JP5639986B2 - 熱可塑性樹脂フィルムの製造方法 - Google Patents

熱可塑性樹脂フィルムの製造方法 Download PDF

Info

Publication number
JP5639986B2
JP5639986B2 JP2011240548A JP2011240548A JP5639986B2 JP 5639986 B2 JP5639986 B2 JP 5639986B2 JP 2011240548 A JP2011240548 A JP 2011240548A JP 2011240548 A JP2011240548 A JP 2011240548A JP 5639986 B2 JP5639986 B2 JP 5639986B2
Authority
JP
Japan
Prior art keywords
film
roller
thermoplastic resin
cooling
cellulose acylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011240548A
Other languages
English (en)
Other versions
JP2012045944A (ja
Inventor
藤田 昭秀
昭秀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011240548A priority Critical patent/JP5639986B2/ja
Publication of JP2012045944A publication Critical patent/JP2012045944A/ja
Application granted granted Critical
Publication of JP5639986B2 publication Critical patent/JP5639986B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Description

本発明は熱可塑性樹脂フィルムの製造方法に係り、特に液晶表示装置に好適な品質を有する熱可塑性樹脂フィルムの製造方法に関する。
従来、熱可塑性樹脂フィルムを延伸し、面内のレターデーション(Re)、厚み方向のレターデーション(Rth)を発現させ、液晶表示素子の位相差膜として使用し、視野角拡大を図ることが実施されている。
このような熱可塑性樹脂フィルムを延伸する方法として、フィルムの縦(長手)方向に延伸する方法(縦延伸)や、フィルムの横(幅)方向に延伸する方法(横延伸)、あるいは縦延伸と横延伸を同時に行う方法(同時延伸)が挙げられる。これらのうち、縦延伸は設備がコンパクトなため、従来から多く用いられてきた。通常、縦延伸は、2対以上のニップローラの間でフィルムをガラス転移温度(Tg)以上に加熱し、入口側のニップローラの搬送速度より出口側の搬送速度を速くすることで縦方向に延伸する方法である。
特許文献1には、セルロースエステルを縦延伸する方法が記載されている。この特許文献1は、縦延伸する方向を流延製膜方向と逆にすることで遅相軸の角度むらを改良したものである。また、特許文献2には、縦横比(L/W)が0.3以上、2以下の短スパン間に設置したニップローラを延伸ゾーン中に設置して延伸する方法が記載されている。この特許文献2によれば、厚み方向の配向(Rth)を改良することができる。ここで云う縦横比とは、延伸に用いるニップローラの間隔(L)を延伸する熱可塑性樹脂フィルムの幅(W)で割った値を指す。
特開2002−311240号公報 特開2003−315551号公報
ところで、延伸前(未延伸)の熱可塑性樹脂フィルムを、溶融樹脂を冷却ローラ上で冷却固化することで製膜する場合、冷却ローラの温度が適切でないときには、フィルムにスジ故障が発生したりレターデーションが増大してしまったりすることがある。
本発明はこのような事情に鑑みて成されたもので、スジ故障の防止やレターデーションの発現の抑制を図ることができるので、光学特性が均一な光学用途のフィルムを得ることのできる熱可塑性樹脂フィルムの製造方法を提供することを目的とする。
発明は、前記目的を達成するために、溶融した熱可塑性樹脂をダイからシート状に押し出し、該熱可塑性樹脂シートを、算術平均高さRaが100nm以下の表面性を有した、押圧用冷却ローラと押圧ローラとで挟んで冷却固化し、更に、複数の冷却ローラで搬送しながら冷却固化する熱可塑性樹脂フィルムの製造方法であって、前記押圧用冷却ローラと前記複数の冷却ローラの最初の冷却ローラとの間では前記熱可塑性樹脂シートを空冷するとともに、前記押圧用冷却ローラの温度と前記最初の冷却ローラに接触直前の前記熱可塑性樹脂シートの温度との差を11℃以上48℃以下とし、前記冷却ローラの温度を、該冷却ローラに前記熱可塑性樹脂シートが接触する際のシート温度に対して、±3℃以内にし、前記複数の冷却ローラの最下流側の冷却ローラを前記熱可塑性樹脂シートが離れる際のシート温度を、前記熱可塑性樹脂のガラス転移温度Tg(℃)−15℃以下となるようにし、前記押圧用冷却ローラと前記冷却ローラとにおいて、隣り合う該ローラのローラ外周速度比率が、下記(1)式を満たすとともに、該隣り合うローラ間のシート長さが、下記(2)式を満たすことを特徴とする熱可塑性樹脂フィルムの製造方法である。上流側から数えてn番目のローラのローラ直径をrn(cm)、n番目のローラと(n+1)番目のローラとの間のシート長さをsn(cm)、n番目のローラと(n+1)番目のローラとの間でのシート熱収縮率をcn(%)、n番目のローラの外周速度をωnとしたとき、0.98×(1−cn/100)< 〔 (ローラ外周速度比率) = ωn+1/ωn〕 < 1.02×(1−cn/100) …(1)式、sn/rn>0.3 …(2)式
本発明によれば、押圧用冷却ローラと冷却ローラとにおいて、ローラ(n+1番目)の外周速度ωn+1と、その前(上流側)のローラ(n番目)の外周速度ωnと、のローラ外周速度比率を、上記(1)式を満たすようにするとともに、隣り合うローラ間のシート長さを、上記(2)式を満たすようにすることで、シートが弛むことなく、また、シートが冷却ローラ上で滑ったり延伸されたりすることがないので、フィルムのスジ故障やレターデーションの発現を抑えることができる。
本発明の発明者は、溶融した熱可塑性樹脂をダイからシート状に押し出し、該熱可塑性樹脂シートを、複数の冷却ローラで搬送しながら冷却固化してフィルムを製膜する溶融製膜法によるフィルムの製造方法において、フィルムのスジ故障やレターデーションが発現してしまう原因について鋭意研究した結果、製膜直後のフィルムが冷却ローラで急激に冷却されることによるという知見を得た。即ち、複数の冷却ローラでフィルムを冷却する際、フィルムを冷却固化する目的で冷却ローラの温度を設定するため、冷却ローラにフィルムが接触するときに冷却ローラとフィルムとに温度差が生じ、その温度差によりフィルムが冷却ローラ上で急激に収縮されてしまい、フィルムのスジ故障やレターデーションが発現してしまう原因となる。そこで、本発明者は、フィルムの冷却を冷却ローラ上で行うのではなく、冷却ローラに接触していない状態、つまり、押圧用冷却ローラと複数の冷却ローラの最初の冷却ローラとの間では熱可塑性樹脂シートを空冷するとともに、押圧用冷却ローラの温度と最初の冷却ローラに接触直前の熱可塑性樹脂シートの温度との差を11℃以上48℃以下とすることで、上記原因を解消することとした。そのため、冷却ローラにフィルムが接触する際のフィルム温度と、フィルムが接触する冷却ローラの温度と、の差を0℃にすることで好ましく上記原因を解消することができるが、温度差は±3℃以内であれば問題なく上記原因を解消することができる。また、複数の冷却ローラの最下流において、フィルムの温度を、樹脂のTg(℃)−15℃以下になるようにするので、複数の冷却ローラでフィルムを搬送しながら冷却ローラ間の空間でフィルムを冷却固化することができる。
本発明の発明者は、更に、製造されたフィルムの厚みムラ及びレターデーションRe、Rthの分布が発現することがあり、その原因について鋭意研究し、タッチロール法によってフィルムを製造することで上記問題を解決できることを見出した。このタッチロール法は、ダイから押し出された樹脂を押圧用冷却ローラと押圧ローラとで挟み込みながら冷却する方法であり、厚み精度を向上させることができる。そして、レターデーションRe、Rthの分布が発現する原因については、延伸前のフィルムの厚みムラに起因することを見出し、厚み精度の良いタッチロール法で製膜したフィルムは、延伸しても均一に延伸されるため延伸ムラが生じにくく、レターデーション分布を抑えることができることを見出した。
従って、請求項1に記載の発明によれば、押圧用冷却ローラと複数の冷却ローラの最初の冷却ローラとの間では熱可塑性樹脂シートを空冷し、押圧用冷却ローラの温度と最初の冷却ローラに接触直前の熱可塑性樹脂シートの温度との差を11℃以上48℃以下とするとともに、冷却ローラの温度を、該冷却ローラに熱可塑性樹脂シートが接触する際のシート温度に対して、±3℃以内にし、複数の冷却ローラの最下流側の冷却ローラを離れる際のシート温度を熱可塑性樹脂のガラス転移温度Tg(℃)−15℃以下となるようにすることで、冷却ローラではなく冷却ローラ間でフィルムを冷却固化するので、冷却ローラ上でシートが急激に収縮されてしまうことを抑制することができ、フィルムのスジ故障やレターデーションの発現を抑えることができ、更に、フィルムの厚みムラ及びレターデーションRe、Rthの分布を抑制することができるので、厚み精度の良い、幅方向・長手方向に光学特性が均一な光学用途に好適な熱可塑性樹脂フィルムを得ることができる。
発明は、前記押圧用冷却ローラと前記押圧ローラとの少なくとも一方が、金属製の弾性ローラであることが好ましい
発明によれば、押圧用冷却ローラと押圧ローラとの少なくとも一方が、金属製の弾性ローラであるので、弾性変形し熱可塑性樹脂シートを介してもう一方のローラと面接触するとともに、弾性変形した形状が元に戻る復元力で熱可塑性樹脂シートを面状かつ均一に押圧することができる。このように樹脂が面状かつ均一に押圧されながら冷却されると、内部に残留歪みのないフィルムが製膜され、これにより製膜時のレターデーションの発現を抑制できる。
発明は、前記複数の冷却ローラは、算術平均高さRaが100nm以下の表面性であることが好ましい
発明によれば、複数の冷却ローラのそれぞれの表面性が算術平均高さRaで100nm以下であるので、フィルムの表面性を良くすることができる。
発明は、前記ダイから吐出された時の熱可塑性樹脂のゼロせん断粘度が2000Pa・sec以下であることが好ましい
発明によれば、ダイから吐出された時の熱可塑性樹脂のゼロせん断粘度が2000Pa・sec以下であることで更にフィルムにスジ故障が発生することを防止することができる。尚、ゼロせん断粘度が2000Pa・secを超えてしまうと、ダイから吐出された溶融樹脂が吐出直後に大きく広がってダイの先端部に付着しやすく、これが汚れとなってスジ故障を発生しやすくなる。また、ゼロせん断粘度は、プレートコーン型の溶融粘度測定装置により溶融粘度のせん断速度依存性データを測定し、溶融粘度のせん断速度依存性の無い領域の測定値からゼロせん断速度の時の溶融粘度を外挿することにより得られる。
発明は、フィルム厚みが20〜300μm、面内のレターデーションReが20nm以下、厚み方向のレターデーションRthが20nm以下であることが好ましい
本発明によれば、厚み精度が高く、スジ故障がない、且つ歪みの小さい、光学フィルムに適した熱可塑性樹脂フィルムを製造することができるので、厚みが20〜300μm、面内のレターデーション(Re)が20nm以下、厚み方向のレターデーション(Rth)が20nm以下である熱可塑性樹脂フィルムを製造することができる。
発明は、前記熱可塑性樹脂はセルロースアシレート樹脂であることを特徴とする。
本発明は、レターデーション発現性の良いセルロースアシレートフィルムの製造において特に有効である。
発明は、前記セルロースアシレート樹脂は、数平均分子量が2万〜8万であり、且つ、Aをアセチル基の置換度、Bを炭素数3〜7のアシル基の置換度の総和としたときに、アシル基が下記の置換度、2.0≦A+B≦3.0、0≦A≦2.0、1.2≦B≦2.9、を満足することを特徴とする。
このような置換度を満足するセルロースアシレート樹脂は、融点が低い、延伸し易い、防湿性に優れているという特徴を有するので、液晶表示素子の位相差膜等の機能性フィルムとして優れた熱可塑性樹脂フィルムを得ることができる。
本発明によれば、溶融樹脂を冷却ローラ上で冷却固化することで製膜する場合に、スジ故障の防止やレターデーションの発現の抑制を図ることができるので、光学特性が均一な光学用途のフィルムを得ることのできる熱可塑性樹脂フィルムの製造方法を提供することができる。
本発明が適用されるフィルム製造装置の構成を示す模式図 押出機の構成を示す概略図 製膜工程部の一対のローラを示す概略図 製膜工程部の構成を示す概略図 本発明の実施例の説明図
以下、添付図面に従って本発明に係る熱可塑性樹脂フィルムの製造方法の好ましい実施の形態について説明する。なお、本実施の形態では、熱可塑性樹脂フィルムとして、セルロースアシレートフィルムを製造する例を示すが、本発明はこれに限定するものではなく、飽和ノルボルネン樹脂やポリカーボネート樹脂等の製造にも適用することができる。また、本実施の形態では、ダイから押し出された樹脂を一対の冷却ローラで挟み込みながら冷却するタッチロール法でフィルムを製膜した場合で、押圧ローラが金属製の弾性ローラである場合について説明する。
図1は、熱可塑性樹脂フィルムの製造装置の概略構成の一例を示している。図1に示すように製造装置10は主として、延伸前のセルロースアシレートフィルム12を製造する製膜工程部14と、製膜工程部14で製造されたセルロースアシレートフィルム12を縦延伸する縦延伸工程部16と、横延伸する横延伸工程部18と、延伸されたセルロースアシレートフィルム12を巻き取る巻取工程部20とで構成される。
製膜工程部14では、押出機22で溶融されたセルロースアシレート樹脂がダイ24からシート状に吐出され、回転する一対のローラ26、27間に供給される。そして、ローラ27上で冷却されて固化したシートは、複数の冷却ローラ28、29で搬送されながら冷却され、セルロースアシレートフィルム12となる。セルロースアシレートフィルム12は、ローラ29から剥離された後、縦延伸工程部16、横延伸工程部18に順に送られて延伸され、巻取工程部20でロール状に巻き取られる。これにより、延伸セルロースアシレートフィルム12が製造される。以下、各工程部の詳細について説明する。
図2に製膜工程部14の単軸スクリューの押出機22を示す。図2に示すように、シリンダ32内にはスクリュー軸34にフライト36を有する単軸スクリュー38が配設され、図示しないホッパーからセルロースアシレート樹脂が供給口40を介してシリンダ32内に供給される。シリンダ32内は供給口40側から順に、供給口40から供給されたセルロースアシレート樹脂を定量輸送する供給部(Aで示す領域)と、セルロースアシレート樹脂を混練・圧縮する圧縮部(Bで示す領域)と、混練・圧縮されたセルロースアシレ
ート樹脂を計量する計量部(Cで示す領域)とで構成される。押出機22で溶融されたセルロースアシレート樹脂は、吐出口42からダイ24に連続的に送られる。
押出機22のスクリュー圧縮比は、2.5〜4.5に設定され、L/Dは20〜50に設定されている。ここで、スクリュー圧縮比とは、供給部Aと計量部Cとの容積比、即ち供給部Aの単位長さ当たりの容積÷計量部Cの単位長さ当たりの容積で表され、供給部Aのスクリュー軸34の外径d1、計量部Cのスクリュー軸34の外径d2、供給部Aの溝部径a1、及び計量部Cの溝部径a2とを使用して算出される。また、L/Dとは、図2のシリンダ内径(D)に対するシリンダ長さ(L)の比である。また、押出温度は190〜240℃に設定される。押出機22内での温度が240℃を超える場合には、押出機22とダイ24との間に冷却機(図示せず)を設けるようにするとよい。
尚、押出機22は、1軸押出機でも2軸押出機でもよいが、スクリュー圧縮比が2.5を下回って小さすぎると、十分に混練されず、未溶解部分が発生したり、剪断発熱が小さく結晶の融解が不十分となり、製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなり、さらに、気泡が混入し易くなる。これにより、セルロースアシレートフィルム12を延伸したときに、残存した結晶が延伸性を阻害し、配向を十分に上げることができなくなる。逆に、スクリュー圧縮比が4.5を上回って大きすぎると、剪断応力がかかり過ぎて発熱により樹脂が劣化し易くなるので、製造後のセルロースアシレートフィルムに黄色みが出易くなる。また、剪断応力がかかり過ぎると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、スクリュー圧縮比は2.5〜4.5の範囲が良く、より好ましくは2.8〜4.2の範囲、特に好ましくは3.0〜4.0の範囲である。
また、L/Dが20を下回って小さすぎると、溶融不足や混練不足となり、圧縮比が小さい場合と同様に製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなる。逆に、L/Dが50を上回って大きすぎると、押出機22内でのセルロースアシレート樹脂の滞留時間が長くなり過ぎ、樹脂の劣化を起こし易くなる。また、滞留時間が長くなると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、L/Dは20〜50の範囲が良く、好ましくは22〜45の範囲、特に好ましくは24〜40の範囲である。
また、押出温度が190℃を下回って低すぎると、結晶の融解が不十分となり、製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなり、セルロースアシレートフィルムを延伸したときに、延伸性を阻害し、配向を十分に上げることができなくなる。逆に、押出温度が240℃を超えて高すぎると、セルロースアシレート樹脂が劣化し、黄色み(YI値)の程度が悪化してしまう。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、押出温度は190℃〜240℃が良く、好ましくは195℃〜235℃の範囲、特に好ましくは200℃〜230℃の範囲である。
上記の如く構成された押出機22を用いてセルロースアシレート樹脂が溶融され、この溶融樹脂がダイ24に連続的に供給され、ダイ24の先端(下端)からシート状に吐出される。吐出されたときのセルロースアシレート樹脂のゼロせん断粘度が2000Pa・sec以下であることが好ましい。ゼロせん断粘度が2000Pa・secを超えてしまうと、ダイから吐出された溶融樹脂が吐出直後に大きく広がってダイの先端部に付着しやすく、これが汚れとなってスジ故障を発生しやすくなってしまう。吐出された溶融樹脂は、ローラ26、27(図1参照)の間に供給される。
図3は、ローラ26、27の一実施形態を示したものである。ローラ26、27は、押圧ローラ26、押圧用冷却ローラ27となっている。
ローラ26、27は、表面が鏡面、或いは鏡面に近い状態になっており、算術平均高さRaが100nm以下、好ましくは50nm以下、さらに好ましくは25nm以下に鏡面化される。また、ローラ26、27は、その表面温度を制御できるように構成されており、例えばローラ26、27の内部に水等の液状媒体を循環させることによって、表面温度を制御できるようになっている。
ローラ26、27のうち、押圧ローラ26は、もう一方の押圧用冷却ローラ27よりも小さい径で形成されており、表面が金属材から成り、その表面温度を精度良く制御できるようになっていることが好ましい。また、押圧ローラ26は、外層から、外殻を構成する金属筒44、液状媒体層46、弾性体層48、金属シャフト50の順で構成されている金属性の弾性ローラであることが好ましい。これにより、一対のローラ26、27でシート状の溶融樹脂を挟持すると、押圧ローラ26がシートを介して押圧用冷却ローラ27からの反力を受け、押圧用冷却ローラ27の面に倣って凹状に弾性変形する。従って、押圧ローラ26と押圧用冷却ローラ27はシートに対して面接触するとともに、弾性変形した押圧ローラ26の形状が元に戻る復元力によって、挟持されたシートは面状に押圧されながら、押圧用冷却ローラ27で冷却される。外殻を構成する金属筒(外筒)44は、金属薄膜で作られており、溶接継ぎ部のないシームレス構造であることが好ましい。また、金属筒44の肉厚Zは、0.05mm<Z<7.0mmの範囲であることが好ましい。ここで、弾性ローラの金属筒の肉厚Zは0.05mm以下であると、前記復元力が小さく面質改善効果が得られないだけでなく、ローラ強度が弱くなるためである。また、7.0mm以上であると、弾性が得られず残留歪みの解消効果が出ないからである。尚、金属筒の肉厚Zは0.05mm<Z<7.0mmを満たせば問題ないが、0.2mm<Z<5.0mmであることがより好ましい。
また、セルロースアシレート樹脂のガラス転移温度Tg(℃)− 弾性ローラ26の温度(℃)をX(℃)、製膜工程における製膜速度をY(m/min)としたとき、0.0043X2 +0.12X+1.1<Y<0.019X2 +0.73X+24、を満たすように製膜速度Yと押圧ローラ26の温度を設定することが好ましい。製膜速度Yが0.0043X2 +0.12X+1.1以下となると押圧する時間が長すぎてフィルムに残留歪みが発現してしまい、製膜速度Yが0.019X2 +0.73X+24以上になると冷却する時間が短かすぎてフィルムを徐冷することができず押圧ローラ26へ貼り付いてしまうからである。例えば、セルロースアシレート樹脂のTgが120℃の場合、ポリシングローラ26の温度が115℃、90℃、60℃であるときに、フィルムに残留歪みが発現するのは製膜速度Yが夫々1m/min、8m/min、23m/min以下のときであり、押圧ローラへ貼り付いてしまうのは製膜速度Yが夫々29m/min、64m/min、137m/min以上のときであった。また、様々な樹脂に対しても実験を行い、これらの実験データよりXとYの関係式は求めた。尚、押圧用冷却ローラ27の温度は押圧ローラ26の温度に対し±20℃以内であることが必要であり、好ましくは±15℃以内、更に好ましくは±10℃である。
更に、一対のローラ26、27の押圧ローラ26と押圧用冷却ローラ27とが樹脂シートを介して接触している長さをQ(cm)、押圧ローラ26と押圧用冷却ローラ27とで樹脂シートを挟む線圧をP(kg/cm)としたとき、3kg/cm2 <P/Q<50kg/cm2 、を満たすように線圧Pと接触長さQを設定することが好ましい。ここで、P/Qが3kg/cm2 以下であると樹脂を面状に押圧する押圧力が小さすぎて面状改善効果がなく、P/Qが50kg/cm2 以上であると押圧力が大きすぎてフィルムに残留歪みが発生してしまい、レターデーションが発現する。
上記の如く構成された製膜工程部14によれば、ダイ24からセルロースアシレート樹脂を吐出することにより、吐出されたセルロースアシレート樹脂が一対のローラ26、27間で極く僅かな液溜まり(バンク)を形成し、このセルロースアシレート樹脂が一対のローラ26、27で挟圧されて厚みが調整されながらシート状になる。その際、押圧ローラ26がセルロースアシレート樹脂を介して押圧用冷却ローラ27からの反力を受け、押圧用冷却ローラ27の面に倣って凹状に弾性変形し、セルロースアシレート樹脂は押圧ローラ26と押圧用冷却ローラ27によって面状に押圧される。そして、上述した条件を満たす金属筒の肉厚Z、温度、線圧、冷却長さ、を満たすローラ26、27で挟圧してフィルム12を製膜すると、スジ故障がなく、厚み精度が高く、且つ、残留歪みが抑制されレターデーションの小さな光学フィルムに適したセルロースアシレートフィルム12を製造することができる。
一対のローラ26、27で挟圧されたフィルム12は、押圧用冷却ローラ27に巻きかけられて冷却された後、更に、冷却ローラ28、冷却ローラ29と順次に送られ、冷却ローラ29の表面から剥離され、後段の縦延伸工程部16に送られる。
ここで、冷却ローラ28、29の温度を、それぞれの冷却ローラにフィルムが接触する際のフィルム温度に比べ、±3℃以内にするとともに、複数の冷却ローラ28、29の最下流側の冷却ローラ29を離れる際のフィルム温度を、熱可塑性樹脂のガラス転移温度Tg(℃)−15℃以下となるようにする。
これは、複数の冷却ローラ28、29で樹脂シートを冷却する際、フィルム12を冷却ローラ28、29上で冷却固化する目的で冷却ローラの温度を設定すると、冷却ローラ28、29に樹脂シートが接触するときに冷却ローラと樹脂シートとに温度差が生じ、その温度差により樹脂シートが急激に冷却ローラ上で収縮されてしまい、フィルムのスジ故障やレターデーションが発現する原因となるのを防止するためである。
そこで、樹脂シートの冷却は冷却ローラ上で行うのではなく、冷却ローラ28、29に接触していない状態、つまり、冷却ローラ間の空間において、搬送されている樹脂シートを冷却する。そのため、冷却ローラ28、29に樹脂シートが接触する際のシート温度と、樹脂シートが接触する冷却ローラの温度と、の差を0℃にすることで好ましいが、温度差は±3℃以内であれば問題なく冷却ローラ上で収縮されてしまうのを防ぐことができる。
また、複数の冷却ローラ28、29の最下流の冷却ローラ29を離れる際のシート温度を、熱可塑性樹脂のTg(℃)−15℃以下になるようにするので、複数の冷却ローラ28、29でフィルム12を搬送しながら冷却ローラ間の空間でフィルム12を冷却固化することができる。
尚、ここで、冷却ローラ間の空間で樹脂シートを効果的に冷却するために、非接触型の冷却装置(不図示)を設けても良い。
従って、冷却ローラ上ではなく冷却ローラ間の空間で樹脂シートを冷却固化するので、冷却ローラ上で樹脂シートが急激に収縮されてしまうことを防ぐことができ、フィルムのスジ故障やレターデーションの発現を抑えることができる。
また、押圧用冷却ローラ27と冷却ローラ28、29とにおいて、隣り合うローラのローラ外周速度比率が、上流側から数えてn番目のローラのローラ直径をr(cm)、n番目のローラと(n+1)番目のローラとの間のフィルム長さをs(cm)、n番目のローラと(n+1)番目のローラとの間でのフィルム熱収縮率をc(%)、n番目の冷却ローラの外周速度をωとしたとき、0.98×(1−c/100) < 〔 (ローラ外周速度比率) = ωn+1/ω 〕 < 1.02×(1−c/100)、及び、s/r> 0.3、を満たすことが好ましい。
即ち、図4において、ω/ωが0.98×(1−c/100)から1.02×(1−c/100)までの間、及び、ω/ωが0.98×(1−c/100)から1.02×(1−c/100)までの間、を満たすように冷却ローラ28、29の外周速度ω、ωを設定する。更に、s/r> 0.3、及び、s/r > 0.3、を満たすようにローラ間のシート長さを設定する。
このように冷却ローラ28、29を設定することで、フィルムが弛むことなく、また、フィルムが冷却ローラ上で滑ったり延伸されたりすることがないので、フィルム12のスジ故障やレターデーションの発現を抑えることができる。
尚、上述した実施形態は2個の冷却ローラ28、29の例であるが、冷却ローラの個数はこれに限定するものではなく、少なくとも1個以上の冷却ローラであれば、フィルム12のスジ故障やレターデーションの発現を抑えることができる。
上記の如く構成された製膜工程部14において、フィルム厚みが20〜300μm、面内のレターデーションReが20nm以下、厚み方向のレターデーションRthが20nm以下であるセルロースアシレートフィルム12を製造することができる。
ここで、レターデーションRe、Rthは、以下の式で求められる。
Re(nm) =|n(MD)−n(TD)|×T(nm)
Rth(nm)=|{(n(MD)+n(TD))/2}−n(TH)|×T(nm)
式中のn(MD)、n(TD)、n(TH)は長手方向、幅方向、厚み方向の屈折率を示し、Tはnm単位で表した厚みを示す。
以下に、製膜工程部14で製造したセルロースアシレートフィルム12を延伸し、延伸セルロースアシレートフィルム12を製造するまでの延伸工程について説明する。
セルロースアシレートフィルム12の延伸は、セルロースアシレートフィルム12中の分子を配向させ、面内のレターデーション(Re)と厚み方向のレターデーション(Rth)を発現させるために行われる。
図1に示すように、セルロースアシレートフィルム12は、先ず、縦延伸工程部16で長手方向に縦延伸される。縦延伸工程部16では、セルロースアシレートフィルム12が予熱された後、セルロースアシレートフィルム12が加熱された状態で、二つのニップローラ30、31に巻き掛けられる。出口側のニップローラ31は、入口側のニップローラ30よりも早い搬送速度でセルロースアシレートフィルム12を搬送しており、これによって、セルロースアシレートフィルム12が縦方向に延伸される。
縦延伸工程部16における予熱温度はTg−40℃以上、Tg+60℃以下が好ましく、Tg−20℃以上、Tg+40℃以下がより好ましく、Tg以上、Tg+30℃以下がさらに好ましい。また、縦延伸工程部16の延伸温度は、Tg以上、Tg+60℃以下が好ましく、Tg+2℃以上、Tg+40℃以下がより好ましく、Tg+5℃以上、Tg+30℃以下がさらに好ましい。縦方向の延伸倍率は1.0倍以上2.5倍以下が好ましく、1.1倍以上、2倍以下がさらに好ましい。
縦延伸されたセルロースアシレートフィルム12は、横延伸工程部18に送られ、幅方向に横延伸される。横延伸工程部18では例えばテンターを好適に用いることができ、このテンターによってセルロースアシレートフィルム12の幅方向の両端部をクリップで把持し、横方向に延伸する。この横延伸によって、レターデーションRthを一層大きくすることができる。
横延伸は、テンターを用いて実施するのが好ましく、好ましい延伸温度はTg以上、Tg+60℃以下が好ましく、より好ましくはTg+2℃以上、Tg+40℃以下、さらに好ましくはTg+4℃以上、Tg+30℃以下である。延伸倍率は1.0倍以上、2.5倍以下が好ましく、1.1倍以上2.0倍以下がさらに好ましい。横延伸の後に縦、横のいずれか、または両方に緩和させることも好ましい。これにより幅方向の遅相軸の分布を小さくすることができる。
このような延伸により、Reの絶対値が500nm以下、より好ましくは10nm以上、400nm以下、さらに好ましくは15nm以上、300nm以下、Rthの絶対値が0nm以上、500nm以下、より好ましくは50nm以上、400nm以下、さらに好ましくは70nm以上、350nm以下である。
このうちRe≦Rthを満足するものがより好ましく、さらに好ましくはRe×2≦Rthを満足するものがさらに好ましい。このような高Rth、低Reを実現するためには、上述のように縦延伸したものを、横(幅)方向に延伸するのが好ましい。即ち、縦方向と横方向の配向の差が面内のレターデーションの差(Re)となるが、縦方向に加えその直交方向である横方向にも延伸することで、縦横の配向の差を小さくし面配向(Re)を小さくできる。一方、縦に加え横にも延伸することで面積倍率は増加するため、厚みの減少に伴い厚み方向の配向は増加し、Rthを増加させることができるためである。
さらに、Re,Rthの幅方向、長手方向の場所による変動をいずれも10%以下、好ましくは8%以下、より好ましくは6%以下、さらに好ましくは4%以下、最も好ましくは2%以下にすることが好ましい。
また、厚みの幅方向、長手方向の場所による変動をいずれも10%以下、好ましくは8%以下、より好ましくは6%以下、さらに好ましくは4%以下、最も好ましくは2%以下にすることが好ましい。
尚、ここで、厚み、及びRe,Rthの変動は、以下の通り求めることができる。
延伸されたセルロースアシレートフィルム12を10m(メートル)サンプリングし、フィルム幅方向の両端部20%ずつを除き、フィルム中心部から幅方向、長手方向に等間隔でそれぞれ50点サンプリングし、厚み、Re・Rthを測定する。尚、Re・Rthの測定には、例えば、自動複屈折計(KOBRA−21ADH/PR:王子計測器(株)製)により測定することができる。
幅方向の厚み平均値ThTD-av、最大値ThTD-max、最小値ThTD-minを求め、
(ThTD-max−ThTD-min)÷ ThTD-av×100 [%]
が幅方向の厚みの変動である。
また、長手方向の厚み平均値ThMD-av、最大値ThMD-max、最小値ThMD-minを求め

(ThMD-max−ThMD-min)÷ ThMD-av×100 [%]
が長手方向の厚みの変動である。
Re,Rthについても、それぞれ幅方向の平均値ReTD-av,RthTD-av、最大値ReTD-max,RthTD-max、最小値ReTD-min,RthTD-minを求め、同様の計算でReTD,ReMD,RthTD,RthMDの変動(但し、求めた値の絶対値)を求めることができる。
上述したように本実施の形態によれば、製造されたセルロースアシレートフィルム12の厚み精度の向上を図ることができ、幅方向・長手方向に光学特性が均一な光学用途のフィルムを得ることができる。
延伸後のセルロースアシレートフィルム12は、図1の巻取工程部20でロール状に巻き取られる。その際、セルロースアシレートフィルム12の巻取りテンションは、0.02kg/mm2 以下とすることが好ましい。巻取りテンションをこのような範囲に設定することによって、延伸セルロースアシレートフィルム12にレターデーション分布を発生させることなく巻き取ることができる。
以下に、本発明に適したセルロースアシレート樹脂、延伸前のセルロースアシレートフィルム12の製膜方法、セルロースアシレートフィルム12の加工方法について手順にそって詳細に説明する。
(セルロースアシレート樹脂)
本発明で用いるセルロースアシレートは以下の特徴を有するものが好ましい。ここで、Aはアセチル基の置換度、Bは炭素数3〜7のアシル基の置換度の総和を表す。
2.0≦A+B≦3. 0 式(1)
0≦A≦2.0 式(2)
1. 2≦B≦2. 9 式(3)
本発明のセルロースアシレートにおいて、前記式(1)で示されるように、A+Bは2.0〜3. 0を満足することを特徴とする。好ましくは2.4〜3. 0であり、より好ましくは2.5〜2. 95である。A+Bが2.0より小さい場合は、セルロースアシレートの親水性が増大しフィルムの透湿性が大きくなるため好ましくない。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
前記式(2)で示されるように、Aは0〜2.0を満足することを特徴とする。好ましくは0.05〜1. 8であり、より好ましくは0.1〜1. 6である。
前記式(3)に示すBは1. 2〜2. 9を満足することを特徴とする。好ましくは1. 3〜2. 9であり、より好ましくは1. 4〜2. 9であり、さらに好ましくは1. 5〜2. 9である。
Bの1/2以上がプロピオニル基の場合には、
2.4≦A+B≦3.0
2.0≦B≦2.9
Bの1/2未満がプロピオニル基の場合には、
2.4≦A+B≦3.0
1.3≦B≦2.5
が好ましく、Bの1/2以上がプロピオニル基の場合には、
2.5≦A+B≦2.95
2.4≦B≦2.9
Bの1/2未満がプロピオニル基の場合には、
2.5≦A+B≦2.95
1.4≦B≦2.0が更に好ましい。
本発明では、アシル基の中に占めるアセチル基の置換度を少なくし、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基の置換度の総和を多くしていることが特徴である。これにより、延伸後の経時のRe,Rth変化を小さくすることができる。これはアセチル基より長いこれらの基を多くすることでフィルムの柔軟性を向上させ延伸性を高くできるため、延伸に伴いセルロースアシレート分子の配向が乱れ難くなり、これにより発現するRe,Rthの経時変化が減少するためである。しかし、アシル基を上記のものより長くすると、ガラス転移温度(Tg)や弾性率を低下させすぎるため好ましくない。置換度Bの対象となる、炭素数3〜7のアシル基のうち好ましいものは、プロピオニル、ブチリル、2−メチルプロピオニル、ペンタノイル、3−メチルブチリル、2−メチルブチリル、2,2−ジメチルプロピオニル(ピバロイル)、ヘキサノイル、2−メチルペンタノイル、3−メチルペンタノイル、4−メチルペンタノイル、2,2−ジメチルブチリル、2,3−ジメチルブチリル、3,3−ジメチルブチリル、シクロペンタンカルボニル、ヘプタノイル、シクロヘキサンカルボニル、ベンゾイルなどを挙げることができるが、より好ましくは、プロピオニル、ブチリル、ペンタノイル、ヘキサノイル、ベンゾイルであり、特に好ましくは、プロピオニル、ブチリルである。
これらのセルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物−酢酸−硫酸触媒による液相酢化法である。具体的には、綿花リンターや木材パルプ等のセルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記カルボン酸化混液は、一般に溶媒としての酢酸、エステル化剤としての無水カルボン酸および触媒としての硫酸を含む。無水カルボン酸は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水カルボン酸の加水分解およびエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことによりケン化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは中和することなく水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理によりセルロースアシレートを得る。
本発明で好ましく用いられるセルロースアシレートの数平均分子量は2万〜8万であることが必要であり、好ましくは3万〜7.5万、さらに好ましくは4万〜7万である。分子量が2万を下回ると、フィルムの機械物性が十分でなく、割れやすくなり好ましくない。一方、分子量が8万を超えて大きい場合には溶融製膜時の溶融粘度が高くなり過ぎるため好ましくない。
このような粘度平均重合度の調整には低分子量成分を除去することでも達成できる。低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。さらに重合方法でも分子量を調整できる。例えば、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100重量に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。
本発明においては、セルロースアシレートのGPCによる重量平均重合度/数平均重合度が2.0〜5. 0であることが好ましく、2.2〜4. 5であることがさらに好ましく、2.4〜4. 0であることが特に好ましい。
さらに、本発明のセルロースアシレートは、残留硫酸根量を0〜100ppmの範囲にすることによって、熱安定性を向上させ、セルロースアシレートフィルムの溶融製膜において着色せず、透明性の高いセルロースアシレート光学フィルムが得られる。
これらのセルロースアシレートは1種類のみを用いてもよく、2種以上混合しても良い。また、セルロースアシレート以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにしたときの透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
さらに本発明では可塑剤を添加することで、セルロースアシレートの結晶融解温度(Tm)を下げることが出来るだけでなく、経時によるRe,Rth変化を軽減できるので好ましい。これは可塑剤の添加でセルロースアシレートが疎水化し、吸水によるセルロースアシレート分子の延伸配向の緩和を抑制できるためである。用いる可塑剤の分子量は特に限定されるものではなく、低分量でもよく高分子量でもよい。可塑剤の種類は、リン酸エステル類、アルキルフタリルアルキルグリコレート類、カルボン酸エステル類、多価アルコールの脂肪酸エステル類などが挙げられる。それらの可塑剤の形状としては固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。溶融製膜を行う場合は、不揮発性を有するものを特に好ましく使用することができる。
リン酸エステルの具体例としては、例えばトリフェニルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェート、トリオクチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート、1,4―フェニレンーテトラフェニル燐酸エステル等を挙げることができる。また特表平6−501040号公報の請求項3〜7に記載のリン酸エステル系可塑剤を用いることも好ましい。
アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
カルボン酸エステルとしては、例えばジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジオクチルフタレートおよびジエチルヘキシルフタレート等のフタル酸エステル類、およびクエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等のクエン酸エステル類、ジメチルアジペート、ジブチルアジペート、ジイソブチルアジペート、ビス(2−エチルヘキシル)アジペート、ジイソデシルアジペート、ビス(ブチルジグリコールアジペート)等のアジピン酸エステル類、テトラオクチルピロメリテート、トリオクチルトリメリテートなどの芳香族多価カルボン酸エステル類、ジブチルアジペート、ジオクチルアジペート、ジブチルセバケート、ジオクチルセバケート、ジエチルアゼレート、ジブチルアゼレート、ジオクチルアゼレートなどの脂肪族多価カルボン酸エステル類、グリセリントリアセテート、ジグリセリンテトラアセテート、アセチル化グリセライド、モノグリセライド、ジグリセライドなどの多価アルコールの脂肪酸エステル類などを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、トリアセチン等を単独あるいは併用するのが好ましい。
また、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネートなどのグリコールと二塩基酸とからなる脂肪族ポリエステル類、ポリ乳酸、ポリグリコール酸などのオキシカルボン酸からなる脂肪族ポリエステル類、ポリカプロラクトン、ポリプロピオラクトン、ポリバレロラクトンなどのラクトンからなる脂肪族ポリエステル類、ポリビニルピロリドンなどのビニルポリマー類などの高分子量系可塑剤が挙げられる。可塑剤はこれらを単独もしくは低分量可塑剤と併用して使用することができる。
多価アルコール系可塑剤は、セルロース脂肪酸エステルとの相溶性が良く、また熱可塑化効果が顕著に現れるグリセリンエステル、ジグリセリンエステルなどグリセリン系のエステル化合物やポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール、ポリアルキレングリコールの水酸基にアシル基が結合した化合物などである。
具体的なグリセリンエステルとして、グリセリンジアセテートステアレート、グリセリンジアセテートパルミテート、グリセリンジアセテートミスチレート、グリセリンジアセテートラウレート、グリセリンジアセテートカプレート、グリセリンジアセテートノナネート、グリセリンジアセテートオクタノエート、グリセリンジアセテートヘプタノエート、グリセリンジアセテートヘキサノエート、グリセリンジアセテートペンタノエート、グリセリンジアセテートオレート、グリセリンアセテートジカプレート、グリセリンアセテートジノナネート、グリセリンアセテートジオクタノエート、グリセリンアセテートジヘプタノエート、グリセリンアセテートジカプロエート、グリセリンアセテートジバレレート、グリセリンアセテートジブチレート、グリセリンジプロピオネートカプレート、グリセリンジプロピオネートラウレート、グリセリンジプロピオネートミスチレート、グリセリンジプロピオネートパルミテート、グリセリンジプロピオネートステアレート、グリセリンジプロピオネートオレート、グリセリントリブチレート、グリセリントリペンタノエート、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリンプロピオネートラウレート、グリセリンオレートプロピオネートなどが挙げられるがこれに限定されず、これらを単独もしくは併用して使用することができる。
この中でも、グリセリンジアセテートカプリレート、グリセリンジアセテートペラルゴネート、グリセリンジアセテートカプレート、グリセリンジアセテートラウレート、グリセリンジアセテートミリステート、グリセリンジアセテートパルミテート、グリセリンジアセテートステアレート、グリセリンジアセテートオレートが好ましい。
ジグリセリンエステルの具体的な例としては、ジグリセリンテトラアセテート、ジグリセリンテトラプロピオネート、ジグリセリンテトラブチレート、ジグリセリンテトラバレレート、ジグリセリンテトラヘキサノエート、ジグリセリンテトラヘプタノエート、ジグリセリンテトラカプリレート、ジグリセリンテトラペラルゴネート、ジグリセリンテトラカプレート、ジグリセリンテトララウレート、ジグリセリンテトラミスチレート、ジグリセリンテトラパルミテート、ジグリセリントリアセテートプロピオネート、ジグリセリントリアセテートブチレート、ジグリセリントリアセテートバレレート、ジグリセリントリアセテートヘキサノエート、ジグリセリントリアセテートヘプタノエート、ジグリセリントリアセテートカプリレート、ジグリセリントリアセテートペラルゴネート、ジグリセリントリアセテートカプレート、ジグリセリントリアセテートラウレート、ジグリセリントリアセテートミスチレート、ジグリセリントリアセテートパルミテート、ジグリセリントリアセテートステアレート、ジグリセリントリアセテートオレート、ジグリセリンジアセテートジプロピオネート、ジグリセリンジアセテートジブチレート、ジグリセリンジアセテートジバレレート、ジグリセリンジアセテートジヘキサノエート、ジグリセリンジアセテートジヘプタノエート、ジグリセリンジアセテートジカプリレート、ジグリセリンジアセテートジペラルゴネート、ジグリセリンジアセテートジカプレート、ジグリセリンジアセテートジラウレート、ジグリセリンジアセテートジミスチレート、ジグリセリンジアセテートジパルミテート、ジグリセリンジアセテートジステアレート、ジグリセリンジアセテートジオレート、ジグリセリンアセテートトリプロピオネート、ジグリセリンアセテートトリブチレート、ジグリセリンアセテートトリバレレート、ジグリセリンアセテートトリヘキサノエート、ジグリセリンアセテートトリヘプタノエート、ジグリセリンアセテートトリカプリレート、ジグリセリンアセテートトリペラルゴネート、ジグリセリンアセテートトリカプレート、ジグリセリンアセテートトリラウレート、ジグリセリンアセテートトリミスチレート、ジグリセリンアセテートトリパルミテート、ジグリセリンアセテートトリステアレート、ジグリセリンアセテートトリオレート、ジグリセリンラウレート、ジグリセリンステアレート、ジグリセリンカプリレート、ジグリセリンミリステート、ジグリセリンオレートなどのジグリセリンの混酸エステルなどが挙げられるがこれらに限定されず、これらを単独もしくは併用して使用することができる。
この中でも、ジグリセリンテトラアセテート、ジグリセリンテトラプロピオネート、ジグリセリンテトラブチレート、ジグリセリンテトラカプリレート、ジグリセリンテトララウレートが好ましい。
ポリアルキレングリコールの具体的な例としては、平均分子量が200〜1000のポリエチレングリコール、ポリプロピレングリコールなどが挙げられるがこれらに限定されず、これらを単独もしくは併用して使用することができる。
ポリアルキレングリコールの水酸基にアシル基が結合した化合物の具体的な例として、ポリオキシエチレンアセテート、ポリオキシエチレンプロピオネート、ポリオキシエチレンブチレート、ポリオキシエチレンバリレート、ポリオキシエチレンカプロエート、ポリオキシエチレンヘプタノエート、ポリオキシエチレンオクタノエート、ポリオキシエチレンノナネート、ポリオキシエチレンカプレート、ポリオキシエチレンラウレート、ポリオキシエチレンミリスチレート、ポリオキシエチレンパルミテート、ポリオキシエチレンステアレート、ポリオキシエチレンオレート、ポリオキシエチレンリノレート、ポリオキシプロピレンアセテート、ポリオキシプロピレンプロピオネート、ポリオキシプロピレンブチレート、ポリオキシプロピレンバリレート、ポリオキシプロピレンカプロエート、ポリオキシプロピレンヘプタノエート、ポリオキシプロピレンオクタノエート、ポリオキシプロピレンノナネート、ポリオキシプロピレンカプレート、ポリオキシプロピレンラウレート、ポリオキシプロピレンミリスチレート、ポリオキシプロピレンパルミテート、ポリオ
キシプロピレンステアレート、ポリオキシプロピレンオレート、ポリオキシプロピレンリノレートなどが挙げられるがこられに限定されず、これらを単独もしくは併用して使用することができる。
可塑剤の添加量は、0〜20重量%とするものが好ましく、より好ましくは2〜18重量%、最も好ましくは4〜15重量%である。可塑剤の含有量が20重量%より多い場合、セルロースアシレートの熱流動性は良好になるもの、可塑剤が溶融製膜したフィルムの表面にしみ出したり、また耐熱性であるガラス転移温度Tgが低下する。
本発明においては必要に応じて要求される性能を損なわない範囲内で、熱劣化防止用、着色防止用の安定剤として、ホスファイト系化合物、亜リン酸エステル化合物、フォスフェイト、チオフォスフェイト、弱有機酸、エポキシ化合物等を単独または2種類以上混合して添加してもよい。ホスファイト系安定剤の具体例としては、特開2004−182979の段落[0023]〜[0039]に記載の化合物をより好ましく用いることが出来る。亜リン酸エステル系安定剤の具体例としては、特開昭51−70316号公報、特開平10−306175号公報、特開昭57−78431号公報、特開昭54−157159号公報、特開昭55−13765号公報に記載の化合物を用いることが出来る。
本発明における安定剤の添加量は、セルロースアシレートに対し0.005〜0.5重量%であるのが好ましく、より好ましくは0.01〜0. 4重量%以上、さらに好ましくは0.05〜0. 3重量%である。添加量を0.005重量%未満の場合、溶融製膜時の劣化防止及び着色抑制の効果が不十分であるため、好ましくない。一方、0.5重量%以上の場合、溶融製膜したセルロースアシレートフィルムの表面にしみ出し、好ましくない。
また、劣化防止剤及び酸化防止剤を添加することも好ましい。フェノール系化合物、チオエーテル系化合物、リン系化合物などは劣化防止剤もしくは酸化防止剤として添加することにより、劣化及び酸化防止に相乗効果が現れる。さらに、その他の安定剤としては、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)17頁〜22頁に詳細に記載されている素材を好ましく用いることができる。
次に本発明のセルロースアシレートには、紫外線防止剤を含有することが特徴であり、1種または2種以上の紫外線吸収剤を含有させてもよい。液晶用紫外線吸収剤は、液晶の劣化防止の観点から、波長380nm以下の紫外線の吸収能に優れ、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。特に好ましい紫外線吸収剤は、ベンゾトリアゾール系化合物やベンゾフェノン系化合物である。中でも、ベンゾトリアゾール系化合物は、セルロースエステルセルロースアシレートに対する不要な着色が少ないことから、好ましい。
好ましい紫外線防止剤として、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオ
ネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトなどが挙げられる。
さらに、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物、又紫外線吸収剤としては高分子紫外線吸収剤、特開平6−148430号記載のポリマータイプの紫外線吸収剤なども好ましく用いられる。
また、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジンなどのヒドラジン系の金属不活性剤やトリス(2,4−ジ−tert−ブチルフェニル)フォスファイトなどの燐系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースエステルセルロースアシレートに対して質量割合で1ppm〜3.0%が好ましく、10ppm〜2%がさらに好ましい。
これらの紫外線吸収剤は、市販品として下記のものがあり利用できる。ベンゾトリアゾール系としてはTINUBIN P (チバ・スペシャリティ・ケミカルズ)、TINUBIN 234 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 320 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 326 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 327 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 328 (チバ・スペシャリティ・ケミカルズ)、スミソーブ340 (住友化学)などがある。また、ベンゾフェノン系紫外線吸収剤としては、シーソーブ100 (シプロ化成)、シーソーブ101 (シプロ化成)、シーソーブ101S(シプロ化成)、シーソーブ102 (シプロ化成)、シーソーブ103 (シプロ化成)、アデカスタイプLA-51 (旭電化)、ケミソープ111 (ケミプロ化成)、UVINUL D-49(BASF)などを挙げられる。オキザリックアシッドアニリド系紫外線吸収剤としては、TINUBIN 312 (チバ・スペシャリティ・ケミカルズ)やTINUBIN 315 (チバ・スペシャリティ・ケミカルズ)がある。またサリチル酸系紫外線吸収剤としては、シーソーブ201 (シプロ化成)やシーソーブ202 (シプロ化成)が上市されており、シアノアクリレート系紫外線吸収剤としてはシーソーブ501 (シプロ化成)、UVINUL N-539 (BASF)がある。
さらに、種々の添加剤(例えば、光学異方性コントロール剤、微粒子、赤外吸収剤、界面活性剤、臭気トラップ剤(アミン等)など)を加えることができる。赤外吸収染料としては例えば特開平2001−194522号公報のものが使用でき、それぞれセルロースアシレートに対して0.001〜5質量%含有させることが好ましい。微粒子は、平均粒径が5〜3000nmのものを使用することが好ましく、金属酸化物や架橋ポリマーから成るものを使用でき、セルロースアシレートに対して0.001〜5質量%含有させることが好ましい。光学異方性コントロール剤は例えば特開2003−66230号公報、特開2002−49128号公報記載のものを使用でき、セルロースアシレートに対して0.1〜15質量%含有させることが好ましい。
(溶融製膜)
(1) 乾燥
セルロースアシレート樹脂は粉体のまま用いても良いが、製膜の厚み変動を少なくするためにはペレット化したものを用いるのがより好ましい。
セルロースアシレート樹脂は含水率を1%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下にした後、押出機のホッパーに投入する。このときホッパーの温度をTg−50℃以上、Tg+30℃以下、より好ましくはTg−40℃以上、Tg+10℃以下、さらに好ましくはTg−30℃以上、Tg以下にする。これによりホッパー内での水分の再吸着を抑制し、上記乾燥の効率をより発現し易くできる。さらに、ホッパー内を脱水した空気や不活性気体(例えば窒素)を吹き込むこともより好ましい。
(2) 混練押出し
190℃以上、240℃以下、より好ましくは195℃以上、235℃以下、さらに好ましくは200℃以上、230℃以下で混練し溶融する。この時、溶融温度は一定温度で行ってもよく、いくつかに分割して制御しても良い。好ましい混練時間は2分以上、60分以下であり、より好ましくは3分以上、40分以下であり、さらに好ましくは4分以上、30分以下である。さらに、押出機内を不活性(窒素等)気流中、あるいはベント付き押出機を用い真空排気しながら実施するのも好ましい。
(3) キャスト
溶融したセルロースアシレート樹脂をギアポンプに通し、押出機の脈動を除去した後、金属メッシュフィルター等でろ過を行い、この後ろに取り付けたT型のダイから冷却ドラム上にシート状に押し出す。押出しは単層で行ってもよく、マルチマニホールドダイやフィードブロックダイを用いて複数層押出しても良い。この時、ダイのリップの間隔を調整することで幅方向の厚みむらを調整することができる。
この後、冷却ドラム上に押出す。この時、タッチロール法を用いる。
この時、算術平均高さRaが100nm以下の表面性を有する一対のローラで挟んで冷却固化することが好ましい。算術平均高さRaが100nmを超える表面性の冷却ローラを用いた場合にはフィルムの透明性が低下するため好ましくない。好ましくは50nm以下、更に好ましくは25nmである。
冷却ドラムは、60℃以上、160℃以下が好ましく、より好ましくは70℃以上、150℃以下、さらに好ましくは80℃以上、140℃以下である。この後、シートを冷却ドラムから剥ぎ取り、ニップローラ及びテンターを経た後巻き取る。巻き取り速度は10m/分以上、100m/分以下が好ましく、より好ましくは15m/分以上、80m/分以下、さらに好ましくは20m/分以上、70m/分以下である。
製膜幅は1m以上、5m以下、さらに好ましくは1.2m以上、4m以下、さらに好ましくは1.3m以上、3m以下が好ましい。このようにして得られた未延伸のセルロースアシレートフィルムの厚みは30μm以上、300μm以下が好ましく、より好ましくは40μm以上、250μm以下、さらに好ましくは50μm以上、200μm以下である。
このようにして得たセルロースアシレートフィルム12は両端をトリミングし、一旦、巻取機に巻き取ることが好ましい。トリミングされた部分は、粉砕処理された後、或いは必要に応じて造粒処理や解重合・再重合等の処理を行った後、同じ品種のセルロースアシレートフィルム用原料として又は異なる品種のセルロースアシレートフィルム用原料として再利用してもよい。また、巻き取り前に、少なくとも片面にマスキングフィルムを付けることも、傷防止の観点から好ましい。
このようにして得られたセルロースアシレートフィルムのガラス転移温度(Tg)は70℃以上、180℃以下が好ましく、より好ましくは80℃以上、160℃以下、さらに好ましくは90℃以上、150℃以下である。
(セルロースアシレートフィルムの加工)
上述の方法で製膜したセルロースアシレートフィルムを、上述の方法で1軸または2軸に延伸し、延伸セルロースアシレートフィルムを作成する。これは単独で使用してもよく、これらと偏光板を組み合わせて使用してもよく、これらの上に液晶層や屈折率を制御した層(低反射層)やハードコート層を設けて使用しても良い。これらは以下の工程により達成できる。
(1)表面処理
セルロースアシレートフィルムは表面処理を行うことによって、各機能層(例えば、下塗層およびバック層)との接着を向上させることができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3 〜10-20 Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理である。
アルカリ鹸化処理は、鹸化液に浸漬しても良く(浸漬法)、鹸化液を塗布しても良い(塗布法)。浸漬法の場合は、NaOHやKOH等のpH10〜14の水溶液を20℃〜80℃に加温した槽を0.1分から10分通過させたあと、中和、水洗、乾燥することで達成できる。
塗布方法の場合、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法およびE型塗布法を用いることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液の透明支持体に対して塗布するために濡れ性が良く、また鹸化液溶媒によって透明支持体表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上、5分以下が好ましく、5秒以上、5分以下がさらに好ましく、20秒以上、3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。また、塗布式鹸化処理と後述の配向膜解塗設を、連続して行うことができ、工程数を減少できる。これらの鹸化方法は、具体的には、例えば、特開2002−82226号公報、WO02/46809号公報に内容の記載が挙げられる。
機能層との接着のため下塗り層を設けることも好ましい。この層は上記表面処理をした後、塗設しても良く、表面処理なしで塗設しても良い。下塗層についての詳細は、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁に記載されている。
これらの表面処理、下塗り工程は、製膜工程の最後に組み込むこともでき、単独で実施することもでき、後述の機能層付与工程の中で実施することもできる。
(2)機能層の付与
本発明のセルロースアシレートフィルムに、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されている機能性層を組み合わせることが好ましい。中でも好ましいのが、偏光層の付与(偏光板)、光学補償層の付与(光学補償シート)、反射防止層の付与(反射防止フィルム)である。
(イ)偏光層の付与(偏光板の作成)
(イ−1)使用素材
現在、市販の偏光層は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素を浸透させることで作製されるのが一般的である。偏光膜は、Optiva Inc.に代表される塗布型偏光膜も利用できる。偏光膜におけるヨウ素および二色性色素は、バインダー中で配向することで偏向性能を発現する。二色性色素としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素が用いられる。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。例えば、発明協会公開技法、公技番号2001−1745号、58頁(発行日2001年3月15日)に記載の化合物が挙げられる。
偏光膜のバインダーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。バインダーには、例えば特開平8−338913号公報の明細書中段落番号0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。変性ポリビニルアルコールについては、特開平8−338913号公報、同9−152509号公報及び同9−316127号公報の各公報に記載がある。ポリビニルアルコール
および変性ポリビニルアルコールは、2種以上を併用してもよい。
バインダー厚みの下限は、10μmであることが好ましい。厚みの上限は、液晶表示装置の光漏れの観点からは、薄ければ薄い程よい。現在市販の偏光板(約30μm)以下であることが好ましく、25μm以下が好ましく、20μm以下がさらに好ましい。
偏光膜のバインダーは架橋していてもよい。架橋性の官能基を有するポリマー、モノマーをバインダー中に混合しても良く、バインダーポリマー自身に架橋性官能基を付与しても良い。架橋は、光、熱あるいはpH変化により行うことができ、架橋構造をもったバインダーを形成することができる。架橋剤については、米国再発行特許23297号明細書に記載がある。また、ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。バインダーの架橋剤の添加量は、バインダーに対して、0.1乃至20質量%が好ましい。偏光素子の配向性、偏光膜の耐湿熱性が良好となる。
架橋反応が終了後でも、未反応の架橋剤は1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このようにすることで、耐候性が向上する。
(イ−2)偏光層の延伸
偏光膜は、偏光膜を延伸するか(延伸法)、もしくはラビングした(ラビング法)後に、ヨウ素、二色性染料で染色することが好ましい。
延伸法の場合、延伸倍率は2.5乃至30.0倍が好ましく、3.0乃至10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5乃至5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0乃至10.0倍が好ましい。延伸はMD方向に平行に行っても良く(平行延伸)、斜め方向におこなっても良い(斜め延伸)。これらの延伸は、1回で行っても、数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。
a)平行延伸法
延伸に先立ち、PVAフィルムを膨潤させる。膨潤度は1.2〜2.0倍(膨潤前と膨潤後の重量比)である。この後、ガイドローラ等を介して連続搬送しつつ、水系媒体浴内や二色性物質溶解の染色浴内で、15〜50℃、就中17〜40℃の浴温で延伸する。延伸は2対のニップローラで把持し、後段のニップローラの搬送速度を前段のそれより大きくすることで達成できる。延伸倍率は、延伸後/初期状態の長さ比(以下同じ)に基づくが前記作用効果の点より好ましい延伸倍率は1.2〜3.5倍、就中1.5〜3.0倍である。この後、50℃から90℃において乾燥させて偏光膜を得る。
b)斜め延伸法
これには特開2002−86554号公報に記載の斜め方向に傾斜め方向に張り出したテンターを用い延伸する方法を用いることができる。この延伸は空気中で延伸するため、事前に含水させて延伸しやすくすることが必用である。好ましい含水率は5%以上、100%以下、より好ましくは10%以上、100%以下である。
延伸時の温度は40℃以上、90℃以下が好ましく、より好ましくは50℃以上、80℃以下である。湿度は50%rh以上、100%rh以下が好ましく、より好ましくは70%rh以上、100%rh以下、さらに好ましくは80%rh以上、100%rh以下である。長手方向の進行速度は、1m/分以上が好ましく、より好ましくは3m/分以上である。延伸の終了後、50℃以上、100℃以下、より好ましくは60℃以上、90℃
以下で、0.5分以上10分以下乾燥する。より好ましくは1分以上5分以下である。
このようにして得られた偏光膜の吸収軸は10度から80度が好ましく、より好ましくは30度から60度であり、さらに好ましくは実質的に45度(40度から50度)である。
(イ−3)貼り合せ
上記鹸化後のセルロースアシレートフィルムと、延伸して調製した偏光層を貼り合わせ偏光板を調製する。張り合わせる方向は、セルロースアシレートフィルムの流延軸方向と偏光板の延伸軸方向が45度になるように行うのが好ましい。
貼り合わせの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01乃至10μmが好ましく、0.05乃至5μmが特に好ましい。
このようにして得た偏光板の光線透過率は高い方が好ましく、偏光度も高い方が好ましい。偏光板の透過率は、波長550nmの光において、30乃至50%の範囲にあることが好ましく、35乃至50%の範囲にあることがさらに好ましく、40乃至50%の範囲にあることが最も好ましい。偏光度は、波長550nmの光において、90乃至100%の範囲にあることが好ましく、95乃至100%の範囲にあることがさらに好ましく、99乃至100%の範囲にあることが最も好ましい。
さらに、このようにして得た偏光板はλ/4板と積層し、円偏光を作成することができる。この場合λ/4の遅相軸と偏光板の吸収軸を45度になるように積層する。この時、λ/4は特に限定されないが、より好ましくは低波長ほどレターデーションが小さくなるような波長依存性を有するものがより好ましい。さらには長手方向に対し20度〜70度傾いた吸収軸を有する偏光膜、および液晶性化合物からなる光学異方性層から成るλ/4板を用いることが好ましい。
(ロ)光学補償層の付与(光学補償シートの作成)
光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶化合物を補償するためのものであり、セルロースアシレートフィルムの上に配向膜を形成し、さらに光学異方性層を付与することで形成される。
(ロ−1)配向膜
上記表面処理したセルロースアシレートフィルム上に配向膜を設ける。この膜は、液晶性分子の配向方向を規定する機能を有する。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω- トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶性分子を配向させる機能のある分子構造を有する。
本発明では、液晶性分子を配向させる機能に加えて、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。
配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。ポリマーの例には、例えば特開平8−338913号公報の明細書中段落番号0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。
液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。具体的な官能基の種類は、液晶性分子の種類および必要とする配向状態に応じて決定する。例えば、変性ポリビニルアルコールの変性基としては、共重合変性、連鎖移動変性またはブロック重合変性により導入できる。変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。これらの変性ポリビニルアルコール化合物の具体例として、例えば特開2000−155216号公報の明細書中の段落番号0022〜0145、同2002−62426号公報の明細書中の段落番号0018〜0022に記載のもの等が挙げられる。
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報の明細書中の段落番号0080〜0100に記載のもの等が挙げられる。配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。
架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾールおよびジアルデヒド澱粉が含まれる。2種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報の明細書中の段落番号0023〜0024記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルア
ルデヒドが好ましい。
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤を含む透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行って良い。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法またはロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1乃至10μmが好ましい。加熱乾燥は、20℃〜110℃で行なうことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特にpH5.0が好ましい。
配向膜は、透明支持体上又は上記下塗層上に設けられる。配向膜は、上記のようにポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法である。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
工業的に実施する場合、搬送している偏光層のついたフィルムに対し、回転するラビングロールを接触させることで達成するが、ラビングロールの真円度、円筒度、振れ(偏芯)はいずれも30μm以下であることが好ましい。ラビングロールへのフィルムのラップ角度は、0.1°乃至90゜が好ましい。ただし、特開平8−160430号公報に記載されているように、360゜以上巻き付けることで、安定なラビング処理を得ることもできる。フィルムの搬送速度は1〜100m/minが好ましい。ラビング角は0〜60゜の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40乃至50゜が好ましい。45゜が特に好ましい。
このようにして得た配向膜の膜厚は、0.1乃至10μmの範囲にあることが好ましい。
次に、配向膜の上に光学異方性層の液晶性分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させる。
光学異方性層に用いる液晶性分子には、棒状液晶性分子および円盤状液晶性分子が含まれる。棒状液晶性分子および円盤状液晶性分子は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。
(ロ−2)棒状液晶性分子
棒状液晶性分子としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
なお、棒状液晶性分子には、金属錯体も含まれる。また、棒状液晶性分子を繰り返し単位中に含む液晶ポリマーも、棒状液晶性分子として用いることができる。言い換えると、棒状液晶性分子は、(液晶)ポリマーと結合していてもよい。
棒状液晶性分子については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
棒状液晶性分子の複屈折率は、0.001乃至0.7の範囲にあることが好ましい。棒状液晶性分子は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基は、ラジカル重合性不飽基或はカチオン重合性基が好ましく、具体的には、例えば特開2002−62427号公報の明細書中の段落番号0064〜0086に記載の重合性基、重合性液晶化合物が挙げられる。
(ロ−3)円盤状液晶性分子
円盤状(ディスコティック)液晶性分子には、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
円盤状液晶性分子としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。円盤状液晶性分子から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物が円盤状液晶性分子である必要はなく、例えば、低分子の円盤状液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。円盤状液晶性分子の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性分子の重合については、特開平8−27284公報に記載がある。
円盤状液晶性分子を重合により固定するためには、円盤状液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。円盤状コアと重合性基は、連結基を介して結合する化合物が好ましく、これにより重合反応においても配向状態を保つことが出来る。例えば、特開2000−155216号公報の明細書中の段落番号0151〜0168に記載の化合物等が挙げられる。
ハイブリッド配向では、円盤状液晶性分子の長軸(円盤面)と偏光膜の面との角度が、光学異方性層の深さ方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に減少することが好ましい。さらに、角度の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加及び減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。角度は、角度が変化しない領域を含んでいても、全体として増加または減少していればよい。さらに、角度は連続的に変化することが好ましい。
偏光膜側の円盤状液晶性分子の長軸の平均方向は、一般に円盤状液晶性分子あるいは配向膜の材料を選択することにより、またはラビング処理方法を選択することにより、調整することができる。また、表面側(空気側)の円盤状液晶性分子の長軸(円盤面)方向は、一般に円盤状液晶性分子あるいは円盤状液晶性分子と共に使用する添加剤の種類を選択することにより調整することができる。円盤状液晶性分子と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。長軸の配向方向の変化の程度も、上記と同様に、液晶性分子と添加剤との選択により調整できる。
(ロ−4)光学異方性層の他の組成物
上記の液晶性分子と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶分子の配向性等を向上することが出来る。液晶性分子と相溶性を有し、液晶性分子の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報の明細書中の段落番号0018〜0020に記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報の明細書中の段落番号0028〜0056に記載の化合物が挙げられる。
円盤状液晶性分子とともに使用するポリマーは、円盤状液晶性分子に傾斜角の変化を与えられることが好ましい。
ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報の明細書中の段落番号0178に記載のものが挙げられる。液晶性分子の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
円盤状液晶性分子のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃がさらに好ましい。
(ロ−5)光学異方性層の形成
光学異方性層は、液晶性分子および必要に応じて後述の重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。2種類以上の有機溶媒を併用してもよい。
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
光学異方性層の厚さは、0.1乃至20μmであることが好ましく、0.5乃至15μmであることがさらに好ましく、1乃至10μmであることが最も好ましい。
(ロ−6)液晶性分子の配向状態の固定
配向させた液晶性分子を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01乃至20質量%の範囲にあることが好ましく、0.5乃至5質量%の範囲にあることがさらに好ましい。
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2 乃至50J/cm2 の範囲にあることが好ましく、20乃至5000mJ/cm2 の範囲にあることがより好ましく、100乃至800mJ/cm2 の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
保護層を、光学異方性層の上に設けてもよい。この光学補償フィルムと偏光層を組み合わせることも好ましい。具体的には、上記のような光学異方性層用塗布液を偏光膜の表面に塗布することにより光学異方性層を形成する。その結果、偏光膜と光学異方性層との間にポリマーフイルムを使用することなく、偏光膜の寸度変化にともなう応力(歪み×断面積×弾性率)が小さい薄い偏光板が作成される。本発明に従う偏光板を大型の液晶表示装置に取り付けると、光漏れなどの問題を生じることなく、表示品位の高い画像を表示することができる。
偏光層と光学補償層の傾斜角度は、LCDを構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦または横方向のなす角度にあわせるように延伸することが好ましい。通常の傾斜角度は45゜である。しかし、最近は、透過型、反射型および半透過型LCDにおいて必ずしも45゜でない装置が開発されており、延伸方向はLCDの設計にあわせて任意に調整できることが好ましい。
(ロ−7)液晶表示装置
このような光学補償フィルムが用いられる各液晶モードについて説明する。
(TNモード液晶表示装置)
カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
(OCBモード液晶表示装置)
棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend) 液晶モードとも呼ばれる。
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
(VAモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に垂直に配向しているのが特徴であり、VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
(IPSモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に面内に水平に配向しているのが特徴であり、これが電圧印加の有無で液晶の配向方向を変えることでスイッチングするのが特徴である。具体的には特開2004−365941号公報、特開2004−12731号公報、特開2004−215620号公報、特開2002−221726号公報、特開2002−55341号公報、及び特開2003−195333号公報に記載のものなどを使用できる。
(その他液晶表示装置)
ECBモードおよびSTNモードに対しても、上記と同様の考え方で光学的に補償することができる。
(ハ)反射防止層の付与(反射防止フィルム)
反射防止膜は、一般に、防汚性層でもある低屈折率層、及び低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)とを透明基体上に設けて成る。
屈折率の異なる無機化合物(金属酸化物等)の透明薄膜を積層させた多層膜として、化学蒸着(CVD)法や物理蒸着(PVD)法、金属アルコキシド等の金属化合物のゾルゲル方法でコロイド状金属酸化物粒子皮膜を形成後に後処理(紫外線照射:特開平9−157855号公報、プラズマ処理:特開2002−327310号公報)して薄膜を形成する方法が挙げられる。
一方、生産性が高い反射防止膜として、無機粒子をマトリックスに分散されてなる薄膜を積層塗布してなる反射防止膜が各種提案されている。
上述したような塗布による反射防止フィルムに最上層表面が微細な凹凸の形状を有する防眩性を付与した反射防止層から成る反射防止フィルムも挙げられる。
本発明のセルロースアシレートフィルムは上記いずれの方式にも適用できるが、特に好ましいのが塗布による方式(塗布型)である。
(ハ−1)塗布型反射防止フィルムの層構成
基体上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率の順である。また、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい。
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等が挙げられる。また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(ハ−2)高屈折率層および中屈折率層
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを少なくとも含有する硬化性膜から成る。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような超微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11 −295503号公報、同11 −153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(例えば、特開2001−166104号公報等)、特定の分散剤併用(例えば、特開平11−153703号公報、特許番号US6210858B1、特開2002−2776069号公報等)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に、ラジカル重合性及び/ 又はカチオン重合性の重合性基を少なくとも2 個以上含有の多官能性化合物含有組成物、加水分解性基を含有の有機金属化合物及びその部分縮合体組成物から選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシト゛組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
高屈折率層の屈折率は、−般に1.70〜2.20である。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
(ハ−3)低屈折率層
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55である。好ましくは1.30〜1.50である。
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
例えば、特開平9−222503号公報の明細書中の段落番号0018〜0026、同11−38202号公報の明細書中の段落番号0019〜0030、特開2001−40284号公報の明細書中の段落番号0027〜0028、特開2000−284102号公報等に記載の化合物が挙げられる。
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋又は重合性基を有する含フッ素及び/又はシロキサンのポリマーの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより実施することが好ましい。
また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基である「ポリパーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[ 0020] 〜[ 0038] に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
(ハ−4)ハードコート層
ハードコート層は、反射防止フィルムに物理強度を付与するために、透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。
ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。
硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、WO00/46617号公報等記載のものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JISK5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
(ハ−5)前方散乱層
前方散乱層は、液晶表示装置に適用した場合の、上下左右方向に視角を傾斜させたときの視野角改良効果を付与するために設ける。上記ハードコート層中に屈折率の異なる微粒子を分散することで、ハードコート機能と兼ねることもできる。
例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等が挙げられる。
(ハ−6)その他の層
上記の層以外に、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
(ハ−7)塗布方法
反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法やエクストルージョンコート法(米国特許2681294号明細書)により、塗布により形成することができる。
(ハ−8)アンチグレア機能
反射防止膜は、外光を散乱させるアンチグレア機能を有していてもよい。アンチグレア機能は、反射防止膜の表面に凹凸を形成することにより得られる。反射防止膜がアンチグレア機能を有する場合、反射防止膜のヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
反射防止膜表面に凹凸を形成する方法は、これらの表面形状を充分に保持できる方法であればいずれの方法でも適用できる。例えば、低屈折率層中に微粒子を使用して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、低屈折率層の下層(高屈折率層、中屈折率層又はハードコート層)に比較的大きな粒子(粒径0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成し、その上にこれらの形状を維持して低屈折率層を設ける方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、最上層(防汚性層)を塗設後の表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等が挙げられる。
以下に本発明で使用した測定法について記載する。
[1]Re、Rth測定法
サンプルフィルムを温度25℃、湿度60%rhに3時間以上調湿後、自動複屈折計(KOBRA-21ADH/PR:王子計測器(株)製)を用いて、25℃、60%rhにおいて、サンプルフィルム表面に対し垂直方向および、フィルム面法線から±40°傾斜させて方向から波長550nmにおけるレターデーション値を測定する。垂直方向から面内のレターデーション(Re)、垂直方向、±40°方向の測定値から厚み方向のレターデーション(Rth)を算出する。
[2]Re、Rth、幅方向、長手方向のRe、Rth変動
(1)MD方向サンプリング
フィルムの長手方向に0.5m間隔で100点、1cm正方形の大きさに切り出す。
(2)TD方向サンプリング
フィルムの製膜全幅にわたり、1cm正方形の大きさに50点、等間隔で切り出す。
(3)Re,Rth、測定
サンプルフィルムを温度25℃、湿度60%rhに3時間以上調湿後、自動複屈折計(KOBRA-21ADH/PR:王子計測器(株)製)を用いて、25℃、60%rhにおいて、サンプルフィルム表面に対し垂直方向および、フィルム面法線から±40°傾斜させて方向から波長550nmにおけるレターデーション値を測定する。垂直方向から面内のレターデーション(Re)、垂直方向、±40°方向の測定値から厚み方向のレターデーション(Rth)を算出する。上記サンプリング点の全平均をRe,Rthとする。
(4)Re,Rth、の変動
これらの、上記MD方向100点、TD方向50点の各最大値と最小値の差を、各平均値で割り、百分率で示したものをRe,Rth変動とした。
[3]スジ故障評価
得られたセルロースアシレートフィルムの外観を目視で検査し、スジの全く見られないものを○、極く薄いスジが僅かに見られるが実使用に支障の無い物を△、極く薄いスジであるが実使用に問題のあるものを×、スジが一目でわかるものを××と評価した。
[4]セルロースアシレートの置換度
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83−91(手塚他)に記載の方法で13C−NMRにより求めた。
[5]DSC結晶融解ピーク熱量
島津製作所製 DSC−50を用い昇温速度10℃/minで測定し、Tg直後に現れる吸熱ピークの熱量をJ/gで算出した。同時にTgも測定した。
[6]ヘイズ
日本電色工業(株)製、濁度計 NDH−1001DPを用いて測定した。
[7]イエローネスインデックス(YI値)
Z−II OPTICAL SENSOR を用い(JIS K7105 6.3)に従い黄色味(YI;イエローネスインデックス)を測定した。
ペレットは反射法で測定し、フイルムは透過法にて三刺激値、X、Y、Zを測定した。さらに三刺激値X、Y、Zを用い下記式によりYI値を算出した。
YI={(1.28X−1.06Z)/Y}×100
さらにフィルムのYI値は上記式にて算出したYI値を、そのフィルムの厚みで割り、1mm当たりに換算して比較した。
[8]分子量
フイルムサンプルをジクロロメタンに溶解し、GPCを用いて測定した。
[セルロースアシレート樹脂]
表1に記載のセルロースアシレートを調製した。これは、触媒として硫酸(セルロース100重量部に対し7.8重量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40℃でアシル化反応を行った。この時、カルボン酸の種類、量を調整することで、アシル基の種類、置換度を調整した。またアシル化後の40℃で熟成を行った。このようにして得たセルロースアシレートのTgは以下の方法で測定し、図4の表1に記載した。
(Tg測定)
DSCの測定パンにサンプルを20mg入れる。これを窒素気流中で、10℃/分で30℃から250℃まで昇温した後(1st-run)、30℃まで−10℃/分で冷却する。この後、再度30℃から250℃まで昇温する(2nd-run)。2nd-runでベースラインが低温側から偏奇し始める温度をガラス転移温度(Tg)とし表1に記載した。また、全水準に二酸化珪素部粒子(アエロジルR972V)0.05質量%を添加した。
[溶融製膜]
合成した図5の表1のセルロースアシレートを120℃で3時間送風乾燥し、含水率を0.1質量%にした。これに、可塑剤としてトリフェニルフォスフェート(TPP)3wt%、及び二酸化珪素部粒子(アエロジルR972V)0.05質量%、ホスファイト系安定剤(P−1)0. 20質量%、「紫外線吸収剤a」2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン(0. 8質量%)、「紫外線吸収剤b」2(2’−ヒドロキシ−3’,5‘−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール(0.25質量%)を添加し、混合物を2軸混練押出し機を用いて190℃で溶融混練した。なお、この2軸混練押出し機には真空ベントを設け、真空排気(0.3気圧に設定)を行った。水浴中に直径3mmのストランド状に押出し、長さ5mmに裁断した。
上記混練樹脂は90℃の脱湿風を用いて3時間乾燥させ、水分率を0.1wt%にした後、L/D=35、圧縮率3.5、スクリュー径が65mmのフルフライトスクリューを挿入した単軸押し出し機を用いて210℃で溶融させた後、厚み精度をアップさせるために、ギアポンプを用いて一定量送り出した。ギアポンプから送り出された溶融ポリマーは異物除去のために4μmの焼結フィルターを経由した後、スリット状の隙間を有するダイへ送り出され、押圧用冷却ローラ(CR1)において、押圧ローラ(DR1)で挟まれて冷却固化され、固化したシートを冷却ローラ(CR2)で更に冷却固化してから剥ぎ取り、ロール状に巻き取った。押圧用冷却ローラ(CR1)、冷却ローラ(CR2)の表面粗さ、及び直径は、表1に記載したものを用いた。押圧ローラ(DR1)は弾性ローラを用い、その表面粗さ、直径、及び外筒肉厚は、表1に記載したものを用いた。また、これらローラの設定温度に関しても、表1に記載した。その他、押圧用冷却ローラ(CR1)と押圧ローラ(DR1)における接触長さQ、線圧P、及び製膜速度、ローラ間のシート長さ、シート温度、及びシート収縮率、などの条件に関しても表1に記載した通りである。なお、巻き取り直前に両端(全幅の各3%)をトリミングした後、両端に幅10mm、高さ50μmの厚みだし加工(ナーリング)をつけた。各水準とも、幅は1.5mで30m/分で3000m巻き取った。尚、表1中の総合評価は、製造されたフィルムに外観故障が見られ使用上問題があるものを×、外観故障が見られるが使用上問題がないものを△、外観故障が無いものを○とした。外観故障が無いフィルムの中で、細かな波打ちやシワも無く、平滑性に優れるものを◎とした。
図5の表1から分かるように、冷却ローラ(CR1)と冷却ローラ(CR2)との間で空冷し、冷却ローラ(CR1)の温度と冷却ローラ(CR2)にシートが接触する際のシート温度と差を11℃以上48℃以下とし、冷却ローラ(CR2)の温度を、冷却ローラ(CR2)にシートが接触する際のシート温度に対して、±3℃以内にするとともに、複数の冷却ローラの最下流側の冷却ローラ(CR2)をシートが離れる際のシート温度を熱可塑性樹脂のガラス転移温度Tg(℃)−15℃以下となるようにしている実施例1〜11では、フィルム外観がほぼ良好な結果が得られた。それに対し、冷却ローラの温度を、冷却ローラにシートが接触する際のシート温度に対して、±3℃以内に設定しなかった比較例2〜7では、シワやタルミが発生している。
また、実施例1〜11においても、ダイから吐出された時の熱可塑性樹脂のゼロせん断粘度が2000Pa・sec以下であることを満たしていない実施例8は、満たしている実施例1〜7と比較して、総合評価が悪くなってしまうことが分かる。そして、熱可塑性樹脂のガラス転移温度Tg(℃)− 弾性ローラ(DR1)の温度(℃)をX(℃)、ライン速度をY(m/min)としたとき、0.0043X2 +0.12X+1.1<Y<0.019X2 +0.73X+24を満たし、且つ、押圧用冷却ローラ(CR1)と押圧ローラ(DR1)とがシートを介して接触している長さQ(cm)、押圧用冷却ローラと押圧ローラとでシートを挟む線圧P(kg/cm)としたとき、3kg/cm2 <P/Q<50kg/cm2、を満たしていない実施例9〜11は、満たしている実施例1〜7と比較して、総合評価が悪くなってしまうことが分かる。
[偏光板の作成]
1.偏光板の作成
(1)表面処理
表1の熱可塑性樹脂フィルムを下記の浸漬法で鹸化を行った。なお下記塗布鹸化も実施したが浸漬鹸化と同様の結果を得た。
(i).浸漬鹸化
NaOHの1.5規定水溶液を鹸化液として用いた。これを60°Cに調温し、熱可塑性樹脂フィルムを2分間浸漬した。この後、0.1Nの硫酸水溶液に30秒浸漬した後、水洗浴を通した。
(ii).塗布鹸化
iso-プロパノール80重量部に水20重量部を加え、これにKOHを1.5規定となるように溶解し、これを60°Cに調温したものを鹸化液として用いた。これを60°Cの熱可塑性樹脂フィルム上に10g/m2 塗布し、1分間鹸化した。この後、50°Cの温水をスプレーを用い、10l/m2 ・分で1分間吹きかけ洗浄した。
(2)偏光層の作成
特開平2001−141926の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸した厚み20μmの偏光層を調製した。なお、特開平2002−86554の実施例1のように延伸軸が斜め45度となるように延伸した偏光層も同様に作成したが、以降の評価結果は上述のものと同様な結果が得られた。
(3)貼り合わせ
このようにして得た偏光層を、上記方法で製膜、延伸、鹸化処理した熱可塑性樹脂フィルムを用い、下記構成となるようにPVA((株)クラレ製PVA−117H)3%水溶液を接着剤とし貼り合せ偏光板を作成した。なお、下記に記載したフジタック(富士写真フィルム製TD80)も上記の方法で鹸化処理を行った。
偏光板A:延伸熱可塑性樹脂フィルム/偏光層/フジタック
偏光板B:延伸熱可塑性樹脂フィルム/偏光層/未延伸熱可塑性樹脂フィルム
(偏光板Bでは延伸、未延伸熱可塑性樹脂フィルムは同じ熱可塑性樹脂を用いた)
このようにして得た偏光板のフレッシュ品と、ウエットサーモ(60°C90%rh500時間)、ドライサーモ(80°Cドライ500時間)後の偏光板を、延伸セルロースアシレートを液晶側になるようにして、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置液晶表示装置に取り付けた。これをフレッシュ品の偏光板を用いたものと、ドライ、ウエットサーモ品の偏光板を用いたものを比較し、目視評価し色むらの発生領域の全面積に占める割合から、液晶表示装置での色むらを判定したが、良好な性能が得られた。
2.光学補償フィルムの作成
特開平11−316378号の実施例1の液晶層を塗布したセルロースアセテートフィルムの代わりに、本発明の熱可塑性樹脂フィルムを使用した。この時製膜、延伸直後のも
の(フレッシュ品)を用いた場合と、ウエットサーモ(60°C90%rh500時間)、ドライサーモ(80°Cドライ500時間)後のものを用いた場合で、両者比較し色むらの発生している領域を目視評価したが、本発明を用いたものは良好な光学補償フィルムを作成できた。
特開平7−333433の実施例1の液晶層を塗布したセルロースアセテートフィルムに代わって、本発明の熱可塑性樹脂フィルムに変更し光学補償フィルターフィルムを作製したものでも同様に良好な光学補償フィルムを作成できた。
3.低反射フィルムの作成
本発明の熱可塑性樹脂フィルムを発明協会公開技報(公技番号2001−1745)の実施例47に従い本発明の熱可塑性樹脂フィルムを用いて低反射フィルムを作成したところ、良好な光学性能が得られた。
4.液晶表示素子の作成
上記本発明の熱可塑性樹脂フィルムを用いた偏光板を、特開平10−48420号公報の実施例1に記載の液晶表示装置、特開平9−26572号公報の実施例1に記載のディスコティック液晶分子を含む光学的異方性層、ポリビニルアルコールを塗布した配向膜、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置、特開2000−154261号公報の図10〜15に記載の20インチOCB型液晶表示装置、特開2004−12731の図11に記載のIPS型液晶表示装置に用いた。さらに、本発明の熱可塑性樹脂フィルムを用いた低反射フィルムをこれらの液晶表示装置の最表層に貼り評価を行ったところ、良好な液晶表示素子を得た。
10…フィルム製造装置、12…セルロースアシレートフィルム、14…製膜工程部、16…縦延伸工程部、18…横延伸工程部、20…巻取工程部、22…押出機、24…ダイ、26…ローラ(押圧ローラ)、27…ローラ(押圧用冷却ローラ)、28,29…冷却ローラ、44…金属筒、46…液状媒体層、48…弾性体層、50…金属シャフト、Q…接触している長さ、Y…ライン速度、Z…金属筒の肉厚、c…押圧用冷却ローラ27と冷却ローラ28との間でのフィルム熱収縮率、c…冷却ローラ28と冷却ローラ29との間でのフィルム熱収縮率、r…押圧用冷却ローラ27のローラ直径、r…冷却ローラ28のローラ直径、r…冷却ローラ29のローラ直径、s…押圧用冷却ローラ27と冷却ローラ28との間のフィルム長さ、s…冷却ローラ28と冷却ローラ29との間のフィルム長さ、ω…押圧用冷却ローラ27の外周速度、ω…冷却ローラ28の外周速度、ω…冷却ローラ29の外周速度

Claims (7)

  1. 溶融した熱可塑性樹脂をダイからシート状に押し出し、
    該熱可塑性樹脂シートを、
    算術平均高さRaが100nm以下の表面性を有した、押圧用冷却ローラと押圧ローラとで挟んで冷却固化し、更に、複数の冷却ローラで搬送しながら冷却固化する熱可塑性樹脂フィルムの製造方法であって、
    前記押圧用冷却ローラと前記複数の冷却ローラの最初の冷却ローラとの間では前記熱可塑性樹脂シートを空冷するとともに、前記押圧用冷却ローラの温度と前記最初の冷却ローラに接触直前の前記熱可塑性樹脂シートの温度との差を11℃以上48℃以下とし、
    前記冷却ローラの温度を、該冷却ローラに前記熱可塑性樹脂シートが接触する際のシート温度に対して、±3℃以内にし、
    前記複数の冷却ローラの最下流側の冷却ローラを前記熱可塑性樹脂シートが離れる際のシート温度を、前記熱可塑性樹脂のガラス転移温度Tg(℃)−15℃以下となるようにし、
    前記押圧用冷却ローラと前記冷却ローラとにおいて、隣り合う該ローラのローラ外周速度比率が、下記(1)式を満たすとともに、
    該隣り合うローラ間のシート長さが、下記(2)式を満たすことを特徴とする熱可塑性樹脂フィルムの製造方法。
    上流側から数えてn番目のローラのローラ直径をrn(cm)、n番目のローラと(n+1)番目のローラとの間のシート長さをsn(cm)、n番目のローラと(n+1)番目のローラとの間でのシート熱収縮率をcn(%)、n番目のローラの外周速度をωnとしたとき、
    0.98×(1−cn/100)<〔(ローラ外周速度比率)= ωn+1/ωn〕<1.02×(1−cn/100) …(1)式
    sn/rn>0.3 …(2)式
  2. 前記押圧用冷却ローラと前記押圧ローラとの少なくとも一方が、金属製の弾性ローラであることを特徴とする請求項1に記載の熱可塑性樹脂フィルムの製造方法。
  3. 前記複数の冷却ローラは、算術平均高さRaが100nm以下の表面性であることを特徴とする請求項1又は2に記載の熱可塑性樹脂フィルムの製造方法。
  4. 前記ダイから吐出された時の熱可塑性樹脂のゼロせん断粘度が2000Pa・sec以下であることを特徴とする請求項1〜の何れか1に記載の熱可塑性樹脂フィルムの製造方法。
  5. フィルム厚みが20〜300μm、面内のレターデーションReが20nm以下、厚み方向のレターデーションRthが20nm以下であることを特徴とする請求項1〜の何れか1に記載の熱可塑性樹脂フィルムの製造方法。
  6. 前記熱可塑性樹脂はセルロースアシレート樹脂であることを特徴とする請求項1〜
    何れか1に記載の熱可塑性樹脂フィルムの製造方法。
  7. 前記セルロースアシレート樹脂は、数平均分子量が2万〜8万であり、且つ、Aをアセ
    チル基の置換度、Bを炭素数3〜7のアシル基の置換度の総和としたときに、アシル基が
    下記の置換度、2.0≦A+B≦3.0、0≦A≦2.0、1.2≦B≦2.9、を満足
    することを特徴とする請求項に記載の熱可塑性樹脂フィルムの製造方法。
JP2011240548A 2011-11-01 2011-11-01 熱可塑性樹脂フィルムの製造方法 Active JP5639986B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240548A JP5639986B2 (ja) 2011-11-01 2011-11-01 熱可塑性樹脂フィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240548A JP5639986B2 (ja) 2011-11-01 2011-11-01 熱可塑性樹脂フィルムの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006131950A Division JP2007301821A (ja) 2006-05-10 2006-05-10 熱可塑性樹脂フィルム及びその製造方法

Publications (2)

Publication Number Publication Date
JP2012045944A JP2012045944A (ja) 2012-03-08
JP5639986B2 true JP5639986B2 (ja) 2014-12-10

Family

ID=45901358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240548A Active JP5639986B2 (ja) 2011-11-01 2011-11-01 熱可塑性樹脂フィルムの製造方法

Country Status (1)

Country Link
JP (1) JP5639986B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896970B2 (ja) * 2013-09-26 2016-03-30 富士フイルム株式会社 延伸フィルムの製造方法及び設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944965B2 (ja) * 1979-12-28 1984-11-02 松下電工株式会社 樹脂組成物の押出成形法
JP4117589B2 (ja) * 1999-04-01 2008-07-16 日本ゼオン株式会社 環状オレフィン樹脂製押出成形物及びその製造方法
JP4608800B2 (ja) * 2001-04-16 2011-01-12 コニカミノルタホールディングス株式会社 位相差フィルムの製造方法
JP3846566B2 (ja) * 2002-02-20 2006-11-15 日本ゼオン株式会社 熱可塑性樹脂シートの製造方法
JP3846567B2 (ja) * 2002-02-27 2006-11-15 日本ゼオン株式会社 熱可塑性樹脂シートの製造方法
JP2003315551A (ja) * 2002-04-26 2003-11-06 Fuji Photo Film Co Ltd 偏光板およびそれを用いた画像表示装置
JP4300106B2 (ja) * 2003-12-19 2009-07-22 富士フイルム株式会社 セルロースアシレートフィルム及びその製膜方法
JP2007301821A (ja) * 2006-05-10 2007-11-22 Fujifilm Corp 熱可塑性樹脂フィルム及びその製造方法

Also Published As

Publication number Publication date
JP2012045944A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4870522B2 (ja) 熱可塑性樹脂フィルムの製造方法
JP4863994B2 (ja) セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム、並びに液晶表示装置
JP4719508B2 (ja) セルロースアシレートフィルムおよびその製造方法並びに、該セルロースアシレートフィルムを用いた光学フィルム及び画像表示装置
JP2006334842A (ja) 熱可塑性フィルムの製造方法及びそれを用いて製造した液晶表示板用光学補償フィルム
JP2007137022A (ja) 熱可塑性樹脂フィルム及びその製造方法
JP2007301821A (ja) 熱可塑性樹脂フィルム及びその製造方法
JP4626757B2 (ja) 熱可塑性フィルム及びその製造方法
JP2006334841A (ja) セルロースアシレートフィルムの製造方法及びそれを用いて製造した液晶表示板用光学補償フィルム
JP2006341450A (ja) セルロースアシレートフィルムの製造方法、及びそれを用いて製造されたセルロースアシレートフィルム、並びに液晶表示板用光学補償フィルム
JPWO2006126592A1 (ja) セルロースアシレートフィルム、並びに、これを用いた偏光板、光学補償フィルムおよび液晶表示装置
JP2006205708A (ja) セルロースアシレートフィルムおよびその製造方法、偏光板、位相差フィルム、光学補償フィルム、反射防止フィルム並びに画像表示装置
JP5030652B2 (ja) セルロース系樹脂フィルムの製造方法
JP2006336004A (ja) セルロースアシレートフィルム
JP2006045500A (ja) セルロースアシレートの製造方法ならびにこれを用いた光学フィルム
JP2006116945A (ja) セルロースアシレートフィルム及びその製造方法並びに延伸セルロースアシレートフィルム及びその製造方法
JP5334784B2 (ja) フィルム延伸方法及び装置
JP5302785B2 (ja) フィルム延伸方法、装置及びフィルムの製造方法
JP2008068449A (ja) 熱可塑性樹脂フィルム及びその製造方法
JP5639986B2 (ja) 熱可塑性樹脂フィルムの製造方法
JP4604290B2 (ja) セルロースアシレートフィルム及びその製造方法
JP2008238408A (ja) セルロースアシレート樹脂フイルム及びその製造方法並びに装置
JP2006348269A (ja) セルロースアシレートフィルムおよびその製造方法、偏光板、並びに、液晶表示装置
JP2006334840A (ja) セルロースアシレートフィルムの製造方法、及びそれを用いて製造されたセルロースアシレートフィルム、並びに液晶表示板用光学補償フィルム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250