JP5638617B2 - 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法 - Google Patents

高周波電力供給装置、プラズマ処理装置及び薄膜製造方法 Download PDF

Info

Publication number
JP5638617B2
JP5638617B2 JP2012533895A JP2012533895A JP5638617B2 JP 5638617 B2 JP5638617 B2 JP 5638617B2 JP 2012533895 A JP2012533895 A JP 2012533895A JP 2012533895 A JP2012533895 A JP 2012533895A JP 5638617 B2 JP5638617 B2 JP 5638617B2
Authority
JP
Japan
Prior art keywords
frequency power
power supply
supply
power
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012533895A
Other languages
English (en)
Other versions
JPWO2012035842A1 (ja
Inventor
知弘 池田
知弘 池田
正和 滝
正和 滝
睦 津田
睦 津田
藤原 伸夫
伸夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012533895A priority Critical patent/JP5638617B2/ja
Publication of JPWO2012035842A1 publication Critical patent/JPWO2012035842A1/ja
Application granted granted Critical
Publication of JP5638617B2 publication Critical patent/JP5638617B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、高周波電力供給装置、プラズマ処理装置及び薄膜製造方法に関する。
プラズマ成膜装置は、アモルファスシリコン薄膜や微結晶シリコン薄膜等の薄膜を基板上に成膜するための装置として広く用いられている。今日では、例えば薄膜シリコン太陽電池の発電層やフラットディスプレイパネルに用いられる薄膜トランジスタのような大面積の薄膜を、高速で一時に成膜することができるプラズマ成膜装置も開発されている。大面積のシリコン薄膜を成膜するには、平行平板型プラズマ成膜装置を使用するのが一般的である。
平行平板型プラズマ成膜装置は、真空チャンバ内において数mmから数十mmの距離を隔てて対向している第一の電極と第二の電極とを有する。通常電極は水平面内に設置され、第一の電極に高周波電力を供給し、第二の電極は接地されている。シリコン薄膜を成膜する場合、シラン(SiH4)や水素(H2)等の成膜ガスを、第一の電極に構成した多数のアパーチャを通して放電空間となる電極間のギャップに供給する。放電空間に供給されたガスは高周波電力によってプラズマ化する。成膜ガスはプラズマ中で分解され、ラジカルやイオンへとなって被成膜基板へと入射し、基板上にシリコン膜を形成する。一般に、接地されている側となる第二の電極がステージとして用いられ、被成膜基板が載置される。
近年、成膜品質や成膜速度向上といったニーズに応えるため、従来一般的であった13.56MHzよりも周波数の高いVHF(Very High Frequency)帯の高周波電力を用いて生成したVHFプラズマを成膜に用いることが盛んに研究されている。VHFプラズマは高密度、低電子温度であるという特徴を備えるため、前記ニーズに対する解として、期待が持たれている。
しかしながら、VHF帯の高周波電力を用いる場合、高周波電力の周波数の増加により、高周波電力の「波」としての性質が顕著に表れ、成膜特性が電極面内で不均一になることが大きな問題であった。すなわち、電極面内で高周波電力が干渉を起こし、定在波を形成することで電界強度分布が不均一になり、その結果プラズマ密度が不均一となり、最終的に成膜速度や膜質そのものが不均一になってしまう。近年の基板の大型化もこの問題を悪化させる要因となっており、実用化の上での大きな課題となっている。
一般に電極サイズは使用する高周波電力の波長λの1/10以下であることが望ましいとされている。これは目安として、電極サイズがλ/10以下であれば定在波が形成しても電界強度の面内ばらつきがおおむね±10%以下に収まるためである。例えば13.56MHzの場合、電極サイズは2m強まで、VHF帯、例えば60MHzでは電極サイズは50cm程度が限界となる。
成膜特性、例えば膜厚分布のばらつきは、フラットパネルディスプレイ用薄膜トランジスタなどでは再現性を確保して±5%程度、太陽電池分野では再現性を確保して±10%程度を達成することが実用化の一つの指標となっている。従来のVHFプラズマ技術では、例えばアモルファスシリコン膜の成膜速度の場合、基板面積50cm×50cm程度で±10〜15%程度と、小面積基板でかろうじて満たしている状況である。100cm×100cm程度に至っては±20〜40%程度と、上記指標をクリアできないという問題がある。
定在波の形成は波の干渉という基本的な物理現象に起因しているため根本的な解決が非常に困難である。したがって次善の策として、従来技術の多くは定在波の形成そのものは許容し、その分布を時間的に制御することにより時間平均として均一なプラズマの生成、ひいては成膜を行うという指針をとっている。
例えば、下記特許文献1では、電極上に少なくとも4個の給電点を設け、それぞれの給電点から同時に給電を行うことで電極中央に定在波の腹を形成させ、電界分布の不均一性を緩和させている。これにより60MHzの高周波電力を用いて上述の限界に近い50cm×40cmの基板に対して±10%前後の膜厚分布が得られている。
また、下記特許文献2では、VHFより低い周波数ではあるが、方形電極の互いに対向した2つの辺から交互に給電をすることで、時間平均的に見て電界分布を均一化する手法が開示されている。例えば27.12MHzの高周波電力を100kHzの周波数で交互に給電し、2.2m×2.4mの基板に成膜した場合(60MHzでは1m角程度に相当)、±17%の膜厚分布が得られるとしている。
また、下記特許文献3では、方形電極の互いに対向した2つの辺から供給される電力の電圧の位相差を時間的に変化させており、電極上の互いに対向する位置に配置された第1及び第2の給電点間の距離を使用電力の波長の二分の一の整数倍に設定し、2台のパルス変調可能な位相可変2出力の高周波電源から出力される時間的に分離されたパルス電力を供給する。これにより、腹の位置が第1及び第2の給電点の位置に合致した第1の定在波と、節の位置が第1及び第2の給電点の位置に合致した第2の定在波と、を時間的に交互に発生させている。
特許第3631903号公報 特開2006−216679号公報 特許第4022670号公報
上述のように、低電子温度で高密度なプラズマが生成可能なVHF帯の高周波電力を用いて成膜を行うことは、膜質向上と高速成膜をともに解決できる技術として近年実用化研究が盛んに行われている。しかしながら基板の大面積化と電源周波数の高周波化はともに定在波の形成による電界強度分布の不均一という現象の要因となり、成膜均一性の悪化の主原因となっている。
定在波の形成は周波数が等しく進行方向が異なる二つの波が干渉を起こすことで生じる基本的な物理現象である。説明の簡素化のため1次元で示すと、以下のようになる。x軸上をx軸の正方向に動くように見える波If(一般に進行波と呼ばれる)、負方向に動くように見える波Ir(一般に後退波と呼ばれる)は、それぞれ振幅A、角周波数ω=2πf、波数k=2π/λを用いて以下の式(1)のように表せる。
If(x,t)=Asin(kx−ωt)
Ir(x,t)=Asin(kx+ωt) …(1)
ここでIf(x,t)とIr(x,t)を足し合わせると、以下の式(2)のようになる。
If+Ir=Asin(ωt−kx)+Asin(ωt+kx)
=2Asin(kx)cos(ωt) …(2)
すなわち波の振幅がsin(kx)の形状の分布を持つことになる。
例えばsin(kx)=0となるx=nπ/k=nλ/2(nは整数)の点では振幅が時間に依らず0となり、このような点は定在波の節といわれる。また逆にsin(kx)=1となるx=(2n+1)λ/4では振幅が最大となり、このような点を定在波の腹という。
逆に言えば、後退波がなければ定在波を無くすことは原理的には可能である。実際プリント基板などで高周波信号を伝搬させる際は、伝搬経路の特性インピーダンスを精密に制御して反射波、つまり後退波が発生しないようにして定在波の形成を抑制している。しかしながら、プラズマ成膜装置においては可動部分の多さや耐圧構造の確保、プラズマ自体のインピーダンスの不確定性などにより給電経路のインピーダンス制御が非常に難しく、反射波の生成を抑制して定在波の形成そのものを抑えることは現実的には非常に困難とされている。したがって次善の策として、従来技術の多くは定在波の形成そのものは許容し、その分布を時間的に制御することにより時間平均として均一なプラズマの生成、ひいては成膜を行うという指針をとっている。
上記特許文献1記載の技術では、複数の給電点から同時に給電を行うことで均一化が図れるとあるが、定在波の腹が移動しているだけで定在波の形成によるプラズマ分布の不均一性は依然として未解決である。したがってメートルサイズに基板を大型化する、また給電電力を高周波化することは難しい、という問題がある。実際に、1.4m×1.1mの基板に対して周囲4〜8点から給電を行ってプラズマの生成を試みたが、いずれの場合も電極中央にプラズマが局在して生成し、均一なプラズマは得られなかった。
上記特許文献2記載の技術では、電極面上で対向する位置に接続された電源同士が互いに干渉を起こさないよう、交互にオン/オフすることで均一化を図っている。これは周波数が比較的低く、プラズマ分布の変化がほぼ線形に近似できる領域では有効である。しかしながら、さらに周波数が高くなると定在波の形成がより顕著になり、この結果、プラズマ分布は節点をともなった曲線的な形状になる。このような周波数領域においても、二つの定在波を重ね合わせることで均一化は可能であるが、腹と節の位置がちょうどπ/4ずれる条件(例えば電極のサイズがλ/4の奇数倍など)を満たす場合に限定される。しかし、実際の成膜やエッチングプロセスなどにおいては、プロセス条件によってプラズマパラメータが変化し、それにともないλも変化する。したがって実用的な観点でもプロセス条件による差に対するマージンが非常に小さくなるという問題があり、VHF帯の周波数領域への適用は難しい、という問題がある。
上記特許文献3記載の技術では、給電点の配置が高周波電力の波長に依存するなど、特許文献2と同様に構造への制約があり、また変調をかけるための移相器が必要であるなど、システムが煩雑になる、という問題がある。
本発明は、上記に鑑みてなされたものであって、VHF帯の周波数領域を用いた場合でも装置構成を煩雑化せずに、大面積の領域に対して安定して面内均一な電界分布を形成することができる高周波電力供給装置、プラズマ処理装置及び薄膜製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、第1の電極と前記第1の電極に対向して配置された第2の電極とで構成される平行平板電極の前記第1の電極に周波数が13.56MHzより高い高周波電力を供給する高周波電力供給装置であって、前記第1の電極の離れた位置に、前記高周波電力をそれぞれ供給する第1の高周波電源および第2の高周波電源と、前記第1の高周波電源の供給電力および前記第2の高周波電源の供給電力がハイレベルとローレベルとを含む複数のレベルで変化するようにパルス変調させて、前記パルス変調の1周期を第1の期間、第2の期間および第3の期間の3つの期間に分け、前記第1の期間では、前記第1の高周波電源の供給電力がハイレベルとなり、かつ、前記第2の高周波電源の供給電力がローレベルとな前記第2の期間では、前記第2の高周波電源の供給電力がハイレベルとなり、かつ、前記第1の高周波電源の供給電力がローレベルとな前記第3の期間では、前記第1の高周波電源の供給電力と前記第2の高周波電源の供給電力とがともにローレベルよりも高いレベルとなるよう前記第1の高周波電源および前記第2の高周波電源の供給電力のレベルの切替えを指示する電力切替部と、を備えることを特徴とする。
本発明によれば、前記第1および第2の期間に形成する少なくとも2種類の定在波と、前記第3の期間に形成する少なくとも1つの定在波を時間的に切り替えることで、電極サイズやプラズマによる波長短縮効果に依存せずに面内均一な電力強度分布を形成することができる。またそれぞれの定在波の腹と節の位置を合わせ込む必要が無く、したがって移相器などを用いた煩雑なシステムを必要とすることもない。したがってVHF帯の周波数領域を用いた場合でも装置構成を煩雑化せずに、大面積の領域に対して安定して面内均一な電力強度分布を形成することができる。
図1は、本発明にかかるプラズマ処理装置の構成例を概略的に示す図である。 図2は、高周波電源がパルス変調した電力プロファイルの一例を示す図である。 図3は、図2に示したプロファイルにより電力を供給した場合の電極上の電力強度分布の一例を示す図である。 図4−1は、I3とI1+I2とが逆相となるように2つの高周波電源から給電される高周波の位相差をπとする高周波給電部の構成例を示す図である。 図4−2は、I3とI1+I2とが逆相となるように2つの高周波電源から給電される高周波の位相差をπとする高周波給電部の構成例を示す図である。 図4−3は、I3とI1+I2とが逆相となるように2つの高周波電源から給電される高周波の位相差をπとする高周波給電部の構成例を示す図である。 図5は、ハイ/ローを用いて変調を行う場合の電力プロファイルの一例を示す図である。 図6は、期間により異なる大きさの電力を供給する場合の電力プロファイルの一例を示す図である。 図7−1は、給電点の配置の一例を示す図である。 図7−2は、給電点の配置の一例を示す図である。 図7−3は、給電点の配置の一例を示す図である。 図8−1は、平面波近似を行った際の電力強度分布と、回り込みが生じた際の電力強度分布の模式図である。 図8−2は、平面波近似を行った際の電力強度分布と、回り込みが生じた際の電力強度分布の模式図である。 図9は、給電点を4つ配した場合の電力プロファイルの一例を示す図である。 図10−1は、同じ電力プロファイルを適用する給電点のグループ分けの一例を示す図である。 図10−2は、同じ電力プロファイルを適用する給電点のグループ分けの一例を示す図である。 図10−3は、同じ電力プロファイルを適用する給電点のグループ分けの一例を示す図である。 図11−1は、給電点のグループ分けを変えたときの分布の変化の一例を示す図である。 図11−2は、給電点のグループ分けを変えたときの分布の変化の一例を示す図である。 図11−3は、給電点のグループ分けを変えたときの分布の変化の一例を示す図である。 図11−4は、給電点のグループ分けを変えたときの分布の変化の一例を示す図である。 図11−5は、給電点のグループ分けを変えたときの分布の変化の一例を示す図である。
以下に、本発明にかかる高周波電力供給装置、プラズマ処理装置及び薄膜製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明にかかるプラズマ処理装置の実施の形態1の構成例を概略的に示す図である。図1に示すように本実施の形態のプラズマ処理装置は、プラズマを生成して化学気相堆積法により薄膜を形成するプラズマ処理装置であり、真空チャンバ100と、移動機構を有するステージ110と、多数のガス供給口を有するシャワープレート121と、パルスジェネレータ(電力切替部)132と、パルス変調を行なうことができる高周波電源(電源)133a,133bと、を備える。
真空チャンバ100は、フランジ101に接続されており、絶縁スペーサ122a,122bとの間で気密シールがなされて内部と大気を分離する。絶縁スペーサ122a,122bは電極ブロック120を固定している。これらの構造物がステージ110、シャワープレート121を内部に含む減圧容器を構成しており、ステージ110とシャワープレート121の間が高周波プラズマの発生するプラズマ生成領域113となる。電極ブロック120の上方は大気圧の領域である。
さらに、真空チャンバ100は排気ポート102およびゲートバルブ103を有する。減圧容器内は図示されていない真空ポンプによって、真空チャンバ100に備えられた排気ポート102から真空排気される。真空チャンバ100は、通常、アルミニウム合金などの金属で作製されており、良好な電気導電性を有している。ステージ110は支柱111で支持されており、被処理基板112はステージ110上に静置される。支柱111は図示しない駆動機構に接続されており、この駆動機構を用いて支柱111の高さを変化させることによりステージ110を上下方向に昇降させることができる。
また、電極ブロック120からシールドボックス124を貫通してプラズマ生成用ガスの導入配管が設けられており、外部のガス供給設備に接続される成膜ガス供給ポート123を有している。成膜ガス(プラズマ生成ガス)は、成膜ガス供給ポート123を経由してガス供給設備から供給され、シャワープレート121からプラズマ生成領域113へ供給される。
電極ブロック120は、シャワープレート121を支持し、シャワープレート121と電気的に接続されており、給電バー135a,135bと接続されている。また、電極ブロック120は絶縁スペーサ122と接合されており、さらに絶縁スペーサ122を介してフランジ101と絶縁されている。電極ブロック120の上方には、電極ブロック120を囲うシールドボックス124が設けられており、シールドボックス124は絶縁スペーサ136a,136bによって給電バー135a,135bとそれぞれ絶縁されている。
真空チャンバ100にはゲートバルブ103が配設され、ゲートバルブ103を通してステージ110上へ被処理基板112の搬送が行われる。ステージ110上に被処理基板112が搭載された状態で、支柱111とステージ110を上昇させることにより、被処理基板112はシャワープレート121に接近する。ステージ110とシャワープレート121の距離が所望の値に設定された後、続いて電極ブロック120経由でシャワープレート121に高周波電力が供給されてプラズマが発生する。本実施の形態では、シャワープレート121が高周波電力を供給される電極(第1の電極)となり、ステージ110が接地されている電極(第2の電極)となり、シャワープレート121とステージ110で平行平板電極を構成する。
そして、被処理基板112に対する成膜やエッチングなどのプラズマ処理が完了した後、支柱111とステージ110が下降してシャワープレート121から遠ざかり、被処理基板112はゲートバルブ103を通過してステージ110上から真空チャンバ100外部に搬出される。
被処理基板112上にシリコン薄膜を成膜するには、例えば、シリコン源としてモノシラン(SiH4)ガス、キャリアガスとして水素(H2)ガスを用い、これらを混合したガスをプラズマ生成用の成膜ガスとして用いる。成膜ガスはガス成膜ガス供給ポート123を通して電極ブロック120内に供給され、シャワープレート121に構成した多数のアパーチャを通して対向するステージ110上のプラズマ生成領域113へと流入する。電極ブロック120に高周波電力が供給されると、プラズマ生成領域113中の成膜ガスは高周波電力により分解され、高周波プラズマを生じる。この過程でSiH3、SiH2、SiH、Si、Hなどの活性種が生成され、これらの活性種が被処理基板112に入射し、被処理基板112表面上に非晶質あるいは微結晶のシリコンを形成する。高周波プラズマを一定時間継続した結果として、被処理基板112上に非晶質あるいは微結晶質のシリコン薄膜が成膜される。
次に、本実施の形態の高周波給電部(高周波電力供給装置)について詳細に説明する。本実施の形態の高周波給電部は、図1に示した高周波発振器130と、分波器131と、パルスジェネレータ132と、高周波スイッチ140a,140bと、高周波増幅器141a,141bと、アイソレータ142a,142bと、整合器134a,134bと、給電バー135a,135bと、で構成される。高周波スイッチ140a、高周波増幅器141aおよびアイソレータ142aは、高周波電源133aを構成し、高周波スイッチ140b、高周波増幅器141bおよびアイソレータ142bは、高周波電源133bを構成する。本実施の形態の高周波給電部が給電する周波数は、高速成膜を実現するためにVHF帯が選定されているとする。なお、本実施の形態ではVHF帯を用いる場合について説明するが、給電する周波数はVHF帯に限定されない。
大面積の電極面にVHF帯の高周波電力を供給するには、定在波の影響を少なくするため複数の離れた箇所から給電する方式が好適である。一般に電極は矩形、正方形、円形など点対称、線対称など対称な形状で、給電箇所はそれらの電極の周辺付近にあって、複数の給電箇所が中心線や中心点に対称に離れた位置に配置されるとよい。給電箇所の数は装置の大きさや構造により選定されるが、図1では2台の高周波電源(高周波電源133a,133b)を電極面内の短辺上に対向して配置し、2箇所から給電する構成例を示している。給電箇所の数は2箇所に限らず、装置の大きさや構造により何箇所としてもよい。
高周波電源133a,133bの同期を取るため、高周波発振器130を用いて生成した小電力の高周波信号を、分波器131を用いて2系統に分け、分波した高周波信号を、それぞれ高周波スイッチ140a,140bを通して高周波増幅器141a,141bに入力する。高周波スイッチ140a,140bは、パルスジェネレータ132と接続されており、高周波信号のオン/オフをパルスジェネレータ132の出力信号に応じて電気的に切り替えることができる。高周波電源133a,133bは、このようにして、高周波信号のオンとオフの比(デューティー比)により供給する電力の大きさを制御するパルス変調を行う。
高周波増幅器141a,141bは、入力された高周波信号を増幅しアイソレータ142a,142bを通してそれぞれ出力する。なお、高周波電源133a,133bの構成は図1で示した構成に限らず、高周波信号をパルス変調可能な電源であればどのような構成であってもよい。
アイソレータ142a,142bから出力された電力(高周波信号)は同軸ケーブルの給電線を介して伝送され、それぞれ整合器134a,134bを通して給電バー135a,135bに供給される。通常、数kHz以上の高速で変調を行うと整合器134a,134bが負荷の変動に追随できず、特にオン/オフ直後など反射電力が高くなることが多い。このため高周波電源133にはアイソレータ142a,142bが配置され、反射電力が高周波増幅器141に戻らないようにしている。アイソレータ142a,142bは、通常サーキュレータとダミーロードで構成されることが多いが、これに限らずどのような構成でもよい。
給電バー135a,135bは整合器134a,134bから伝送される電力(電流)を電極ブロック120に伝送する役割を持つ。給電バー135a,135bは銅やアルミニウムといった導電率の高い材料で構成されており、電極ブロック120にネジ等で固定される。給電バー135a,135bから供給された電流は表皮効果のため電極ブロック120の表面近傍のごく浅い部分を流れ、シャワープレート121の表面部分に供給される。
高周波電源133a,133bの接地電位となる同軸ケーブルの外部導体は、整合器134の筐体ないしその近傍のシールドボックス124に接続されている。シールドボックス124、真空チャンバ100、フランジ101はともに高周波電源133a,133bの接地側に接続されており、感電や輻射ノイズの発生を防止している。またステージ110は真空チャンバ100に接続されて接地されている。
一般に、高周波放電においては、ステージ110の接地インピーダンスがプラズマの均一性、安定性に大きく影響を及ぼすため、可撓性のプレートを用いてステージ110とチャンバ内壁とをバイパスするなど、適切な接地機構を用いて接地インピーダンスを低く抑える必要がある。しかし本実施の形態のプラズマ処理装置では、接地インピーダンスの大小には依らずにプラズマの均一性、安定性を高くすることができるため、接地機構についての制約は無い。そのため、ここでは簡単のため接地機構を省略して示している。
次に、本実施の形態のパルス給電方法について説明する。図2は、本実施の形態の高周波電源133a,133bがパルス変調した電力の電力プロファイルの一例を示す図である。図3は、図2に示した電力プロファイルにより電力を供給した場合の電極上の電力強度分布の一例を示す図である。図2および図3を用いて、本実施の形態のパルス給電時の定在波の形成と時間進展について説明する。以下では、簡単のため一次元で概略を説明する。なお、図3において相対位置が0の左端と、1の右端とをそれぞれ高周波電源133a,133bの給電箇所として、高周波電源133a,133bから同位相(位相差0)の高周波電力が給電される場合を示している。
まず、図2に示すように、本実施の形態では、高周波発振器130が生成する高周波信号の1周期を(1)、(2)および(3)の3つの期間に分ける。(1)で示した期間では、高周波電源133aがオンとなり、高周波電源133bはオフである。(2)で示した期間では、高周波電源133aがオフとなり、高周波電源133bはオンである。(3)で示した期間では、高周波電源133a、高周波電源133bともにオンである。
また、図3の分布W1は、高周波電源133aのみをオンとした場合の電力強度分布を示し、分布W2は、高周波電源133bのみをオンとした場合の電力強度分布を示し、分布W3は、高周波電源133a,133bの両方をオンとした場合の電力強度分布を示す。また、分布W4は、分布W1と分布W2を重ね合わせた分布を示し、分布W5は、分布W1と分布W2と分布W3とを重ね合わせた分布を示す。
ここで、電極面内(電極ブロック120上)の給電バー135aと給電バー135bを結ぶ方向をx軸とし、x=0に給電バー135aが位置すると仮定する。高周波電源133aが生成した高周波信号の電圧波形をV1(x、t)とすると、V1(x、t)は以下の式(3)で表すことができる。
V1(x、t)=Asin(kx−ωt) …(3)
なお、Aは振幅、kは波数、ωは角周波数である。
このとき電極長(給電バー135aと給電バー135bの間の距離)をLとし、逆端での反射率をγとして考えると、電極上の電圧分布V(x、t)は以下の式(4)で表すことができる。
V(x、t)=V1+Vr
=Asin(kx−ωt)+Aγsin{k(2L−x)−ωt}…(4)
実際には、γは概ね1に近い場合が多いため、γ=1とすると、以下の式(5)のようになる。
V(x、t)=2Acos{k(x−L)}sin(kL−ωt) …(5)
電力強度分布をI1とすると、I1はV(x、t)の振幅の二乗に比例するため、以下の式(6)のようになる。
1∝V(x、t)2
=4A2cos2{k(x−L)}
=2A2[cos{2k(x−L)}+1] …(6)
したがって、上記式(6)からわかるように、高周波電源133aのみをオンとした場合(図2の(1)の期間)には、I1は、図3の分布W1に示すように、給電点とは逆側のx=Lに腹を持つ定在波分布となる。
図2の(2)の期間は、高周波電源133bのみがオンとなる期間である。給電バー135bの位置をx=Lとすると、高周波電源133bが生成した高周波信号の電圧波形をV2(x、t)とすると、V2(x、t)は以下の式(7)で表すことができる。
V2=Asin{k(L−x)−ωt} …(7)
このときV(x、t)は、以下の式(8)で表すことができる。
V(x、t)=2Acos(kx)sin(kL−ωt) …(8)
電力強度分布をI2とすると、以下の式(9)が成り立つ。
2∝2A2{cos(2kx)+1} …(9)
したがって、I2は、図3の分布W2に示すように、給電点とは逆側のx=0に腹を持つ定在波分布となる。
図2の(3)の期間は、高周波電源133a,133bの両方がオンとなる期間である。この時、電極端部における多重反射によって生じる振幅、位相変化をそれぞれβ、φとし、電力強度分布をI3とすると、以下の式(10),(11)が成り立ち、I3は、図3の分布W3に示すように電極中央のx=L/2に腹を持つ定在波分布となる。
V=Aβsin(kx−ωt−φ)+Aβsin{k(L−x)−ωt−φ}
=2Aβcos(kx−kL/2)sin(kL/2−ωt−φ) …(10)
3∝2A2β2[cos{2k(x−L/2)}+1] …(11)
したがってI1とI2を重ね合わせると、以下の式(12)のようになる。
1+I2∝2A2[cos{2k(x−L)}+cos(2kx)+2]
=4A2[cos(kL)cos{2k(x−L/2)}+1] …(12)
式(11)および式(12)により、I1+I2はLの値に応じてI3と同相(cos(kL)≧0)、または逆相(cos(kL)<0)の分布となる。したがって、逆相となる条件下で、I1+I2とI3の比αを以下の式(13)を満たすように、それぞれの定在波を形成する期間を設定すると、正弦波成分が打ち消し合う。このように設定した場合の時間平均で見た電力強度分布Iavは、以下の式(14)で表すことができ、電極上で分布を持たない均一な電力強度分布が得られる。
α=(I1+I2)/I3=−2cos(kL)/β2 …(13)
av∝2A2(2+αβ2) …(14)
したがって、逆相となる条件下で、I1+I2とI3の比αを上記の式(13)を満たすようにそれぞれの定在波を形成する期間を設定し、高周波信号のオン/オフをパルスジェネレータ132が、この設定に基づいて高周波スイッチ140a,140bに出力する信号を生成すれば、電極上で分布を持たない均一な電力強度分布が得られる。
実際に60MHzの高周波電力を用いた実験により、変調周波数1kHz、電極サイズ1.2m×1.5mとして放電を行った場合、β〜0.8程度に相当するα〜1(デューティー比70%)で均一性±12%が得られている。変調なしの場合は節点が形成するため均一性は約±100%であった。
なお、2つの高周波電源から給電される高周波の位相差を0とすると上記I3とI1+I2が同相の分布となるような電極サイズ(cos(kL)≧0)の場合は、片方の高周波電源をもう片方に対して位相がπ(rad)ずれるようにしてI3とI1+I2とを逆位相にすると良い。この場合でも移相器などは必須ではない。図4−1〜4−3は、I3とI1+I2と逆相となるように2つの高周波電源から給電される高周波の位相差をπとする高周波給電部の構成例を示す図である。例えば、図4−1に示すように、位相調整部として機能する遅延器200を備えることにより、高周波電源133a,133bの位相差をπ(rad)とするようにしてもよい。さらに、誤差を調整する場合等を考慮して、高周波電源133a,133bの位相差をπ以外としてもよい。また、πの位相差を与えるか否かを遅延器200に設定可能なように構成し、電極の大きさや周波数に応じて位相差を0またはπを選択できるようにしてもよい。
また、図4−2に示すように、平衡/不平衡変換器201を備えることにより、高周波電源133a,133bの位相差をπ(rad)とするようにしてもよい。また、図4−3に示すように、差動出力が可能な差動出力型高周波発振器202を備えることにより、高周波電源133a,133bの位相差をπ(rad)とするようにしてもよい。このように、システムが煩雑になることはなく、給電する電極のサイズに応じて高周波給電部の構成を適宜選択することが可能である。
また、図2の(1)、(2)の期間においてオフとしていた側の高周波電源を完全にオフにする代わりにこれらを用いて補助的な給電を行い、均一性を向上させることもできる。このようにすると、電極端部における分布の落ち込みや立ち上がりを抑えることが可能になるという大きなメリットがある。すなわち、上述のように電極端部では完全反射(γ=1)が起きることが理想的であるが実際はγ<1であり、その分の誤差が電極端部での落ち込みや立ち上がりの原因となる。したがって、主給電点の逆側、つまり反射が起こる方から補助的に給電することで、その誤差分を補償することができ、結果として均一性が向上する。図5は、給電電力のオン/オフではなくハイ/ロー(high/low:ただしlowは0でない場合を含む)を用いて変調を行う場合に高周波電源133a,133bから出力される電力の電力プロファイルの一例を示す図である。この場合、パルスジェネレータ132は、オン/オフを指示する信号の代わりに、ハイ/ローの指示する信号を出力し、高周波電源133a,133bでは、この信号に基づいて、ハイまたはローの電力を出力するような構成とする。図5のlowはハイよりも低く0(オフ)でないレベルを示す。なお、ハイは処理期間中に各高周波電源が出力する最大の出力レベル、ローは最小の出力レベルを示す。(1)〜(3)の各々の持続期間中は、ほぼ一定レベルで電力が出力される。
また、(1)、(2)の期間と、(3)の期間において、異なる大きさの電力を供給することもできる。図6は、期間により異なる大きさの電力を供給する場合に高周波電源133a,133bから出力される電力の電力プロファイルの一例を示す図である。例えば、図6に示すようにハイ/ミドル/ローの3つの電力レベルを定めておく。ミドルはハイとローとの間の出力レベルを示す。図6の(1)、(2)の期間は、(3)の期間と比べて実給電点数が半分になるため、(3)の期間では(1)、(2)の期間の電力(ハイレベルの電力)の1/2倍の電力(ミドルレベルの電力)を給電することで電力密度の時間的なふらつきを抑制することができる。
この場合、パルスジェネレータ132は、オン/オフを指示する信号の代わりに、ハイ/ミドル/ローを指示する信号を出力し、高周波電源133a,133bでは、この信号に基づいて、ハイレベルまたはミドルレベルまたはローレベルの電力を出力するような構成とする。このように、瞬時的な電力密度をそろえると、成膜特性の均一性を向上させることが可能になるというメリットがある。またαは給電期間の長さなど時間軸で決定するだけでなく、図6の例のように投入電力を変えて調整することもでき、どちらにするかは得られた膜質に応じて選択できる。
また(1)、(2)、(3)の各期間において、その給電期間の長さ、給電電力の大きさなどは適宜変更することができる。あえて非対称な給電とすることでプラズマ分布に偏りを持たせることが可能である。例えば、プラズマ処理装置の製造上、機械的な公差や電極の表面状態など、様々な要因によって非対称性が生じることは避けられないため、各期間における給電電力、給電期間の長さを前記装置の非対称性を補償するように調整することができる。特に大型の成膜装置を製造する上では許容される寸法公差が大きくなるため、装置製造コストを低く抑えることができる点はメリットが大きい。
また、(1)、(2)、(3)の各期間の長さ、順序、および各期間に給電する電力の大きさの組み合わせは、独立にそれぞれ任意に設定することができる。順序に関して言えば、例えば図2では(1)→(2)→(3)→(1)…の様に変調波形を設定しているが、(1)→(3)→(2)→(3)→(1)のように設定することも可能である。同様に給電期間の長さ、給電電力の強度の組み合わせも自由に選択でき、ある一定の周期で繰り返すように組み合わせることも可能である。パルス変調の周期を2つの高周波電源で同一としてもよいが、異なるようにしても良い。また時間平均では所定の値になるが、各期間が短く、かつ、それらの順序をランダムに出現させて、瞬間的にはランダムに揺動しているような条件の組み合わせに設定することも可能である。プラズマ処理の連続した一工程の第1の電極に高周波電力が供給開始されてから供給停止されるまでの全供給期間における(1)の期間、(2)の期間および(3)の期間のそれぞれの高周波電源133aの供給電力の時間平均値および高周波電源133bの高周波電源の供給電力の時間平均値が、全供給期間内の複数の期間内において同じ時間平均値となるようにするとよい。例えばパルス変調がランダムであっても全供給期間内の数分の1の期間ごとにほぼ同じ時間平均値となれば、時間的に均一な処理となって安定な成膜が実現できる。
また、1周期内で、高周波電源133a,133bがともにオフになるような期間をさらに設けてもよい。これにより、例えば、全体の供給電力を調整することができる。また、1周期内に限らず、高周波電力の全供給期間内のいずれかの時点に設けてもよい。
なお、本実施の形態では、高周波電源が2つの場合について説明したが、例えば4つの場合には、電極面内で対向するように離れて配置された2組の高周波電源が、それぞれ上記のように互いの正弦波成分が打ち消し合うようにパルス変調を行なえばよく、高周波電源を2つ以上とする場合にも本実施の形態のパルス給電方法を適用することができる。
次に、図1に例示したプラズマ処理装置を用いてシランガスと水素ガスとの混合ガスで高周波プラズマを発生させ、ガラス基板上に微結晶シリコン膜を堆積させた実験について説明する。
真空排気した真空チャンバ100内のステージ110に被処理基板112として1400mm×1100mmのガラス基板(厚み:4mm)を設置し、ステージ110に内蔵されている図示されないシースヒータを用いて200℃に加熱した。次に、電極ブロック120と被処理基板112との間隔が5mmになるようにステージ110の高さ位置を設定した。この状態で、成膜ガス供給ポート123にシランガスと水素ガスとをそれぞれ1slmと50slmの流量で供給し、プラズマ生成領域113内のガス圧力が1000Paとなるよう排気速度を調整した。ガス圧力が安定した後、シャワープレート121側に上記の高周波供給部を接続してSiH4/H2混合プラズマを発生させ、高周波電力を平均20kW給電した状態で20分間成膜を行った。
上記特許文献2で開示されている構成を用いた場合、上記の条件で膜厚1μmのシリコン薄膜を成膜すると、面内の膜厚分布は平均値に対して±72%の範囲になった。一方、図1に示す装置を用いて同条件で成膜を行ったところ、膜厚2μmに対して、面内の膜厚分布は平均値に対して±8%の範囲内で薄膜が堆積された。作製した薄膜を太陽電池に利用することを想定して、ラマン分光法によって結晶シリコンの形成比率を調査したところ十分なピーク強度比率が得られ、形成比率の面内均一性も実用範囲内であることを確認することが出来た。このことから、実用的な基板サイズにおいても、特性の優れたシリコン膜の成膜が可能であるとの結論を得た。
なお、本実施の形態では、ガス流量、圧力、高周波電力等のパラメータに関して数値を示しているが、これらの数値は一例であり、適宜変更可能である。また、シリコン薄膜形成のための成膜ガスとしてSiH4とH2の混合ガスの場合について説明したが、さらに、Ar、Ne等の希ガスを添加させてもよい。その他、プロセスの目的に応じて適切なガス種が選択可能である。
また、本実施の形態のプラズマ処理装置はプラズマエッチング装置、アッシング装置、スパッタリング装置、イオン注入装置などにも適用することができる。
また、本実施の形態では横型の装置(被処理基板112を水平方向に保持する)について説明を行ったが、縦型(被処理基板112を垂直方向に保持する)の装置にも適用可能である。どちらの型にするかは当該プラズマ処理装置の用途等に応じて適宜選択が可能である。この発明については、上述した以外にも種々の変形、修飾、組み合わせ等が可能である。
実施の形態2.
実施の形態1では給電点の数を2として説明を行っていたが、本発明で提示する手法では給電点数は2点以上であればよい。以下、別の実施の形態として、2点以上の給電の例として給電点数4以上の場合について説明を行う。本実施の形態のプラズマ処理装置の構成は、給電点の数が異なる(すなわち、高周波電源、整合器および給電バーを4式備え、パルスジェネレータ(電力切替部)132は、4つの高周波電源へ切り替えのための出力信号を供給する)以外は、実施の形態1の構成と同様である。なお、簡単のために4点としたが、給電点数3以上や、5以上の場合も同様の考え方で拡張を行うことができる。矩形電極の場合は偶数の給電点数が好ましいが、円形電極などでは奇数の給電点数とすることも容易である。
図7−1,7−2は、本実施の形態の給電点の配置の一例を示す。給電点301a〜301dは電極300面内での4つの給電点(給電バーの電極300面内での位置)を示している。給電点301a〜301dは、電極300上で対向する位置に配置することが少なくとも必要である。電極300の中央を対称軸、対称点とする対象な配置とする必要はないが、そのような対称性の高い配置にするとよりよい。電極300を電極300の重心点を通る直線で2つの領域に分けた場合、この2つの領域のそれぞれに給電点を設けて実施の形態1の2つの高周波電力の制御と同様な動作を行うようにしてもよい。例えば図7−1のように電極300各辺の中央端部に給電点301a〜301dを配置したり、図7−2に示すような電極300の4隅に配置したり、図7−3に示すように電極300の長辺上、もしくは短辺上で対向した複数対の配置にするとよりよい。以下、図7−1の配置を元に詳細な説明を行う。
図7−1の配置では、電極300の短辺中央に配置した給電点301a、301cおよび電極長辺中央に配置した給電点301b、301dを用いてプラズマを生成させる。一般的に一枚板の電極に給電を行うときは、電極端部での高周波電力の回り込みが起きるため、電極面内の電力分布は平面波で近似したときに比べて歪むことがある。
図8−1,8−2に、平面波近似を行った際の電力強度分布と、回り込みが生じた際の電力強度分布の模式図を示す。例えば、電極300短辺上の給電点301a、301cのみを用いて同相同時給電を行った場合、高周波電力を電極300のX軸方向(長辺に平行)に伝播する平面波として考えると図8−1に示すようなかまぼこ形の分布ができる。しかし、回り込みとしてY軸方向(短辺に平行)に伝播する平面波を考慮すると図8−2に示すようなたまご型の分布となる。ここで図8−2は電極300の短辺方向からに電極間に入射する高周波電力に対して、電極300の長辺方向から回り込んで入射する高周波電力が16%と仮定して計算した結果であるが、概ね実測でも同様の形状が得られた。この場合、給電点301a、301cに対して実施の形態1に示す手法を用いても、電極300のY軸方向、すなわち平面波と直交する方向にも分布が形成するため、均一化が難しい。したがって、電極300の長辺上に配置した給電点301b、301dを用いて、電極長辺側端部の分布を持ち上げるように電力プロファイルを設計し、Y軸方向の分布を補償するとよい。
図9は、給電点を4つにした場合の電力プロファイルの一例を示す図である。図9では、給電点301a、301b、301c、301dから給電する電力の電力プロファイルの一例を示している。図9に示す電力プロファイルの例では、主に電極300のX軸方向の均一化を行う期間320と、電極300のY軸方向の均一化を行う期間321と、に分けられる。X軸方向の均一化を行う期間320では実施の形態1で説明を行った手法に基づき給電点301a、301cを用いて電力プロファイルを設計することができる。またY軸方向の均一化を行う期間321では、期間320で均一化を行った分布に合わせて同様に給電点301b、301dを用いて実施の形態1で説明を行った手法に基づき電力プロファイルを設計することができる。逆にY軸方向の均一化を行っておいて、X軸方向の均一化をそれに合わせるという電力プロファイルの設計でもよい。どちらを行うかは、電極のサイズ、放電条件、得られる膜質などに応じて適宜決定するとよい。
また、複数の給電点に同じ電力プロファイルで給電してもよい。図10−1〜10−3に、図7−3に示す給電点の配置において複数の給電点に同じ電力プロファイルを適用する場合の給電点のグループ分けの一例を示す。図10−1〜10−3では、給電点を8点(301a〜301h)としている。例えば、図10−1に示すように給電点301a、301b、301g、301hを1つのグループとし、給電点301c、301d、301e、301fを別のグループとするようグループ分けし、同一グループに属する給電点は同じ電力プロファイルを用い、実施の形態1に示すように電力プロファイルを設計することで、電極300のX軸方向の均一化を行うことができる。同様に、図10−2に示すように給電点301a、301b、301c、301dと、給電点301e、301f、301g、301hと、それぞれグループとすると電極300のY軸方向の均一化を行うことができる。また、図10−3に示すように給電点301a、301b、301e、301fと、給電点301c、301d、301g、301hと、をそれぞれグループとして、電極対角軸での均一化を行うこともできる。
また、このようなグループ分けを時間軸に沿って切り替えることでさらなる均一化を行うことができる。図11−1〜11−5は、図7−3で示した給電点の配置において、給電点のグループ分けを変えたときの分布の変化を示す図である。図8−1、8−2と同様、16%の電力の回り込みがあると仮定して計算を行った結果である。ここで、給電点301a、301hと給電点301d、301eとをそれぞれグループとして給電すると、給電点301a、301hのみがオンの時、図11−1のような分布になり、給電点301d、301eのみがオンの時、図11−2のような分布になる。また、給電点301b、301cと給電点301f、301gとをそれぞれグループとして給電すると、給電点301b、301cのみがオンの時、図11−3のような分布になり、給電点301f、301gのみがオンの時、図11−4のような分布になる。全給電点を同時にオンにすると、図11−5のような分布になる。これらの分布を適切な時間で切り替えると、均一性は±5%となり、大幅な均一化が可能であることが分かる。
なお、このようなグループ、すなわち電力分布の切り替えはなるべく電極300の面内でなめらかに変化するように行うとよい。電力分布が急峻に変化するとプラズマ分布の変化が応答できなくなることがある。特にプラズマがオンの状態のままだと直前のプラズマ分布に応じて電極面内のプラズマの生成しやすさ(放電開始しきい電界強度)が異なってくるため、電力プロファイルに依存したプラズマ分布の制御性悪化が生じることがある。これを避けるため、例えば分布を切り替える際にすべての給電点がオンになるパターンを挿入することができる。これにより、分布変化の前に常に電極300中央にプラズマが生成している状態を作り出すことができ、前記電力プロファイルに依存したプラズマ分布の制御性悪化を抑制することができる。また逆に、すべての給電点をオフにすることで、分布変化の前に常にプラズマが消滅している状態を作り出すことができ、前記電力プロファイルに依存したプラズマ分布の制御性悪化を抑制することができる。なお、これ以外にも種々のパターンを用いることができ、どれを選択するかはプラズマの制御性や、得られる膜質に応じて選択するとよい。
以上、実施の形態1および実施の形態2で述べたように、本発明では、電極上の少なくとも2つ以上の異なる箇所に給電する2つ以上の高周波電力を備える。そして、それらの高周波電力の少なくとも2つは、その供給電力がハイレベルとローレベル(パワーオフを含む)とを含む複数のレベルで変化するようパルス変調される。そして、パルス変調の期間内に、一方の高周波電源の供給電力がハイレベルとなり、かつ、他方の高周波電源の供給電力がローレベルとなる第1の期間と、他方の高周波電源の供給電力がハイレベルとなり、かつ、一方の高周波電源の供給電力がローレベルとなる第2の期間と、一方の高周波電源の供給電力と他方の高周波電源の供給電力とがともにローレベルよりも高いレベルとなる第3の期間と、を含むようにされる。第3の期間では高周波電源の供給電力の比が第1の期間や第2の期間に比べて1:1に近づくようにされる。2つの高周波電力のハイレベルの供給電力どうし、ローレベルの供給電力どうし、また、第3の期間の供給電力どうしは必ずしも同一である必要はなく、装置や使用条件によって少し異なるように調整しても良い。2つの高周波電源の供給電力の第1〜3の期間が同じ周期パターンで出現するように周期的なパルス変調すれば第1〜3の期間の時間比率は一定とすることは非常に容易である。全処理期間である給電時間に対する第1〜3の期間の時間割合を調整することにより、処理の面内分布を制御することができる。たとえば、予め第1の期間、第2の期間、第3の期間の時間比率を変えたパルス変調条件で実験して得た面内分布結果を元に、面内分布がなるべく均一となるように第1の期間、第2の期間、第3の期間の時間比率、また、各高周波電源の出力レベルを調整するとよい。本発明によれば、VHF帯の周波数領域を用いた場合でも装置構成を煩雑化せずに、大面積の領域に対して安定して面内均一な電界分布を形成することができる。
以上のように、本発明にかかる高周波電力供給装置、プラズマ処理装置及び薄膜製造方法は、薄膜を基板上に成膜するためのプラズマ処理装置に有用であり、特に、VHF帯を用いて大面積の基板上に薄膜を形成するプラズマ処理装置に適している。
100 真空チャンバ
101 フランジ
102 排気ポート
103 ゲートバルブ
110 ステージ
111 支柱
112 被処理基板
113 プラズマ生成領域
120 電極ブロック
121 シャワープレート
122a,122b 絶縁スペーサ
123 成膜ガス供給ポート
124 シールドボックス
130 高周波発振器
131 分波器
132 パルスジェネレータ
133a,133b 高周波電源
134a,134b 整合器
135a,135b 給電バー
136a,136b 絶縁スペーサ
140a,140b 高周波スイッチ
141a,141b 高周波増幅器
142a,142b アイソレータ
200 遅延器
201 平衡/不平衡変換器
202 差動出力型高周波発振器
300 電極
301a,301b,301c,301d,301e,301f,301g,301h 給電点
320,321 期間

Claims (14)

  1. 第1の電極と前記第1の電極に対向して配置された第2の電極とで構成される平行平板電極の前記第1の電極に周波数が13.56MHzより高い高周波電力を供給する高周波電力供給装置であって、
    前記第1の電極の離れた位置に、前記高周波電力をそれぞれ供給する第1の高周波電源および第2の高周波電源と、
    前記第1の高周波電源の供給電力および前記第2の高周波電源の供給電力がハイレベルとローレベルとを含む複数のレベルで変化するようにパルス変調させて、前記パルス変調の1周期を第1の期間、第2の期間および第3の期間の3つの期間に分け、前記第1の期間では、前記第1の高周波電源の供給電力がハイレベルとなり、かつ、前記第2の高周波電源の供給電力がローレベルとな前記第2の期間では、前記第2の高周波電源の供給電力がハイレベルとなり、かつ、前記第1の高周波電源の供給電力がローレベルとな前記第3の期間では、前記第1の高周波電源の供給電力と前記第2の高周波電源の供給電力とがともにローレベルよりも高いレベルとなるよう前記第1の高周波電源および前記第2の高周波電源の供給電力のレベルの切替えを指示する電力切替部と、
    を備えることを特徴とする高周波電力供給装置。
  2. 第1の電極と前記第1の電極に対向して配置された第2の電極とで構成される平行平板電極の前記第1の電極に周波数が13.56MHzより高い高周波電力を供給する高周波電力供給装置であって、
    前記第1の電極の離れた位置に、前記高周波電力をそれぞれ供給する第1の高周波電源および第2の高周波電源と、
    前記第1の高周波電源の供給電力および前記第2の高周波電源の供給電力がハイレベルとローレベルとを含む複数のレベルで変化するようにパルス変調させて、前記第1の高周波電源の供給電力がハイレベルとなり、かつ、前記第2の高周波電源の供給電力がローレベルとなる第1の期間と、前記第2の高周波電源の供給電力がハイレベルとなり、かつ、前記第1の高周波電源の供給電力がローレベルとなる第2の期間と、前記第1の高周波電源の供給電力と前記第2の高周波電源の供給電力とがともにローレベルよりも高いレベルとなる第3の期間とを、供給電力の時間平均値が、全供給期間内の複数の期間内において同じ時間平均値となり、かつ、前記第1、第2および第3の期間の順序をランダムに出現させるよう前記第1の高周波電源および前記第2の高周波電源の供給電力のレベルの切替えを指示する電力切替部と、
    を備えることを特徴とする高周波電力供給装置。
  3. 前記第1の期間では前記第2の高周波電源が電力の供給を停止し、前記第2の期間では前記第1の高周波電源が電力の供給を停止する、
    ことを特徴とする請求項1または2に記載の高周波電力供給装置。
  4. 前記第1の期間での前記第1の高周波電源の供給電力と前記第2の期間での前記第2の高周波電源の供給電力とを等しくし、前記第3の期間では、前記第1の高周波電源および前記第2の高周波電源は、前記第1の期間での前記第1の高周波電源の供給電力より小さい電力を供給する、
    ことを特徴とする請求項1または2に記載の高周波電力供給装置。
  5. 前記第3の期間では、前記第1の高周波電源および前記第2の高周波電源は、前記第1の期間での前記第1の高周波電源の供給電力の1/2の電力を供給する、
    ことを特徴とする請求項に記載の高周波電力供給装置。
  6. 前記第1の高周波電源の給電電力と前記第2の高周波電源の給電電力との間に位相差を与える手段をさらに備える、
    ことを特徴とする請求項1〜のいずれか1つに記載の高周波電力供給装置。
  7. 前記第1の高周波電源の給電電力と前記第2の高周波電源の給電電力とが同位相または前記第1の高周波電源の給電電力と前記第2の高周波電源の給電電力との位相差がπラジアンである、
    ことを特徴とする請求項1〜のいずれか1つに記載の高周波電力供給装置。
  8. 前記第1の期間、前記第2の期間および前記第3の期間の順序と、
    前記第1の期間、前記第2の期間および前記第3の期間における前記第1の高周波電源および前記第2の高周波電源のそれぞれの供給電力と、
    の設定値は一定周期で同一設定値を繰り返す、
    ことを特徴とする請求項1〜7のいずれか1つに記載の高周波電力供給装置。
  9. 前記第1の電極に前記高周波電力が供給開始されてから供給停止されるまでの全供給期間における前記第1の期間、前記第2の期間および前記第3の期間のそれぞれの前記第1の高周波電源および前記第2の高周波電源の供給電力の時間平均値が、前記全供給期間内において同じ時間平均値となることを特徴とする請求項1〜8のいずれか1つに記載の高周波電力供給装置。
  10. 前記第1の電極に前記高周波電力が供給開始されてから供給停止されるまでの全供給期間内の前記パルス変調の1周期内に、前記第1の高周波電源および前記第2の高周波電源の両方が電力の供給を停止する第4の期間をさらに含むことを特徴とする請求項1〜9のいずれか1つに記載の高周波電力供給装置。
  11. nを以上の数とし、異なる電力供給位置で前記第1の電極へ前記高周波電力を供給するn個の高周波電源を備え、前記n個の高周波電源を2つの高周波電源を1対とする複数対の高周波電源とし、各対を構成する高周波電源を前記第1の高周波電源および前記第2の高周波電源として、対ごとに前記第1の電極に前記高周波電力を供給する期間を設定する、ことを特徴とする請求項1〜10のいずれか1つに記載の高周波電力供給装置。
  12. nを4以上の偶数とし、前記n個の高周波電源を2つのグループにグループ分けし、一方のグループに属する前記高周波電源が前記第1の高周波電源として動作し、他方のグループに属する前記高周波電源が前記第2の高周波電源として動作する、ことを特徴とする請求項1〜10のいずれか1つに記載の高周波電力供給装置。
  13. 請求項1〜1のいずれか1つに記載の高周波電力供給装置と、
    真空チャンバと、
    前記真空チャンバ内に配置され、前記高周波電力供給装置から電力を供給される第1の電極として機能し、プラズマ生成ガスを被処理基板に供給するシャワープレートと、
    前記真空チャンバ内に配置され、前記被処理基板を載置する機構を備え、第2の電極として機能するステージと、
    を備えることを特徴とするプラズマ処理装置。
  14. 第1の電極と前記第1の電極に対向して配置された第2の電極とで構成される平行平板電極の前記第1の電極に周波数が13.56MHzより高い高周波電力を供給することによりプラズマを生成し、化学気相堆積法により被成膜基板に薄膜を形成する薄膜製造方法であって、
    前記第1の電極の面内の離れた位置に給電するよう第1の高周波電源および第2の高周波電源をそれぞれ配置することとし、
    前記第2の電極に載置された前記被成膜基板上にプラズマ生成ガスを供給する第1の工程と、
    前記第1の高周波電源の供給電力および前記第2の高周波電源の供給電力がハイレベルとローレベルとを含む複数のレベルで変化するようにパルス変調させて、前記パルス変調の1周期を第1の期間、第2の期間および第3の期間の3つの期間に分け、前記第1の期間では、前記第1の高周波電源の供給電力がハイレベルとなり、かつ、前記第2の高周波電源の供給電力がローレベルとな前記第2の期間では、前記第2の高周波電源の供給電力がハイレベルとなり、かつ、前記第1の高周波電源の供給電力がローレベルとな前記第3の期間では、前記第1の高周波電源の供給電力と前記第2の高周波電源の供給電力とがともにローレベルよりも高いレベルとなるよう前記第1の高周波電源および前記第2の高周波電源の供給電力のレベルの切替えを指示する第2の工程と、
    前記第1の高周波電源および前記第2の高周波電源が、前記第2の工程の指示に基づいて前記第1の電極に給電を行なうことにより前記プラズマ生成ガスを分解して前記被成膜基板に薄膜を形成する第3の工程と、
    を含むことを特徴とする薄膜製造方法。
JP2012533895A 2010-09-15 2011-06-22 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法 Expired - Fee Related JP5638617B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533895A JP5638617B2 (ja) 2010-09-15 2011-06-22 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010206828 2010-09-15
JP2010206828 2010-09-15
JP2012533895A JP5638617B2 (ja) 2010-09-15 2011-06-22 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法
PCT/JP2011/064315 WO2012035842A1 (ja) 2010-09-15 2011-06-22 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法

Publications (2)

Publication Number Publication Date
JPWO2012035842A1 JPWO2012035842A1 (ja) 2014-02-03
JP5638617B2 true JP5638617B2 (ja) 2014-12-10

Family

ID=45831324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012533895A Expired - Fee Related JP5638617B2 (ja) 2010-09-15 2011-06-22 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法

Country Status (3)

Country Link
JP (1) JP5638617B2 (ja)
CN (1) CN103098559B (ja)
WO (1) WO2012035842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102892A (ko) * 2015-02-23 2016-08-31 도쿄엘렉트론가부시키가이샤 플라즈마 처리 방법 및 플라즈마 처리 장치
US11239056B2 (en) 2019-07-29 2022-02-01 Advanced Energy Industries, Inc. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952765B2 (en) * 2012-03-23 2015-02-10 Mks Instruments, Inc. System and methods of bimodal automatic power and frequency tuning of RF generators
JP6670692B2 (ja) 2015-09-29 2020-03-25 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理方法
US11417501B2 (en) 2015-09-29 2022-08-16 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method
US9788405B2 (en) * 2015-10-03 2017-10-10 Applied Materials, Inc. RF power delivery with approximated saw tooth wave pulsing
US9644271B1 (en) * 2016-05-13 2017-05-09 Lam Research Corporation Systems and methods for using electrical asymmetry effect to control plasma process space in semiconductor fabrication
US10340123B2 (en) 2016-05-26 2019-07-02 Tokyo Electron Limited Multi-frequency power modulation for etching high aspect ratio features
JP6973976B2 (ja) * 2016-08-12 2021-12-01 株式会社Fuji 抗腫瘍水溶液製造装置
US10510575B2 (en) * 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
JP7210094B2 (ja) * 2017-11-16 2023-01-23 東京エレクトロン株式会社 信号変調同期式プラズマ処理システム
CN108899275B (zh) * 2018-07-20 2021-03-02 北京北方华创微电子装备有限公司 一种等离子体刻蚀方法
CN109273341B (zh) * 2018-10-18 2021-01-08 北京北方华创微电子装备有限公司 一种等离子体工艺方法
KR20220006069A (ko) * 2019-05-15 2022-01-14 도쿄 케이키 가부시키가이샤 임피던스 정합 장치
JP7287149B2 (ja) * 2019-06-27 2023-06-06 日新電機株式会社 電流測定装置
JP7499656B2 (ja) 2020-09-09 2024-06-14 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置の高周波電力印加方法
JP2022048825A (ja) * 2020-09-15 2022-03-28 東京エレクトロン株式会社 プラズマ処理装置及び半導体デバイスの製造方法
JP7544448B2 (ja) 2021-01-19 2024-09-03 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313744A (ja) * 2001-04-19 2002-10-25 Sharp Corp プラズマ処理装置およびプラズマ処理方法、それらを用いて作製した薄膜、基板および半導体装置
JP2006216679A (ja) * 2005-02-02 2006-08-17 Ulvac Japan Ltd パルス分割供給によるプラズマ処理方法及び装置並びにプラズマcvd方法
JP4022670B2 (ja) * 2004-11-15 2007-12-19 村田 正義 超高周波プラズマ発生用電極と、該電極により構成されたプラズマ表面処理装置及びプラズマ表面処理方法
JP2008117777A (ja) * 2006-11-04 2008-05-22 Huettinger Elektronik Gmbh & Co Kg 少なくとも2つの高周波電力発生器のドライブ制御方法、高周波電力発生器ドライブ制御装置および高周波プラズマ励起装置
JP2009110809A (ja) * 2007-10-30 2009-05-21 Ebatekku:Kk プラズマ処理装置及びプラズマ処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064767A (ja) * 1983-09-20 1985-04-13 Hitachi Seiko Ltd ア−ク溶接機用電源装置
JP3590955B2 (ja) * 2004-05-26 2004-11-17 村田 正義 平衡伝送回路と、該平衡伝送回路により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP2006332704A (ja) * 2006-08-21 2006-12-07 Masayoshi Murata プラズマ表面処理方法及びプラズマ表面処理装置
JP2008047938A (ja) * 2007-10-17 2008-02-28 Masayoshi Murata 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法。

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313744A (ja) * 2001-04-19 2002-10-25 Sharp Corp プラズマ処理装置およびプラズマ処理方法、それらを用いて作製した薄膜、基板および半導体装置
JP4022670B2 (ja) * 2004-11-15 2007-12-19 村田 正義 超高周波プラズマ発生用電極と、該電極により構成されたプラズマ表面処理装置及びプラズマ表面処理方法
JP2006216679A (ja) * 2005-02-02 2006-08-17 Ulvac Japan Ltd パルス分割供給によるプラズマ処理方法及び装置並びにプラズマcvd方法
JP2008117777A (ja) * 2006-11-04 2008-05-22 Huettinger Elektronik Gmbh & Co Kg 少なくとも2つの高周波電力発生器のドライブ制御方法、高周波電力発生器ドライブ制御装置および高周波プラズマ励起装置
JP2009110809A (ja) * 2007-10-30 2009-05-21 Ebatekku:Kk プラズマ処理装置及びプラズマ処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102892A (ko) * 2015-02-23 2016-08-31 도쿄엘렉트론가부시키가이샤 플라즈마 처리 방법 및 플라즈마 처리 장치
KR102418245B1 (ko) * 2015-02-23 2022-07-07 도쿄엘렉트론가부시키가이샤 플라즈마 처리 방법 및 플라즈마 처리 장치
US11239056B2 (en) 2019-07-29 2022-02-01 Advanced Energy Industries, Inc. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads

Also Published As

Publication number Publication date
JPWO2012035842A1 (ja) 2014-02-03
CN103098559A (zh) 2013-05-08
CN103098559B (zh) 2015-03-25
WO2012035842A1 (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5638617B2 (ja) 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法
TW507256B (en) Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
JP2001274099A (ja) 放電電極への給電方法、高周波プラズマ発生方法および半導体製造方法
JP2005235755A (ja) マイクロウェーブ供給装置、それを用いたプラズマ工程装置及びプラズマ工程方法
WO2010024128A1 (ja) プラズマ表面処理方法及びプラズマ表面処理装置
KR20200096734A (ko) 고주파 전원 및 플라즈마 처리 장치
JP2006332704A (ja) プラズマ表面処理方法及びプラズマ表面処理装置
JP2008294465A (ja) 電流導入端子と、該電流導入端子を備えたプラズマ表面処理装置及びプラズマ表面処理方法
KR101353684B1 (ko) 플라즈마 발생장치 및 방법
JP2012174668A (ja) 高周波電力供給装置、プラズマ処理装置、及び半導体薄膜の製造方法
JP2012174736A (ja) プラズマ成膜装置及びプラズマ成膜方法
KR20080047141A (ko) 플라즈마 발생장치 및 방법
JP2022136227A (ja) プラズマcvd装置
KR20100066956A (ko) 플라즈마 처리장치 및 방법
JP2007103970A (ja) 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
JP3637291B2 (ja) プラズマ化学蒸着装置における高周波プラズマの大面積均一化方法及び装置
TW201508809A (zh) 電漿處理裝置及電漿處理方法
JP2006332709A (ja) 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
KR20100089541A (ko) 플라즈마 화학 기상 증착 장치
KR102194176B1 (ko) 플라스마 처리 장치 및 플라스마 처리 장치의 제어 방법
KR20100026529A (ko) 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
KR20100026530A (ko) 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
JP3611309B2 (ja) プラズマ化学蒸着装置における放電電極の構造
JP5489803B2 (ja) 高周波プラズマ発生装置およびこれを用いた薄膜製造方法
JP2012104559A (ja) プラズマ成膜装置及びプラズマ成膜方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees