JP5624305B2 - Insulated container - Google Patents

Insulated container Download PDF

Info

Publication number
JP5624305B2
JP5624305B2 JP2009258130A JP2009258130A JP5624305B2 JP 5624305 B2 JP5624305 B2 JP 5624305B2 JP 2009258130 A JP2009258130 A JP 2009258130A JP 2009258130 A JP2009258130 A JP 2009258130A JP 5624305 B2 JP5624305 B2 JP 5624305B2
Authority
JP
Japan
Prior art keywords
heat insulating
container
vacuum
heat insulation
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009258130A
Other languages
Japanese (ja)
Other versions
JP2011102622A (en
Inventor
俊雄 篠木
俊雄 篠木
光田 憲朗
憲朗 光田
和彦 川尻
和彦 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009258130A priority Critical patent/JP5624305B2/en
Publication of JP2011102622A publication Critical patent/JP2011102622A/en
Application granted granted Critical
Publication of JP5624305B2 publication Critical patent/JP5624305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Description

この発明は断熱容器に関するものである。この発明で断熱容器とは、真空断熱材により断熱されて温熱および冷熱機器に使用するのに適した容器あるいは管を含む包囲体を意味する。   The present invention relates to a heat insulating container. In this invention, the heat insulating container means an enclosure including a container or a tube which is insulated by a vacuum heat insulating material and is suitable for use in hot and cold equipment.

従来、低コストでより効率的に漏洩熱量を抑制して実用性の高い貯湯タンクを提供するために、容器と外装ケースとの間に配設する断熱材が少なくとも真空断熱材とシート状断熱材とからなり、前記容器の側面と前記外装ケースの側面とが近接して空間間隔の狭い部位には、少なくとも真空断熱材を配置し、空間間隔の広い部位にはシート状断熱材のみを使用する貯湯タンクが提案されている(例えば特許文献1参照)。   Conventionally, in order to provide a hot water storage tank with high practicality by more effectively suppressing the amount of leakage heat at a low cost, the heat insulating material disposed between the container and the outer case is at least a vacuum heat insulating material and a sheet-like heat insulating material. The side surface of the container and the side surface of the outer case are close to each other and the space is narrow, and at least a vacuum heat insulating material is arranged, and only the sheet-like heat insulating material is used for the wide space interval. A hot water storage tank has been proposed (see, for example, Patent Document 1).

特開2005−226965号公報JP 2005-226965 A

しかしながらこのような従来の貯湯タンクにおいては、真空断熱材と通常の板状の非真空断熱材とが別個の部材であって、タンクに真空断熱材を取り付けた後で非真空断熱材を取り付けるため、板状断熱材の取り付け作業中に既に取り付けてある真空断熱材の外皮材を破損させる可能性が高かった。また、断熱以外の装置製造ライン工程ならびに装置メンテナンス作業など一旦真空断熱材が配設された後に外皮材が破損した場合には、一旦取り付けた真空断熱材を交換しなければならなかった。さらに、真空断熱材と非真空断熱材とをそれぞれ個別に複数使用することから、取り付け時の部品点数が多く、取り付け作業も繁雑であった。この結果、真空断熱を適用する場合には、生産性が悪くなるなどの問題があった。   However, in such a conventional hot water storage tank, the vacuum heat insulating material and the normal plate-shaped non-vacuum heat insulating material are separate members, and the non-vacuum heat insulating material is attached after the vacuum heat insulating material is attached to the tank. There was a high possibility that the outer cover material of the vacuum heat insulating material already attached during the work of attaching the plate heat insulating material was damaged. Further, when the outer skin material is damaged after the vacuum heat insulating material is once disposed such as the device manufacturing line process other than the heat insulation and the device maintenance work, the once installed vacuum heat insulating material has to be replaced. Furthermore, since a plurality of vacuum heat insulating materials and non-vacuum heat insulating materials are used individually, the number of parts at the time of mounting is large, and the mounting work is complicated. As a result, when vacuum insulation is applied, there are problems such as poor productivity.

従ってこの発明の目的は、真空断熱材の信頼性を向上させ、生産性が高く、断熱性能の優れた断熱容器を提供することである。   Accordingly, an object of the present invention is to improve the reliability of a vacuum heat insulating material, to provide a heat insulating container having high productivity and excellent heat insulating performance.

この発明の断熱容器は、容器と、少なくとも一つが真空断熱部材であって、互いに協働して上記容器の実質的に全ての外表面を覆う複数の断熱部材とを備えた断熱容器において、上記真空断熱部材が、芯材およびこの芯材を真空内に封止する真空外皮を有する真空断熱要素と、上記真空断熱要素に組み合わされた断熱要素と、上記真空断熱要素および上記断熱要素を共に覆う外皮とを備えていることを特徴とする断熱容器である。   The heat insulation container according to the present invention is a heat insulation container comprising a container and a plurality of heat insulation members that cover at least one of the vacuum heat insulation members and cover substantially all outer surfaces of the container in cooperation with each other. A vacuum heat insulating member covers a vacuum insulating element having a core material and a vacuum envelope that seals the core material in a vacuum, a heat insulating element combined with the vacuum heat insulating element, and the vacuum heat insulating element and the heat insulating element together. It is the heat insulation container provided with the outer skin.

この発明の断熱容器においては、真空断熱要素と他の非真空あるいは真空度の低い真空断熱要素とを組合せて全体を外皮で被って真空断熱部材を構成するので、真空断熱要素が内皮と外皮とで保護され、真空断熱が破壊されにくく、組立作業時の部品点数削減が図れ、作業効率を向上させることができる。   In the heat insulating container of the present invention, the vacuum heat insulating element is formed by combining the vacuum heat insulating element with another non-vacuum or low vacuum degree heat insulating element and covering the whole with the outer skin, so that the vacuum heat insulating element includes the inner skin and the outer skin. The vacuum insulation is not easily destroyed, the number of parts during assembly work can be reduced, and work efficiency can be improved.

この発明の実施の形態1による断熱容器を示す概略斜視図である。It is a schematic perspective view which shows the heat insulation container by Embodiment 1 of this invention. 図1の線A−Aに沿った断熱容器の概略水平断面図である。It is a schematic horizontal sectional view of the heat insulation container along line AA of FIG. 図1の断熱容器の容器壁の側壁を覆う真空断熱部材を示す概略斜視図である。It is a schematic perspective view which shows the vacuum heat insulation member which covers the side wall of the container wall of the heat insulation container of FIG. 図1の断熱容器の容器壁の端壁を覆う断熱部材の概略斜視図である。It is a schematic perspective view of the heat insulation member which covers the end wall of the container wall of the heat insulation container of FIG. この発明の実施の形態2の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 2 of this invention. この発明の実施の形態3の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 3 of this invention. この発明の実施の形態4の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 4 of this invention. この発明の実施の形態5の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 5 of this invention. この発明の実施の形態6の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 6 of this invention. この発明の実施の形態7の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 7 of this invention. 図10の断熱容器を示す概略垂直断面図である。It is a general | schematic vertical sectional view which shows the heat insulation container of FIG. この発明の断熱容器に使用できる断熱材の性能を示す表である。It is a table | surface which shows the performance of the heat insulating material which can be used for the heat insulation container of this invention. この発明の実施の形態8の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 8 of this invention. この発明の実施の形態9の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 9 of this invention. この発明の実施の形態10の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 10 of this invention. この発明の実施の形態11の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 11 of this invention. 図15の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of FIG. この発明の実施の形態12の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 12 of this invention. この発明の実施の形態13の断熱容器を示す概略水平断面図である。It is a general | schematic horizontal sectional view which shows the heat insulation container of Embodiment 13 of this invention.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

実施の形態1.
図1〜4には、この発明を実施するための実施の形態1における断熱容器1を示す。断熱容器1は、温熱あるいは冷熱機器に使用するのに適した容器ならびに管を含む包囲体である。
Embodiment 1 FIG.
In FIGS. 1-4, the heat insulation container 1 in Embodiment 1 for implementing this invention is shown. The heat insulating container 1 is an enclosure including a container and a tube suitable for use in hot or cold equipment.

断熱容器1は、円筒形の容器2と、容器2の実質的に全ての外表面を互いに協働して覆う複数のパネル状の断熱部材3とを備えており、断熱部材3の少なくとも一つが真空断熱部材4で構成されている。図示の例では、容器2は円筒形胴部を形成する円筒形の側壁5と、胴部の上下を閉塞するドーム状の上下の端壁6とを備えていて、側壁5は4枚のパネル状の真空断熱部材4によって覆われており、端壁6はドーム状の非真空断熱部材7によって覆われている。すなわち、断熱容器1の複数の断熱部材3は、容器2の側壁5を覆う真空断熱部材4と、端壁6を覆う非真空断熱部材7とで構成されている。断熱部材3は粘着テープなどで互いに接合されるか、または外周より締め付け具などで縛られるかなどして設置されている。   The heat insulating container 1 includes a cylindrical container 2 and a plurality of panel-shaped heat insulating members 3 that cover substantially all the outer surfaces of the container 2 in cooperation with each other, and at least one of the heat insulating members 3 includes A vacuum heat insulating member 4 is used. In the illustrated example, the container 2 includes a cylindrical side wall 5 that forms a cylindrical body, and upper and lower end walls 6 that close the top and bottom of the body, and the side wall 5 includes four panels. The end wall 6 is covered with a dome-shaped non-vacuum heat insulating member 7. That is, the plurality of heat insulating members 3 of the heat insulating container 1 are configured by a vacuum heat insulating member 4 that covers the side wall 5 of the container 2 and a non-vacuum heat insulating member 7 that covers the end wall 6. The heat insulating members 3 are installed by being joined to each other with an adhesive tape or the like, or tied with a fastening tool or the like from the outer periphery.

4枚の真空断熱部材4は、それぞれ同一の構造であって、芯材8およびこの芯材8を真空内に封止する真空外皮9を有する真空断熱要素10と、この真空断熱要素10に組み合わされた断熱要素11と、真空断熱要素10および断熱要素11を組み合わされた状態で共に覆う外皮12とを備えている。   The four vacuum heat insulating members 4 have the same structure, and a vacuum heat insulating element 10 having a core material 8 and a vacuum skin 9 for sealing the core material 8 in a vacuum, and a combination of the vacuum heat insulating element 10 and the vacuum heat insulating element 10. And a skin 12 that covers the vacuum heat insulating element 10 and the heat insulating element 11 together in a combined state.

断熱要素11は、図示の例では、容器2の側壁5の1/4を覆うように側壁5に沿った形状に湾曲した板状の非真空断熱材13であって、例えばビーズ法ポリスチレンフォーム(EPS)断熱材である。この非真空断熱材13は、直径0.3〜2mm程度の球状ポリスチレン樹脂から適当な径の球を選択し、これに炭化水素系発泡剤を含有させて重合工程で発泡成形させるようにして作製することができる。   In the illustrated example, the heat insulating element 11 is a plate-shaped non-vacuum heat insulating material 13 that is curved in a shape along the side wall 5 so as to cover 1/4 of the side wall 5 of the container 2. EPS) Insulating material. The non-vacuum heat insulating material 13 is produced by selecting a sphere having an appropriate diameter from a spherical polystyrene resin having a diameter of about 0.3 to 2 mm, and adding a hydrocarbon-based foaming agent to the sphere and performing foam molding in a polymerization process. can do.

断熱要素11すなわち非真空断熱材13の外側面の周方向中央部には軸方向に溝14が形成されていて、この溝14内に真空断熱要素10が埋め込まれている。図2に示されているように、真空断熱要素10は、長方形の平板状であって、外側の主面が断熱要素11の外側面と連続した面一となるように断熱要素11内に部分的に埋め込まれ、例えば外周部を粘着テープや締め付け具などによって接合されていて、容器2の側壁5の厚さ方向に見て、真空断熱要素10が断熱要素11の外側になるように連ねて配置されている。   A groove 14 is formed in the axial direction in the circumferential center of the outer surface of the heat insulating element 11, that is, the non-vacuum heat insulating material 13, and the vacuum heat insulating element 10 is embedded in the groove 14. As shown in FIG. 2, the vacuum heat insulating element 10 has a rectangular flat plate shape, and is partially formed in the heat insulating element 11 so that the outer main surface is flush with the outer surface of the heat insulating element 11. Embedded, for example, the outer periphery is joined by an adhesive tape, a fastening tool, or the like, and the vacuum heat insulating element 10 is connected to the outside of the heat insulating element 11 when viewed in the thickness direction of the side wall 5 of the container 2. Has been placed.

真空断熱要素10はそれぞれ、ガラス繊維シートの芯材8と、この芯材8を真空内に封止するフィルム状の真空外皮9とで構成されている。芯材8となる繊維シートの製造に当たっては、例えば水または硫酸にガラス繊維を分散させ、自動送り式抄紙機で抄紙してシート状に形成した後、乾燥工程を経てロール状に巻き取られたシートロールを作製する。次に、このシートロールからシートを引き出して必要なサイズに裁断して繊維シートとし、この繊維シートを複数枚重ねた芯材8を作製する。この後、芯材8を2枚もしくは1枚を折り返して作製した袋状の真空外皮9内に挿入し、真空外皮9で覆われた芯材8を真空チャンバ内に配置する。この後、真空チャンバ内を減圧することにより、真空外皮9で覆われた空間を減圧して空間を真空状態にする。この後、真空外皮9で覆われた空間が所定の圧力、例えば0.1〜3Pa程度の真空圧になっている状態で真空外皮9の残り開口部を密閉した後、真空チャンバ内の圧力を大気圧状態にまで戻す。これにより、真空断熱要素10が完成する。完成した真空断熱要素10の内部空間は真空状態に保持されている。また、必要に応じて真空外皮9で覆われた空間には、封止前に適当なガス吸着剤を挿入する。   Each of the vacuum heat insulating elements 10 includes a glass fiber sheet core 8 and a film-like vacuum envelope 9 that seals the core 8 in a vacuum. In the production of the fiber sheet to be the core material 8, for example, glass fibers are dispersed in water or sulfuric acid, and the paper sheet is formed by an automatic feed type paper machine to be formed into a sheet shape, and then wound into a roll shape through a drying process. A sheet roll is produced. Next, the sheet is pulled out from the sheet roll and cut into a required size to obtain a fiber sheet, and a core material 8 in which a plurality of the fiber sheets are stacked is produced. After that, the core material 8 is inserted into a bag-like vacuum envelope 9 produced by folding two or one core material, and the core material 8 covered with the vacuum envelope 9 is placed in the vacuum chamber. After that, by reducing the pressure in the vacuum chamber, the space covered with the vacuum envelope 9 is reduced to make the space vacuum. Then, after the remaining opening of the vacuum envelope 9 is sealed in a state where the space covered with the vacuum envelope 9 is at a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa, the pressure in the vacuum chamber is reduced. Return to atmospheric pressure. Thereby, the vacuum heat insulation element 10 is completed. The interior space of the completed vacuum heat insulating element 10 is kept in a vacuum state. Further, an appropriate gas adsorbent is inserted into the space covered with the vacuum envelope 9 as necessary before sealing.

なお、繊維シートに含有される水分については、抄紙時の乾燥工程とは別に、真空引きする前などに繊維シートを加熱しながら水分を除去してもよい。また、真空外皮9で覆われた芯材8が真空チャンバ内で減圧された状態において、真空チャンバ内を加熱するような機構を設けて、繊維シート自体に熱収縮や熱分解などの熱負荷がからない温度で、かつ真空放電などを誘発しない圧力など、適切な条件を設定して繊維シートの水分を除去してもよい。   In addition, about the water | moisture content contained in a fiber sheet, you may remove a water | moisture content, heating a fiber sheet before vacuuming etc. separately from the drying process at the time of papermaking. In addition, in a state where the core 8 covered with the vacuum envelope 9 is decompressed in the vacuum chamber, a mechanism for heating the inside of the vacuum chamber is provided so that the fiber sheet itself has a thermal load such as thermal contraction or thermal decomposition. The moisture of the fiber sheet may be removed by setting appropriate conditions such as a pressure that does not induce a vacuum discharge and the like at a low temperature.

また、真空外皮9は、例えばアルミラミネートシートで構成されており、その代表的なフィルム層は、ナイロン15μm+ポリエチレンテレフタレート12μm+アルミシート6μm+ポリエチレン50μmからなる。但し、これに限定されるものではない。なお図2においては、真空内皮9および非真空の外皮12の厚さは構造を理解しやすいように強調して描かれている。   The vacuum skin 9 is made of, for example, an aluminum laminate sheet. A typical film layer is made of nylon 15 μm + polyethylene terephthalate 12 μm + aluminum sheet 6 μm + polyethylene 50 μm. However, it is not limited to this. In FIG. 2, the thicknesses of the vacuum endothelium 9 and the non-vacuum outer skin 12 are drawn with emphasis so that the structure can be easily understood.

なお、本実施の形態においては、繊維の材料としてガラス繊維を用いたが、ポリエステル系やそれ以外の有機繊維、例えばポリプロピレン、ポリスチレン、ポリエチレン、ポリエチレンテレフタレートなどの有機繊維を用いることもできる。また、無機繊維と有機繊維とを混在させても同様の効果が得られることは明らかであり、それぞれに適合した製造方法やコストの面から適宜繊維の材料を選択することが可能である。   In this embodiment, glass fiber is used as the fiber material, but polyester-based or other organic fibers such as polypropylene, polystyrene, polyethylene, polyethylene terephthalate, or the like can also be used. Further, it is clear that the same effect can be obtained even if inorganic fibers and organic fibers are mixed, and it is possible to appropriately select a fiber material from the viewpoint of the manufacturing method and cost suitable for each.

真空断熱要素10および断熱要素11を組み合わされた状態で共に覆う外皮12は、その材質が、例えば、ポリエステル(PE)シート、ポリエチレンテレフタレート(PETT)シート、ポリプロピレン(PP)シートなどである。図示の例では非真空用の外皮であるが、真空シールすることもできる。   The outer skin 12 that covers the vacuum heat insulating element 10 and the heat insulating element 11 in a combined state is made of, for example, a polyester (PE) sheet, a polyethylene terephthalate (PETT) sheet, or a polypropylene (PP) sheet. In the illustrated example, it is a non-vacuum skin, but it can also be vacuum sealed.

断熱容器1はさらに、容器2を格納する箱形ケースである外装15を備えていて、容器2と外装15との間に真空断熱部材4が配置されている。図に示す例では、容器2の側壁5の全周が真空断熱部材4によって覆われているが、容器2が外装15に対面との間の距離が特に小さい部分、すなわち真空断熱部材4の周方向の4箇所に真空断熱要素10が配置されている。   The heat insulating container 1 further includes an outer package 15 that is a box-shaped case for storing the container 2, and the vacuum heat insulating member 4 is disposed between the container 2 and the outer package 15. In the example shown in the figure, the entire periphery of the side wall 5 of the container 2 is covered with the vacuum heat insulating member 4, but the portion where the container 2 is particularly small in distance from the outer surface 15 to the facing surface, that is, the periphery of the vacuum heat insulating member 4. The vacuum heat insulating elements 10 are arranged at four locations in the direction.

このような構成の断熱容器1においては、真空断熱要素10と断熱要素11を一体化した組合せ断熱材としての真空断熱部材4を作製しておき、この真空断熱部材4を容器2に取り付けることができる。したがって、従来、断熱要素11に相当する断熱材を容器2に取り付け、その後に真空断熱材4を取り付けていた作業を、一体に組み立てられている組立体を一挙に容器2に取り付けることが可能である。したがって、組立工程における部品点数が半減して作業効率が向上する。また、真空断熱要素10の表面が取り付け作業時には外皮12によって覆われているので、真空断熱要素10の真空外皮9が保護され、ライン組立時の真空外皮9の損傷を防止することができる。なお、図では非真空の外皮12が、組合せられた真空断熱要素10および非真空の断熱要素11の組立体の表面全体を覆っているとして描かれ説明してあるが、必ずしもこれに限定されるものではない。   In the heat insulating container 1 having such a configuration, a vacuum heat insulating member 4 as a combined heat insulating material in which the vacuum heat insulating element 10 and the heat insulating element 11 are integrated is prepared, and the vacuum heat insulating member 4 is attached to the container 2. it can. Therefore, it is possible to attach an assembly that has been assembled as a unit to the container 2 at once, by attaching the heat insulating material corresponding to the heat insulating element 11 to the container 2 and attaching the vacuum heat insulating material 4 thereafter. is there. Therefore, the number of parts in the assembly process is reduced by half, and the working efficiency is improved. Further, since the surface of the vacuum heat insulating element 10 is covered with the outer skin 12 during the mounting operation, the vacuum outer skin 9 of the vacuum heat insulating element 10 is protected, and damage to the vacuum outer skin 9 during line assembly can be prevented. In the figure, the non-vacuum skin 12 is depicted and described as covering the entire surface of the combined vacuum insulation element 10 and non-vacuum insulation element 11, but this is not necessarily the case. It is not a thing.

実施の形態2.
図5に示す断熱容器1においては、外装15は円筒形であり、8枚の真空断熱部材4が円筒形の容器2の側壁を覆うように配置されている。その他の構成は図1〜4に示すものと同様であるが、図5においては真空の真空外皮9および外皮12が一本の線で表されている。
Embodiment 2. FIG.
In the heat insulating container 1 shown in FIG. 5, the exterior 15 has a cylindrical shape, and the eight vacuum heat insulating members 4 are arranged so as to cover the side wall of the cylindrical container 2. Other configurations are the same as those shown in FIGS. 1 to 4, but in FIG. 5, the vacuum outer skin 9 and the outer skin 12 are represented by a single line.

この断熱容器1においては、容器2の側壁を覆う真空断熱部材4が8枚になるものの、真空断熱部材4と外装15との間に余分なスペースがなくなることから、断熱容器1の設置面積を小さくコンパクトにすることができる。また、外装15の表面積が小さくなることから、外装15の材料が少なくなり、外気との伝熱面積が小さくなり、断熱性能を向上できる。   In this heat insulating container 1, although there are eight vacuum heat insulating members 4 covering the side walls of the container 2, there is no extra space between the vacuum heat insulating member 4 and the exterior 15. Small and compact. Moreover, since the surface area of the exterior 15 is reduced, the material of the exterior 15 is reduced, the heat transfer area with the outside air is reduced, and the heat insulation performance can be improved.

実施の形態3.
図6に示す断熱容器1においては、容器2の側壁が2枚のほぼC字形断面の真空断熱部材4によって覆われている。真空断熱部材4は、容器2の円筒形の側壁に沿って配置されて厚さが一定で断面形がC字形の断熱要素11と、断熱要素11の外周面に接合され、容器2の側壁の厚さ方向に見て断熱要素11の外側に配置されて厚さが一定で断面形がC字形の真空断熱要素10と、断熱要素11および真空断熱要素10を組み合わせた状態で包囲する外皮12とを備えている。その他の構成は先に説明したものと同様である。また、断熱要素11は、非真空断熱材13としている。
Embodiment 3 FIG.
In the heat insulating container 1 shown in FIG. 6, the side wall of the container 2 is covered with two vacuum heat insulating members 4 having a substantially C-shaped cross section. The vacuum heat insulating member 4 is disposed along the cylindrical side wall of the container 2 and has a constant thickness and a C-shaped heat insulating element 11. The vacuum heat insulating member 4 is joined to the outer peripheral surface of the heat insulating element 11. A vacuum heat insulating element 10 which is arranged outside the heat insulating element 11 when viewed in the thickness direction and has a constant thickness and a C-shaped cross section, and an outer skin 12 which surrounds the heat insulating element 11 and the vacuum heat insulating element 10 in combination. It has. Other configurations are the same as those described above. The heat insulating element 11 is a non-vacuum heat insulating material 13.

この断熱容器においては、真空断熱部材4は2分割されているので部品点数が少なく、真空断熱部材4の間の繋ぎ目も少なくなることから、保温あるいは保冷等のための断熱性能の高い断熱容器が実現できる。また、断熱要素11の非真空断熱材13として、柔軟性がある例えばグラスウールを適用すると、真空断熱要素10の内側面と容器2の外表面のとの曲率差等によって生ずる隙間を吸収することが可能となる。したがって、より高性能な断熱性能を実現することができる。   In this heat insulating container, since the vacuum heat insulating member 4 is divided into two parts, the number of parts is small and the number of joints between the vacuum heat insulating members 4 is also small. Therefore, a heat insulating container with high heat insulating performance for heat insulation or cold insulation and the like. Can be realized. Further, when, for example, glass wool having flexibility is applied as the non-vacuum heat insulating material 13 of the heat insulating element 11, it is possible to absorb a gap generated due to a difference in curvature between the inner surface of the vacuum heat insulating element 10 and the outer surface of the container 2. It becomes possible. Therefore, higher performance heat insulation performance can be realized.

なお、この実施の形態における円筒形状の真空断熱要素10は、例えば、上述したように、先ず平板形状真空断熱材を作製し、その後、3軸式のロールベンダーにて所望の曲率を有する円筒形状となる様に曲げ加工を行なった。なお、真空チャンバ内で真空封止する前にあらかじめ円筒形状に成形しておいてもよい。   Note that the cylindrical vacuum heat insulating element 10 in this embodiment is, for example, as described above, first producing a flat plate vacuum heat insulating material and then a cylindrical shape having a desired curvature with a triaxial roll bender. Bending was performed so that Note that it may be formed into a cylindrical shape in advance before vacuum sealing in the vacuum chamber.

実施の形態4.
図7に示す断熱容器1においては、容器2の側壁が2枚のほぼC字形断面の真空断熱部材4によって覆われていて、この点では図6に示す断熱容器1と同じであるが、真空断熱部材4の径方向内側に真空断熱要素10が設けられ、外側に断熱要素11が設けられている。すなわち、真空断熱部材4は、容器2の円筒形の側壁に沿って配置されて厚さが一定で断面形がC字形の真空断熱要素10と、真空断熱要素10の外周面に接合され、容器2の側壁の厚さ方向に見て真空断熱要素10の外側に配置されて厚さが一定で断面形がC字形の断熱要素11と、真空断熱要素10および断熱要素11を組み合わせた状態で包囲する外皮12とを備えている。その他の構成は先に説明したものと同様で、断熱要素11は、非真空断熱材13としている。
Embodiment 4 FIG.
In the heat insulating container 1 shown in FIG. 7, the side wall of the container 2 is covered with two vacuum heat insulating members 4 having a substantially C-shaped cross section, and this is the same as the heat insulating container 1 shown in FIG. A vacuum heat insulating element 10 is provided inside the heat insulating member 4 in the radial direction, and a heat insulating element 11 is provided outside. That is, the vacuum heat insulating member 4 is disposed along the cylindrical side wall of the container 2 and bonded to the vacuum heat insulating element 10 having a constant thickness and a C-shaped cross section and the outer peripheral surface of the vacuum heat insulating element 10. 2 is disposed outside the vacuum heat insulating element 10 when viewed in the thickness direction of the side wall, and is surrounded by a combination of the heat insulating element 11 having a constant thickness and a C-shaped cross section, and the vacuum heat insulating element 10 and the heat insulating element 11. And an outer skin 12 to be provided. Other configurations are the same as those described above, and the heat insulating element 11 is a non-vacuum heat insulating material 13.

図7に示す断熱容器1においては、図6の断熱容器1とほぼ同等の効果が得られる上に、真空断熱要素10の外周部を全て断熱要素11で被うように設置するので、製造時に一度容器2に配置した後は、真空断熱要素10が表面に出てこないことから、真空外皮9を破損させる危険性がより少なくなるという効果が得られる。   In the heat insulation container 1 shown in FIG. 7, since the effect equivalent to the heat insulation container 1 of FIG. 6 is acquired, since it installs so that the outer peripheral part of the vacuum heat insulation element 10 may cover all the heat insulation elements 11, at the time of manufacture Once placed in the container 2, the vacuum heat insulating element 10 does not come out on the surface, so that the risk of damaging the vacuum skin 9 is reduced.

実施の形態5.
図8に示す断熱容器1においては、容器2が直方体で側壁5が平坦な板状であり、外装15も直方体であるため、真空断熱部材4は矩形の平板状にしてある。容器2の側壁5の厚さ方向に見て内側に容器2に接して断熱要素11が設けられ、外側に真空断熱要素10が設けられている。また、断熱要素11は、非真空断熱材13としている。この場合、真空断熱要素10を円筒形状に加工する必要がないことから、芯材8および真空外皮9への曲げ負荷がない。つまり、真空外皮9の破損や芯材8の折れ曲がりが起こらないことから、信頼性の高い断熱構造が実現できる。なお、この実施例で、外装15の外壁および容器2のいずれか少なくとも一つの側壁5もしくは上蓋または下蓋(図示せず)を真空断熱部材4と共に開閉できるようにすることもできる。その他の構成は、先に説明した実施の形態と同様である。
Embodiment 5. FIG.
In the heat insulating container 1 shown in FIG. 8, since the container 2 is a rectangular parallelepiped and the side wall 5 is a flat plate shape, and the exterior 15 is also a rectangular parallelepiped, the vacuum heat insulating member 4 has a rectangular flat plate shape. A heat insulating element 11 is provided in contact with the container 2 on the inner side when viewed in the thickness direction of the side wall 5 of the container 2, and a vacuum heat insulating element 10 is provided on the outer side. The heat insulating element 11 is a non-vacuum heat insulating material 13. In this case, since it is not necessary to process the vacuum heat insulating element 10 into a cylindrical shape, there is no bending load on the core material 8 and the vacuum skin 9. That is, since the vacuum skin 9 is not damaged and the core material 8 is not bent, a highly reliable heat insulating structure can be realized. In this embodiment, at least one side wall 5 or upper lid or lower lid (not shown) of the outer wall of the exterior 15 and the container 2 can be opened and closed together with the vacuum heat insulating member 4. Other configurations are the same as those of the above-described embodiment.

実施の形態6.
図9に示す断熱容器1においては、図8に示す断熱容器1と同様の構成であって、真空断熱部材4あるいは容器2の側壁5の厚さ方向に見て内側に容器2に接して真空断熱要素10が設けられ、外側に断熱要素11が設けられている点が相違している。この断熱容器1においても、図8に示すものと同様の効果が得られ、また真空断熱要素10が断熱要素11の内側にあるため、断熱要素11によって保護される。
Embodiment 6 FIG.
The heat insulating container 1 shown in FIG. 9 has the same configuration as that of the heat insulating container 1 shown in FIG. The difference is that a heat insulating element 10 is provided and a heat insulating element 11 is provided outside. Also in this heat insulation container 1, the effect similar to what is shown in FIG. 8 is acquired, and since the vacuum heat insulation element 10 exists inside the heat insulation element 11, it is protected by the heat insulation element 11.

なお、この実施の形態では、断熱材の材質としてEPS断熱材を使用しているが、例えば発泡ウレタン断熱材、押出法ポリスチレンフォームなどでもよく、また無機系断熱材、例えばグラスウール断熱材やセラミックウール断熱材などを使用してもよい。   In this embodiment, an EPS heat insulating material is used as the material of the heat insulating material. However, for example, a foamed urethane heat insulating material or an extruded polystyrene foam may be used, and an inorganic heat insulating material such as glass wool heat insulating material or ceramic wool may be used. A heat insulating material or the like may be used.

実施の形態7.
図10および11に示す断熱容器1においては、円筒形の容器壁5がほぼC字形断面となるように軸方向に2分割された半円筒状の2枚の真空断熱部材16によって覆われており、容器2の端壁6もドーム状の第2の真空断熱部材17によって覆われており、容器2を囲む断熱部材3が、全て真空断熱のパネルで構成されている。
Embodiment 7 FIG.
In the heat insulating container 1 shown in FIGS. 10 and 11, the cylindrical container wall 5 is covered with two semi-cylindrical vacuum heat insulating members 16 divided into two in the axial direction so as to have a substantially C-shaped cross section. The end wall 6 of the container 2 is also covered with a dome-shaped second vacuum heat insulating member 17, and the heat insulating member 3 surrounding the container 2 is entirely composed of a vacuum heat insulating panel.

容器2の側壁5は半円筒状の2枚の真空断熱部材16によって覆われており、それぞれの真空断熱部材16は、容器2の側壁5の1/4程度を覆う真空断熱要素10と、真空断熱要素10に周方向に延長された部材として組み合わされて、側壁5の残りの1/4程度を覆う断熱要素20と、これら互いに組み合わされた真空断熱要素10および断熱要素20の全体を真空封止する第2の真空外皮19とで構成されている。ここで、断熱要素20は第2の芯材18としている。真空断熱要素10は、芯材8と、芯材8を真空封止する真空外皮9とで構成されている。   The side wall 5 of the container 2 is covered with two semi-cylindrical vacuum heat insulating members 16, and each vacuum heat insulating member 16 includes a vacuum heat insulating element 10 that covers about ¼ of the side wall 5 of the container 2, and a vacuum. The heat insulating element 20 combined with the heat insulating element 10 as a member extending in the circumferential direction to cover the remaining 1/4 of the side wall 5 and the vacuum heat insulating element 10 and the heat insulating element 20 combined with each other are vacuum sealed. It consists of a second vacuum skin 19 that stops. Here, the heat insulating element 20 is the second core member 18. The vacuum heat insulating element 10 includes a core material 8 and a vacuum outer skin 9 that vacuum seals the core material 8.

従って、真空断熱部材16は、真空断熱要素10に組み合わされた断熱要素20である第2の芯材18を備えていて、真空外皮19によって覆われて真空封止されている。真空断熱要素10に組合わされた第2の芯材18を囲む空間の真空度は、真空断熱要素10の真空度よりも低い第2の真空度にされている。また、真空断熱要素10と第2の芯材18とが容器2の側壁5に沿った円周方向に連ねて配置されている。また、第2の芯材18は、炭化水素系発泡剤によって発泡された発泡断熱材を使用することができる。   Therefore, the vacuum heat insulating member 16 includes the second core member 18 that is the heat insulating element 20 combined with the vacuum heat insulating element 10, and is vacuum-sealed by being covered with the vacuum skin 19. The degree of vacuum in the space surrounding the second core member 18 combined with the vacuum heat insulating element 10 is set to a second vacuum level lower than the vacuum degree of the vacuum heat insulating element 10. Further, the vacuum heat insulating element 10 and the second core member 18 are arranged continuously in the circumferential direction along the side wall 5 of the container 2. Moreover, the 2nd core material 18 can use the foam heat insulating material foamed with the hydrocarbon type foaming agent.

容器2の端壁6は、上述の容器2の側壁5を覆う真空断熱部材16と異なり、ドーム状で、真空断熱部材16の真空外皮19内の第2の真空度と同じレベルの真空度の第2の真空断熱部材17によって覆われている。第2の真空断熱部材17は断熱要素24である第3の芯材21を第3の真空外皮22で覆われたものである。上述のように、第2の真空断熱部材17の第3の芯材21としても、炭化水素系発泡剤によって発泡された発泡断熱材を芯材とすることができる。   Unlike the vacuum heat insulating member 16 that covers the side wall 5 of the container 2 described above, the end wall 6 of the container 2 is dome-shaped and has the same vacuum level as the second vacuum degree in the vacuum envelope 19 of the vacuum heat insulating member 16. Covered by the second vacuum heat insulating member 17. The second vacuum heat insulating member 17 is obtained by covering a third core member 21 that is a heat insulating element 24 with a third vacuum skin 22. As described above, as the third core material 21 of the second vacuum heat insulating member 17, the foam heat insulating material foamed with the hydrocarbon-based foaming agent can be used as the core material.

上述の第2の芯材18は、例えばEPS断熱材であり、真空外皮19は、高密度ポリエチレンシートである。また第2の真空断熱部材17も、EPS断熱材であり、真空外皮22は、高密度ポリエチレンシートである。   The above-mentioned second core material 18 is, for example, an EPS heat insulating material, and the vacuum envelope 19 is a high-density polyethylene sheet. The second vacuum heat insulating member 17 is also an EPS heat insulating material, and the vacuum outer skin 22 is a high density polyethylene sheet.

そこで、図12の表には、厚み10mmのEPS断熱材をPE包装材で圧力をパラメータとして封止条件を変化させた時の厚み変化率と熱伝導率の関係を調べた結果を示す。EPS断熱材を大気圧条件で0.035W/(m・K)であったEPS断熱材の熱伝導率が、絶対圧75kPaにまで低圧化させると、0.031W/(m・K)となり厚みの変化も殆ど見られなかった。一方、50kPa以下の低圧条件では、熱伝導率の減少率は少なくなるものの、厚みの低下が顕著にみられ、実質の断熱性能が悪くなることが分かった。さらに1kPaより低圧化するとむしろ熱伝導率も上昇してしまう傾向が見られた。これは芯材の厚みが薄くなることによって芯材の充填率が上昇し、芯材を通じた固体熱伝導が大きくなったためだと考えられる。これらの結果より、真空断熱要素10とEPS断熱材である第2の芯材18とが真空外皮19で覆われた第2の真空度の圧力は、絶対圧力で50kPaより大きい値にすることが望ましい。またさらに言うと、製造ラインでは、大掛かりな真空ポンプ等を用いて低圧化することは生産性が悪くなることから、第2の芯材18周囲の圧力は、絶対圧力75kPa程度にすることがより望ましい。   Therefore, the table of FIG. 12 shows the results of examining the relationship between the rate of change in thickness and the thermal conductivity when the sealing condition is changed using PE packaging material with a 10 mm thick EPS heat insulating material and the pressure as a parameter. When the thermal conductivity of the EPS heat insulating material, which was 0.035 W / (m · K) under atmospheric pressure conditions, is reduced to an absolute pressure of 75 kPa, the thickness becomes 0.031 W / (m · K). There was almost no change. On the other hand, under low pressure conditions of 50 kPa or less, it was found that although the rate of decrease in thermal conductivity was reduced, the thickness was significantly reduced and the substantial heat insulation performance was deteriorated. Furthermore, when the pressure was reduced below 1 kPa, the thermal conductivity tended to increase rather. This is considered to be because the filling rate of the core material is increased by reducing the thickness of the core material, and the solid heat conduction through the core material is increased. From these results, the pressure of the second vacuum degree in which the vacuum heat insulating element 10 and the second core material 18 which is an EPS heat insulating material are covered with the vacuum outer shell 19 can be set to a value larger than 50 kPa in absolute pressure. desirable. Furthermore, in the production line, if the pressure is reduced by using a large vacuum pump or the like, the productivity becomes worse. Therefore, the pressure around the second core member 18 is preferably set to an absolute pressure of about 75 kPa. desirable.

ここで、図10および11に示す真空断熱部材16は、例えばEPS断熱材である第2の芯材18と真空断熱要素10とを、あらかじめ3辺を封止したPEを材料とした真空外皮19となる袋に挿入し、掃除機と同等性能のブロワで吸引しながら、最後の開口部一辺をヒートシーラで挟み込んで熱融着させて製作した。なお,第2の真空断熱部材17も同様に、第3の芯材21を真空外皮22となる袋に入れて吸引しながら熱融着により封止して製造する。   Here, the vacuum heat insulating member 16 shown in FIGS. 10 and 11 is, for example, a vacuum envelope 19 made of PE in which three sides are sealed in advance for the second core material 18 and the vacuum heat insulating element 10 which are EPS heat insulating materials. It was inserted into the bag, and sucked with a blower with the same performance as a vacuum cleaner, while the last side of the opening was sandwiched between heat sealers and heat-sealed. Similarly, the second vacuum heat insulating member 17 is manufactured by sealing the third core member 21 by heat fusion while sucking the third core member 21 in a bag serving as the vacuum envelope 22.

また、真空断熱要素10は、内圧と外部の圧力差(組成単位で見るとガスの分圧差)によって、長期的には真空外皮9のシール部分からガスの浸入があるが、ガス吸着剤によって化学吸着もしくは物理吸着させて浸入ガスを除去することで真空度を維持させる。この実施の形態においては、真空断熱要素10の外周は、さらに第2の真空外皮19によって囲繞され低圧保持されていることから、真空断熱要素10の内外圧力差が小さくなる。したがって、吸着剤の負荷が低減でき、真空断熱要素10の長期信頼性という面からも優位になる。また、EPS断熱材の製造方法で、発泡剤として炭化系水素(例えばブタンやペンタン)で発泡させることを示したが、これを炭酸ガスで発泡させてもよい。この場合、発泡直後に芯材である断熱材中に炭酸ガスを封じ込めることが望ましい。炭酸ガスは空気と比較して熱伝導率が約30%低いことから、断熱材の熱伝導率をさらに数%低減できる。さらに、第2の真空度を有する空間が断熱材の内部が炭酸ガス雰囲気になっているので、空気と比較して真空断熱要素10を封止する真空外皮9のシール性が良いという効果も得られる。なお、第2の真空断熱部材17についても同様である。   Further, the vacuum heat insulating element 10 has gas intrusion from the seal portion of the vacuum envelope 9 in the long term due to an internal pressure and an external pressure difference (difference in gas partial pressure in terms of composition unit). The degree of vacuum is maintained by removing the intrusion gas by adsorption or physical adsorption. In this embodiment, since the outer periphery of the vacuum heat insulating element 10 is further surrounded by the second vacuum skin 19 and held at a low pressure, the pressure difference between the inside and outside of the vacuum heat insulating element 10 is reduced. Therefore, the load of the adsorbent can be reduced, which is advantageous in terms of long-term reliability of the vacuum heat insulating element 10. Moreover, although it showed that it was made to foam with hydrocarbons (for example, butane and pentane) as a foaming agent in the manufacturing method of EPS heat insulating material, you may foam this with a carbon dioxide gas. In this case, it is desirable to contain carbon dioxide in a heat insulating material that is a core material immediately after foaming. Since carbon dioxide has a thermal conductivity of about 30% lower than that of air, the thermal conductivity of the heat insulating material can be further reduced by several percent. Further, since the space having the second degree of vacuum has a carbon dioxide gas atmosphere inside the heat insulating material, an effect that the sealing performance of the vacuum envelope 9 that seals the vacuum heat insulating element 10 is better than air is obtained. It is done. The same applies to the second vacuum heat insulating member 17.

なお、以上のように図10〜12に示した実施の形態7の断熱容器は、真空断熱要素10に、共通の第2の真空外皮19で真空封止されて第1の真空度よりも低い真空度にされた断熱要素20である第2の芯材18を組み合わせた真空断熱部材16を備えたものであるが、これと同様に、図1〜9に示した実施の形態における真空断熱部材4においても、真空断熱要素10に組み合わされた断熱要素11を第2の芯材18とすることもできる。この場合にも、製造工程の簡略化ならびに組立時の真空断熱要素10の破損防止が図れると共に、図10で説明したことと同様、断熱性能の向上も図ることができる。ここで、図2や図5に示した断熱要素11に第2の芯材18として柔軟性に富んだグラスウールなどを適用すると、低圧化によって断熱構造が維持できなくなり、第2の芯材18の空隙率が低下するために断熱性能が低下することもあり、必ずしも好ましくない。但し、図6や図8のように容器2と真空断熱部材4との密着性を向上させるためには有効となる。   As described above, the heat insulating container of the seventh embodiment shown in FIGS. 10 to 12 is vacuum-sealed to the vacuum heat insulating element 10 by the common second vacuum skin 19 and is lower than the first degree of vacuum. Although the vacuum heat insulating member 16 which combined the 2nd core material 18 which is the heat insulation element 20 made into the vacuum degree is provided, the vacuum heat insulating member in embodiment shown to FIGS. 4, the heat insulating element 11 combined with the vacuum heat insulating element 10 can be used as the second core member 18. In this case as well, the manufacturing process can be simplified and the vacuum heat insulating element 10 can be prevented from being damaged during assembly, and the heat insulating performance can be improved as described with reference to FIG. Here, when glass wool having high flexibility is applied as the second core member 18 to the heat insulating element 11 shown in FIG. 2 or FIG. 5, the heat insulating structure cannot be maintained due to low pressure, and the second core member 18 Since the porosity is lowered, the heat insulation performance may be lowered, which is not necessarily preferable. However, it is effective to improve the adhesion between the container 2 and the vacuum heat insulating member 4 as shown in FIGS.

実施の形態8.
図13に示す断熱容器1においては、円筒形状の容器2の側壁5を被覆する断熱部材の一部が非真空断熱部材23であり、それ以外は、真空断熱要素10と断熱要素20である第2の芯材18とが真空外皮19で被覆された真空断熱部材16である。容器2の上下の端壁6は図4に示す非真空断熱部材7と同様の非真空断熱部材で覆ってある。
Embodiment 8 FIG.
In the heat insulating container 1 shown in FIG. 13, a part of the heat insulating member covering the side wall 5 of the cylindrical container 2 is the non-vacuum heat insulating member 23, and the other parts are the vacuum heat insulating element 10 and the heat insulating element 20. A vacuum heat insulating member 16 in which a second core member 18 is covered with a vacuum envelope 19. The upper and lower end walls 6 of the container 2 are covered with a non-vacuum heat insulating member similar to the non-vacuum heat insulating member 7 shown in FIG.

温熱・冷熱機器、つまり貯湯タンク、アイスシャーベットや氷蓄熱などの貯蔵タンク、冷蔵庫・冷凍庫などに適用される容器2は、接続される配管やサーミスタなどの計測線取出しなどが側面または上下部に必要となる場合がある(図示せず)。これらの部分に複雑な形状に加工しやすい非真空の断熱材で構成された非真空断熱部材23を設けることによって、容器2およびその近傍にある突起物を避けて断熱材を配置することが容易にできる。したがって、高い組立作業性および断熱性能を維持しつつ、現実的な容器2の断熱施工が実現できる。   Container 2 applied to hot / cold equipment, that is, hot water storage tanks, storage tanks such as ice sherbet and ice heat storage, refrigerators / freezers, etc. requires measurement piping such as connected piping and thermistor to be taken out from the side or top and bottom (Not shown). By providing the non-vacuum heat insulating member 23 made of a non-vacuum heat insulating material that can be easily processed into a complicated shape in these portions, it is easy to arrange the heat insulating material while avoiding the protrusions in the container 2 and the vicinity thereof. Can be. Accordingly, it is possible to realize a realistic heat insulation construction of the container 2 while maintaining high assembly workability and heat insulation performance.

実施の形態9.
図14に示す断熱容器1においては、外装15が直方体であり、容器2の円筒側面の約1/4を被覆する断熱材の一部に非真空断熱部材23を設け、それ以外は、予め円筒側面の約3/4を被覆する円筒形状にした真空断熱要素10と、この真空断熱要素10に同心に組み合わされ、円筒形状の断熱要素20を第2の芯材18として真空外皮19で覆って第2の真空度とした真空断熱部材16によって囲繞したものである。また、容器2の上部と下部の端壁を被覆する断熱材は、実施の形態7と同様に、一部もしくは全部を第2の真空断熱部材17で覆うようにしてある。その他の構成は図13に示すものと同様である。
Embodiment 9 FIG.
In the heat insulation container 1 shown in FIG. 14, the exterior 15 is a rectangular parallelepiped, the non-vacuum heat insulation member 23 is provided in a part of the heat insulating material covering about 1/4 of the cylindrical side surface of the container 2, and the other is a cylinder in advance A cylindrical vacuum insulating element 10 covering about ¾ of the side surface and a vacuum insulating element 10 concentrically combined with the vacuum insulating element 10 and covering the cylindrical thermal insulating element 20 as a second core member 18 with a vacuum envelope 19 It is surrounded by a vacuum heat insulating member 16 having a second degree of vacuum. The heat insulating material covering the upper and lower end walls of the container 2 is partially or entirely covered with the second vacuum heat insulating member 17 as in the seventh embodiment. Other configurations are the same as those shown in FIG.

この場合、図13と同等の効果が得られると共に、周方向は真空断熱部材16と非真空断熱部材23との2分割になっているので部品点数が削減できる。また、断熱部材の繋ぎ目も少なくなることから、保温性能の高い断熱が実現できる。また、真空断熱要素10の外周部の全面を第2の芯材18によって被うように設置してあるので、製造時に一度容器2に配置した後は、真空断熱要素10が表面に出てこないことから、真空断熱要素10の真空が破れて破損する危険性が少なくなる。   In this case, the same effect as in FIG. 13 can be obtained, and the number of parts can be reduced because the circumferential direction is divided into the vacuum heat insulating member 16 and the non-vacuum heat insulating member 23. Moreover, since the joint of a heat insulation member also decreases, the heat insulation with high heat retention performance is realizable. Moreover, since it has installed so that the whole outer peripheral part of the vacuum heat insulation element 10 may be covered with the 2nd core material 18, after arrange | positioning once in the container 2 at the time of manufacture, the vacuum heat insulation element 10 does not come out on the surface. For this reason, the risk of the vacuum insulation element 10 being broken and broken is reduced.

実施の形態10.
図15に示す断熱容器においては、図14の断熱容器に対して真空断熱部材16の真空断熱要素10と第2の芯材18との径方向の配置が内外に逆転したものである。その他の構成は図14のものと同様である。この結果、図13と同等の効果および部品点数削減による組立作業性の向上効果が得られるのみならず、断熱要素20である第2の芯材18として、柔軟性があるグラスウール等を適用すると、真空断熱部材16の内側面と容器2の外表面のとの曲率差等によって生ずる隙間を吸収することが可能となり、より高い保温性能を実現できる。
Embodiment 10 FIG.
In the heat insulating container shown in FIG. 15, the radial arrangement of the vacuum heat insulating element 10 and the second core member 18 of the vacuum heat insulating member 16 is reversed inward and outward with respect to the heat insulating container of FIG. Other configurations are the same as those in FIG. As a result, not only the effect equivalent to FIG. 13 and the improvement effect of the assembly workability due to the reduction in the number of parts can be obtained, but as a second core material 18 which is the heat insulating element 20, applying flexible glass wool or the like, It is possible to absorb a gap caused by a difference in curvature between the inner side surface of the vacuum heat insulating member 16 and the outer surface of the container 2, and higher heat retention performance can be realized.

実施の形態11.
図16および17に示す断熱容器1においては、円筒形の容器2の周方向のほぼ3/4を覆うほぼC字形の円筒形状の真空断熱部材16と、残りの約1/4を覆う非真空断熱部材23とを備えている。真空断熱部材16は、容器2の周方向の大部分に亘って延びて、容器2に直接接するように配置された断面がほぼC字形の真空断熱要素10と、真空断熱要素10の周方向両端部に組み合わされて結合され、容器2の軸方向に延びた2本の角柱状の断熱要素20である第2の芯材18と、真空断熱要素10と断熱要素20を共に被覆し、第2の真空度にする第2の真空外皮19とを備えている。容器2の上部と下部の端壁6は、図4に示すものと同様の非真空断熱部材7によって覆われているが、図11に示すような第2の真空断熱部材17を用いても良い。この断熱容器1においては、断熱要素20である第2の芯材18の材料を少なくすることができるため、より低コストで断熱することができる。
Embodiment 11 FIG.
In the heat insulating container 1 shown in FIGS. 16 and 17, a substantially C-shaped cylindrical vacuum heat insulating member 16 covering approximately ¾ in the circumferential direction of the cylindrical container 2 and the non-vacuum covering the remaining approximately ¼. And a heat insulating member 23. The vacuum heat insulating member 16 extends over most of the circumferential direction of the container 2, and the vacuum heat insulating element 10 having a substantially C-shaped cross section disposed so as to be in direct contact with the container 2, and both circumferential ends of the vacuum heat insulating element 10 The second core 18 which is two prismatic heat insulating elements 20 which are combined and joined to each other and extend in the axial direction of the container 2, and the vacuum heat insulating element 10 and the heat insulating element 20 are covered together. And a second vacuum skin 19 having a degree of vacuum. The upper and lower end walls 6 of the container 2 are covered with a non-vacuum heat insulating member 7 similar to that shown in FIG. 4, but a second vacuum heat insulating member 17 as shown in FIG. 11 may be used. . In this heat insulation container 1, since the material of the 2nd core material 18 which is the heat insulation element 20 can be decreased, it can insulate at lower cost.

実施の形態12.
図18に示す断熱容器1においては、外装15が6角柱形状にされていて、円筒形の容器2およびその周囲の真空断熱要素10に近接して配置されている。その他の構成は図16および17に示すものと同様である。この断熱容器1の場合、外装15内の余分な空間をなくすことで、設置面積を小さくできるとともに、外装15の壁面積が小さくなることから、材料コストを下げることができる。
Embodiment 12 FIG.
In the heat insulating container 1 shown in FIG. 18, the exterior 15 has a hexagonal prism shape, and is disposed in the vicinity of the cylindrical container 2 and the surrounding vacuum heat insulating element 10. Other configurations are the same as those shown in FIGS. In the case of this heat insulating container 1, the installation area can be reduced by eliminating the extra space in the exterior 15, and the wall area of the exterior 15 can be reduced, so that the material cost can be reduced.

実施の形態13.
図19に示す断熱容器1においては、図16および17に示す断熱容器1と比較して相違する構成は、真空断熱部材16が、C字形の真空断熱要素10の両端部の断熱要素11である第2の芯材18のさらに周方向外側に、第2の真空断熱部材17を備えていることである。第2の真空断熱部材17は、断熱要素24である第3の芯材21を第3の真空外皮22によって封止したもので、真空断熱部材4に周囲を粘着テープで固定したり、外周部から締め付け具などによって縛られて設置されている。
Embodiment 13 FIG.
In the heat insulating container 1 shown in FIG. 19, the configuration different from the heat insulating container 1 shown in FIGS. 16 and 17 is that the vacuum heat insulating member 16 is the heat insulating elements 11 at both ends of the C-shaped vacuum heat insulating element 10. The second vacuum heat insulating member 17 is provided on the outer side in the circumferential direction of the second core member 18. The second vacuum heat insulating member 17 is obtained by sealing the third core member 21 as the heat insulating element 24 with the third vacuum outer shell 22, and the periphery is fixed to the vacuum heat insulating member 4 with an adhesive tape, or the outer peripheral portion. It is installed by being tied up with a fastening tool.

真空断熱要素10、特に真空断熱要素10の芯材8を真空封止するための真空外皮9は、繰り返し曲げ荷重に弱いことから、製造過程などでの曲げ伸ばし動作は極力少ない方が好ましい。この断熱容器1によれば、真空断熱要素10を円筒形の容器2に合わせて設置する時に、一度成型された円筒形部分を撓ませて開口部を大きく開くことなく、図16に示すものよりも真空断熱部材16の容器周囲面積比率を大きくすることができることから、より断熱材の高性能化が図れる。   Since the vacuum envelope 9 for vacuum-sealing the vacuum heat insulating element 10, particularly the core material 8 of the vacuum heat insulating element 10, is weak against repeated bending loads, it is preferable that the bending and extending operation in the manufacturing process is as small as possible. According to this heat insulating container 1, when the vacuum heat insulating element 10 is installed in accordance with the cylindrical container 2, the cylindrical part once molded is bent and the opening is not greatly opened, so that the opening shown in FIG. In addition, since the container peripheral area ratio of the vacuum heat insulating member 16 can be increased, higher performance of the heat insulating material can be achieved.

以上に図示して説明した断熱容器の構成は単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。
また、実施例で示した断熱容器1は、貯湯タンク、冷水タンク、調理容器、冷蔵室あるいは冷凍室ならびにそれらと共に用いられる断熱された配管などであってもよい。
The configuration of the heat insulating container illustrated and described above is merely an example, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined.
Moreover, the heat insulation container 1 shown in the Example may be a hot water storage tank, a cold water tank, a cooking container, a refrigeration room or a freezing room, and insulated pipes used together therewith.

この発明は断熱容器に利用できるものである。   This invention can be used for a heat insulating container.

1 断熱容器、2 容器、3 断熱部材、4 真空断熱部材、5 側壁、6 端壁、7 非真空断熱部材、8 芯材、9 真空外皮、10 真空断熱要素、11 断熱要素、12 外皮、13 非真空断熱材、14 溝、15 外装、16 真空断熱部材、17 第2の真空断熱部材、18 第2の芯材、19 第2の真空外皮、20 断熱材、21 断熱材、22 第3の真空外皮、23 非真空断熱部材、24 断熱要素。   DESCRIPTION OF SYMBOLS 1 Heat insulation container, 2 container, 3 heat insulation member, 4 vacuum heat insulation member, 5 side wall, 6 end wall, 7 non-vacuum heat insulation member, 8 core material, 9 vacuum outer skin, 10 vacuum heat insulation element, 11 heat insulation element, 12 outer skin, 13 Non-vacuum heat insulating material, 14 grooves, 15 exterior, 16 vacuum heat insulating member, 17 second vacuum heat insulating member, 18 second core material, 19 second vacuum skin, 20 heat insulating material, 21 heat insulating material, 22 third Vacuum skin, 23 Non-vacuum heat insulation member, 24 Heat insulation element.

Claims (11)

容器と、少なくとも一つが真空断熱部材であって、互いに協働して上記容器の実質的に全ての外表面を覆う複数の断熱部材とを備えた断熱容器において、
上記真空断熱部材が、
芯材およびこの芯材を真空内に封止する第1の真空外皮を有する真空断熱要素と、
上記真空断熱要素に組み合わされ、上記容器の外表面に沿った形状に成形されたEPS断熱材である断熱要素と、
上記真空断熱要素および上記断熱要素を共に覆う袋である第2の真空外皮とを備えており、
上記断熱要素を囲む空間は、上記真空断熱要素の真空度より低い第2の真空度にされ、
上記第2の真空度が50kPaより大きい値の圧力である、
断熱容器。
In a heat insulating container comprising a container and a plurality of heat insulating members that at least one is a vacuum heat insulating member and covers substantially all outer surfaces of the container in cooperation with each other,
The vacuum heat insulating member is
A vacuum insulation element having a core and a first vacuum envelope that seals the core in a vacuum;
A heat insulating element that is an EPS heat insulating material combined with the vacuum heat insulating element and formed into a shape along the outer surface of the container ;
The vacuum insulation element and a second vacuum envelope that is a bag that covers the insulation element together,
The space surrounding the heat insulating element is set to a second vacuum level lower than the vacuum level of the vacuum heat insulating element,
The second degree of vacuum is a pressure of a value greater than 50 kPa,
Insulated container.
上記第2の真空度を有する空間が炭酸ガス雰囲気である、
請求項1に記載の断熱容器。
The space having the second degree of vacuum is a carbon dioxide atmosphere.
The heat insulating container according to claim 1 .
上記断熱容器が上記容器を格納する外装を備え、上記容器と上記外装との間の距離が短い部分に上記真空断熱部材が配置されていることを特徴とする請求項1又は2に記載の断熱容器。 The heat insulation according to claim 1 or 2 , wherein the heat insulation container includes an exterior for storing the container, and the vacuum heat insulation member is disposed in a portion where the distance between the container and the exterior is short. container. 上記真空断熱部材の上記真空断熱要素が、上記断熱要素内に少なくとも部分的に埋め込まれていることを特徴とする請求項1〜3のいずれか一項に記載の断熱容器。 The heat insulation container according to any one of claims 1 to 3 , wherein the vacuum heat insulation element of the vacuum heat insulation member is at least partially embedded in the heat insulation element . 上記真空断熱要素と上記断熱要素とが上記容器の容器壁の厚さ方向に連ねて配置されていることを特徴とする請求項1〜4のいずれか一項に記載の断熱容器。 The heat insulation container according to any one of claims 1 to 4 , wherein the vacuum heat insulation element and the heat insulation element are arranged continuously in a thickness direction of a container wall of the container. 上記真空断熱要素と上記断熱要素とが上記容器の容器壁に沿った方向に連ねて配置されていることを特徴とする請求項1〜5のいずれか一項に記載の断熱容器。 The heat insulation container according to any one of claims 1 to 5 , wherein the vacuum heat insulation element and the heat insulation element are arranged continuously in a direction along a container wall of the container. 上記断熱要素が、炭酸ガスによって発泡された発泡断熱材を芯材とした真空断熱要素であることを特徴とする請求項1〜6のいずれか一項に記載の断熱容器。 The heat insulation container according to any one of claims 1 to 6 , wherein the heat insulation element is a vacuum heat insulation element using a foam heat insulation material foamed with carbon dioxide as a core material . 上記容器が貯湯タンクであることを特徴とする請求項1〜7のいずれか一項に記載の断熱容器。 The said container is a hot water storage tank, The heat insulation container as described in any one of Claims 1-7 characterized by the above-mentioned . 上記容器が冷水タンクであることを特徴とする請求項1〜7のいずれか一項に記載の断熱容器。 The said container is a cold water tank, The heat insulation container as described in any one of Claims 1-7 characterized by the above-mentioned . 上記容器が調理容器であることを特徴とする請求項1〜7のいずれか一項に記載の断熱容器。 The said container is a cooking container, The heat insulation container as described in any one of Claims 1-7 characterized by the above-mentioned . 上記容器が冷蔵室あるいは冷凍室であることを特徴とする請求項1〜7のいずれか一項に記載の断熱容器。 The said container is a refrigerator compartment or a freezer compartment, The heat insulation container as described in any one of Claims 1-7 characterized by the above-mentioned .
JP2009258130A 2009-11-11 2009-11-11 Insulated container Active JP5624305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258130A JP5624305B2 (en) 2009-11-11 2009-11-11 Insulated container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258130A JP5624305B2 (en) 2009-11-11 2009-11-11 Insulated container

Publications (2)

Publication Number Publication Date
JP2011102622A JP2011102622A (en) 2011-05-26
JP5624305B2 true JP5624305B2 (en) 2014-11-12

Family

ID=44193025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258130A Active JP5624305B2 (en) 2009-11-11 2009-11-11 Insulated container

Country Status (1)

Country Link
JP (1) JP5624305B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609782B2 (en) * 2011-06-17 2014-10-22 三菱電機株式会社 Hot water storage water heater
KR101447767B1 (en) 2011-12-02 2014-10-07 (주)엘지하우시스 Vacuum insulation panel for high operating temperature
JP5835042B2 (en) * 2012-03-19 2015-12-24 三菱電機株式会社 Hot water storage water heater
WO2013145401A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Composite heat-insulating material, heat retention tank, and heat-pump-type hot water supply device
JP6016435B2 (en) * 2012-04-25 2016-10-26 三菱電機株式会社 Vacuum insulation material and insulated device
JP2014025494A (en) * 2012-07-24 2014-02-06 Mitsubishi Electric Corp Heat insulation material, method for manufacturing heat insulation material, and heat insulation box using heat insulation material
JP5799923B2 (en) * 2012-09-24 2015-10-28 ダイキン工業株式会社 Tank insulation structure and hot water storage tank system
ES2476515B1 (en) * 2013-01-11 2015-03-13 De Cordoba Sanz Fernando Fernandez Cooling system and procedure for photovoltaic solar panels
JP5837243B1 (en) * 2015-03-11 2015-12-24 日立アプライアンス株式会社 Hot water storage tank unit
JP6332123B2 (en) * 2015-04-16 2018-05-30 三菱電機株式会社 Hot water storage water heater
KR101832324B1 (en) * 2016-01-04 2018-02-26 엘지전자 주식회사 refrigerator
AT518089B1 (en) * 2016-07-12 2017-07-15 Greiner Purtec Gmbh Enclosing unit, in particular for thermally insulating body
CN108903549A (en) * 2018-08-17 2018-11-30 谢柯柯 Lead to stainless steel gallbladder in double-layered vacuum heat-insulation
JP7404083B2 (en) 2020-01-28 2023-12-25 株式会社カネカ insulated container
JP7394326B2 (en) 2021-03-26 2023-12-08 パナソニックIpマネジメント株式会社 vacuum insulated container

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159296U (en) * 1984-04-02 1985-10-23 シャープ株式会社 vacuum insulation
JPH0882474A (en) * 1994-09-12 1996-03-26 Toshiba Corp Vacuum heat insulating material
JPH09145240A (en) * 1995-11-20 1997-06-06 Fujitsu General Ltd Vacuum insulation material
JP3614069B2 (en) * 2000-01-12 2005-01-26 松下電工株式会社 Ceiling inspection device
JP4186835B2 (en) * 2004-02-16 2008-11-26 松下電器産業株式会社 Hot water storage tank
JP2007139072A (en) * 2005-11-18 2007-06-07 Corona Corp Heat insulating material for storage tank
JP4857999B2 (en) * 2006-08-04 2012-01-18 株式会社デンソー Insulation structure of hot water storage system
JP4630257B2 (en) * 2006-10-26 2011-02-09 多田プラスチック工業株式会社 Hot water storage tank insulation structure and manufacturing method of divided insulation members
JP5002364B2 (en) * 2007-08-03 2012-08-15 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator equipped with the same
JP4240148B1 (en) * 2008-02-12 2009-03-18 パナソニック株式会社 Hot water storage tank unit
JP4254902B1 (en) * 2008-03-25 2009-04-15 パナソニック株式会社 Hot water storage tank unit and heat pump water heater using the same
JP2009243704A (en) * 2008-03-28 2009-10-22 Chofu Seisakusho Co Ltd Heat insulating member and its method for manufacturing
JP4966903B2 (en) * 2008-03-31 2012-07-04 日立アプライアンス株式会社 refrigerator

Also Published As

Publication number Publication date
JP2011102622A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5624305B2 (en) Insulated container
JP2007113748A (en) Method of manufacturing heat insulating wall, heat insulating unit, and heat insulating material
KR20030007544A (en) Heat insulation box, and vacuum heat insulation material used therefor
JP2009228917A (en) Refrigerator
JP2007056972A (en) Vacuum heat insulating material and refrigerator using the same
JP2005147591A (en) Refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2005299972A (en) Refrigerator
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2015169372A (en) Heat insulation container, and method of manufacturing heat insulation container
JP3856008B2 (en) Manufacturing method of vacuum insulation
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP6469232B2 (en) refrigerator
JP3835481B2 (en) refrigerator
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
WO2015186345A1 (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JP6023602B2 (en) Vacuum insulation, insulation box and refrigerator
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP5377451B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
US11174978B2 (en) Assembly and articulated panel with intermediate positioning portions, for thermal insulation
JP2006029448A (en) Vacuum heat insulating panel, and refrigerator using the same
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP5372878B2 (en) Vacuum heat insulating material and refrigerator equipped with the same
JP2015001290A (en) Vacuum heat insulation material and refrigerator
JP2016176527A (en) Vacuum heat insulation material and heat insulation box body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250