JP3611309B2 - プラズマ化学蒸着装置における放電電極の構造 - Google Patents

プラズマ化学蒸着装置における放電電極の構造 Download PDF

Info

Publication number
JP3611309B2
JP3611309B2 JP2001127098A JP2001127098A JP3611309B2 JP 3611309 B2 JP3611309 B2 JP 3611309B2 JP 2001127098 A JP2001127098 A JP 2001127098A JP 2001127098 A JP2001127098 A JP 2001127098A JP 3611309 B2 JP3611309 B2 JP 3611309B2
Authority
JP
Japan
Prior art keywords
discharge electrode
frequency
plasma
vapor deposition
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001127098A
Other languages
English (en)
Other versions
JP2002322563A (ja
Inventor
啓介 川村
暁巳 高野
浩 真島
汎 高塚
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001127098A priority Critical patent/JP3611309B2/ja
Publication of JP2002322563A publication Critical patent/JP2002322563A/ja
Application granted granted Critical
Publication of JP3611309B2 publication Critical patent/JP3611309B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池や薄膜トランジスタなどに用いられるアモルファスシリコン、微結晶シリコン、多結晶薄膜シリコン、窒化シリコンなどの半導体の製膜や半導体膜のエッチング、及び、これら製膜によってチェンバ内に堆積したアモルファスシリコン(a−Si)のNFガスのプラズマによるフッ素ラジカルクリーニング(セルフクリーニング)などに用いられるプラズマ化学蒸着装置(Plasma Chemical Vapour Deposition)における、放電電極の構造に関するものである。
【0002】
【従来の技術】
太陽電池や薄膜トランジスタなどに用いられるアモルファスシリコン(以下a−Siと称する)、微結晶シリコン、多結晶薄膜シリコン、窒化シリコンなどの半導体の製膜や半導体膜のエッチングを行ったり、これら製膜によってチェンバ内に堆積したシリコンを、NFガスでセルフクリーニングするために用いられるプラズマ化学蒸着装置における高周波プラズマ発生装置には、平行平板型電極を用いたものと、ラダー型電極を用いたものの2種類がある。
【0003】
図6は平行平板型電極を用いた装置の一構成例で、プラズマ化学蒸着装置1内に基板加熱支持手段6を設置して電気的に接地し、この基板加熱支持手段6と対向させて例えば20mm離した位置に平板電極60を設置する。そして平板電極60に、外部の高周波電源61をインピーダンス整合器62、および同軸ケーブル63を介して接続し、さらに基板加熱支持手段6と対向する面と反対側に不要なプラズマが生成しないようにアースシールド5を設置する。
【0004】
そして、例えば200℃に設定した基板加熱支持手段6上にa−Si薄膜を製膜する基板7を設置し、ガス導入管64からシラン(SiH)ガスを例えば流速50sccmで導入し、真空排気管65に接続した図示しない真空ポンプ系の排気速度を調整することで、プラズマ化学蒸着装置1内の圧力を例えば100mTorrに調節する。そして、高周波電力が効率良くプラズマ発生部に供給されるようにインピーダンス整合器62を調整して高周波電源61から高周波電力を供給すると、基板7と平板電極60の間にプラズマ66が発生し、このプラズマ66の中でシラン(SiH)が分解して基板7表面にa−Si模が製膜される。そのため、例えば10分間程度この状態で製膜を行うことにより、必要な厚さのa−Si膜が製膜される。
【0005】
図7はラダー型電極70を用いた装置の一構成例を示し、図8は、ラダー型電極70の構造がよく分かるように図7のA方向から描いた図である。ラダー型電極については、例えば特開平4−236781号公報に詳細に述べられ、またラダー型電極を発展させた電極形状として、複数の電極棒を平行に並べた電極群を2つ直行させて配置させた網目状の電極を用いた構造が特開平11−111622号公報に報告されている。
【0006】
この図7における高周波プラズマ発生装置においては、プラズマ化学蒸着装置1内に基板加熱支持手段6(図8には図示していない)を設置して電気的に接地し、基板加熱支持手段6と対向して例えば20mm離した位置にラダー型電極70を設置する。ラダー型電極70には、外部の高周波電源61をインピーダンス整合器62および同軸ケーブル63を介して接続し、基板加熱支持手段6と対向する面と反対側に不要なプラズマが生成しないようにアースシールド5が設置してある。
【0007】
そして、例えば200℃に設定した基板加熱支持手段6上にa−Si膜を製膜する基板7を設置し、ガス供給管からシラン(SiH)ガスを例えば流速50sccmで導入する。そしてプラズマ化学蒸着装置1内の圧力を、図示しない真空排気管に接続した真空ポンプ系の排気速度で例えば100mTorrに調整する。この状態で高周波電力をラダー型電極70に供給すると、基板7とラダー型電極70の間にプラズマ71が発生するから、高周波電力が効率良くプラズマ71の発生部に供給されるようにインピーダンス整合器5を調整する。するとプラズマ71中ではシラン(SiH)が分解し、基板7にa−Si膜が製膜されるから、例えば10分程度この状態で製膜を行うことにより、必要な厚さのa−Si膜が製膜される。
【0008】
この図7の構成例は図6の構成例と比較し、第一に電極として平板電極を用いずに円形断面の電極捧を梯子型に組んだラダー型と呼ばれる電極を用いているため、電極棒の間を原料のシラン(SiH)ガスが自由に流れて原料供給が均一に行われ、第二に給電を電極の1箇所に行うのではなく、72で示した複数(ここでは4点)箇所で行うことで、プラズマが均一に発生できるようになっている。
【0009】
【発明が解決しようとする課題】
このようにプラズマ化学蒸着装置における高周波プラズマ発生装置は構成されているが、現在、上記技術を用いて作製される太陽電池用薄膜半導体、フラットパネルディスプレイ用薄膜トランジスタなどは、大面積(例えば1.5×1.2m程度)・高速製膜による低コスト化、および、低欠陥密度、高結晶化率などの高品質化が求められ、また、このような大面積の製膜によってチェンバ内に堆積したa−SiのNFガスによるセルフクリーニングも、製膜と同様大面積・高速化が要求されている。
【0010】
そしてこれら要求を満たす新しいプラズマ生成方法として、高周波電源の高高周波化(30〜800MHz)がある。該高高周波化により製膜速度の高速化と高品質化が両立されることが、例えば文献Mat.Res.Soc.Symp.Proc.Vol.424,pp.9,1997に記されている。特に、a−Siに代る新しい薄膜として注目されている微結晶Si薄膜の高速高品質製膜に、この高高周波が適していることが最近分かってきている。
【0011】
ところがこの高高周波による製膜は、均一大面積製膜が難しいという欠点がある。これは、高高周波の波長が電極サイズと同程度のオーダー以下であることから、電極両端から高高周波を互いに向かい合う方向に供給することによる電極上定在波の発生、電極端などで生じる反射波を主因とする電極上定在波の発生、浮遊インダクタンスの存在による電圧分布への影響、プラズマと高周波との相互干渉、周波数増加に伴うシースキャパシタンス増加による定在波長の減少などでプラズマが不均一となり、結果、製膜が不均一になるためである。そのため、製膜における膜厚分布が、中央部において大きく薄くなるという結果が生じる。また、セルフクリーニングに用いるNFプラズマは、NFガスが負性ガス(電子を付着しやすい性質)であるため、プラズマ自体が非常に不安定であると共に、ガス流れ(下流側にプラズマ発生)や電極間隔の相違によって分布が不均一になる。
【0012】
このうち、平行平板電極を用いた場合の代表例として示した図6の構成例においては、電極サイズが30cm×30cmを越え、または、周波数が30MHzを越えると、上記定在波の影響が顕著となり、半導体製膜上最低限必要な製膜膜厚均一性±10%の達成が困難になる。
【0013】
一方、ラダー型電極を用いた場合の代表例としてあげた図7、図8は、ラダー型電極を用いていることに加え、1点給電では顕著に生じてしまう定在波を、4点に給電することにより低減したことを特徴とするものである。しかしながら、この場合でも、電極サイズが30cmを越え、または、周波数が80MHzを越えると均一な製膜の実現が難しくなってくる。
【0014】
以上のような問題は学会でも注目され、これまでに例えば文献Mat.Res.Soc.Symp.Proc.Vol.377,pp.27,1995に記されているように、平行平板の給電側と反対側にロスのないリアクタンス(コイル)を接続することが提案されている。これは、定在波の電極端からの反射条件を変えることで、定在波の波形の中で分布が比較的平らな部分、例えば正弦波の極大付近を電極上に発生させて、電極に生じる電圧分布を少なくするものである。しかしながら、この方法は定在波を根本から無くすのではなく、正弦波のうち平らな部分が電極上に発生するようにするだけであるため、均一部分が得られるのは波長の1/8程度までであり、それを越える範囲の均一化は原理的に不可能である。
【0015】
また、大面積で均一なプラズマを発生するための電極構造として、特開2000−3878号公報、特開2000−58465号公報、特開2000−323297号公報などに示された技術があるが、これらは最大80cm×80cm程度の電極に対応しているだけであり、本発明が目指しているような1.5m×1.2mというような大面積には対応できない。そのため、プラズマ化学蒸着装置において高高周波を用いてプラズマを発生させる場合、従来の技術では、1m×1mを越えるような非常に大きな基板を対象として、大面積で均一なプラズマを発生させ、均一処理を行うことはできなかった。
【0016】
なお、本発明の類似技術として、2つの異なる高周波を2つの放電電極にそれぞれ供給する技術があり、例えば、M.Noisan,J.Pelletier,ed.,”Microwave Excited Plasmas”、Technology,4,second impression,pp.401,Elsevier Science B.V.1999に詳述されている。
【0017】
しかし、この技術の目的は、1つの高周波をプラズマ生成のために、他方の高周波を絶縁性基板の表面バイアス電圧制御のために用い、基板への活性イオン等の流入量、および入射エネルギーを制御することであり、本発明のように1m×1mを越えるような非常に大きな基板を対象として大面積において均一なプラズマを発生させ、均一処理を行う目的とは全く異なるものである。
【0018】
本発明は上記問題点を解決するためになされたものであって、高高周波(VHF)を利用するプラズマ化学蒸着装置において、定在波、シースキャパシタンス、セルフクリーニング用NFガス流れの不均一などで生じるプラズマ発生状況の不均一を防止し、大面積でプラズマ発生状況が均一となるようなプラズマ化学蒸着装置における放電電極の構造を提供することが課題である。
【0019】
【課題を解決するための手段】
上記課題を解決するため本発明においては、ラダー型放電電極において電極軸方向に対して垂直方向にクロスバーを挿入し、定在波の形を変えてプラズマを均一化させる、電極の径を小さくしてシースキャパシタンスを減少させて定在波波長を増加させ、放電電極における電圧分布を均一化する、放電電極を左右方向に分割し、電極左右方向の電力バランスを図る等の方法でプラズマの発生状況が大面積で均一となるようにした。
【0020】
そのため本発明においては、請求項1に記載したように、
プラズマ化学蒸着装置におけるプラズマ発生用のラダー型放電電極の構造であって、
前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極の軸方向に対して垂直方向へクロスバーを付加し、定在波形状を変化させて発生するプラズマを均一化させたことを特徴とする。
【0021】
このようにすることにより、定在波の形状が変化してプラズマ領域が拡大され、発生するプラズマが均一化される。
【0022】
そして請求項2に記載した発明は、
プラズマ化学蒸着装置におけるプラズマ発生用のラダー型放電電極の構造であって、
前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極軸方向に対して垂直方向へクロスバーを付加し、かつ、定在波波長を増加させる範囲で前記ラダー型放電電極径を小さくし、発生するプラズマを均一化することを特徴とする。
【0023】
このように放電電極径を小さくすることで、電極の周りに発生するシースキャパシタンスを減少させることができ、定在波波長が増加してプラズマ領域が拡大され、発生するプラズマが均一化される。
【0024】
そしてこのクロスバーは、請求項3に記載したように、ラダー型放電電極の軸方向中点を中心に対称位置に対で設けることで、放電電極両端に設けた給電部から同一距離とし、効果を大きくすると共に、電極径を小さくした場合の機械的強度の補強の役割を持たせることができる。
【0025】
そしてこの放電電極は、請求項4に記載したように、
プラズマ化学蒸着装置におけるプラズマ発生用放電電極の構造であって、
前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極を軸方向に対して垂直方向に複数に分割し、放電電極左右方向の電力バランスを図ってプラズマ密度の偏重を低減するようにしたことを特徴とする。
【0026】
このように放電電極を軸方向に対して垂直方向に複数に分割することにより、NFガスのように放電が不安定なガスが片側に偏って流れた際に生じる放電の集中によるプラズマの集中を押さえ、放電電極全面にわたって均一な放電を得ることができる。
【0027】
そして分割した放電電極の給電部は、各分割単位で安定して放電がおこなわれるよう請求項5に記載のように、前記分割した放電電極毎に給電部を設けることが好ましい。
更に前記第2の異なる周波数の高周波の発振周波数を同位相のまま時間的に変動させて周波数変調を行うのがよく、又前記サイクルを交互に切り換えて給電を行う第1の同一周波数の高周波が、一のサイクルにおいて他のサイクルに対し、位相をずらして給電されるのがよい。
そしてこのような放電電極構造は、
前記ラダー型放電電極の両端に設けた第1と第2の給電部に夫々接続された第1と第2の高周波電源と、第1の高周波電源と切り換えスイッチを介して第2の高周波電源にいずれかの高周波を位相変調することができる第1の高周波発振器と、発振周波数を同位相のまま時間的に変動させる周波数変調可能に構成し、切り換えスイッチを介して第2の高周波電源に供給する第2の高周波発振器とを具えてなる。
【0028】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を例示的に詳しく説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
【0029】
図1は、本発明になる放電電極構造を有したプラズマ化学蒸着装置の一実施例概略ブロック図、図2は本発明になる放電電極構造の実施例を示した概略図、図3は本発明になる放電電極構造の一実施例を説明するための図、図4は放電電極の給電部に、同一周波数の高周波と異なった周波数の高周波を0:1から9:1までの10種の比率で給電したときのプラズマ発生状況の説明図、図5は給電部へ同一周波数を給電する際、一方の高周波の位相を他方の位相とずらした場合の説明図である。
【0030】
図1において、1は内部が気密に作られたプラズマ化学蒸着装置、2は放電電極、3、4は放電電極2へ高周波を給電するための第1と第2の給電部、5は不要なプラズマが生成しないように設けたアースシールド、6は放電電極2から例えば20〜34mm程度離して設置し、基板7を保持、加熱するための図示していない機構と加熱するためのヒータを内蔵している加熱支持手段、8は図示しないガス供給源に連通し、例えば製膜のためのシラン(SiH)ガスやセルフクリーニングのためのNFガスなどの反応ガス9を導入するためのガス導入管、10は排気管、11はプラズマ化学蒸着装置1内の内圧を1×10−6Torr程度まで真空排気可能な真空ポンプ、12、13は第1と第2の高周波電源A、Bを構成するRFアンプ、14は例えば60MHzの高周波(RF)を発振して高周波電源(RFアンプ)Aと切り替えスイッチ16に送ると共に、どちらかの高周波を位相変調することができるフェーズシフターを有した第1の高周波(RF)発振器、15は例えば58.5MHzの高周波(RF)を発振すると共に、この周波数を例えば58.5MHzから59.9MHz、あるいは60.1MHzから61.5MHzのように変動可能に構成したした第2の高周波(RF)発振器、16は第1と第2の高周波発振器14、15からの高周波を受け、これを切り替えて高周波電源B13に供給する切り替えスイッチ、17は、切り替えスイッチ16による第1と第2の高周波発振器14、15からの高周波の切り替えに際し、これらの高周波の時間割合、すなわちデューティ比を変化させるファンクションジェネレータである。図2において20、21、23、24、25、26、28、29はラダー型電極2に付加したクロスバー、図3における30はラダー型放電電極の1つの電極を示したもの、31、32は高周波を放電電極30に給電する給電用ケーブル、33はDCバイアス電源である。
【0031】
このうち第1の高周波発振器14は、例えば60MHzの高周波を発振してこれを高周波電源A12、切り替えスイッチ16に送り、第2の高周波発振器15は例えば58.5MHzの高周波を発振して切り替えスイッチ16に送る。そしてこの切り替えスイッチ16は、第1の高周波発振器14から送られてきた60MHzと第2の高周波発振器15から送られてきた58.5MHzの高周波を一定サイクルで切り替え、高周波電源B13に送る。そのため高周波電源A12は、60MHzの高周波を第1の給電部3に給電し、高周波電源B13は、一定サイクルで切り替わる60MHzと58.5MHzの高周波を第2の給電部4に給電する。
【0032】
そして、この切り替えスイッチ16による第1の高周波発振器14から送られてきた60MHzと第2の高周波発振器15から送られてきた58.5MHzの高周波の切り替えは、ガス圧やガス種などのガス条件に応じたファンクションジェネレータ17からの信号で、その時間割合、すなわちデューティ比を変化できるようになっている。また第1の高周波発振器14は、内部にフェーズシフターを有し、高周波電源A12、または切り替えスイッチ16のいずれかに送る高周波を、他方に送る高周波とは位相をずらせられるようにしてあり、更に第2の高周波発振器15は、その発振周波数を例えば58.5MHzから59.9MHz、あるいは60.1MHzから61.5MHzのように変動可能に構成してある。
【0033】
一方このプラズマ化学蒸着装置1の放電電極2は、図2(A)に示したように例えばラダー型に構成され、第1の給電部3、第2の給電部4は、図のように放電電極2の両端部に黒丸で示した例えば8ポイントずつで構成する。なお、この給電部3、4は8ポイントのみに限らず、4ポイント、16ポイントなど、必要に応じてポイント数を設定できる。
【0034】
そして図2(B)は、本発明における放電電極構造の第1の実施例を示したもので、このラダー型放電電極2の軸方向中心に対して対称な位置にクロスバー20、21を付加したものである。このようにクロスバー20、21を付加することにより、定在波の形状が変化してプラズマ領域が拡大して発生するプラズマが均一化される。なお、この図2(B)においてはクロスバーを2本として示したが、この本数は2本だけに限ることなく任意の本数とすることができる。
【0035】
また図2(C)は、本発明における放電電極構造の第2の実施例を示したもので、放電電極2を左右にn個に分割し、それぞれに給電部3、3、……3、4、4、……4を設けたものである。こそしてこの図に示したように、各分割単位毎にクロスバー23、24、25、26、28、29を設けても良い。このように放電電極を軸方向に対して垂直方向に複数に分割することにより、放電電極左右方向の電力バランスが図られ、NFガスのように放電が不安定なガスが片側に偏って流れた場合、プラズマがその部分に集中して電力を消費し、他の部分のプラズマが少なくなってしまうのを防止し、放電電極全面にわたって均一な放電を得ることができる。また、クロスバーを付加することにより、定在波の形状が変化してプラズマ領域が拡大して発生するプラズマが均一化されるので、分割したことと相まって、より均一なプラズマを得ることができる。なお、この図2(C)においては本発明をラダー型電極の場合を例に説明したが、電極は平板型でも良く、この場合はクロスバーは付加しない。また、分割数も8分割だけに限られるものではなく、任意の数に分割可能である。
【0036】
さらに図3は、本発明における放電電極構造の第3の実施例を説明するための図であり、放電電極30の給電部3、または4へ高周波を給電する給電用ケーブル21、22は、出口の軸方向をラダー型電極30の第1と第2の給電部3、4を結ぶ方向(軸方向)と一致させて接続し、またこの放電電極30には、DCバイアス電源23からDCバイアスを印加してある。そして本発明においては、ラダー型電極30の径を例えば6mm程度に小さくし、シースキャパシタンスを減少させて定在波波長を増加させ、プラズマ領域を拡大して発生するプラズマを均一化するようにした。シースキャパシタンスというのは、プラズマが生成される過程でラダー型電極30の周りにシースと呼ばれる電子の集まりができ、この電子の集まりで一種の絶縁を保ったような状態が生じて直流的な電流が流れず、あたかもコンデンサが電極の周りにあるような状態になることをいう。そして、このシースキャパシタンスが大きくなると定在波波長が小さくなり、プラズマの発生にムラが生じる。
【0037】
この定在波波長は、放電電極2内の高周波電圧の伝搬速度vに比例しており、そしてこの伝搬速度vは下記(1)式で表される。
【数1】
Figure 0003611309
上記(1)式において、Lはラダー型電極の機械的幾何学的形状で発生するインダクタンスで一定である。Cは前記したシースキャパシタンスで、これは下記(2)式で表される。
C=ε×(s/d)…… (2)
(s:面積、d:シースキャパシタンスの距離)
そのため、ラダー型電極30の径が小さくなるとこのdが小さくなり、シースキャパシタンスCが小さくなる。すると(1)式により、放電電極30内の高周波電圧の伝搬速度vが大きくなり、それに伴って定在波の波長が大きくなってプラズマが均一に発生する領域が増大する。
【0038】
但し、このようにラダー型電極30の径を小さくすると、本発明が目指している1.5m×1.2mのような大面積の場合には機械的な強度が減少する。そのため本発明においては、前記図2の(B)、(C)のようにクロスバーを併用することで、補強を行っている。
【0039】
また、前記したように放電電極2の給電部3、または4へ高周波を給電する給電用ケーブル31、32の出口軸方向を放電用ラダー型電極30の軸方向と一致させて接続すると、給電パワーがスムーズにラダー型電極30に入ってゆき、電流リターン距離が最小化されて給電部での電力ロスが低減し、プラズマ領域の拡大を図ることができる。なお、この給電用ケーブル31、32は同軸ケーブル、平行平板、平行線など、どのような形状のものでも良い。また、この放電電極2にDCバイアス電源33からDCバイアスを印加すると放電電極2のシースキャパシタンスを減少させることができ、電圧分布が均一化の方向に向かって定在波波長を増加させ、プラズマ密度を平均化させることができる。
【0040】
このように構成した本発明のプラズマ化学蒸着装置1を用い、a−Si、微結晶シリコン、多結晶薄膜シリコン、窒化シリコンなどの半導体の製膜や、これらの製膜によってチェンバ内に堆積したa−SiのNFガスによるセルフクリーニングなどを行う場合、例えば製膜においては、200℃に設定した加熱支持手段6に基板7を取り付け、ガス導入管8からシラン(SiH)ガスなどの反応ガス9を例えば流速50sccmで導入し、排気管10に接続した真空ポンプ11の排気速度を調整することで、プラズマ化学蒸着装置1内の圧力を例えば100mTorrに調節する。
【0041】
そして、第1の高周波発振器14からは例えば60MHzの高周波を、第2の高周波発振器15からは例えば58.5MHzの高周波を、それぞれ高周波電源A12、切り替えスイッチ16に送る。そしてこの切り替えスイッチ16により、第1の高周波発振器14から送られてきた60MHzと第2の高周波発振器15から送られてきた58.5MHzの高周波を一定サイクルで切り替え、高周波電源B13に送る。すると高周波電源A12は、60MHzの高周波を第1の給電部3に給電し、高周波電源B13は、一定サイクルで切り替わる60MHzと58.5MHzの高周波を第2の給電部4に給電する。
【0042】
すると放電電極2と基板7との間にプラズマが発生し、ガス導入管8から導入されたシラン(SiH)ガスなどの反応ガス9が分解し、基板7上にa−Siが製膜されてゆく。なお、前記したNFガスによるプラズマ化学蒸着装置1内のセルフクリーニングも全く同様であり、NFガスがプラズマによって分解してフッ素ラジカルになり、クリーニングが行われる。
【0043】
そしてこのとき発生したプラズマは、第1と第2の給電部3、4に同じ60MHzの高周波が給電された時と、第1の給電部3に60MHzの高周波、第2の給電部4に58.5MHzという具合に異なる周波数の高周波が給電された時とでは、図4に示したようにその発生状況が異なる。すなわちこの図4に示したグラフは、前記したようにプラズマ化学蒸着装置1にシラン(SiH)ガスなどの反応ガス9を導入し、放電電極2の第1と第2の給電部3、4に同じ周波数(60MHz)の高周波を給電した時間と、異なる周波数の高周波を給電(第1の給電部3に60MHz、第2の給電部4に58.5MHzを給電)した時間の比を、0:10から9:1までの10パターンで変化させ、プラズマの発生状況を調べたものである。
【0044】
この図4において、横軸は第1の給電部3(0cm)からの距離を示し、右端(110cm)が第2の給電部4に相当する。縦軸はプラズマの電圧相対値で、この値が高いほどプラズマ密度が高くなる。図中aの線は、給電した周波数が異なる場合の時間を10とし、同一周波数を給電した場合の時間を0、すなわち給電した周波数が異なる場合のみのプラズマ発生状況を示し、bの線は同じく異なる周波数9に対して同じ周波数が1の場合で、以下同様にnの線は異なる周波数1に対して同じ周波数が9の場合である。
【0045】
このグラフからわかるように、第1と第2の給電部3、4に異なる周波数を給電したaでは、放電電極2の両端部、すなわち給電部3、4付近で最もプラズマ密度が高く、中央部で最もプラズマ密度が低くなっている。それに対し、第1と第2の給電部3、4に同じ周波数を給電した割合が最も高いnでは、放電電極2の中央部で最もプラズマ密度が高く、中央部から両端の給電部3、4に近付くに従って低くなり、給電部3、4付近でまた多少高くなっている。そして、第1と第2の給電部3、4に異なる周波数を給電する時間と、同一周波数を給電する時間を5対5の同じとしたfでは、このaとnのプラズマ発生状況が足し合わされ、放電電極2の両端部でプラズマ密度が多少高くなっているが、中央部の広範囲で均一なプラズマ発生状況となっている。
【0046】
すなわちこの図4のグラフは、60MHzという高高周波において放電電極2の両端の給電部3、4に同一周波数の高周波を給電した場合は中央部でプラズマ密度が高くなり、異なる周波数の高周波を給電した場合は中央部の密度が低くなることを示しており、これを適宜なサイクルで交互に行うことで、大面積においてプラズマ発生状況を均一化できる。なおこの給電部3、4に同一周波数と異なる周波数の高周波を交互に給電するサイクルは、1Hzから10MHzまでほぼ同一の効果が得られた。
【0047】
そしてこの状態において、さらに第2の高周波発振器15の発振周波数を、例えば58.5MHzから59.9MHz、あるいは60.1MHzから61.5MHzのように、同位相のまま時間的に変動させてやる。するとこの周波数の変動によってプラズマ発生状況を意図的に変えることができ、プラズマ密度をさらに平均化することができる。
【0048】
また、第1の高周波発振器14に含まれるフェーズシフターにより、高周波電源A12、または切り替えスイッチ16のいずれかに送る高周波を、他方に送る高周波に対して位相をずらしてやる。すると、例えば図5に50の実線で示したように、位相がずれていない時に放電電極2の中央部でプラズマ密度が低くなる給電状態においては、位相をずらすことによって、プラズマ密度の低い位置を51、または52の破線、または一点鎖線で示したように左右にずらすことができる。そのため、時間平均で見るとさらに広範囲でプラズマ密度を均一化できる。
【0049】
また、ガス圧やガス種などのガス条件が変化した場合は、ファンクションジェネレータ17から切り替えスイッチ16に信号を送り、切り替えスイッチ16に送られてくる第1の高周波発振器14からの高周波と、第2の高周波発振器15からの高周波の高周波電源B13へのそれぞれの送出時間比、すなわちデューティ比(Duty比)を図4に示したように変化させる。このようにすることで、放電電極2の第1と第2の給電部3、4における同一周波数の高周波が給電される時間と、異なった周波数の高周波が給電される時間の比(デューティ比)が変化し、それによって図4に示したようにプラズマの発生状況の比を種々に変化させることができる。
【0050】
これは、ガス圧、ガス種などのガス条件によって同じデューティ比でもプラズマの発生状況が異なることに対処するためのもので、放電がおきやすいガス条件の場合、放電電極2の両端部3、4から給電した電力は放電電極2の中央部に達する前に放電してしまい、中央部での放電が少なくなる。そのため、図4におけるaのグラフのように放電電極2の中央部でプラズマ発生密度が低くなるから、この場合は、同一周波数の高周波を給電する時間を長くし、逆に中央部のプラズマ密度が高くなったときは同一周波数の高周波を給電する時間を短くする。これによって、ガス圧、ガス種類などのガス条件が変化しても、中央部のプラズマ密度がコントロールでき、さらに均一化することが可能となる。
【0051】
なお、以上説明してきた方法で製膜やセルフクリーニングを実施する際、製膜速度やセルフクリーニング速度等の条件を満たす範囲で、均一なプラズマが発生しやすいN、Ar、Kr、Xe等のガスを適正比(0.1〜25%程度)注入してやると、さらに均一な製膜が実現できる。
【0052】
そしてこのような製膜やクリーニングにおいて、本発明におけるプラズマ化学蒸着装置における放電電極は、前記したようにラダー型放電電極軸方向に対して垂直方向にクロスバーを挿入し、定在波の形を変えてプラズマを均一化させること、電極径を小さくしてシースキャパシタンスを減少させ、定在波波長を増加させて放電電極における電圧分布を均一化すること、放電電極を左右方向に分割して電極左右方向の電力バランスを図ることなどにより、定在波、シースキャパシタンス、セルフクリーニング用NFガス流れの不均一などで生じるプラズマ発生状況の不均一などを防止し、さらに大面積でのプラズマ発生状況を均一とすることができる。
【0053】
【発明の効果】
以上記載の如く本発明によるプラズマ化学蒸着装置における放電電極構造によれば、定在波、シースキャパシタンス、セルフクリーニング用NFガス流れの不均一などで生じるプラズマ発生状況の不均一を防止し、大面積でプラズマ発生状況を均一とすることができる。また、圧力条件、流量条件などのガス条件が変わった場合でもハードをさわることなく、高速で均一な製膜、均一なセルフクリーニングをおこなうことが可能となり、大面積製膜における製膜製品の歩留まりの向上、コスト低減という大きな成果を得ることができ、さらに、ハード調整が少ないため初期調整が容易となってランニングコストも低減できるなど、大きな効果をもたらすものである。
【図面の簡単な説明】
【図1】本発明になる放電電極の構造を有したプラズマ化学蒸着装置の一実施例概略ブロック図である。
【図2】本発明になる放電電極の構造の実施例を示した概略図である。
【図3】本発明になる放電電極の構造を説明するための図である。
【図4】放電電極の給電部に、同一周波数の高周波と異なった周波数の高周波を0:10から9:1までの10種の比率で給電したときのプラズマ発生状況の説明図である。
【図5】給電部へ同一周波数を給電する際、一方の高周波の位相を他方の位相とずらした場合の説明図である。
【図6】従来の平行平板型電極を用いたプラズマ化学蒸着装置の一構成例である。
【図7】従来のラダー型電極を用いたプラズマ化学蒸着装置の一構成例である。
【図8】従来のラダー型電極の構造を説明するための図である。
【符号の説明】
2 放電電極
3 第1の給電部
4 第2の給電部
20〜29 クロスバー

Claims (8)

  1. プラズマ化学蒸着装置におけるプラズマ発生用のラダー型放電電極の構造であって、
    前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極の軸方向に対して垂直方向へクロスバーを付加し、定在波形状を変化させて発生するプラズマを均一化させたことを特徴とするプラズマ化学蒸着装置における放電電極構造。
  2. プラズマ化学蒸着装置におけるプラズマ発生用のラダー型放電電極の構造であって、
    前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極軸方向に対して垂直方向へクロスバーを付加し、かつ、定在波波長を増加させる範囲で前記ラダー型放電電極径を小さくし、発生するプラズマを均一化することを特徴とするプラズマ化学蒸着装置における放電電極構造。
  3. 前記クロスバーを、ラダー型放電電極の軸方向中点を中心に対称位置に対で設けたことを特徴とする請求項1、または2に記載したプラズマ化学蒸着装置における放電電極構造。
  4. プラズマ化学蒸着装置におけるプラズマ発生用放電電極の構造であって、
    前記ラダー型放電電極の両端の給電部に第1の同一周波数の高周波を給電するサイクルと、第2の異なる周波数の高周波を給電するサイクルを有し、このサイクルを交互に切り換えて給電を行うように構成するとともに、前記放電電極を軸方向に対して垂直方向に複数に分割し、放電電極左右方向の電力バランスを図ってプラズマ密度の偏重を低減するようにしたことを特徴とするプラズマ化学蒸着装置における放電電極構造。
  5. 前記分割した放電電極毎に給電部を設けたことを特徴とする請求項4に記載したプラズマ化学蒸着装置における放電電極構造。
  6. 前記第2の異なる周波数の高周波の発振周波数を同位相のまま時間的に変動させて周波数変調を行うことを特徴とする請求項1、2、若しくは4記載のプラズマ化学蒸着装置における放電電極構造。
  7. 前記サイクルを交互に切り換えて給電を行う第1の同一周波数の高周波が、一のサイクルにおいて他のサイクルに対し、位相をずらして給電されることを特徴とする請求項1、2、4若しくは5記載のプラズマ化学蒸着装置における放電電極構造。
  8. 請求項1、2、若しくは4記載のプラズマ化学蒸着装置における放電電極構造であって、
    前記ラダー型放電電極の両端に設けた第1と第2の給電部に夫々接続された第1と第2の高周波電源と、第1の高周波電源と切り換えスイッチを介して第2の高周波電源にいずれかの高周波を位相変調することができる第1の高周波発振器と、発振周波数を同位相のまま時間的に変動させる周波数変調可能に構成し、切り換えスイッチを介して第2の高周波電源に供給する第2の高周波発振器とを具えてなることを特徴とするプラズマ化学蒸着装置における放電電極構造。
JP2001127098A 2001-04-25 2001-04-25 プラズマ化学蒸着装置における放電電極の構造 Expired - Fee Related JP3611309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127098A JP3611309B2 (ja) 2001-04-25 2001-04-25 プラズマ化学蒸着装置における放電電極の構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127098A JP3611309B2 (ja) 2001-04-25 2001-04-25 プラズマ化学蒸着装置における放電電極の構造

Publications (2)

Publication Number Publication Date
JP2002322563A JP2002322563A (ja) 2002-11-08
JP3611309B2 true JP3611309B2 (ja) 2005-01-19

Family

ID=18976028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127098A Expired - Fee Related JP3611309B2 (ja) 2001-04-25 2001-04-25 プラズマ化学蒸着装置における放電電極の構造

Country Status (1)

Country Link
JP (1) JP3611309B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050958A1 (ja) 2007-10-17 2009-04-23 Masayoshi Murata 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637291B2 (ja) * 2001-05-01 2005-04-13 三菱重工業株式会社 プラズマ化学蒸着装置における高周波プラズマの大面積均一化方法及び装置
WO2004040629A1 (ja) * 2002-10-29 2004-05-13 Mitsubishi Heavy Industries, Ltd. プラズマ化学蒸着装置における高周波プラズマの大面積均一化方法及び装置
JP4745920B2 (ja) 2006-08-28 2011-08-10 三菱重工業株式会社 放電電極、薄膜製造装置、及び太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050958A1 (ja) 2007-10-17 2009-04-23 Masayoshi Murata 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法

Also Published As

Publication number Publication date
JP2002322563A (ja) 2002-11-08

Similar Documents

Publication Publication Date Title
EP1564794B1 (en) Method and device for generating uniform high- frequency plasma over large surface area
US6353201B1 (en) Discharge electrode, RF plasma generation apparatus using the same, and power supply method
JP3377773B2 (ja) 放電電極への給電方法、高周波プラズマ発生方法および半導体製造方法
JP3697110B2 (ja) プラズマ化学蒸着装置
JPH06287760A (ja) プラズマ処理装置及び処理方法
JP3224011B2 (ja) プラズマ励起化学蒸着装置及びプラズマエッチング装置
JP5659225B2 (ja) プラズマ堆積ソースおよび薄膜を堆積させるための方法
KR101353684B1 (ko) 플라즈마 발생장치 및 방법
JP3276346B2 (ja) 放電電極、高周波プラズマ発生装置、給電方法および半導体製造方法
JP3611309B2 (ja) プラズマ化学蒸着装置における放電電極の構造
JP2002069653A (ja) 薄膜形成方法、薄膜形成装置及び太陽電池
JP3637291B2 (ja) プラズマ化学蒸着装置における高周波プラズマの大面積均一化方法及び装置
EP1484788A1 (en) High-frequency power supply structure and plasma cvd device using the same
KR100994502B1 (ko) 플라즈마 처리장치 및 방법
KR20080047141A (ko) 플라즈마 발생장치 및 방법
JP2000260598A (ja) プラズマ発生装置
JP5523977B2 (ja) 真空処理装置およびプラズマ処理方法
JP2001271169A (ja) フォーク型電極を有するプラズマ化学蒸着装置
JPH06295866A (ja) プラズマ反応装置
Mashima et al. Characteristics of very high frequency plasma produced using a ladder-shaped electrode
JP2003077849A (ja) プラズマ処理装置
JP2001274101A (ja) 棒状電極を有するプラズマ化学蒸着装置
JPH05343338A (ja) プラズマcvd装置
JP2004235380A (ja) 表面処理装置および表面処理方法
JP3575013B1 (ja) 高周波電力供給用同軸ケーブルと、該同軸ケーブルにより構成されるプラズマ表面処理装置およびプラズマ表面処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees