備えることが好ましい。   In addition, the copper foil can be used in any manufacturing method, such as an electrolytic method or a rolling method, regardless of its manufacturing method. And there is no special limitation also about the thickness. Further, it is not always necessary to subject the surface of the copper foil resin layer to the roughening treatment. This is because the resin composition is suitable for producing a resin-coated copper foil using a non-roughened copper foil. Therefore, if there is a roughening treatment, the adhesion between the copper foil and the resin layer is improved, but there is no problem even if the surface of the copper foil is not roughened. Since the bonding surface of the non-roughened copper foil is a flat surface, the ability to form a fine pitch circuit is improved. Furthermore, the surface of the copper foil may be subjected to rust prevention treatment. Regarding the rust prevention treatment, it is possible to employ inorganic rust prevention using known zinc, zinc-based alloys, or the like, or organic rust prevention using an organic monomolecular film such as benzimidazole or triazole. Furthermore, it is preferable to provide a silane coupling treatment layer on the outermost surface that forms the resin layer of the copper foil.

そして、ここで用いる前記銅箔の半硬化樹脂層の形成面が表面粗さを数値をもって表せば、Rzjisの値が3.0μm以下の低粗度表面を備えるものを用いることが好ましい。Rzjisの値が3.0μm以下になると、エッチングファクターに優れたファインピッチ回路の形成能が飛躍的に高まるからである。   And if the formation surface of the semi-hardened resin layer of the said copper foil used here expresses surface roughness with a numerical value, it is preferable to use what has a low roughness surface whose Rzjis value is 3.0 micrometers or less. This is because when the value of Rzjis is 3.0 μm or less, the ability to form a fine pitch circuit having an excellent etching factor is dramatically increased.

また、特に粗化処理していない銅箔の場合、その張り合わせ面と樹脂層との濡れ性を改善し、基材樹脂にプレス加工したときの密着性を向上させるため、その張り合わせ面にシランカップリング剤層を設けることがより好ましい。例えば、銅箔の粗化を行わずに、防錆処理を施し、シランカップリング剤処理に、エポキシ官能性シランカップリング剤、オレフィン官能性シラン、アクリル官能性シラン、アミノ官能性シランカップリング剤又はメルカプト官能性シランカップリング剤等種々のものを用いることが可能であり、用途に応じて好適なシランカップリング剤を選択使用することで、引き剥がし強度が一層向上する。   In addition, in the case of copper foil that has not been particularly roughened, in order to improve the wettability between the bonded surface and the resin layer, and to improve the adhesion when pressed to the base resin, It is more preferable to provide a ring agent layer. For example, without roughening the copper foil, rust prevention treatment is performed, and silane coupling agent treatment is performed with epoxy functional silane coupling agent, olefin functional silane, acrylic functional silane, amino functional silane coupling agent. Or various things, such as a mercapto functional silane coupling agent, can be used, and peeling strength improves further by selecting and using a suitable silane coupling agent according to a use.

ここで用いることの出来るシランカップリング剤を、より具体的に明示しておくことにする。プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   The silane coupling agent that can be used here will be described more specifically. Vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, mainly for coupling agents similar to those used for prepreg glass cloth for printed wiring boards 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3 -Aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane, etc. can be used.

このシランカップリング剤層の形成は、一般的に用いられる浸漬法、シャワーリング法、噴霧法等、特に方法は限定されない。工程設計に合わせて、最も均一に銅箔とシランカップリング剤を含んだ溶液とを接触させ吸着させることのできる方法を任意に採用すれば良いのである。これらのシランカップリング剤は、溶媒として25℃レベルの水に0.5〜10g/lとなるように溶解させる。シランカップリング剤は、銅箔の表面に突きだしたOH基と縮合結合することにより、被膜を形成するのであり、いたずらに濃い濃度の溶液を用いても、その効果が著しく増大することはない。従って、本来は、工程の処理速度等に応じて決められるべきものである。但し、0.5g/lを下回る場合は、シランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず、吸着も不均一なものとなる。また、10g/lを超える濃度であっても、特に吸着速度が速くなることもなく不経済となる。   The formation of the silane coupling agent layer is not particularly limited, such as a commonly used dipping method, showering method, spraying method, or the like. In accordance with the process design, a method that can contact and adsorb the solution containing the copper foil and the silane coupling agent most uniformly can be arbitrarily employed. These silane coupling agents are dissolved in water at a temperature of 25 ° C. as a solvent so as to be 0.5 to 10 g / l. The silane coupling agent forms a film by condensation bonding with OH groups protruding from the surface of the copper foil, and the effect is not significantly increased even if a solution having a very high concentration is used. Therefore, it should be originally determined according to the processing speed of the process. However, if it is less than 0.5 g / l, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profit, and the adsorption is not uniform. Moreover, even if the concentration exceeds 10 g / l, the adsorption rate is not particularly increased, which is uneconomical.

以上に述べてきた樹脂付銅箔の半硬化樹脂層は、硬化反応後に、以下のようにして測定した場合に、3.0GPa未満の貯蔵弾性率を備え、低弾性特性を備えることが好ましい。このときの貯蔵弾性率とは、2枚の同種の樹脂付銅箔を用いて、それぞれの樹脂付銅箔の樹脂面同士を合わせて当接させ、所定の条件で熱間プレス成形を行い銅張積層板とし、当該銅張積層板の両面にある銅箔層をエッチング除去して樹脂フィルムとし、この樹脂フィルムを動的粘弾性測定装置(DMA)にて動的粘弾性を測定して得た、30℃における貯蔵弾性率である。ここでの熱間プレス条件に関しては、実施例の中で後述する。この貯蔵弾性率が3.0GPa未満となると、硬化した樹脂層が良好なフレキシビリティと弾性特性を備える。その結果、本件発明に係る樹脂付銅箔を用いて製造したプリント配線板は、電子製品等に組み込まれた後に、当該製品の意図せぬ落下による衝撃、輸送中の振動を受けた場合等でも、硬化した樹脂層へのクラックが発生し難く、電子部品及び回路の損傷が起こりにくく、耐衝撃性及び耐振動性に優れる製品となる。   The semi-cured resin layer of the resin-coated copper foil described above preferably has a storage elastic modulus of less than 3.0 GPa and a low elastic property when measured as follows after the curing reaction. The storage elastic modulus at this time is the same kind of resin-coated copper foil, the resin surfaces of the respective resin-coated copper foils are brought into contact with each other, hot press-molded under predetermined conditions, and subjected to hot press molding. It is obtained by measuring the dynamic viscoelasticity with a dynamic viscoelasticity measuring device (DMA) as a resin laminate by etching and removing the copper foil layers on both sides of the copper clad laminate. The storage elastic modulus at 30 ° C. The hot pressing conditions here will be described later in the examples. When this storage elastic modulus is less than 3.0 GPa, the cured resin layer has good flexibility and elastic properties. As a result, the printed wiring board manufactured using the resin-coated copper foil according to the present invention, after being incorporated into an electronic product, etc., may be subjected to an impact caused by unintentional dropping of the product, vibration during transportation, etc. Thus, cracks in the cured resin layer hardly occur, electronic components and circuits are hardly damaged, and the product has excellent impact resistance and vibration resistance.

<樹脂付銅箔の製造方法の形態>
本件出願に係る樹脂付銅箔の製造方法は、最初に以下の工程a、工程bの手順で樹脂ワニスを調製する。
<Form of manufacturing method of copper foil with resin>
In the method for producing a resin-coated copper foil according to the present application, first, a resin varnish is prepared by the following steps a and b.

工程aでは、前記A成分、B成分、C成分(A成分がB成分の架橋剤として機能する場合には省略可)、D成分、E成分、F成分、G成分の内、A成分〜F成分を必須成分とした樹脂組成物の重量を100重量%としたとき、E成分由来の臭素原子を12重量%〜18重量%の範囲又はリン原子を0.5重量%〜3.0重量%の範囲で含有するように各成分を混合して樹脂組成物とする。このときの各成分の混合順序、混合手段等に特段の限定は無い。従って、公知のあらゆる混合手法を採用することが可能である。そして、これらの各成分に関しては、既に述べているので、ここでの説明は省略する。   In step a, among A component, B component, C component (can be omitted when A component functions as a crosslinking agent for B component), D component, E component, F component, G component, A component to F component When the weight of the resin composition containing the component as an essential component is 100% by weight, the bromine atom derived from the component E is in the range of 12% to 18% by weight or the phosphorus atom is 0.5% to 3.0% by weight. Each component is mixed so that it may be contained in the range of to make a resin composition. There is no particular limitation on the mixing order of each component, mixing means, and the like at this time. Therefore, any known mixing technique can be employed. And since each of these components has already been described, description here is abbreviate | omitted.

また、前記工程aでは、必要に応じて適当量のG成分(硬化促進剤)を混合使用することも好ましい。ここで言う硬化促進剤は、イミダゾール系の硬化促進剤である2−メチルイミダゾールを用いる。硬化促進剤は、銅張積層板製造の熱間プレス条件等の生産条件を考慮して、製造者が任意に選択的に添加量を定めるべきものだが、敢えて記載するならば、本件発明に係る樹脂組成物100重量部に対して、G成分を0.1重量部〜1.5重量部程度となる。G成分が0.1重量部未満の場合には、硬化速度を促進し得ず、添加する意義が無いからである。一方、G成分を1.5重量部を超えた場合、硬化が促進されすぎて、半硬化状態で安定した品質で長期間保存することが困難になる。   In the step a, it is also preferable to mix and use an appropriate amount of the G component (curing accelerator) as necessary. As the curing accelerator here, 2-methylimidazole, which is an imidazole-based curing accelerator, is used. The curing accelerator should be determined arbitrarily by the manufacturer in consideration of production conditions such as hot press conditions for the production of copper-clad laminates. The G component is about 0.1 to 1.5 parts by weight with respect to 100 parts by weight of the resin composition. This is because if the G component is less than 0.1 part by weight, the curing rate cannot be accelerated and there is no significance to add it. On the other hand, when the component G exceeds 1.5 parts by weight, curing is promoted too much, and it becomes difficult to store for a long period of time with a stable quality in a semi-cured state.

工程bでは、前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂固形分量が25重量%〜50重量%の樹脂ワニスとする。このときの有機溶剤には、上述のように沸点が50℃〜200℃の範囲にある溶剤であることが好ましく、例えば、メタノール、エタノール、メチルエチルケトン、トルエン、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、エチルセロソルブ等の群から選ばれる1種の単独溶剤又は2種以上の混合溶剤を用いることが好ましい。上述と同様の理由からである。そして、ここで樹脂固形分量を25重量%〜50重量%の樹脂ワニスとする。なお、樹脂固形分とは、樹脂ワニスを加熱して揮発分を除去したときに残留する固形分のことである。ここに示した樹脂固形分量の範囲が、銅箔の表面に塗布したときに、最も膜厚を精度の良いものに制御できる範囲である。樹脂固形分が25重量%未満の場合には、粘度が低すぎて、銅箔表面への塗布直後に流れて膜厚均一性を確保しにくい。これに対して、樹脂固形分が50重量%を越えると、粘度が高くなり、銅箔表面への薄膜形成が困難となる。なお、ここに具体的に挙げた溶剤以外でも、本件発明で用いるすべての樹脂成分を溶解することの出来るものであれば使用が可能である。   In step b, the resin composition is dissolved using an organic solvent to obtain a resin varnish having a resin solid content of 25 wt% to 50 wt%. The organic solvent at this time is preferably a solvent having a boiling point in the range of 50 ° C. to 200 ° C. as described above. For example, methanol, ethanol, methyl ethyl ketone, toluene, propylene glycol monomethyl ether, dimethylformamide, dimethylacetamide It is preferable to use one kind of single solvent or two or more kinds of mixed solvents selected from the group of cyclohexanone, ethyl cellosolve and the like. This is because of the same reason as described above. And let resin solid content be a resin varnish of 25 to 50 weight% here. In addition, resin solid content is solid content which remains when a resin varnish is heated and a volatile matter is removed. The range of the resin solid content shown here is the range in which the film thickness can be controlled to the highest accuracy when applied to the surface of the copper foil. When the resin solid content is less than 25% by weight, the viscosity is too low and it flows immediately after application to the copper foil surface, making it difficult to ensure film thickness uniformity. On the other hand, when the resin solid content exceeds 50% by weight, the viscosity increases and it becomes difficult to form a thin film on the surface of the copper foil. Other than the solvents specifically mentioned here, any solvent can be used as long as it can dissolve all the resin components used in the present invention.

以上のようにして得られる樹脂ワニスを、銅箔の片面に塗布する場合には、特に塗布方法に関しては限定されない。しかし、目的とする厚さ分を精度良く塗布しなければならないことを考えれば、形成する膜厚に応じた塗布方法、塗布装置を適宜選択使用すればよい。また、銅箔の表面に樹脂皮膜を形成した後の乾燥は、樹脂溶液の性質に応じて半硬化状態とすることのできる加熱条件を適宜採用すればよい。そして、この乾燥後に平均厚さ5μm〜100μmの半硬化樹脂層となり、本件発明に係る樹脂付銅箔となる。   When the resin varnish obtained as described above is applied to one side of a copper foil, the application method is not particularly limited. However, considering that the target thickness must be applied with high accuracy, a coating method and a coating apparatus corresponding to the film thickness to be formed may be appropriately selected and used. Moreover, what is necessary is just to employ | adopt suitably the heating conditions which can be made into a semi-hardened state according to the property of the resin solution for the drying after forming the resin film on the surface of copper foil. And after this drying, it becomes a semi-cured resin layer having an average thickness of 5 μm to 100 μm, and becomes a resin-coated copper foil according to the present invention.

プリント配線板の形態: 本件出願に係るプリント配線板は、上述の樹脂組成物を用いて絶縁層を構成したことを特徴とするものである。即ち、本件発明に係る樹脂組成物を樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造する。そして、この樹脂付銅箔を用いて、内層コア配線板に張り合わせて多層化した銅張積層板として、多層プリント配線板に加工することができる。また、本件発明に係る樹脂組成物を樹脂ワニスとして、この樹脂ワニスをガラスクロス、ガラス不織布等の骨格材に含浸させプリプレグとして、公知の方法で銅張積層板を製造し、プリント配線板に加工することもできる。即ち、上記樹脂組成物を用いることで、公知のあらゆる製造方法でプリント配線板の製造が可能になる。なお、本件発明に言うプリント配線板とは、所謂片面板、両面板、3層以上の多層板を含むものである。以下、実施例に関して説明する。 Form of Printed Wiring Board: The printed wiring board according to the present application is characterized in that an insulating layer is configured by using the above resin composition. That is, using the resin composition according to the present invention as a resin varnish, a resin-coated copper foil is produced using the resin varnish. And it can process into a multilayer printed wiring board as a copper clad laminated board laminated | stacked on the inner-layer core wiring board using this resin-coated copper foil. In addition, the resin composition according to the present invention is used as a resin varnish, and the resin varnish is impregnated into a skeleton material such as glass cloth and glass nonwoven fabric to produce a copper-clad laminate by a known method and processed into a printed wiring board. You can also That is, by using the resin composition, a printed wiring board can be manufactured by any known manufacturing method. The printed wiring board referred to in the present invention includes a so-called single-sided board, a double-sided board, and a multilayer board having three or more layers. Hereinafter, examples will be described.

この実施例では、以下に述べる樹脂組成物を調製し、樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造し、評価を行った。   In this example, the resin composition described below was prepared, and as the resin varnish, a resin-coated copper foil was produced and evaluated.

樹脂組成物の調製:以下のA成分〜F成分を混合して、樹脂組成物を100重量%としたときの臭素原子の割合が15.1重量%である樹脂組成物を得て、更にG成分を加えハロゲン系の樹脂組成物を調製した。ここでは、E成分である難燃性エポキシ樹脂として、2種類の臭素化エポキシ樹脂を用いている。また、G成分の配合量は、A成分〜F成分を混合した樹脂組成物を100重量部として、これに対する添加量を表す。 Preparation of resin composition: The following A component to F component were mixed to obtain a resin composition having a bromine atom ratio of 15.1% by weight when the resin composition was 100% by weight. Components were added to prepare a halogen-based resin composition. Here, two types of brominated epoxy resins are used as the flame retardant epoxy resin which is the E component. Moreover, the compounding quantity of G component represents the addition amount with respect to 100 weight part of resin compositions which mixed A component-F component.

A成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
B成分: 架橋可能な官能基を有する線状ポリマーとしてのポリビニルアセタール樹脂(商品名:デンカブチラール5000A、電気化学工業社製)/10重量部
C成分: 架橋剤としてのウレタン樹脂(商品名:コロネートAPステーブル、日本ポリウレタン工業社製)/4重量部
D成分: 4,4’−ジアミノジフェニルスルホン(商品名:セイカキュアS、和歌山精化工業株式会社)/15重量部
E成分: 難燃性エポキシ樹脂としての臭素化エポキシ樹脂1(商品名:エピクロン1121N−80M、大日本インキ化学工業社製)/30重量部
難燃性エポキシ樹脂としての臭素化エポキシ樹脂2(商品名:BREN−304、日本化薬社製)/20重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/6重量部
G成分: 硬化促進剤として2−メチルイミダゾール(商品名:2MZ、四国化成工業社製)/0.4重量部
Component A: Bisphenol A type epoxy resin (trade name: Epotot YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188 Component B: As a linear polymer having crosslinkable functional groups Polyvinyl acetal resin (trade name: Denkabutyral 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) / 10 parts by weight C component: urethane resin as a cross-linking agent (trade name: Coronate AP stable, manufactured by Nippon Polyurethane Industry Co., Ltd.) / 4 parts by weight Component D: 4,4′-diaminodiphenylsulfone (trade name: Seika Cure S, Wakayama Seika Kogyo Co., Ltd.) / 15 parts by weight E component: Brominated epoxy resin 1 (trade name: Epicron 1121N as flame retardant epoxy resin) -80M, manufactured by Dainippon Ink & Chemicals, Inc.) / 30 parts by weight
Brominated epoxy resin 2 as a flame retardant epoxy resin (trade name: BREN-304, manufactured by Nippon Kayaku Co., Ltd.) / 20 parts by weight F component: Ortho-cresol novolac type epoxy resin as a multifunctional epoxy resin (trade name: Epicron) N-680, manufactured by Dainippon Ink & Chemicals, Inc.) / 6 parts by weight G component: 2-methylimidazole (trade name: 2MZ, manufactured by Shikoku Chemicals) /0.4 parts by weight as a curing accelerator

樹脂ワニスの調製: 上記組成の樹脂組成物を、メチルエチルケトンとジメチルホルムアミドとの混合溶剤(混合比(体積比):メチルエチルケトン/ジメチルホルムアミド=1/1)に溶解し、樹脂固形分量35重量%の樹脂ワニスを調製した。 Preparation of resin varnish: A resin composition having the above composition was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide (mixing ratio (volume ratio): methyl ethyl ketone / dimethylformamide = 1/1) to obtain a resin having a resin solid content of 35% by weight. A varnish was prepared.

樹脂付銅箔の製造: 上述の樹脂ワニスを、公称厚さ18μm(Rz=2.8μm)の電解銅箔の粗化面に均一に塗布し、風乾後、140℃×5分間の加熱処理を行い、半硬化状態の樹脂層を備えた樹脂付銅箔を得た。このときの樹脂層の平均厚さは85μmとした。以下、評価内容の詳細に関して述べる。 Production of resin-coated copper foil: The above-mentioned resin varnish is uniformly applied to the roughened surface of an electrolytic copper foil having a nominal thickness of 18 μm (Rz = 2.8 μm), air-dried, and then subjected to heat treatment at 140 ° C. for 5 minutes. It performed and obtained copper foil with resin provided with the resin layer of the semi-hardened state. The average thickness of the resin layer at this time was 85 μm. The details of the evaluation contents will be described below.

密着性評価: 当該樹脂付銅箔の樹脂層を、100μm厚さのFR−4グレードのプリプレグの表面に当接させ、圧力20kgf/cm、温度180℃×1時間の熱間プレス成形を行い銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、エッチング法で10mm幅の引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、後述する比較例1との対比が可能なように表1に示す。 Evaluation of adhesion: The resin layer of the copper foil with resin is brought into contact with the surface of an FR-4 grade prepreg having a thickness of 100 μm, and hot press molding is performed at a pressure of 20 kgf / cm 2 and a temperature of 180 ° C. × 1 hour. A copper clad laminate was produced. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for 10-mm width peeling strength measurement was formed by the etching method. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 1 so that they can be compared with Comparative Example 1 described later.

硬化樹脂としての弾性率測定: 当該樹脂付銅箔を2枚用いて、それぞれの樹脂付銅箔の樹脂面同士を合わせて当接させ、圧力20kgf/cm、温度180℃×1時間の条件で熱間プレス成形を行い銅張積層板を製造した。その後、この銅張積層板の両面にある銅箔層をエッチングして溶解除去することで、樹脂フィルムを得た。そして、この樹脂フィルムを用いて、動的粘弾性測定装置(DMA)にて動的粘弾性を測定し、30℃における貯蔵弾性率(ヤング率と称する場合もある。以下、単に「弾性率」と称する。)を求めた。 Measurement of elastic modulus as cured resin: Using the two resin-coated copper foils, the resin surfaces of the respective resin-coated copper foils are brought into contact with each other, pressure 20 kgf / cm 2 , temperature 180 ° C. × 1 hour condition Was subjected to hot press forming to produce a copper clad laminate. Then, the resin film was obtained by etching and removing the copper foil layer in both surfaces of this copper clad laminated board. And using this resin film, dynamic viscoelasticity is measured with a dynamic viscoelasticity measuring device (DMA), and the storage elastic modulus at 30 ° C. (sometimes referred to as Young's modulus. Hereinafter, simply referred to as “elastic modulus”. Called).

この実施例では、以下に述べる樹脂組成物を調製し、樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造し、評価を行った。   In this example, the resin composition described below was prepared, and as the resin varnish, a resin-coated copper foil was produced and evaluated.

樹脂組成物の調製:以下のA成分〜F成分を混合して、樹脂組成物を100重量%としたときの臭素原子の割合が15.3重量%である樹脂組成物を得て、更にG成分を加えハロゲン系の樹脂組成物を調製した。ここでは、E成分である難燃性エポキシ樹脂として、2種類の臭素化エポキシ樹脂を用いている。また、G成分の配合量は、A成分〜F成分を混合した樹脂組成物を100重量部として、これに対する添加量を表す。 Preparation of resin composition: The following A component to F component were mixed to obtain a resin composition having a bromine atom ratio of 15.3% by weight with respect to 100% by weight of the resin composition. Components were added to prepare a halogen-based resin composition. Here, two types of brominated epoxy resins are used as the flame retardant epoxy resin which is the E component. Moreover, the compounding quantity of G component represents the addition amount with respect to 100 weight part of resin compositions which mixed A component-F component.

A成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
B成分: 架橋可能な官能基を有する線状ポリマーとしてのポリビニルアセタール樹脂(商品名:デンカブチラール5000A、電気化学工業社製)/10重量部
C成分: 架橋剤としてのウレタン樹脂(商品名:コロネートAPステーブル、日本ポリウレタン工業社製)/4重量部
D成分: 2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン(商品名:BAPP、和歌山精化工業株式会社)/24重量部
E成分: 難燃性エポキシ樹脂としての臭素化エポキシ樹脂1(商品名:エピクロン1121N−80M、大日本インキ化学工業社製)/10重量部
難燃性エポキシ樹脂としての臭素化エポキシ樹脂2(商品名:BREN−304、日本化薬社製)/30重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/7重量部
G成分: 硬化促進剤として2−エチル−4−メチルイミダゾール(商品名:2E4MZ、四国化成工業社製)/0.2重量部
Component A: Bisphenol A type epoxy resin (trade name: Epotot YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188 Component B: As a linear polymer having crosslinkable functional groups Polyvinyl acetal resin (trade name: Denkabutyral 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) / 10 parts by weight C component: urethane resin as a cross-linking agent (trade name: Coronate AP stable, manufactured by Nippon Polyurethane Industry Co., Ltd.) / 4 parts by weight D component: 2,2-bis (4- (4-aminophenoxy) phenyl) propane (trade name: BAPP, Wakayama Seika Kogyo Co., Ltd.) / 24 parts by weight E component: brominated epoxy as flame retardant epoxy resin Resin 1 (trade name: Epicron 1121N-80M, manufactured by Dainippon Ink & Chemicals, Inc.) / 10 parts by weight
Brominated epoxy resin 2 as a flame retardant epoxy resin (trade name: BREN-304, manufactured by Nippon Kayaku Co., Ltd.) / 30 parts by weight F component: Orthocresol novolak type epoxy resin (trade name: Epicron) as a polyfunctional epoxy resin N-680, manufactured by Dainippon Ink & Chemicals, Inc.) / 7 parts by weight G component: 2-ethyl-4-methylimidazole (trade name: 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) / 0.2 parts by weight as a curing accelerator

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、後述する比較例1との対比が可能なように表1に示す。   Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 1 so that they can be compared with Comparative Example 1 described later.

この実施例では、以下に述べる樹脂組成物を調製し、樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造し、評価を行った。   In this example, the resin composition described below was prepared, and as the resin varnish, a resin-coated copper foil was produced and evaluated.

樹脂組成物の調製:以下のA成分〜F成分を混合して、樹脂組成物を100重量%としたときのリン原子の割合が1.0重量%である樹脂組成物を得て、更にG成分を加えハロゲンフリー系の樹脂組成物を調製した。ここでは、E成分である難燃性エポキシ樹脂として、以下に述べる合成方法で得られたリン含有エポキシ樹脂を用いている。また、G成分の配合量は、A成分〜F成分を混合した樹脂組成物を100重量部として、これに対する添加量を表す。 Preparation of resin composition: The following components A to F were mixed to obtain a resin composition having a phosphorus atom ratio of 1.0% by weight when the resin composition was 100% by weight. Components were added to prepare a halogen-free resin composition. Here, the phosphorus-containing epoxy resin obtained by the synthesis method described below is used as the flame retardant epoxy resin which is the E component. Moreover, the compounding quantity of G component represents the addition amount with respect to 100 weight part of resin compositions which mixed A component-F component.

リン含有エポキシ樹脂の合成: ここでは、特開平11−279258の合成例6を参考にして、リン含有エポキシ樹脂(E成分)を次のようにして合成した。即ち、攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、141重量部の9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(三光社製商品名HCA)と300重量部のエチルセロソルブとを入れ、加熱して溶解した。その後、96.3重量部の1,4−ナフトキノン(試薬)を反応熱による昇温に注意しながら分割投入した。このとき、1,4−ナフトキノンと9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドとのモル比は、[1,4−ナフトキノン]/「9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド」=0.93であった。反応後、262.7重量部のエポトート YDPN−638 (東都化成社製フェノールノボラック型エポキシ樹脂)及び409.6重量部のYDF−170(東都化成社製ビスフェノールF型エポキシ樹脂)を入れ、窒素ガスを導入しつつ攪拌を行い、120℃まで加熱を行って溶解した。そして、0.24重量部のトリフェニルホスフィンを添加して130℃×4時間の反応を行わせた。このとき得られたリン含有エポキシ樹脂のエポキシ当量は327.0g/eq、リン含有率は2.0重量%であった。ここで得られたリン含有エポキシ樹脂を用いて、以下の樹脂組成物を
調製した。
Synthesis of Phosphorus-Containing Epoxy Resin: Here, a phosphorous-containing epoxy resin (E component) was synthesized as follows with reference to Synthesis Example 6 of JP-A-11-279258. That is, 141 parts by weight of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 was added to a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device. -Oxide (trade name HCA manufactured by Sanko Co., Ltd.) and 300 parts by weight of ethyl cellosolve were added and dissolved by heating. Then, 96.3 parts by weight of 1,4-naphthoquinone (reagent) was added in portions while paying attention to the temperature rise by reaction heat. At this time, the molar ratio of 1,4-naphthoquinone to 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide was [1,4-naphthoquinone] / “9,10-dihydro-9. -Oxa-10-phosphaphenanthrene-10-oxide "= 0.93. After the reaction, 262.7 parts by weight of Epototo YDPN-638 (Tohto Kasei Co., Ltd., phenol novolac type epoxy resin) and 409.6 parts by weight of YDF-170 (Toto Kasei Co., Ltd., bisphenol F type epoxy resin) are added, and nitrogen gas is added. While stirring, the mixture was stirred and heated to 120 ° C. to dissolve. Then, 0.24 parts by weight of triphenylphosphine was added to carry out the reaction at 130 ° C. for 4 hours. The epoxy equivalent of the phosphorus-containing epoxy resin obtained at this time was 327.0 g / eq, and the phosphorus content was 2.0% by weight. The following resin composition was prepared using the phosphorus-containing epoxy resin obtained here.

A成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
B成分: 架橋可能な官能基を有する線状ポリマーとしてのポリビニルアセタール樹脂(商品名:デンカブチラール5000A、電気化学工業社製)/10重量部
C成分: 架橋剤としてのウレタン樹脂(商品名:コロネートAPステーブル、日本ポリウレタン工業社製)/4重量部
D成分: 4,4’−ジアミノジフェニルスルホン(商品名:セイカキュアS、和歌山精化工業株式会社)/16重量部
E成分: 難燃性エポキシ樹脂として、上記の方法で合成したリン含有エポキシ樹脂/50重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/5重量部
G成分: 硬化促進剤として2−メチルイミダゾール(商品名:2MZ、四国化成工業社製)/0.4重量部
Component A: Bisphenol A type epoxy resin (trade name: Epotot YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188 Component B: As a linear polymer having crosslinkable functional groups Polyvinyl acetal resin (trade name: Denkabutyral 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) / 10 parts by weight C component: urethane resin as a cross-linking agent (trade name: Coronate AP stable, manufactured by Nippon Polyurethane Industry Co., Ltd.) / 4 parts by weight D component: 4,4'-diaminodiphenyl sulfone (trade name: Seika Cure S, Wakayama Seika Kogyo Co., Ltd.) / 16 parts by weight E component: Phosphorus-containing epoxy resin synthesized by the above method as a flame-retardant epoxy resin / 50 parts by weight component F: Orthocresol novolac type epoxy resin as a polyfunctional epoxy resin (trade name: Epi Ron N-680, manufactured by Dainippon Ink and Chemicals, Inc.) / 5 parts by weight G component: 2-methylimidazole (trade name as a curing accelerator: 2MZ, manufactured by Shikoku Chemicals Corporation) /0.4 parts

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、後述する比較例2との対比が可能なように表2に示す。   Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 2 so that they can be compared with Comparative Example 2 described later.

この実施例では、以下に述べる樹脂組成物を調製し、樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造し、評価を行った。   In this example, the resin composition described below was prepared, and as the resin varnish, a resin-coated copper foil was produced and evaluated.

樹脂組成物の調製:以下のA成分〜F成分を混合して、樹脂組成物を100重量%としたときのリン原子の割合が1.0重量%である樹脂組成物を得て、更にG成分を加えハロゲンフリー系の樹脂組成物を調製した。ここでは、B成分の架橋可能な官能基を有する線状ポリマーとして、以下に述べる方法で合成したポリアミドイミド樹脂を用いた。従って、ポリアミドイミド樹脂はA成分のエポキシ樹脂と架橋するため、C成分(架橋剤)を省略した。更に、E成分である難燃性エポキシ樹脂として、実施例3に述べた合成方法で得られたリン含有エポキシ樹脂を用いている。また、G成分の配合量は、A成分〜F成分を混合した樹脂組成物を100重量部として、これに対する添加量を表す。 Preparation of resin composition: The following components A to F were mixed to obtain a resin composition having a phosphorus atom ratio of 1.0% by weight when the resin composition was 100% by weight. Components were added to prepare a halogen-free resin composition. Here, as a linear polymer having a crosslinkable functional group of component B, a polyamideimide resin synthesized by the method described below was used. Therefore, since the polyamideimide resin crosslinks with the A component epoxy resin, the C component (crosslinking agent) is omitted. Furthermore, the phosphorus-containing epoxy resin obtained by the synthesis method described in Example 3 is used as the flame retardant epoxy resin which is the E component. Moreover, the compounding quantity of G component represents the addition amount with respect to 100 weight part of resin compositions which mixed A component-F component.

この実施例で用いたポリアミドイミド樹脂は、以下の方法で製造した。即ち、反応容器に、192gの無水トリメリット酸、211gのo−トリジンジイソシアネート、50gの4,4’−ジフェニルメタンジイソシアネート、365gのN−メチル−2−ピロリドン(蒸留されたもの)を入れて混合し、更に1LのN,N−ジメチルアセトアミドを入れて混合し、窒素雰囲気下で攪拌しながら、70℃で約2時間、さらに100℃で約3時間反応させた。その後、N,N−ジメチルアセトアミドを1L加え、約2時間かけて160℃まで昇温し、さらに160℃で約1時間攪拌して反応を停止することで、ポリアミドイミド溶液を得た。このポリアミドイミド溶液を用いて、以下の樹脂組成を採用した。   The polyamideimide resin used in this example was produced by the following method. That is, 192 g of trimellitic anhydride, 211 g of o-tolidine diisocyanate, 50 g of 4,4′-diphenylmethane diisocyanate, 365 g of N-methyl-2-pyrrolidone (distilled) was placed in a reaction vessel and mixed. Further, 1 L of N, N-dimethylacetamide was added and mixed, and the mixture was reacted at 70 ° C. for about 2 hours and further at 100 ° C. for about 3 hours with stirring under a nitrogen atmosphere. Thereafter, 1 L of N, N-dimethylacetamide was added, the temperature was raised to 160 ° C. over about 2 hours, and the reaction was stopped by stirring at 160 ° C. for about 1 hour to obtain a polyamideimide solution. The following resin composition was employ | adopted using this polyamideimide solution.

A成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
B成分: 架橋可能な官能基を有する線状ポリマーとして、上述のポリアミドイミド樹脂/15重量部
D成分: 4,4’−ジアミノジフェニルスルホン(商品名:セイカキュアS、和歌山精化工業株式会社)/16重量部
E成分: 難燃性エポキシ樹脂として、実施例3と同様に合成したリン含有エポキシ樹脂/50重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/4重量部
G成分: 硬化促進剤として2−メチルイミダゾール(商品名:2MZ、四国化成工業社製)/0.4重量部
Component A: Bisphenol A type epoxy resin (trade name: Epotot YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188 Component B: As a linear polymer having crosslinkable functional groups The above-mentioned polyamideimide resin / 15 parts by weight D component: 4,4′-diaminodiphenyl sulfone (trade name: Seika Cure S, Wakayama Seika Kogyo Co., Ltd.) / 16 parts by weight E component: Implemented as a flame-retardant epoxy resin Phosphorus-containing epoxy resin synthesized in the same manner as in Example 3/50 parts by weight F component: Orthocresol novolac type epoxy resin (trade name: Epicron N-680, manufactured by Dainippon Ink & Chemicals, Inc.) as polyfunctional epoxy resin / 4 weight Part G component: 2-methylimidazole (trade name: 2MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) / 0.4 parts by weight as a curing accelerator

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、後述する比較例2との対比が可能なように表2に示す。   Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 2 so that they can be compared with Comparative Example 2 described later.

この実施例では、以下に述べる樹脂組成物を調製し、樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造し、評価を行った。なお、この実施例5の樹脂組成は、A成分がB成分の架橋剤として機能する場合に相当するため、C成分を用いない樹脂組成を採用している。   In this example, the resin composition described below was prepared, and as the resin varnish, a resin-coated copper foil was produced and evaluated. In addition, since the resin composition of Example 5 corresponds to the case where the A component functions as a crosslinking agent for the B component, a resin composition that does not use the C component is employed.

樹脂組成物の調製:以下のA成分〜F成分(C成分を除く)を混合して、樹脂組成物を100重量%としたときのリン原子の割合が1.0重量%である樹脂組成物を得て、更にG成分を加えハロゲンフリー系の樹脂組成物を調製した。ここでは、B成分の架橋可能な官能基を有する線状ポリマーとして、実施例4で述べた方法で合成したポリアミドイミド樹脂を用いた。従って、ポリアミドイミド樹脂はA成分のエポキシ樹脂と架橋するため、C成分(架橋剤)を省略した。更に、E成分である難燃性エポキシ樹脂として、実施例3に述べた合成方法で得られたリン含有エポキシ樹脂を用いている。また、G成分の配合量は、A成分〜F成分を混合した樹脂組成物を100重量部として、これに対する添加量を表す。 Preparation of resin composition: The following A component-F component (except C component) are mixed, The resin composition whose ratio of a phosphorus atom when a resin composition is 100 weight% is 1.0 weight% The component G was further added to prepare a halogen-free resin composition. Here, the polyamideimide resin synthesized by the method described in Example 4 was used as the linear polymer having a crosslinkable functional group of component B. Therefore, since the polyamideimide resin crosslinks with the A component epoxy resin, the C component (crosslinking agent) is omitted. Furthermore, the phosphorus-containing epoxy resin obtained by the synthesis method described in Example 3 is used as the flame retardant epoxy resin which is the E component. Moreover, the compounding quantity of G component represents the addition amount with respect to 100 weight part of resin compositions which mixed A component-F component.

A成分: 25℃で液状でエポキシ当量が165のビスフェノールF型エポキシ樹脂(商品名:エポトートYDF−170、東都化成社製)/10重量部
B成分: 架橋可能な官能基を有する線状ポリマーとして、実施例4で合成したポリアミドイミド樹脂/14重量部
D成分: 2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン(商品名:BAPP、和歌山精化工業株式会社)/22重量部
E成分: 難燃性エポキシ樹脂として、実施例3で合成したリン含有エポキシ樹脂/50重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/4重量部
G成分: 硬化促進剤として2−エチル−4−メチルイミダゾール(商品名:2E4MZ、四国化成工業社製)/0.2重量部
Component A: Bisphenol F type epoxy resin (trade name: Epototo YDF-170, manufactured by Tohto Kasei Co., Ltd.) / 10 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 165 Component B: As a linear polymer having a crosslinkable functional group Polyamideimide resin synthesized in Example 4/14 parts by weight D component: 2,2-bis (4- (4-aminophenoxy) phenyl) propane (trade name: BAPP, Wakayama Seika Kogyo Co., Ltd.) / 22 weights Part E component: As flame-retardant epoxy resin, phosphorus-containing epoxy resin synthesized in Example 3/50 parts by weight F component: Orthocresol novolak type epoxy resin as a polyfunctional epoxy resin (trade name: Epicron N-680, large Nippon Ink Chemical Co., Ltd.) / 4 parts by weight G component: 2-ethyl-4-methylimidazole (trade name: 2E4M) as a curing accelerator Z, manufactured by Shikoku Kasei Kogyo Co., Ltd.) / 0.2 parts by weight

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、後述する比較例との対比が可能なように表に示す。 Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 2 so that they can be compared with Comparative Example 2 described later.

比較例Comparative example

[比較例1]
この比較例1は、ハロゲン系樹脂組成物を用いた上記実施例1及び実施例2との対比を行うためのものである。従って、実施例1で用いる樹脂組成物の組成が異なるのみであり、その他の樹脂ワニス調製、樹脂付銅箔の製造、当該樹脂付銅箔を用いた銅張積層板製造は同様である。従って、異なる樹脂組成物の組成に関してのみ述べる。
[Comparative Example 1]
Comparative Example 1 is for comparison with Example 1 and Example 2 using a halogen-based resin composition. Therefore, only the composition of the resin composition used in Example 1 is different, and the other resin varnish preparation, the production of a resin-coated copper foil, and the production of a copper-clad laminate using the resin-coated copper foil are the same. Therefore, only the composition of the different resin compositions will be described.

成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
成分: 架橋可能な官能基を有する線状ポリマーとしてのポリビニルアセタール樹脂(商品名:デンカブチラール5000A、電気化学工業社製)/10重量部
成分: 架橋剤としてのウレタン樹脂(商品名:コロネートAPステーブル、日本ポリウレタン工業社製)/4重量部
成分: エポキシ樹脂硬化剤としてのノボラック型フェノール樹脂(商品名:フェノライトTD−2131、大日本インキ化学工業社製)/24重量部
成分: 臭素化エポキシ樹脂1(商品名:エピクロン1121N−80M、大日本インキ化学工業社製)/10重量部
臭素化エポキシ樹脂2(商品名:BREN−304、日本化薬社製)/30重量部
成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/7重量部
成分: 硬化促進剤として2−エチル−4−メチルイミダゾール(商品名:2E4MZ、四国化成工業社製)/0.2重量部
A component: Bisphenol A type epoxy resin (trade name: Epototo YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188
Component B : Polyvinyl acetal resin as a linear polymer having a crosslinkable functional group (trade name: Denka Butyral 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) / 10 parts by weight
Component C : Urethane resin as a crosslinking agent (trade name: Coronate AP stable, manufactured by Nippon Polyurethane Industry Co., Ltd.) / 4 parts by weight
Component D : Novolac-type phenolic resin as epoxy resin curing agent (trade name: Phenolite TD-2131, manufactured by Dainippon Ink & Chemicals, Inc.) / 24 parts by weight
E component: Brominated epoxy resin 1 (trade name: Epicron 1121N-80M, manufactured by Dainippon Ink & Chemicals, Inc.) / 10 parts by weight
Brominated epoxy resin 2 (trade name: BREN-304, manufactured by Nippon Kayaku Co., Ltd.) / 30 parts by weight
F component: Orthocresol novolak type epoxy resin as a polyfunctional epoxy resin (trade name: Epicron N-680, manufactured by Dainippon Ink & Chemicals, Inc.) / 7 parts by weight
G component: 2-ethyl-4-methylimidazole (trade name: 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) / 0.2 parts by weight as a curing accelerator

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、上記実施例1及び実施例2との対比が可能なように表1に示す。   Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 1 so that the comparison with Example 1 and Example 2 is possible.

Figure 0005650908

[比較例2]
この比較例2は、ハロゲンフリー系樹脂組成物を用いた上記実施例3〜実施例5との対比を行うためのものである。従って、実施例3で用いる樹脂組成物の組成が異なるのみであり、その他の樹脂ワニス調製、樹脂付銅箔の製造、当該樹脂付銅箔を用いた銅張積層板製造は同様である。従って、異なる樹脂組成物の組成に関してのみ述べる。
Figure 0005650908

[Comparative Example 2]
Comparative Example 2 is for comparison with Examples 3 to 5 using a halogen-free resin composition. Therefore, only the composition of the resin composition used in Example 3 is different, and the other resin varnish preparation, the production of a resin-coated copper foil, and the production of a copper-clad laminate using the resin-coated copper foil are the same. Therefore, only the composition of the different resin compositions will be described.

A成分: 25℃で液状でエポキシ当量が188のビスフェノールA型エポキシ樹脂(商品名:エポトートYD−128、東都化成社製)/15重量部
B成分: 架橋可能な官能基を有する線状ポリマーとしてのポリビニルアセタール樹脂(商品名:デンカブチラール5000A、電気化学工業社製)/10重量部
C成分: 架橋剤としてのウレタン樹脂(商品名:コロネートAPステーブル、日本ポリウレタン工業社製)/4重量部
D成分: エポキシ樹脂硬化剤(25%ジメチルホルムアミド溶液として調製したジシアンジアミド(試薬)/4重量部(固形分換算)
E成分: 実施例3と同様の方法で合成したリン含有エポキシ樹脂/50重量部
F成分: 多官能エポキシ樹脂としてのオルトクレゾールノボラック型エポキシ樹脂(商品名:エピクロンN−680、大日本インキ化学工業社製)/17重量部
G成分: 硬化促進剤として2−エチル−4−メチルイミダゾール(商品名:2E4MZ、四国化成工業社製)/0.2重量部
Component A: Bisphenol A type epoxy resin (trade name: Epotot YD-128, manufactured by Tohto Kasei Co., Ltd.) / 15 parts by weight in liquid form at 25 ° C. and having an epoxy equivalent of 188 Component B: As a linear polymer having a crosslinkable functional group Polyvinyl acetal resin (trade name: Denkabutyral 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) / 10 parts by weight C component: urethane resin as a cross-linking agent (trade name: Coronate AP stable, manufactured by Nippon Polyurethane Industry Co., Ltd.) / 4 parts by weight Component D: Epoxy resin curing agent (dicyandiamide (reagent) prepared as a 25% dimethylformamide solution) / 4 parts by weight (in terms of solid content)
E component: Phosphorus-containing epoxy resin synthesized by the same method as in Example 3/50 parts by weight F component: Orthocresol novolac type epoxy resin as a polyfunctional epoxy resin (trade name: Epicron N-680, Dainippon Ink and Chemicals, Inc. 17 parts by weight G component: 2-ethyl-4-methylimidazole (trade name: 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) / 0.2 parts by weight as a curing accelerator

以下、実施例1と同様に、樹脂ワニスを調製し、樹脂付銅箔を製造し、当該樹脂付銅箔を用いて銅張積層板を製造した。そして、この銅張積層板を、ワークサイズにカッティングして、引き剥がし強さ測定用の直線回路を形成した。その後、その試験用の直線回路を用いて、引き剥がし強さを測定した。その結果を、上記実施例3〜実施例5との対比が可能なように表2に示す。   Hereinafter, in the same manner as in Example 1, a resin varnish was prepared, a resin-coated copper foil was manufactured, and a copper-clad laminate was manufactured using the resin-coated copper foil. And this copper clad laminated board was cut to the workpiece size, and the linear circuit for peeling strength measurement was formed. Thereafter, the peel strength was measured using the test linear circuit. The results are shown in Table 2 so that the comparison with Examples 3 to 5 can be made.

Figure 0005650908
Figure 0005650908

<実施例と比較例との対比>
ハロゲン系樹脂組成物を用いた実施例1及び実施例2と比較例1とを対比すると、表1から明らかなように、実施例1及び実施例2の場合には、引き剥がし強さが0.9kgf/cmを超えており、粗化処理を施した銅箔を用いた場合と比べても、遜色のない密着性を示すことが分かる。これに対して、比較例1の場合には、引き剥がし強さが0.4kgf/cmであり、実用上要求される密着性を満足しないことが理解できる。
<Contrast between Example and Comparative Example>
When Example 1 and Example 2 using the halogen-based resin composition were compared with Comparative Example 1, as is clear from Table 1, in the case of Example 1 and Example 2, the peel strength was 0. It exceeds .9 kgf / cm, and it can be seen that even when compared with the case of using a roughened copper foil, the adhesiveness is inferior. On the other hand, in the case of the comparative example 1, it can be understood that the peel strength is 0.4 kgf / cm, which does not satisfy the practically required adhesion.

また、同様にハロゲンフリー系樹脂組成物を用いた実施例3〜実施例5と比較例2とを対比すると、表2から明らかなように、実施例3の引き剥がし強さが0.8kgf/cm、実施例4の引き剥がし強さが1.0kgf/cm、実施例5の引き剥がし強さが1.0kgf/cmであり、粗化処理を施した銅箔を用いた場合と比べても、遜色のない密着性を示すことが分かる。これに対して、比較例2の場合には、引き剥がし強さが0.5kgf/cmであり、実施例と比べて明らかに劣る。   Similarly, when Examples 3 to 5 and Comparative Example 2 using the halogen-free resin composition were compared, as can be seen from Table 2, the peel strength of Example 3 was 0.8 kgf / cm, the peel strength of Example 4 is 1.0 kgf / cm, and the peel strength of Example 5 is 1.0 kgf / cm, even compared to the case of using a roughened copper foil. It can be seen that the adhesiveness is not inferior. On the other hand, in the case of Comparative Example 2, the peel strength is 0.5 kgf / cm, which is clearly inferior to the Example.

更に、実施例1〜実施例5、比較例1、比較例2の樹脂組成物で構成した絶縁樹脂層の弾性率(ヤング率)を対比する。これらの弾性率を表3に示す。   Furthermore, the elastic modulus (Young's modulus) of the insulating resin layers composed of the resin compositions of Examples 1 to 5, Comparative Example 1 and Comparative Example 2 is compared. These elastic moduli are shown in Table 3.

Figure 0005650908
Figure 0005650908

この表3から理解できるように、実施例1〜実施例5の弾性率は、2.6GPa〜2.8GPaの範囲にあり、弾性率が3.0GPa未満となっている。これに対し、比較例1及び比較例2の弾性率は3.0GPa以上となっている。従って、比較例に比べ、実施例の樹脂組成物で構成した絶縁樹脂層は低弾性であることが理解できる。このような低弾性という性能を備える絶縁樹脂層を備えるプリント配線板は、耐衝撃性に優れる。従って、このプリント配線板は、電子製品等に組み込んだ後でも、当該製品の意図せぬ落下等で衝撃を受けても、電子部品及び回路の損傷が少なく耐衝撃性に優れる事になる。   As can be understood from Table 3, the elastic modulus of Examples 1 to 5 is in the range of 2.6 GPa to 2.8 GPa, and the elastic modulus is less than 3.0 GPa. On the other hand, the elastic modulus of Comparative Example 1 and Comparative Example 2 is 3.0 GPa or more. Therefore, it can be understood that the insulating resin layer made of the resin composition of the example is less elastic than the comparative example. A printed wiring board including an insulating resin layer having such low elasticity performance is excellent in impact resistance. Therefore, even if this printed wiring board is incorporated in an electronic product or the like, or is subjected to an impact due to an unintended drop or the like of the product, the electronic component and circuit are less damaged and excellent in impact resistance.

以上のことから理解できるように、本件発明に係る樹脂組成物の組成範囲に入る場合には、銅箔と硬化した難燃性を備える樹脂層とが良好な密着性を示し、本件発明に係る技術思想の概念を逸脱した組成の場合には、銅箔と硬化した樹脂層との間での良好な密着性が得られないことが理解できる。   As can be understood from the above, when entering the composition range of the resin composition according to the present invention, the copper foil and the cured resin layer having flame retardancy exhibit good adhesion, and according to the present invention. In the case of a composition deviating from the concept of the technical idea, it can be understood that good adhesion between the copper foil and the cured resin layer cannot be obtained.

本件発明に係る樹脂組成物は、難燃性を備えると共に、そこに張り合わせる銅箔との間での良好な密着性を備える。従って、銅張積層板及びプリント配線板の絶縁層構成材料として好適である。しかも、このときの銅箔は、無粗化の銅箔であっても十分に使用可能である。従って、エッチングファクターに優れたファインピッチ回路を形成するための銅張積層板の製造に好適である。しかも、この樹脂組成物を用いて、銅箔の表面に樹脂層を構成することで、良好な品質の樹脂付銅箔の提供が可能となる。従って、この樹脂付銅箔を用いることで、耐マイグレーション性に優れ、ファインピッチ回路を備え、高い信頼性を備える高品質のビルドアッププリント配線板等の提供も可能になる。   The resin composition according to the present invention has flame retardancy and good adhesiveness with the copper foil bonded to the resin composition. Therefore, it is suitable as an insulating layer constituent material for copper-clad laminates and printed wiring boards. Moreover, the copper foil at this time can be sufficiently used even if it is a non-roughened copper foil. Therefore, it is suitable for the manufacture of a copper clad laminate for forming a fine pitch circuit having an excellent etching factor. In addition, by using this resin composition to form a resin layer on the surface of the copper foil, it is possible to provide a copper foil with resin of good quality. Therefore, by using this resin-coated copper foil, it is possible to provide a high-quality build-up printed wiring board having excellent migration resistance, a fine pitch circuit, and high reliability.

Claims (14)

プリント配線板の絶縁層を形成するために用いる樹脂組成物であって、以下のA成分〜F成分の各成分を、以下の範囲の含有量(樹脂組成物重量を100重量部としたときの重量部として記載)で含むことを特徴とするプリント配線板製造用の樹脂組成物。
A成分: エポキシ当量が200以下で、25℃で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上を3重量部〜20重量部。
B成分: エポキシ樹脂の硬化反応に寄与する水酸基又はカルボキシル基のうち少なくとも1つ以上の架橋可能な官能基を有する線状ポリマーを3重量部〜30重量部。
C成分: 架橋剤を3重量部〜10重量部(但し、A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部)。
D成分: 4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを5重量部〜20重量部。
E成分: 臭素化エポキシ樹脂を当該臭素化エポキシ樹脂由来の臭素原子が樹脂組成物重量を100重量%としたとき12重量%〜18重量%の範囲で含有するように定めた重量部。
F成分: トリスヒドロキシフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂の群から選ばれる1種以上を3重量部〜20重量部。
A resin composition used for forming an insulating layer of a printed wiring board, wherein each of the following components A to F is contained in the following range (when the weight of the resin composition is 100 parts by weight): A resin composition for producing a printed wiring board, comprising:
Component A: 3 parts by weight to 20 parts by weight of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and liquid at 25 ° C. Department.
Component B: 3 to 30 parts by weight of a linear polymer having at least one crosslinkable functional group among hydroxyl groups or carboxyl groups contributing to the curing reaction of the epoxy resin.
Component C: 3 parts by weight to 10 parts by weight of a crosslinking agent (provided that 0 part by weight to 10 parts by weight when the component A functions as a crosslinking agent for the component B).
Component D: 5 to 20 parts by weight of 4,4′-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane.
Component E: parts by weight of brominated epoxy resin determined so that bromine atoms derived from the brominated epoxy resin contain in the range of 12% by weight to 18% by weight when the weight of the resin composition is 100% by weight.
F component: 3 parts by weight to 20 parts by weight of at least one selected from the group consisting of trishydroxyphenylmethane type epoxy resin, phenol novolac type epoxy resin, and ortho cresol novolac type epoxy resin.
プリント配線板の絶縁層を形成するために用いる樹脂組成物であって、以下のA成分〜F成分の各成分を、以下の範囲の含有量(樹脂組成物重量を100重量部としたときの重量部として記載)で含むことを特徴とするプリント配線板製造用の樹脂組成物。
A成分: エポキシ当量が200以下で、25℃で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上を3重量部〜20重量部。
B成分: エポキシ樹脂の硬化反応に寄与する水酸基またはカルボキシル基のうち少なくとも1つ以上の架橋可能な官能基を有する線状ポリマーを3重量部〜30重量部。
C成分: 架橋剤を3重量部〜10重量部(但し、A成分がB成分の架橋剤として機能する場合には0重量部〜10重量部)。
D成分: 4,4’−ジアミノジフェニルスルホン又は2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを5重量部〜20重量部。
E成分: リン含有エポキシ樹脂を当該リン含有エポキシ樹脂由来のリン原子が樹脂組成物重量を100重量%としたとき0.5重量%〜3.0重量%の範囲で含有するように定めた重量部。
F成分: トリスヒドロキシフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂の群から選ばれる1種以上を3重量部〜20重量部。
A resin composition used for forming an insulating layer of a printed wiring board, wherein each of the following components A to F is contained in the following range (when the weight of the resin composition is 100 parts by weight): A resin composition for producing a printed wiring board, comprising:
Component A: 3 parts by weight to 20 parts by weight of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and liquid at 25 ° C. Department.
Component B: 3 to 30 parts by weight of a linear polymer having at least one crosslinkable functional group among hydroxyl groups or carboxyl groups contributing to the curing reaction of the epoxy resin.
Component C: 3 parts by weight to 10 parts by weight of a crosslinking agent (provided that 0 part by weight to 10 parts by weight when the component A functions as a crosslinking agent for the component B).
Component D: 5 to 20 parts by weight of 4,4′-diaminodiphenylsulfone or 2,2-bis (4- (4-aminophenoxy) phenyl) propane.
Component E: Weight determined to contain the phosphorus-containing epoxy resin in the range of 0.5 to 3.0% by weight when the phosphorus atom derived from the phosphorus-containing epoxy resin is 100% by weight of the resin composition Department.
F component: 3 parts by weight to 20 parts by weight of at least one selected from the group consisting of trishydroxyphenylmethane type epoxy resin, phenol novolac type epoxy resin, and ortho cresol novolac type epoxy resin.
前記E成分であるリン含有エポキシ樹脂は、分子内に2以上のエポキシ基を備える9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体である請求項2に記載のプリント配線板製造用の樹脂組成物。 The print according to claim 2, wherein the phosphorus-containing epoxy resin as the E component is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative having two or more epoxy groups in the molecule. A resin composition for producing a wiring board. 前記B成分である架橋可能な官能基を有する線状ポリマーは、ポリビニルアセタール樹脂又はポリアミドイミド樹脂を用いる請求項1〜請求項3のいずれかに記載のプリント配線板製造用の樹脂組成物。 The resin composition for producing a printed wiring board according to any one of claims 1 to 3 , wherein the linear polymer having a crosslinkable functional group as the component B uses a polyvinyl acetal resin or a polyamideimide resin. 前記C成分である架橋剤は、ウレタン系樹脂を用いる請求項1〜請求項4のいずれかに記載のプリント配線板製造用の樹脂組成物。 The resin composition for manufacturing a printed wiring board according to any one of claims 1 to 4 , wherein a urethane-based resin is used as the crosslinking agent as the component C. F成分の多官能エポキシ樹脂としてオルトクレゾールノボラック型エポキシ樹脂を添加した請求項1〜請求項5のいずれかに記載のプリント配線板製造用の樹脂組成物。 The resin composition for printed wiring board manufacture in any one of Claims 1-5 which added the ortho cresol novolak type epoxy resin as a polyfunctional epoxy resin of F component. G成分として硬化促進剤を添加した請求項1〜請求項6のいずれかに記載のプリント配線板製造用の樹脂組成物。 The resin composition for manufacturing a printed wiring board according to any one of claims 1 to 6, wherein a curing accelerator is added as a G component. 銅箔の片面に半硬化樹脂層を備えた樹脂付銅箔において、
当該半硬化樹脂層は、請求項1〜請求項7のいずれかに記載の樹脂組成物を用いて、5μm〜100μmの平均厚さとして形成したことを特徴とするプリント配線板製造用の樹脂付銅箔。
In resin-coated copper foil with a semi-cured resin layer on one side of the copper foil,
The semi-cured resin layer is formed with an average thickness of 5 μm to 100 μm using the resin composition according to any one of claims 1 to 7 . Copper foil.
前記銅箔は、その半硬化樹脂層の形成面が表面粗さ(Rzjis)が3.0μm以下の低粗度表面を備えるものを用いる請求項8に記載のプリント配線板製造用の樹脂付銅箔。 The said copper foil uses the resin-coated copper for printed wiring board manufacture of the printed wiring board of Claim 8 using the surface where the formation surface of the semi-hardened resin layer has a low-roughness surface whose surface roughness (Rzjis) is 3.0 micrometers or less. Foil. 前記銅箔の半硬化樹脂層を形成する表面にシランカップリング処理層を備える請求項8又は請求項9に記載のプリント配線板製造用の樹脂付銅箔。 The copper foil with resin for printed wiring board manufacture of Claim 8 or Claim 9 provided with the silane coupling process layer in the surface which forms the semi-hardened resin layer of the said copper foil. 2枚の前記樹脂付銅箔の1種を用いて、それぞれの樹脂付銅箔の樹脂面同士を合わせて当接させ、圧力20kgf/cm、温度180℃×1時間の条件で熱間プレス成形を行い銅張積層板とし、当該銅張積層板の両面にある銅箔層をエッチング除去して樹脂フィルムとし、この樹脂フィルムを動的粘弾性測定装置(DMA)で動的粘弾性を測定して得られる30℃における貯蔵弾性率が、3.0GPa未満となる半硬化樹脂層を備える請求項8〜請求項10のいずれかに記載のプリント配線板製造用の樹脂付銅箔。 Using one of the two resin-coated copper foils, the resin surfaces of the respective resin-coated copper foils are brought into contact with each other and hot pressed under conditions of a pressure of 20 kgf / cm 2 and a temperature of 180 ° C. × 1 hour. Forming a copper-clad laminate, etching the copper foil layers on both sides of the copper-clad laminate into a resin film, and measuring the dynamic viscoelasticity of this resin film with a dynamic viscoelasticity measuring device (DMA) The resin-coated copper foil for printed wiring board production according to any one of claims 8 to 10 , further comprising a semi-cured resin layer having a storage elastic modulus at 30 ° C of less than 3.0 GPa. 請求項8〜請求項11のいずれかに記載のプリント配線板製造用の樹脂付銅箔の製造方法であって、
以下の工程a、工程bの手順で樹脂層の形成に用いる樹脂ワニスを調製し、当該樹脂ワニスを銅箔の表面に塗布し、乾燥させることで5μm〜100μmの平均厚さの半硬化樹脂膜を形成して樹脂付銅箔とすることを特徴とするプリント配線板製造用の樹脂付銅箔の製造方法。
工程a: 前記A成分、B成分、C成分(A成分がB成分の架橋剤として機能する場合には省略可)、D成分、E成分、F成分、G成分の内、A成分〜F成分を必須成分とした樹脂組成物の重量を100重量%としたとき、E成分由来の臭素原子を12重量%〜18重量%の範囲又はリン原子を0.5重量%〜3.0重量%の範囲で含有するように各成分を混合して樹脂組成物とする。
工程b: 前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂固形分量が25重量%〜50重量%の樹脂ワニスとする。
It is a manufacturing method of the resin-coated copper foil for printed wiring board manufacture in any one of Claims 8-11 ,
A semi-cured resin film having an average thickness of 5 μm to 100 μm is prepared by preparing a resin varnish to be used for forming a resin layer in the following steps a and b, applying the resin varnish to the surface of the copper foil, and drying it. A method for producing a resin-coated copper foil for producing a printed wiring board, comprising forming a resin-coated copper foil.
Step a: A component to F component among the A component, B component, C component (may be omitted when the A component functions as a crosslinking agent for the B component), D component, E component, F component, G component When the weight of the resin composition containing as an essential component is 100% by weight, the bromine atom derived from the E component is in the range of 12% to 18% by weight or the phosphorus atom is 0.5% to 3.0% by weight. Each component is mixed so that it may be contained in a range to obtain a resin composition.
Process b: The said resin composition is melt | dissolved using an organic solvent, and it is set as the resin varnish whose resin solid content is 25 to 50 weight%.
前記工程aの樹脂組成物に、G成分として硬化促進剤を添加する請求項12に記載のプリント配線板製造用の樹脂付銅箔の製造方法。 The manufacturing method of the resin-coated copper foil for printed wiring board manufacture of Claim 12 which adds a hardening accelerator as G component to the resin composition of the said process a. 請求項1〜請求項7のいずれかに記載の樹脂組成物を用いて絶縁層を構成したことを特徴とするプリント配線板。 The printed wiring board characterized by comprising the insulating layer using the resin composition in any one of Claims 1-7.
JP2009520611A 2007-06-25 2008-06-25 Resin composition and copper foil with resin obtained using the resin composition Expired - Fee Related JP5650908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009520611A JP5650908B2 (en) 2007-06-25 2008-06-25 Resin composition and copper foil with resin obtained using the resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007166869 2007-06-25
JP2007166869 2007-06-25
PCT/JP2008/061529 WO2009001850A1 (en) 2007-06-25 2008-06-25 Resin composition and copper foil with resin obtained by using the resin composition
JP2009520611A JP5650908B2 (en) 2007-06-25 2008-06-25 Resin composition and copper foil with resin obtained using the resin composition

Publications (2)

Publication Number Publication Date
JPWO2009001850A1 JPWO2009001850A1 (en) 2010-08-26
JP5650908B2 true JP5650908B2 (en) 2015-01-07

Family

ID=40185663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520611A Expired - Fee Related JP5650908B2 (en) 2007-06-25 2008-06-25 Resin composition and copper foil with resin obtained using the resin composition

Country Status (6)

Country Link
JP (1) JP5650908B2 (en)
KR (1) KR101249479B1 (en)
CN (1) CN101687981B (en)
MY (1) MY150635A (en)
TW (1) TW200916525A (en)
WO (1) WO2009001850A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439496B1 (en) * 2009-12-22 2014-09-12 에스케이이노베이션 주식회사 Polyamic acid composition, method for preparing the same and polyimide metal clad laminate the same
JP5491295B2 (en) * 2010-06-25 2014-05-14 パナソニック株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5580135B2 (en) * 2010-08-03 2014-08-27 三井金属鉱業株式会社 Printed wiring board manufacturing method and printed wiring board
CN102504197B (en) * 2011-10-10 2013-08-21 北京新福润达绝缘材料有限责任公司 Halogen-free epoxy resin composition with high proof tracking index and application thereof
CN102585440B (en) * 2012-01-16 2013-09-04 广州宏仁电子工业有限公司 High-CTI (comparative tracking index) halogen-free flame retardant resin composition for copper-clad laminate
CN102585663B (en) * 2012-02-06 2013-11-20 苏州太湖电工新材料股份有限公司 Halogen-free flame-retardant high-temperature-resistance insulation paint for motor
JP6375952B2 (en) 2013-01-07 2018-08-22 株式会社ニコン Composition, laminate, method for producing laminate, transistor and method for producing transistor
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
US10257938B2 (en) 2013-07-24 2019-04-09 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
KR102135414B1 (en) * 2013-12-20 2020-07-17 엘지이노텍 주식회사 Liquid crystal polymer resin composite and printed circuit board comprising isolation using the same
KR102113190B1 (en) * 2013-12-20 2020-05-20 엘지이노텍 주식회사 Liquid crystal polymer resin composite and printed circuit board comprising isolation using the same
KR102172298B1 (en) * 2014-03-17 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
KR102172297B1 (en) * 2014-04-17 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed curcuit board comprising insulating layer using the same
JP6640567B2 (en) 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
KR101852671B1 (en) 2015-01-21 2018-06-04 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board and method of manufacturing printed circuit board
KR101942621B1 (en) 2015-02-06 2019-01-25 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board, electronic device and method of manufacturing printed circuit board
US11008458B2 (en) 2016-03-17 2021-05-18 Qed Labs Inc. Articles with improved flame retardancy and/or melt dripping properties
JP2017193778A (en) 2016-04-15 2017-10-26 Jx金属株式会社 Copper foil, copper foil for high frequency circuit, copper foil with carrier, copper foil with carrier for high frequency circuit, laminate, method for manufacturing printed wiring board and method for producing electronic apparatus
JP7312931B2 (en) * 2016-09-28 2023-07-24 東特塗料株式会社 electric insulated wire
CN106564240B (en) * 2016-11-07 2018-08-31 北京新福润达绝缘材料有限责任公司 A kind of preparation method of high anti creepage trace glass felt layers pressing plate
US10899871B2 (en) * 2019-04-23 2021-01-26 Chang Chun Plastics Co., Ltd. Phosphorous containing epoxy resins and process for synthesis

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193188A (en) * 1995-01-18 1996-07-30 Mitsui Mining & Smelting Co Ltd Adhesive for copper foil and copper foil backed therewith
JPH11186724A (en) * 1997-12-25 1999-07-09 Sumitomo Bakelite Co Ltd Manufacturing multilayered printed wiring board
JPH11186723A (en) * 1997-12-25 1999-07-09 Sumitomo Bakelite Co Ltd Manufacturing multilayered printed wiring board
JPH11279258A (en) * 1998-01-27 1999-10-12 Toto Kasei Co Ltd Phosphorus-containing epoxy resin composition
JP2001181593A (en) * 1999-12-28 2001-07-03 Kashima Oil Co Ltd Thermosetting adhesive and flexible printed wiring board material using this
JP2002128867A (en) * 2000-10-20 2002-05-09 Nikko Materials Co Ltd Phenol hardener for epoxy resin and epoxy resin composition using the same
JP2005132925A (en) * 2003-10-29 2005-05-26 Matsushita Electric Works Ltd Epoxy resin composition and prepreg, metal-foil-clad laminate, and metal-foil-fitted resin sheet using the same
JP2005213352A (en) * 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd Resin composition for prepreg and prepreg using the same
JP2005314449A (en) * 2004-04-27 2005-11-10 Nikko Materials Co Ltd Additive for resin
JP2006328214A (en) * 2005-05-26 2006-12-07 Tamura Kaken Co Ltd Thermosetting resin composition, resin film, and film-attached product
JP2007099956A (en) * 2005-10-06 2007-04-19 Tamura Kaken Co Ltd Thermosetting resin composition, resin film and structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193188A (en) * 1995-01-18 1996-07-30 Mitsui Mining & Smelting Co Ltd Adhesive for copper foil and copper foil backed therewith
JPH11186724A (en) * 1997-12-25 1999-07-09 Sumitomo Bakelite Co Ltd Manufacturing multilayered printed wiring board
JPH11186723A (en) * 1997-12-25 1999-07-09 Sumitomo Bakelite Co Ltd Manufacturing multilayered printed wiring board
JPH11279258A (en) * 1998-01-27 1999-10-12 Toto Kasei Co Ltd Phosphorus-containing epoxy resin composition
JP2001181593A (en) * 1999-12-28 2001-07-03 Kashima Oil Co Ltd Thermosetting adhesive and flexible printed wiring board material using this
JP2002128867A (en) * 2000-10-20 2002-05-09 Nikko Materials Co Ltd Phenol hardener for epoxy resin and epoxy resin composition using the same
JP2005132925A (en) * 2003-10-29 2005-05-26 Matsushita Electric Works Ltd Epoxy resin composition and prepreg, metal-foil-clad laminate, and metal-foil-fitted resin sheet using the same
JP2005213352A (en) * 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd Resin composition for prepreg and prepreg using the same
JP2005314449A (en) * 2004-04-27 2005-11-10 Nikko Materials Co Ltd Additive for resin
JP2006328214A (en) * 2005-05-26 2006-12-07 Tamura Kaken Co Ltd Thermosetting resin composition, resin film, and film-attached product
JP2007099956A (en) * 2005-10-06 2007-04-19 Tamura Kaken Co Ltd Thermosetting resin composition, resin film and structure

Also Published As

Publication number Publication date
CN101687981B (en) 2012-04-04
TWI374909B (en) 2012-10-21
TW200916525A (en) 2009-04-16
KR20100024949A (en) 2010-03-08
MY150635A (en) 2014-02-14
WO2009001850A1 (en) 2008-12-31
CN101687981A (en) 2010-03-31
KR101249479B1 (en) 2013-03-29
JPWO2009001850A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5650908B2 (en) Resin composition and copper foil with resin obtained using the resin composition
JP5704793B2 (en) Resin composition for constituting insulating layer of printed wiring board
JP5750049B2 (en) Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production
KR101271008B1 (en) Resin composition for forming the adhesive layers of a multi-layer flexible printed circuit board
JP5576930B2 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
JP5554500B2 (en) Prepreg, printed wiring board, multilayer circuit board, and method for manufacturing printed wiring board
JP2020023714A (en) Resin material and multilayer printed board
WO2017170521A1 (en) Resin composition and multilayer substrate
JP6234143B2 (en) Curable resin composition, cured product thereof, electrical / electronic component and circuit board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP3676375B2 (en) Copper foil with resin for multilayer printed wiring board and multilayer printed wiring board using the copper foil
KR20070089053A (en) Thermosetting resin compositions, resin films in b-stage and build-up multi-layer board
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
US6544652B2 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP2020059820A (en) Resin material and multilayer printed wiring board
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
JP6608908B2 (en) Resin material and multilayer printed wiring board
JP2017052955A (en) Low thermal expandable resin composition, prepreg, laminated plate, and wiring board
JP6111518B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
KR101102218B1 (en) Resine composition and prepreg and printed wiring board using the same
JP2000336242A (en) Epoxy resin composition, prepreg, metal foil coated with resin, and laminate
JP2005281488A (en) Resin composition, prepreg and laminated plate
JP2008231273A (en) Resin composition for forming insulation layer of printed wiring board
JP2019090059A (en) Thermosetting epoxy resin composition, adhesive film for forming insulating layer and multilayer printed wiring board
JPH11181123A (en) Prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5650908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees