JP2011099566A - Vacuum heat insulating panel and refrigerator - Google Patents

Vacuum heat insulating panel and refrigerator Download PDF

Info

Publication number
JP2011099566A
JP2011099566A JP2011039465A JP2011039465A JP2011099566A JP 2011099566 A JP2011099566 A JP 2011099566A JP 2011039465 A JP2011039465 A JP 2011039465A JP 2011039465 A JP2011039465 A JP 2011039465A JP 2011099566 A JP2011099566 A JP 2011099566A
Authority
JP
Japan
Prior art keywords
heat insulation
vacuum heat
core material
insulation panel
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011039465A
Other languages
Japanese (ja)
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Takashi Izeki
崇 井関
Toshimitsu Tsuruga
俊光 鶴賀
Daigoro Kamoto
大五郎 嘉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011039465A priority Critical patent/JP2011099566A/en
Publication of JP2011099566A publication Critical patent/JP2011099566A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent heat leakage from a bent part of a vacuum heat insulating panel while suppressing an influence of a heat bridge caused by an increase in an area of the vacuum heat insulating panel, in the vacuum heat insulating panel. <P>SOLUTION: The vacuum heat insulating panels 50a, 50b include a core material formed of a fiber aggregate, and an outer cover material covering the core material, and depressurizing and sealing the inside. The core material has a repulsive property with respect to a compression direction. The vacuum heat insulating panels 50a, 50b have three-dimensional shapes in which buckling and fracture in the inside part of the bent part or a recessed/protruded part are inhibited and a decrease in plate thickness is limited by using the repulsive property with respect to the compression direction of the core material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空断熱パネル及び冷蔵庫に関する。   The present invention relates to a vacuum heat insulation panel and a refrigerator.

近年、地球温暖化防止等の地球環境保護の観点から、冷蔵庫においても省エネルギー化が求められている。また、最近の社会背景として、食材を纏め買いする家庭が増えていること等から、冷蔵庫の大容量化ニーズが高まっている。   In recent years, from the viewpoint of global environmental protection such as prevention of global warming, energy saving is also demanded for refrigerators. In addition, as a recent social background, an increasing number of households buy foods together, and so on, and the need for a large capacity refrigerator is increasing.

従来から冷蔵庫は、圧縮機、凝縮器及び放熱パイプ等の冷媒を循環する冷凍サイクル部品や、制御基板及び電源基板等の電気部品を有している。これらは冷蔵庫を運転することによって自己発熱して温度上昇するものである。これらの部品の温度上昇による庫内への熱侵入を抑制するため、省エネ性を考慮し、これらの部品に対応する断熱壁を厚くすることが一般的に行われていたが、大容量化の観点からはマイナス要因となっていた。   Conventionally, refrigerators have refrigeration cycle parts that circulate refrigerants such as a compressor, a condenser, and a heat radiating pipe, and electrical parts such as a control board and a power supply board. These are self-heating when the refrigerator is operated and the temperature rises. In order to suppress the heat intrusion into the cabinet due to the temperature rise of these parts, in consideration of energy saving, it was generally done to thicken the heat insulation wall corresponding to these parts, but the capacity increase It was a negative factor from the viewpoint.

また、従来から冷蔵庫は、板状の真空断熱パネルの適用によって断熱性能を改善し、それによって断熱壁の厚さを減らすことが行われている。しかし、真空断熱パネルを配置したい場所は立体形状となっていることが多く、小さいサイズの真空断熱パネル多数用いて対応することとなり、各真空断熱パネルの外被材のヒートブリッジの影響が大きくなり、真空断熱パネルによる断熱性能の向上が抑制されていた。   Conventionally, refrigerators have been improved in heat insulation performance by applying a plate-like vacuum heat insulation panel, thereby reducing the thickness of the heat insulation wall. However, the place where you want to place the vacuum insulation panel is often a three-dimensional shape, and many vacuum insulation panels of small size will be used, and the influence of the heat bridge of the jacket material of each vacuum insulation panel will increase. The improvement of the heat insulation performance by the vacuum heat insulation panel was suppressed.

これを改善した例として、例えば、特開2001−336691号公報(特許文献1)、特開2004−11708号公報(特許文献2)、特開2006−125686号公報(特許文献3)に開示された冷蔵庫が案出されている。   Examples of improving this are disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-336691 (Patent Document 1), Japanese Patent Application Laid-Open No. 2004-11708 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2006-125686 (Patent Document 3). A refrigerator has been devised.

前記特許文献1の冷蔵庫では、平板状の真空断熱パネルに溝加工することで可撓性を与えて折り曲げ加工を可能とし、冷蔵庫の機械室上部の外箱壁面に合わせて折り曲げ加工し、当該部分に沿わせて真空断熱パネルを設置することにより、1枚の真空断熱パネルの面積を大きくしている。   In the refrigerator of Patent Document 1, the flat vacuum heat insulation panel is grooved to give flexibility and bendable, and bend to fit the outer box wall surface of the upper machine room of the refrigerator. The area of one vacuum heat insulation panel is enlarged by installing a vacuum heat insulation panel along with.

また、前記特許文献2の冷蔵庫では、バインダーの濃度が表面層より内側層が小さい成形体を芯材とし、通常の金型プレス等の成形方法によって外被材にダメージを与えることなく冷媒配管に沿った溝加工ができるようにしたことにより、真空断熱パネルを配置が限定されていた冷媒配管部分への配置を可能にし、1枚の真空断熱パネルで広く覆うことができるようにしている。   In the refrigerator of Patent Document 2, a molded body having a binder concentration lower than the surface layer is used as a core material, and the refrigerant pipe is not damaged by a molding method such as a normal die press. By making the groove processing along, it is possible to arrange the vacuum heat insulation panel in the refrigerant piping portion where the arrangement is limited, and to cover the vacuum heat insulation panel widely with one vacuum heat insulation panel.

また、前記特許文献3の冷蔵庫では、圧縮機及び機械室ファンを収納する機械室を形成した第二の天面部及び第二の背面部を有し、第二の天面部及び第二の背面部の接合部で折り曲げられるように真空断熱パネルの断面に溝部を設けて、この真空断熱パネルを溝部から90°に折り曲げて第二の天面部及び第二の背面部に渡って配設している。これにより、1枚の真空断熱パネルで広く覆うことができ、圧縮機や機械室ファンで発生した音や振動を遮音、減衰させて静音化すると共に、圧縮機等から発生した熱の庫内への侵入を抑制できるようにしている。   Moreover, in the refrigerator of the said patent document 3, it has a 2nd top | upper surface part and a 2nd back surface part which formed the machine room which accommodates a compressor and a machine room fan, a 2nd top | upper surface part and a 2nd back surface part A groove is provided in the cross-section of the vacuum heat insulation panel so that it can be bent at the joint portion, and this vacuum heat insulation panel is bent at 90 ° from the groove and disposed across the second top surface portion and the second back surface portion. . As a result, it can be widely covered with a single vacuum insulation panel, and the sound and vibration generated by the compressor and machine room fan are sound-insulated and attenuated to reduce noise, and the heat generated from the compressor and the like is stored in the cabinet. The intrusion can be suppressed.

特開2001−336691号公報JP 2001-336691 A 特開2004−11708号公報JP 2004-11708 A 特開2006−125686号公報JP 2006-125686 A

しかしながら、前記特許文献1〜3の何れの冷蔵庫でも、真空断熱パネルに溝部を設けているため、その溝部における芯材の厚さが薄くなり、この溝部からの熱リークが大きくなるという課題を有していた。また、特許文献1、3の冷蔵庫では、外被材を介して芯材に溝加工することで、外被材の中で芯材が切断されてしまい、板厚の減少に加え、溝加工部分の空隙確保ができずに断熱性能が悪化するおそれがあった。   However, in any of the refrigerators of Patent Documents 1 to 3, since the groove portion is provided in the vacuum heat insulating panel, there is a problem that the thickness of the core material in the groove portion is reduced and heat leakage from the groove portion is increased. Was. Further, in the refrigerators of Patent Documents 1 and 3, the core material is cut in the outer cover material by cutting the groove into the core material through the outer cover material. There was a possibility that the heat insulation performance could be deteriorated without securing the voids.

本発明の目的は、真空断熱パネルの面積増大によってヒートブリッジの影響を抑制しつつ、真空断熱パネルの折り曲げ部からの熱リークを防止することができる真空断熱パネル及び冷蔵庫を提供することにある。   The objective of this invention is providing the vacuum heat insulation panel and refrigerator which can prevent the heat leak from the bending part of a vacuum heat insulation panel, suppressing the influence of a heat bridge by the area increase of a vacuum heat insulation panel.

前述の目的を達成するための本発明の第1の態様は、繊維集合体からなる芯材と、該芯材を覆い内部を減圧して封止した外被材と、を備え、前記芯材は圧縮方向に対する反発性を有し、該芯材の圧縮方向に対する反発性を利用して曲げ部又は凹凸部の内側部分の座屈及び割れを抑制した板厚の減少が抑制された立体形状としたことを特徴とする真空断熱パネルにある。   In order to achieve the above object, a first aspect of the present invention comprises: a core material comprising a fiber assembly; and an outer cover material that covers the core material and seals the inside by reducing the pressure. Has a resilience with respect to the compression direction, utilizing the resilience with respect to the compression direction of the core material, and a three-dimensional shape in which the reduction of the plate thickness is suppressed by suppressing the buckling and cracking of the inner part of the bent part or the uneven part; The vacuum insulation panel is characterized by the above.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。   A more preferable specific configuration example in the first aspect of the present invention is as follows.

(1)前記真空断熱パネルをパネル面に溝を形成することなく折り曲げたこと。   (1) The vacuum heat insulation panel is bent without forming a groove on the panel surface.

(2)前記芯材を覆って圧縮密封した合成樹脂フィルムからなる内包材を有し、前記外被材は前記芯材及び前記内包材を覆い内部を減圧して封止したこと。   (2) It has an inner packaging material made of a synthetic resin film that covers and compresses and seals the core material, and the outer jacket material covers the core material and the inner packaging material and seals the interior by reducing the inside.

また、本発明の第2の態様は、外箱と内箱とによって形成される空間内に真空断熱パネルを配置すると共に前記空間内に発泡断熱材を充填して断熱箱体を構成した冷蔵庫において、前記真空断熱パネルは、繊維集合体からなる芯材と、該芯材を覆い内部を減圧して封止した外被材と、を備え、前記芯材は圧縮方向に対する反発性を有し、該芯材の圧縮方向に対する反発性を利用して曲げ部又は凹凸部の内側部分の座屈及び割れを抑制した板厚の減少が抑制された立体形状とし、前記外箱又は前記内箱の立体形状の箇所に沿って前記真空断熱パネルを設置したことを特徴とする冷蔵庫にある。   Moreover, the 2nd aspect of this invention is the refrigerator which comprised the heat insulation box body by arrange | positioning a vacuum heat insulation panel in the space formed with an outer box and an inner box, and filling the said space with the foam heat insulating material. The vacuum heat insulation panel comprises a core material made of a fiber assembly, and a covering material that covers the core material and seals the inside by reducing the pressure, and the core material has resilience in the compression direction, Using the resilience to the compression direction of the core material, a three-dimensional shape in which the reduction of the plate thickness is suppressed by suppressing buckling and cracking of the inner part of the bent portion or the uneven portion, and the three-dimensional shape of the outer box or the inner box It is in the refrigerator characterized by installing the said vacuum heat insulation panel along the location of a shape.

係る本発明の真空断熱パネル及び冷蔵庫によれば、真空断熱パネルの面積増大によってヒートブリッジの影響を抑制しつつ、真空断熱パネルの折り曲げ部からの熱リークを防止することができる。   According to the vacuum heat insulation panel and refrigerator of this invention which concerns, the heat leak from the bending part of a vacuum heat insulation panel can be prevented, suppressing the influence of a heat bridge by the area increase of a vacuum heat insulation panel.

本発明の第1実施形態の冷蔵庫の正面図である。It is a front view of the refrigerator of 1st Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図2におけるB部拡大図である。It is the B section enlarged view in FIG. 図2におけるC部拡大図である。It is the C section enlarged view in FIG. 図1における真空断熱パネルの基本形状を示す断面図である。It is sectional drawing which shows the basic shape of the vacuum heat insulation panel in FIG. 本発明の第2実施形態の冷蔵庫の横断面図である。It is a cross-sectional view of the refrigerator of the second embodiment of the present invention. 本発明の第3実施形態の冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator of 3rd Embodiment of this invention. 図7のX−X断面図である。It is XX sectional drawing of FIG. 本発明の第4実施形態の冷蔵庫の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the refrigerator of 4th Embodiment of this invention. 本発明の第5実施形態の冷蔵庫の真空断熱パネルの組み込み状態を説明する斜視図である。It is a perspective view explaining the integration state of the vacuum heat insulation panel of the refrigerator of 5th Embodiment of this invention. 比較例1の冷蔵庫の縦断面図である。6 is a longitudinal sectional view of a refrigerator according to Comparative Example 1. FIG. 比較例2の冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator of the comparative example 2.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

(第1実施形態)
本発明の第1実施形態の冷蔵庫を図1から図5を用いて説明する。
(First embodiment)
The refrigerator of 1st Embodiment of this invention is demonstrated using FIGS. 1-5.

まず、本実施形態の冷蔵庫1の全体構成に関して図1及び図2を参照しながら説明する。図1は本実施形態を備えた冷蔵庫の正面図、図2は図1のA−A断面図である。   First, the whole structure of the refrigerator 1 of this embodiment is demonstrated, referring FIG.1 and FIG.2. FIG. 1 is a front view of a refrigerator provided with the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

冷蔵庫1は、断熱箱体20と断熱扉6〜9とを主要構成要素として備えている。この断熱箱体20は、天面、底面、両側面及び背面からなり、前面を開口した箱型形状をしている。そして、断熱箱体20は、図2に示すように、冷蔵室2、貯氷室3及び切替え室、冷凍室4、野菜室5を上からこの順に有している。   The refrigerator 1 is provided with the heat insulation box 20 and the heat insulation doors 6-9 as main components. The heat insulation box 20 is composed of a top surface, a bottom surface, both side surfaces, and a back surface, and has a box shape with an open front surface. And as shown in FIG. 2, the heat insulation box 20 has the refrigerator compartment 2, the ice storage compartment 3, the switching room, the freezer compartment 4, and the vegetable compartment 5 in this order from the top.

断熱扉6〜9は、各室2〜5の前面開口部を閉塞する扉である。各室2〜5に対応して冷蔵室扉6a、6b、貯氷室扉7a及び上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9が配置されている。冷蔵室扉6a、6bはヒンジ10を中心に回動する観音開き式扉であり、冷蔵室扉6a、6b以外の扉は全て引き出し式の扉である。これらの引き出し式扉7〜9を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6〜9には断熱箱体20とを密閉するためのパッキン11を備えている。このパッキン11は各扉6〜9の室内側外周縁に取り付けられている。   The heat insulating doors 6 to 9 are doors that close the front opening portions of the respective chambers 2 to 5. Refrigerating room doors 6a and 6b, ice storage room door 7a, upper freezing room door 7b, lower freezing room door 8 and vegetable room door 9 are arranged corresponding to each of chambers 2-5. The refrigerator compartment doors 6a and 6b are double doors that rotate around the hinge 10, and all the doors other than the refrigerator compartment doors 6a and 6b are drawer type doors. When these drawer type doors 7 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door 6 to 9 is provided with a packing 11 for sealing the heat insulating box 20. This packing 11 is attached to the indoor side outer periphery of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間は、区画断熱するための断熱仕切り12が配置されている。この断熱仕切り12は、厚さ30〜50mm程度の断熱壁であり、スチロフォーム、発泡断熱材(例えばウレタンフォーム)、真空断熱パネル等のそれぞれを単独使用又は複数の断熱材を組み合わせて作られている。また、製氷室3a及び上段冷凍室3bと下段冷凍室4との間は、温度帯が同じであるため区画断熱する断熱仕切りではなく、パッキン受面を形成する仕切り部材13が設けられている。下段冷凍室4と野菜室5との間には、区画断熱するための断熱仕切り14が設けられている。この断熱仕切り14は、断熱仕切り12と同様に、30〜50mm程度の断熱壁であり、スチロフォーム、発泡断熱材(例えばウレタンフォーム)、真空断熱パネル等のそれぞれを単独使用又は複数の断熱材を組み合わせて作られている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには断熱仕切りが設置されている。本実施形態では、断熱仕切り12、14は、発泡ポリスチレン33と真空断熱パネル50とで構成されている。   Moreover, between the refrigerator compartment 2, the ice making chamber 3a, and the upper stage freezer compartment 3b, the heat insulation partition 12 for partition heat insulation is arrange | positioned. The heat insulating partition 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material such as a styrofoam, a foam heat insulating material (for example, urethane foam), a vacuum heat insulating panel, or a combination of a plurality of heat insulating materials. Yes. In addition, since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 that forms a packing receiving surface is provided instead of a heat insulating partition that performs heat insulation. Between the lower freezer compartment 4 and the vegetable compartment 5, the heat insulation partition 14 for partition heat insulation is provided. This heat insulating partition 14 is a heat insulating wall of about 30 to 50 mm, similar to the heat insulating partition 12, and each of such a styrofoam, a foam heat insulating material (for example, urethane foam), a vacuum heat insulating panel, etc. is used alone or a plurality of heat insulating materials are used. Made in combination. Insulation partitions are basically installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing. In the present embodiment, the heat insulating partitions 12 and 14 are composed of a foamed polystyrene 33 and a vacuum heat insulating panel 50.

なお、断熱箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等、特に限定するものではない。   In the heat insulation box 20, the storage compartments of the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 are partitioned from above. Is not particularly limited to this. The refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. is not.

断熱箱体20は、金属製の外箱21と合成樹脂製の内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて各貯蔵室と外部とを断熱している。この外箱21または内箱22の内側に沿って真空断熱パネル50を配置し、真空断熱パネル50以外の空間に硬質ウレタンフォーム等の発泡断熱材23を充填して断熱部が構成されている。真空断熱パネルを一般的に表す際には符号50を用い、特定の場所の真空断熱パネルを表す際には符号50の後にアルファベットの添え字をすることとする。   The heat insulating box 20 includes a metal outer box 21 and a synthetic resin inner box 22, and a heat insulating portion is provided in a space formed by the outer box 21 and the inner box 22 to connect each storage chamber and the outside. Insulated. A vacuum heat insulation panel 50 is arranged along the inner side of the outer box 21 or the inner box 22, and a space other than the vacuum heat insulation panel 50 is filled with a foam heat insulating material 23 such as hard urethane foam to constitute a heat insulating portion. Reference numeral 50 is generally used to represent a vacuum heat insulation panel, and alphabetical suffixes are used after the reference numeral 50 to represent a vacuum heat insulation panel at a specific location.

外箱21は、折り曲げられた鋼板または平坦な鋼板を溶接することにより、天面、底面、両側面及び背面からなる箱状に形成されている。内箱22は、合成樹脂板を成形することにより、天面、底面、両側面及び背面からなる箱状に形成されている。   The outer box 21 is formed in a box shape including a top surface, a bottom surface, both side surfaces, and a back surface by welding a folded steel plate or a flat steel plate. The inner box 22 is formed in a box shape including a top surface, a bottom surface, both side surfaces, and a back surface by molding a synthetic resin plate.

冷蔵室2、冷凍室3a、4、野菜室5等の各室を所定の温度に冷却するために冷凍室3a、4の背側には冷却器28が備えられている。この冷却器28と圧縮機30と凝縮器31とキャピラリーチューブ(図示せず)とを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   A cooler 28 is provided on the back side of the freezer compartments 3a and 4 in order to cool each room such as the refrigerator compartment 2, the freezer compartments 3a and 4 and the vegetable compartment 5 to a predetermined temperature. The cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) are connected to constitute a refrigeration cycle. Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

内箱22の天面の一部に、発泡断熱材23側に突き出したケース45aを有する庫内灯45を設置し、冷蔵庫の扉を開けたときの庫内を明るく、見え易くしている。庫内灯45は、白熱電球、蛍光灯、キセノンランプ等が用いられる。庫内灯45の設置により、ケース45aと外箱21との間の発泡断熱材23の厚さが薄くなってしまうため、この部分に真空断熱パネル50aを配置して断熱性能を確保している。   An interior lamp 45 having a case 45a protruding toward the foam heat insulating material 23 is installed on a part of the top surface of the inner box 22, so that the interior when the refrigerator door is opened is bright and easy to see. As the interior lamp 45, an incandescent bulb, a fluorescent lamp, a xenon lamp, or the like is used. Since the thickness of the foam heat insulating material 23 between the case 45a and the outer box 21 is reduced due to the installation of the interior lamp 45, the vacuum heat insulating panel 50a is disposed in this portion to ensure the heat insulating performance. .

断熱箱体20の天面の後部には、冷蔵庫1の運転を制御するための制御基板や電源基板等の電気部品41を収納するための凹段部40が形成されている。これによって、外箱21の天面は凹段部40による立体形状を呈することとなる。電気部品41は発熱量が大きな自己発熱部品である。凹段部40には、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。凹段部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態であるため、発泡断熱材23を厚くしてこの部分の断熱性能を確保しようとすると、内容積が犠牲になってしまう。逆に、内容積を確保しようとすると、凹段部40と内箱22との間の発泡断熱材23の厚さが薄くなり、断熱性能が悪くなってしまう。   A recessed step portion 40 for accommodating an electrical component 41 such as a control board or a power supply board for controlling the operation of the refrigerator 1 is formed at the rear part of the top surface of the heat insulating box 20. As a result, the top surface of the outer box 21 exhibits a three-dimensional shape due to the recessed step portion 40. The electrical component 41 is a self-heating component that generates a large amount of heat. The concave step portion 40 is provided with a cover 42 that covers the electrical component 41. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. When the height of the cover 42 protrudes from the top surface of the outer box, it is desirable to keep it within a range of 10 mm. Since the recessed step portion 40 is in a state where only the space for housing the electrical component 41 is recessed on the side of the foam heat insulating material 23, if the foam heat insulating material 23 is made thick to ensure the heat insulating performance of this portion, the internal volume is sacrificed. turn into. On the contrary, if it is going to secure internal volume, the thickness of the foam heat insulating material 23 between the recessed step part 40 and the inner case 22 will become thin, and heat insulation performance will worsen.

これらのことから、本実施形態では、凹段部40の発泡断熱材23側の面に真空断熱パネル50aを配置して断熱性能を強化している。具体的には、真空断熱パネル50aを庫内灯45のケース45aと電気部品41とに跨るように1枚の立体形状の真空断熱パネル50aを設置している。   From these things, in this embodiment, the vacuum heat insulation panel 50a is arrange | positioned in the surface at the side of the foam heat insulating material 23 of the recessed step part 40, and the heat insulation performance is strengthened. Specifically, a single three-dimensional vacuum heat insulation panel 50a is installed so that the vacuum heat insulation panel 50a straddles the case 45a of the interior light 45 and the electrical component 41.

断熱箱体20の底面の後部に機械室15が左右全幅にわたって形成されている。この機械室15には圧縮機30及び凝縮器31が配置されている。圧縮機30、凝縮器31は発熱量の大きい自己発熱部品である。そこで、この機械室15から庫内への熱侵入を防止するため、内箱22側への投影面に1枚の立体形状の真空断熱パネル50bを配置している。   A machine room 15 is formed in the rear part of the bottom surface of the heat insulation box 20 over the entire width. A compressor 30 and a condenser 31 are disposed in the machine room 15. The compressor 30 and the condenser 31 are self-heating components that generate a large amount of heat. Therefore, in order to prevent heat from entering from the machine room 15 into the cabinet, a single three-dimensional vacuum heat insulation panel 50b is arranged on the projection surface toward the inner box 22 side.

次に、図3及び図4を参照しながら、真空断熱パネル50a、50bの設置に関して具体に説明する。図3は図2におけるB部拡大図、図4は図2におけるC部拡大図である。   Next, the installation of the vacuum heat insulating panels 50a and 50b will be specifically described with reference to FIGS. 3 is an enlarged view of portion B in FIG. 2, and FIG. 4 is an enlarged view of portion C in FIG.

図3に示すように、本実施形態では、凹段部40の前方に位置する外箱21の天面の内側に接する蛇行状の放熱パイプ60が設置されている。この放熱パイプ60はアルミテープ60aでカバーされて外箱21に固定されている。これによって、放熱パイプ60の熱はアルミテープ60aを介しても外箱21に伝熱される。   As shown in FIG. 3, in the present embodiment, a meandering heat radiating pipe 60 that is in contact with the inside of the top surface of the outer box 21 located in front of the recessed step portion 40 is installed. The heat radiating pipe 60 is covered with an aluminum tape 60 a and fixed to the outer box 21. Thereby, the heat of the heat radiating pipe 60 is also transferred to the outer box 21 through the aluminum tape 60a.

凹段部40は、外箱21の天面の後部から傾斜して後方に沈み込む傾斜面と、この傾斜面から後方に水平に延びる水平底面と、を備える。即ち、外箱21の天面は前側水平面と傾斜面と後側水平面とからなる立体形状となっている。   The recessed step portion 40 includes an inclined surface inclined from the rear portion of the top surface of the outer box 21 and sinking backward, and a horizontal bottom surface extending horizontally rearward from the inclined surface. That is, the top surface of the outer box 21 has a three-dimensional shape including a front horizontal plane, an inclined plane, and a rear horizontal plane.

一方、真空断熱パネル50aは、板厚がほぼ同一で2段曲げ成形された立体形状を有し、前側水平部と、この前側水平部から後方に沈み込む傾斜部と、この傾斜部から後方に水平に延びる後側水平部と、からなっている。真空断熱パネル50の立体形状は、外箱21の天面の立体形状とほぼ合致している。   On the other hand, the vacuum heat insulation panel 50a has a three-dimensional shape formed by bending two steps with substantially the same thickness, and includes a front horizontal part, an inclined part sinking backward from the front horizontal part, and a rear part from the inclined part. A rear horizontal portion extending horizontally. The three-dimensional shape of the vacuum heat insulating panel 50 substantially matches the three-dimensional shape of the top surface of the outer box 21.

この真空断熱パネル50aは、放熱パイプ60と凹段部40とに跨るように設置されている。具体的には、真空断熱パネル50aの一側の全面が柔軟性と断熱性とを有する接着部材62を介して外箱21の天面に貼り付けられている。これによって、放熱パイプ60の熱を直接真空断熱パネル50aに伝えないため、放熱パイプ60の熱による真空断熱パネル50aの断熱性能の経時劣化を抑制し、長期に亘って断熱性能を維持することができる。本実施形態では、この接着部材62として、両面粘着剤付のポリエチレンフォーム製のシート材を用いているので、放熱パイプ60による隙間を塞ぎながら、真空断熱パネル50aを簡単に設置することができる
上述したように、放熱パイプ60と電気部品41を配置した凹段部40とに跨って1枚の真空断熱パネル50aで断熱しているので、簡単な構成で、自己発熱部品を配置した部分における断熱性能を格段に向上することができる。また、高温部側に近い部分で真空断熱パネル50aにより断熱しているので、放熱パイプ60及び電気部品41から庫内への熱漏洩をより一層低減することができる。
The vacuum heat insulating panel 50 a is installed so as to straddle the heat radiating pipe 60 and the recessed step portion 40. Specifically, the entire surface of one side of the vacuum heat insulation panel 50a is attached to the top surface of the outer box 21 via an adhesive member 62 having flexibility and heat insulation. As a result, the heat of the heat radiating pipe 60 is not directly transferred to the vacuum heat insulating panel 50a, so that the heat insulating performance of the vacuum heat insulating panel 50a due to the heat of the heat radiating pipe 60 is suppressed over time, and the heat insulating performance can be maintained for a long time. it can. In the present embodiment, since the sheet material made of polyethylene foam with a double-sided pressure-sensitive adhesive is used as the adhesive member 62, the vacuum heat insulating panel 50a can be easily installed while closing the gap by the heat radiating pipe 60. As described above, since heat insulation is performed by the single vacuum heat insulation panel 50a across the heat radiating pipe 60 and the recessed step portion 40 in which the electric component 41 is disposed, the heat insulation in the portion where the self-heating component is disposed with a simple configuration. The performance can be greatly improved. Moreover, since it heat-insulates by the vacuum heat insulation panel 50a in the part close | similar to the high temperature part side, the heat leak from the heat radiating pipe 60 and the electrical component 41 to the store | warehouse | chamber can be reduced further.

図4に示すように、断熱箱体20の底面の後部には、圧縮機30及び凝縮器31が配置される機械室15が設けられている。この機械室15の形成により、断熱箱体20の底面は、前側水平部と、この前側水平部から後方に立ち上がる傾斜部と、この傾斜部から後方に水平に延びる後側水平部と、からなる立体形状をしている。従って、外箱21及び内箱22の底面は、前側水平部と、この前側水平部から後方に立ち上がる傾斜部と、この傾斜部から後方に水平に延びる後側水平部とからなる立体形状をしている。   As shown in FIG. 4, a machine room 15 in which a compressor 30 and a condenser 31 are arranged is provided at the rear of the bottom surface of the heat insulating box 20. Due to the formation of the machine room 15, the bottom surface of the heat insulation box 20 includes a front horizontal portion, an inclined portion that rises rearward from the front horizontal portion, and a rear horizontal portion that extends horizontally backward from the inclined portion. It has a three-dimensional shape. Therefore, the bottom surfaces of the outer box 21 and the inner box 22 have a three-dimensional shape including a front horizontal part, an inclined part that rises rearward from the front horizontal part, and a rear horizontal part that extends horizontally backward from the inclined part. ing.

一方、真空断熱パネル50bは、板厚がほぼ同一で2段曲げ成形された立体形状を有し、前側水平部と、この前側水平部から後方に立ち上がる傾斜部と、この傾斜部から後方に水平に延びる後側水平部と、からなっている。真空断熱パネル50の立体形状は、内箱22の底面の立体形状とほぼ合致している。   On the other hand, the vacuum heat insulating panel 50b has a three-dimensional shape that is formed by two-stage bending with substantially the same thickness, and includes a front horizontal portion, an inclined portion that rises rearward from the front horizontal portion, and a horizontal portion that extends backward from the inclined portion. And a rear horizontal portion extending in the direction. The three-dimensional shape of the vacuum heat insulating panel 50 substantially matches the three-dimensional shape of the bottom surface of the inner box 22.

この真空断熱パネル50bは、内箱22の前側水平部、傾斜部及び後側水平部に跨るように設置されているので、簡単な構成で、断熱性能を格段に向上することができ、圧縮機30及び凝縮器31から庫内への熱漏洩を確実に低減することができる。   Since this vacuum heat insulation panel 50b is installed so as to straddle the front horizontal portion, the inclined portion and the rear horizontal portion of the inner box 22, the heat insulation performance can be remarkably improved with a simple configuration, and the compressor Heat leakage from 30 and the condenser 31 to the interior can be reliably reduced.

機械室15の直上に位置する庫内背面部に冷却器28を備え、立体形状の真空断熱パネル50bが冷却器28と圧縮機30及び凝縮器31との間に介在するように配置されている。このように最も温度が低くなる冷却器28と最も温度が高くなる圧縮機30と間に配置する真空断熱パネル50bを立体形状にして、その一側端部が発熱部である圧縮機30及び凝縮器31から離れた位置にしているので、そのヒートブリッジによる影響を低減することができる。なお、圧縮機30と冷却器28の間に位置する真空断熱パネル50bは、ドレンパイプ(図示せず)を逃げるための切欠きを設けている。この切欠きの有無、或いはその形状については特に限定するものではない。   A cooler 28 is provided on the back of the interior located directly above the machine room 15, and a three-dimensional vacuum heat insulation panel 50 b is disposed between the cooler 28, the compressor 30 and the condenser 31. . In this way, the vacuum heat insulation panel 50b disposed between the cooler 28 having the lowest temperature and the compressor 30 having the highest temperature is formed into a three-dimensional shape, and the compressor 30 having one end portion as a heat generating portion and the condensation are formed. Since the position is away from the vessel 31, the influence of the heat bridge can be reduced. In addition, the vacuum heat insulation panel 50b located between the compressor 30 and the cooler 28 is provided with a notch for escaping a drain pipe (not shown). The presence or absence of this notch or its shape is not particularly limited.

機械室15の内箱側投影面の一部には庫内温度を感知するための庫内温度検知手段(庫内温度検知センサー)48が設けられている。この庫内温度検知手段48は、庫内への突き出しを無くすために、発泡断熱材23側に内箱22を突き出して形成された突き出し部48aの中に収納されている。このため、真空断熱パネル50bはこの突き出し部分48aの形状に合わせて凹凸形状を成形して被覆している。即ち、真空断熱パネル50bは、板厚方向表裏面にそれぞれ窪み部と膨らみ部を一対に形成し且つ窪み部と膨らみ部との間の板厚が他部とほぼ同じとした凹凸形状を有しており、その凹凸形状の窪み部内に突き出し部48aを収納している。   A part of the inner box side projection surface of the machine room 15 is provided with an internal temperature detection means (internal temperature detection sensor) 48 for detecting the internal temperature. This internal temperature detecting means 48 is housed in a protruding portion 48a formed by protruding the inner box 22 toward the foam heat insulating material 23 in order to eliminate the protrusion into the internal space. For this reason, the vacuum heat insulation panel 50b forms and coats the concavo-convex shape according to the shape of the protruding portion 48a. That is, the vacuum heat insulating panel 50b has a concave and convex shape in which a pair of dents and bulges are formed on the front and back surfaces in the plate thickness direction, and the plate thickness between the dents and the bulges is substantially the same as the other parts. The protruding portion 48a is housed in the concave and convex portion.

真空断熱パネル50は、詳細を後述するが、芯材にバインダーを使用していないので、柔軟性を有しており、溝等の加工をしなくても容易に折り曲げたり、窪み部及び膨らみ部を形成したりすることができる。芯材がバインダーにより一定の厚さに成形されている場合、芯材表面にバインダー濃度が高い硬化層が形成されるため、強制的に曲げると曲げの内側部分が割れてしまい、芯材厚みの減少や芯材が切断状態になる等、断熱性能の悪化を招いてしまう。本実施形態の芯材は、柔軟性と共に大気圧に対する反発力が大きいため、曲げの内側部分に座屈が発生せず、曲げ部及び凹凸形状における芯材厚みの減少は殆ど無い。このため断熱性能を悪化させることなく、折り曲げ形状及び凹凸形状が得られるものである。   The vacuum heat insulation panel 50 will be described in detail later, but since it does not use a binder as the core material, it has flexibility and can be easily folded without being processed into grooves, dents, and bulges. Can be formed. When the core material is molded with a binder to a certain thickness, a hardened layer with a high binder concentration is formed on the surface of the core material. The heat insulation performance deteriorates, such as a decrease or the core material being cut. Since the core material of this embodiment has a large repulsive force against the atmospheric pressure as well as flexibility, buckling does not occur in the inner part of the bend, and there is almost no decrease in the core material thickness in the bent part and the uneven shape. For this reason, a bent shape and an uneven shape can be obtained without deteriorating the heat insulating performance.

なお、図3に示す天面部分の真空断熱パネル50aは、曲げ用の治具を用いて曲げ加工を2回行って略Z形状を得るようにしたものである。図4に示す底面部分の真空断熱パネル50bは、絞りプレスにより凹凸形状を加工し、曲げ用治具によって略Z形状を得るようにしたものである。   Note that the vacuum heat insulating panel 50a on the top surface portion shown in FIG. 3 is obtained by performing bending twice using a bending jig to obtain a substantially Z shape. The vacuum heat insulating panel 50b in the bottom surface portion shown in FIG. 4 is obtained by processing a concavo-convex shape by a drawing press and obtaining a substantially Z shape by a bending jig.

次に、図5を参照しながら、真空断熱パネル50に関してさらに具体的に説明する。図5は図1における真空断熱パネル50の基本形状を示す断面図である。   Next, the vacuum heat insulation panel 50 will be described more specifically with reference to FIG. FIG. 5 is a cross-sectional view showing the basic shape of the vacuum heat insulation panel 50 in FIG.

真空断熱パネル50は、芯材51と、この芯材51を圧縮状態に保持するための内包材52と、この内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、吸着剤54とから構成されている。   The vacuum heat insulating panel 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. It is composed of a material 53 and an adsorbent 54.

芯材51は、バインダーで接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いた繊維集合体で構成され、柔軟性を有すると共に、圧縮方向に対し反発性を有している。芯材51として無機系繊維材料の積層体を使用することにより、芯材51からガスの発生を少なくできるため、断熱性能的に有利であるが、必要に応じて、セラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維等を用いてもよい。   The core 51 is composed of a fiber assembly using glass wool having an average fiber diameter of 4 μm as a laminate of inorganic fibers not bonded or bound with a binder, and has flexibility and resilience in the compression direction. is doing. Use of a laminate of inorganic fiber material as the core material 51 is advantageous in terms of heat insulation performance because it can reduce the generation of gas from the core material 51. However, if necessary, ceramic fiber, rock wool, glass wool Other inorganic fibers such as glass fibers may be used.

内包材52は、熱溶着可能な断熱性を有する合成樹脂フィルムであるポリエチレンフィルムが用いられ、芯材51を覆って圧縮密封している。この内包材52については、他にポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等を用いてもよく、吸湿性が低く熱溶着でき、ガスの発生が少ないものであれば良い。内包材52の耳部は外被材53の耳部内に配置されている。   The inner packaging material 52 is made of a polyethylene film, which is a synthetic resin film having heat insulation properties that can be heat-welded, and covers the core material 51 and compresses and seals it. As the inner packaging material 52, a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like may be used, as long as it has low hygroscopicity and can be heat-welded and generates less gas. The ear part of the inner packaging material 52 is disposed in the ear part of the outer covering material 53.

外被材53は、熱溶着層とガスバリヤ膜を成膜したフィルムを2層以上組み合わせてなるガスバリヤ層を有するラミネートフィルムが用いられ、真空断熱パネル50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。外被材53の内部は減圧されて封止されている。   As the covering material 53, a laminated film having a gas barrier layer formed by combining two or more films formed by forming a heat-welded layer and a gas barrier film is disposed on both surfaces of the vacuum heat insulating panel 50, and a laminated film having the same size. It is comprised by the bag shape which bonded together the part of fixed width from the ridgeline of this by heat welding. The inside of the jacket 53 is reduced in pressure and sealed.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態では、表面層、ガスバリヤ層、熱溶着層の3層構成からなるラミネートフィルムとしている。ここで、表面層は吸湿性の低い樹脂フィルムに金属蒸着層を設けて構成され、ガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設けて構成され、表面層とガスバリヤ層とは金属蒸着層同士が向かい合うように貼り合わされている。また、熱溶着層は、表面層と同様に、吸湿性の低いフィルムを用いている。具体的には、表面層をアルミニウム蒸着付きの二軸延伸ポリプロピレンフィルム又はアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルムとし、ガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルムとし、熱溶着層を未延伸ポリエチレンフィルム又は未延伸ポリプロピレンフィルムとしている。なお、ガスバリヤ層として金属箔や樹脂系フィルムに無機層状化合物や樹脂系ガスバリヤコート材等のガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, a laminate composed of a three-layer structure of a surface layer, a gas barrier layer, and a heat welded layer. It is a film. Here, the surface layer is configured by providing a metal vapor deposition layer on a resin film having low hygroscopicity, the gas barrier layer is configured by providing a metal vapor deposition layer on a resin film having high oxygen barrier property, and the surface layer and the gas barrier layer are made of metal. It is bonded so that the vapor deposition layers face each other. Moreover, the heat welding layer uses the film with low hygroscopicity similarly to the surface layer. Specifically, the surface layer is a biaxially stretched polypropylene film with aluminum vapor deposition or a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer is a biaxially stretched ethylene vinyl alcohol copolymer resin film or aluminum with aluminum vapor deposition. A biaxially stretched polyvinyl alcohol resin film with vapor deposition is used, and the heat-welded layer is an unstretched polyethylene film or an unstretched polypropylene film. In addition, a metal barrier or a resin film provided with a gas barrier film such as an inorganic layered compound or a resin gas barrier coating material as a gas barrier layer, or a polybutylene terephthalate film having a high oxygen barrier property, for example, is used as a heat welding layer. Also good.

上述のように、表面層と熱溶着層に吸湿性の低い樹脂を配置する目的は、酸素バリヤ性の高い上記のガスバリヤ層フィルムは吸湿によりガスバリヤ性が悪化するため、表面層と熱溶着層でサンドイッチしてラミネートフィルム全体の吸湿量を抑制するものである。これにより、真空断熱パネル50の真空排気工程においても、外被材53が持ち込む水分量が小さいため、真空排気効率が大幅に向上し、高性能化につながっている。   As described above, the purpose of placing the resin having low hygroscopicity on the surface layer and the heat welding layer is that the gas barrier layer film having high oxygen barrier property deteriorates due to moisture absorption. Sandwiching suppresses the moisture absorption amount of the entire laminate film. Thereby, also in the evacuation process of the vacuum heat insulation panel 50, since the amount of moisture brought in by the jacket material 53 is small, the evacuation efficiency is greatly improved, leading to high performance.

なお、外被材53のラミネート構成については、防湿性とガスバリヤ性及び熱溶着性を有していれば特に3層構成に限定するものではなく、表面保護層、第一のガスバリヤ層、第二のガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルム等、ガスバリヤ層を複数層設けた多層構成でも良い。例えば、表面保護層として、ポリアミド、ポリプロピレン、ポリエチレンテレフタレート等のフィルム、ガスバリヤ性や吸湿性等を考慮すると二軸延伸タイプのフィルムが好ましい。第一及び第二のガスバリヤ層としては金属、金属酸化物、無機系材料等からなるガスバリヤ膜を備えた、二軸延伸タイプのフィルムが好ましく、例えばポリエチレンテレフタレート、エチレンビニルアルコール共重合体、ポリビニルアルコール等のフィルムがある。熱溶着層としては熱溶着時の強度が求められるが、例えば低密度、中密度、高密度及び直鎖状低密度等のポリエチレン、ポリプロピレン、ポリブチレンテレフタレート等のフィルムと組み合わせることが好ましい。各層は二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせられる。   The laminate structure of the jacket material 53 is not particularly limited to a three-layer structure as long as it has moisture resistance, gas barrier properties, and heat-weldability, and includes a surface protective layer, a first gas barrier layer, and a second layer. A multi-layer structure in which a plurality of gas barrier layers are provided, such as a laminate film having a four-layer structure of a gas barrier layer and a heat welding layer, may be used. For example, as the surface protective layer, a film of polyamide, polypropylene, polyethylene terephthalate or the like, or a biaxially stretched film is preferable in consideration of gas barrier properties, hygroscopicity, and the like. As the first and second gas barrier layers, a biaxially stretched film provided with a gas barrier film made of metal, metal oxide, inorganic material, etc. is preferable. For example, polyethylene terephthalate, ethylene vinyl alcohol copolymer, polyvinyl alcohol There are films such as. The heat-welding layer is required to have strength at the time of heat-welding, but is preferably combined with, for example, a film such as polyethylene, polypropylene, polybutylene terephthalate such as low density, medium density, high density and linear low density. Each layer is bonded by a dry laminating method through a two-component curable urethane adhesive.

吸着剤54は、外被材53内の水分やガスを吸着するためのものであり、物理吸着タイプの合成ゼオライトを用いている。しかし、この材料に限定するものではなく、物理吸着タイプの他の材料、化学反応型吸着タイプの材料を用いてもよい。   The adsorbent 54 is for adsorbing moisture and gas in the jacket material 53, and uses a physical adsorption type synthetic zeolite. However, the material is not limited to this material, and other materials of the physical adsorption type, or a chemical reaction type adsorption type material may be used.

以上の構成からなる本実施形態の真空断熱パネル50は、芯材51の厚みを10mm、芯材51の密度を約250(kg/m)に設定したものを使用している。芯材51は上述の通りバインダー等による繊維の結着が無いため、曲げ加工が容易であり、曲げ部に溝等の加工が無い分、芯材51の厚みの減少が殆ど無いため、断熱性能が悪化する部分も無い。断熱箱体20の天面部に真空断熱パネル50aを配置することにより、電気部品41及び放熱パイプ60による庫内への熱侵入を低減でき、更には放熱パイプ50の放熱特性を向上できる。また、断熱箱体20の底面部に真空断熱パネル50bを配置することにより、圧縮機30及び凝縮器31から発生する熱の庫内への侵入を抑制できるため、壁厚を増やすことなく断熱性能を改善することができる。 The vacuum heat insulation panel 50 of the present embodiment configured as described above uses a core member 51 having a thickness of 10 mm and a core member 51 density of about 250 (kg / m 3 ). As described above, the core material 51 is easy to bend because there is no binding of fibers by a binder or the like, and since there is almost no decrease in the thickness of the core material 51 due to the absence of a groove or the like in the bent portion, the heat insulating performance. There is no part that gets worse. By disposing the vacuum heat insulation panel 50a on the top surface portion of the heat insulation box 20, it is possible to reduce the heat intrusion into the cabinet by the electric component 41 and the heat radiation pipe 60 and further improve the heat radiation characteristics of the heat radiation pipe 50. Moreover, since the penetration | invasion into the warehouse of the heat | fever which generate | occur | produces from the compressor 30 and the condenser 31 can be suppressed by arrange | positioning the vacuum heat insulation panel 50b in the bottom face part of the heat insulation box 20, the heat insulation performance is not increased. Can be improved.

本実施形態の真空断熱パネル50を備えた冷蔵庫は、断熱箱体20の天面及び底面に板状の真空断熱パネル50が複数分割されて配置された比較例1の冷蔵庫と比較して、消費電力量を約2%の低減できることが確認できた。なお、この比較例1は、図11に示す構造のものであり、小さな板状の真空断熱パネル50を複数配置したことを除いて、本実施形態と同一である。   The refrigerator provided with the vacuum heat insulation panel 50 of this embodiment is consumed in comparison with the refrigerator of Comparative Example 1 in which a plurality of plate-like vacuum heat insulation panels 50 are arranged on the top and bottom surfaces of the heat insulation box 20. It was confirmed that the amount of electric power can be reduced by about 2%. In addition, this comparative example 1 is a thing of the structure shown in FIG. 11, and is the same as this embodiment except having arranged several small plate-shaped vacuum heat insulation panels 50. FIG.

また、図12に示す冷蔵庫は、板状真空断熱パネル50に溝加工をして折り曲げたものを用いた比較例2の冷蔵庫を示すものである。天面及び底面に板状の真空断熱パネル50に溝加工をして折り曲げたものを用いた以外は第1実施形態と同じである。この比較例2においては、比較例1に対して消費電力量を約1%低減できたが、加速試験による経時劣化が大きい傾向を示すことがわかった。   Moreover, the refrigerator shown in FIG. 12 shows the refrigerator of Comparative Example 2 using a plate-like vacuum heat insulation panel 50 that has been grooved and bent. It is the same as that of the first embodiment, except that a plate-like vacuum heat insulation panel 50 is formed by grooving and bending the top surface and the bottom surface. In Comparative Example 2, the amount of power consumption was reduced by about 1% compared to Comparative Example 1, but it was found that the deterioration with time by the acceleration test tends to be large.

本実施形態によれば、折り曲げ等の立体形状部分に溝等の芯材厚みを減少させる加工をすること無く、形状の自由度を向上させた真空断熱パネル50としたことで、従来構成である特許文献1〜3のように芯材の板厚減少部からの熱リークや溝等の加工による芯材の分断が無く、断熱性能を悪化させないため、断熱箱体の自己発熱部品を配置した複数箇所に複数枚適用して箱体熱漏洩量を効果的に低減し、且つ、内容積の拡大を図った省エネ冷蔵庫を提供することができる。即ち、本実施形態によれば、自己発熱部品の内箱側投影面に、板厚減少が無く立体形状を実現できる真空断熱パネル50を配置することで、庫内への熱侵入を抑制すると共に、従来配置出来なかった箱体コーナー部付近までの配置を可能にしたため、ヒートブリッジ影響が低く、1枚あたりの面積の大きい真空断熱パネルを採用することができ、その結果として、断熱性能を格段に向上でき、断熱厚を増やすことなく内容積増大と省エネ性の高い冷蔵庫を提供できる。   According to the present embodiment, the vacuum heat insulation panel 50 with improved shape flexibility is obtained without processing the core material thickness such as a groove in a three-dimensionally shaped portion such as a bend, which is a conventional configuration. As disclosed in Patent Documents 1 to 3, there is no division of the core material due to processing such as heat leaks and grooves from the thickness reduction part of the core material, and the heat insulation performance is not deteriorated. It is possible to provide an energy saving refrigerator that is applied to a plurality of locations to effectively reduce the amount of heat leaking from the box and to increase the internal volume. That is, according to the present embodiment, by disposing the vacuum heat insulation panel 50 that can realize a three-dimensional shape without reducing the plate thickness on the inner box side projection surface of the self-heating component, the heat intrusion into the cabinet is suppressed. Because it was possible to place the box near the box corner, which could not be placed in the past, it is possible to adopt a vacuum insulation panel with a low area of heat bridge and a large area per sheet. Thus, it is possible to provide a refrigerator with high internal capacity and high energy saving without increasing the heat insulation thickness.

(第2実施形態)
次に、本発明の第2実施形態の冷蔵庫について図6を用いて説明する。図6は本発明の第2実施形態の冷蔵庫の横断面図である。なお、この図6は図1のZ−Z断面相当図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Second Embodiment)
Next, the refrigerator of 2nd Embodiment of this invention is demonstrated using FIG. FIG. 6 is a cross-sectional view of the refrigerator according to the second embodiment of the present invention. 6 is a cross-sectional view corresponding to the ZZ cross section of FIG. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態では、外箱20の背面に配置した真空断熱パネル50cを幅方向に広げると共に外箱背面21bの形状に沿って略コの字状に折り曲げて立体形状にし、この真空断熱パネル50cを、放熱パイプ60を覆うように、外箱21の背面の内側にアルミテープ60a等で貼り付けて配置したものである。真空断熱パネル50cは、放熱パイプ60と接触しない形状とし、ポリエチレンフォームシート材で構成された熱緩衝部材63を挟んで配置されている。   In this second embodiment, the vacuum heat insulation panel 50c disposed on the back surface of the outer box 20 is widened in the width direction and is bent into a substantially U shape along the shape of the outer case back surface 21b to form a three-dimensional shape. 50c is attached to the inner side of the back surface of the outer box 21 with an aluminum tape 60a or the like so as to cover the heat radiating pipe 60. The vacuum heat insulation panel 50c has a shape that does not come into contact with the heat radiating pipe 60, and is disposed with a heat buffer member 63 made of a polyethylene foam sheet material interposed therebetween.

換言すれば、この第2実施形態の冷蔵庫1は、外箱21の背面が背面平坦部とその左右両側から斜め前方に延びる縦長の細い幅の背面傾斜部とから構成され、背面平坦部と背面傾斜部との角部に接して上下に延びる放熱パイプ60を備えたものである。そして、真空断熱パネル50cを背面平坦部と放熱パイプ及び前記背面傾斜部とに跨るように曲げ形成して幅広の立体形状とし、この立体形状の真空断熱パネル50cと放熱パイプ60との間に柔軟性及び断熱性を有するポリエチレンフォームシート材からなる熱緩衝部材63を介在させている。   In other words, the refrigerator 1 of the second embodiment is configured such that the back surface of the outer box 21 includes a back flat portion and a vertically long narrow back inclined portion that extends diagonally forward from both left and right sides thereof. The heat dissipating pipe 60 extends vertically in contact with the corner portion with the inclined portion. Then, the vacuum heat insulating panel 50c is bent and formed so as to straddle the back flat portion, the heat radiating pipe, and the back inclined portion, and a flexible three-dimensional shape is formed between the three-dimensional vacuum heat insulating panel 50c and the heat radiating pipe 60. A heat buffer member 63 made of a polyethylene foam sheet material having heat resistance and heat insulation properties is interposed.

この第2実施形態によれば、放熱パイプ60を真空断熱パネル50cで覆うことによって、第1実施形態でも述べたとおり、放熱パイプ60の熱を効率よく外板背面20aに伝えることができるため、放熱性を向上でき、省エネに対して大きく寄与できる。特に、背面傾斜部は縦長の細い幅を有しているため、この部分に独立した真空断熱パネルを適用した場合には、真空断熱パネルの両側端部の長さの全体長さに占める比率が大きく、真空断熱パネルのヒートブリッジの影響が極めて大きくなってしまう。従って、この部分に高価な真空断熱パネルを独立して適用しても、それに見合うだけの断熱性能の向上を図ることができなかった。これに対し、この第2実施形態では、背面平坦部を覆う真空断熱パネル5cを広げて立体形状とすることにより、両側端部の数を増やすことなく、第1実施形態で使用した真空断熱パネルに対して約30%面積を拡大することができる。   According to the second embodiment, by covering the heat radiating pipe 60 with the vacuum heat insulating panel 50c, as described in the first embodiment, the heat of the heat radiating pipe 60 can be efficiently transmitted to the outer plate back surface 20a. It can improve heat dissipation and contribute greatly to energy saving. In particular, since the back inclined portion has a vertically long thin width, when an independent vacuum heat insulation panel is applied to this portion, the ratio of the length of both side end portions of the vacuum heat insulation panel to the total length is Large, the influence of the heat bridge of the vacuum insulation panel becomes extremely large. Therefore, even if an expensive vacuum heat insulation panel is independently applied to this portion, it has not been possible to improve the heat insulation performance commensurate with it. On the other hand, in this 2nd Embodiment, the vacuum heat insulation panel used in 1st Embodiment is not increased without increasing the number of both-ends parts by expanding the vacuum heat insulation panel 5c which covers a back flat part, and making it a solid shape. The area can be enlarged by about 30%.

この実施形態2においては、背面傾斜部に真空断熱パネルを備えていない比較例1に対して消費電力量を約4%低減でき、省エネへの有効性を確認できた。   In Embodiment 2, the amount of power consumption can be reduced by about 4% compared to Comparative Example 1 that does not include the vacuum heat insulation panel on the back inclined portion, and the effectiveness for energy saving can be confirmed.

(第3実施形態)
次に、本発明の第3実施形態の冷蔵庫について図7及び図8を用いて説明する。図7は本発明の第3実施形態の冷蔵庫の縦断面図、図8は図7のX−X断面図である。なお、この図7は図1のA−A断面相当図である。この第3実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Third embodiment)
Next, the refrigerator of 3rd Embodiment of this invention is demonstrated using FIG.7 and FIG.8. FIG. 7 is a longitudinal sectional view of a refrigerator according to a third embodiment of the present invention, and FIG. 8 is an XX sectional view of FIG. FIG. 7 is a cross-sectional view taken along the line AA of FIG. The third embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第3実施形態の冷蔵庫1は、放熱効率を上げるために、外箱21の背面及び両側面の内側に蛇行状の放熱パイプ60を配設することにより放熱パイプ60の長さを延長して放熱面積を大きくしたものである。真空断熱パネル50d、50eの一部に略コの字状の凹凸部を折り曲げ加工によって2箇所設けた立体形状として、略コの字形状部分で放熱パイプ60を覆ったものである。これらの真空断熱パネル50d、50eは、折り曲げ後の外形を第1実施形態と同じにして、略コの字形状部以外の外箱背面21b内面に接する部分を接着して配置されている。この第3実施形態においては、ウレタン注入時の流れ方向を考慮して真空断熱パネル50d、50eを配置し、アルミテープで外箱21の背面の内側に固定された放熱パイプ60と真空断熱パネル50cとの間に発泡ウレタンを充填するようにしている。これによって、熱緩衝部材63を介在することなく、放熱パイプ60による真空断熱パネル50cの加熱を防止することができる。   In the refrigerator 1 of the third embodiment, the length of the heat radiating pipe 60 is extended by disposing a meandering heat radiating pipe 60 on the back surface and inside of both side surfaces of the outer box 21 in order to increase the heat radiation efficiency. The heat dissipation area is increased. The heat-dissipating pipe 60 is covered with a substantially U-shaped portion as a three-dimensional shape in which approximately U-shaped uneven portions are provided at two locations on a part of the vacuum heat insulating panels 50d and 50e by bending. These vacuum heat insulation panels 50d and 50e have the same outer shape after bending as that of the first embodiment, and are disposed by adhering portions that are in contact with the inner surface of the outer box rear surface 21b other than the substantially U-shaped portion. In this third embodiment, the vacuum heat insulation panels 50d and 50e are arranged in consideration of the flow direction at the time of urethane injection, and the heat radiating pipe 60 and the vacuum heat insulation panel 50c fixed inside the back surface of the outer box 21 with aluminum tape. The foamed urethane is filled in between. Thereby, the heating of the vacuum heat insulation panel 50c by the heat radiating pipe 60 can be prevented without interposing the heat buffer member 63.

この第3実施形態においては、背面に蛇行状の放熱パイプ60を有しない比較例1に対して消費電力量を約4%低減でき、放熱性の向上による省エネ有効性を確認できた。   In the third embodiment, the amount of power consumption can be reduced by about 4% with respect to the comparative example 1 that does not have the meandering heat radiation pipe 60 on the back surface, and the energy saving effectiveness due to the improvement of the heat radiation performance can be confirmed.

(第4実施形態)
次に、本発明の第4実施形態の冷蔵庫について図9を用いて説明する。図9は本発明の第4実施形態の冷蔵庫の要部を示す縦断面図である。なお、この図9は図4相当図である。この第4実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Fourth embodiment)
Next, the refrigerator of 4th Embodiment of this invention is demonstrated using FIG. FIG. 9 is a longitudinal sectional view showing a main part of the refrigerator according to the fourth embodiment of the present invention. FIG. 9 corresponds to FIG. The fourth embodiment is different from the first embodiment in the following points, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第4実施形態の冷蔵庫は、野菜室5の引き出し扉9を電動で開く機能を付加したものである。引き出し扉9を電動で開くための駆動部70と、引き出し扉9とを連結する連結手段71を有し、引き出し扉9の前面に引き出し扉9を開くためのスイッチ72を配置している。引き出し扉9の駆動部70は、内箱22の底面に配置し、内容積確保の観点から発泡断熱材23側に突き出すようにしているため、駆動部70と外箱21との間の発泡断熱材23の厚みが減少してしまう。そこで、この部分における熱漏洩量の悪化を抑制するため、駆動部70のケースを覆うように立体形状に成形した真空断熱パネル50fを配置している。駆動部70は比較的複雑な形状の樹脂製のケースからなるため、真空断熱パネル50fとの間には柔軟性及び断熱性を有する熱緩衝部材63を挟んで配置している。電動引き出し扉については野菜室に限定するものではなく、冷凍室等にあっても良い。   The refrigerator of this 4th Embodiment adds the function which opens the drawer door 9 of the vegetable compartment 5 electrically. A drive unit 70 for electrically opening the drawer door 9 and a connecting means 71 for connecting the drawer door 9 are provided, and a switch 72 for opening the drawer door 9 is disposed on the front surface of the drawer door 9. The drive part 70 of the drawer door 9 is arranged on the bottom surface of the inner box 22 and protrudes toward the foam heat insulating material 23 from the viewpoint of securing the internal volume. Therefore, the foam insulation between the drive part 70 and the outer box 21 is provided. The thickness of the material 23 will decrease. Therefore, in order to suppress the deterioration of the amount of heat leakage in this portion, the vacuum heat insulation panel 50f formed in a three-dimensional shape so as to cover the case of the drive unit 70 is disposed. Since the drive unit 70 is made of a resin case having a relatively complicated shape, a heat buffer member 63 having flexibility and heat insulation is disposed between the drive unit 70 and the vacuum heat insulation panel 50f. The electric drawer door is not limited to the vegetable room, but may be in the freezer room.

(第5実施形態)
次に、本発明の第5実施形態の冷蔵庫について図10を用いて説明する。図10は本発明の第5実施形態の冷蔵庫の真空断熱パネルの組み込み状態を説明する斜視図である。この第5実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Fifth embodiment)
Next, the refrigerator of 5th Embodiment of this invention is demonstrated using FIG. FIG. 10 is a perspective view for explaining an assembled state of the vacuum heat insulation panel of the refrigerator according to the fifth embodiment of the present invention. The fifth embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第5実施形態の冷蔵庫1は、断熱箱体20の天面、両側面、背面及び底面の各面に、それぞれ立体形状或いは芯材の一部に切欠きを有する真空断熱パネル50を配置したものである。天面には第1実施形態で使用のものと同じ真空断熱パネル50aを、側面には芯材の1コーナー部を面取り加工した5角形の板状真空断熱パネル50jを、背面には第3実施形態と同じく外板背面21bの形状に沿って略コの字形状に折り曲げ真空断熱パネル50eを、底面には実施形態2で使用したものと同じ真空断熱パネル50dを用いた。   In the refrigerator 1 of the fifth embodiment, a vacuum heat insulation panel 50 having a three-dimensional shape or a notch in a part of the core material is disposed on each of the top surface, both side surfaces, the back surface, and the bottom surface of the heat insulation box 20. Is. The same vacuum insulation panel 50a as used in the first embodiment is used on the top surface, a pentagonal plate-like vacuum insulation panel 50j in which one corner portion of the core material is chamfered on the side surface, and the third embodiment on the back surface. Like the form, the vacuum heat insulation panel 50e was bent into a substantially U shape along the shape of the outer plate back surface 21b, and the same vacuum heat insulation panel 50d as used in the second embodiment was used on the bottom surface.

これらにより、断熱箱体20各面に配置した全ての真空断熱パネルの芯材面積を大きくすることができる。この第5実施形態では、第1実施形態に対して消費電力量を約6%低減できることを確認した。   By these, the core material area of all the vacuum heat insulation panels arrange | positioned on each surface of the heat insulation box 20 can be enlarged. In the fifth embodiment, it was confirmed that the power consumption can be reduced by about 6% compared to the first embodiment.

上述した実施形態に係る構成と効果を纏めると、次の通りである。   The configuration and effects according to the above-described embodiment are summarized as follows.

外箱と内箱とによって形成される空間に断熱材を配置した冷蔵庫において、箱体を構成する天面、側面、背面、底面(背面側への傾斜部を含む)のうち、少なくとも2つの面にそれぞれ立体形状に成形した真空断熱パネルを配置したことにより、発熱量の大きい例えば圧縮機等が配置された部分等を効率よく断熱することができるものである。   In a refrigerator in which a heat insulating material is arranged in a space formed by an outer box and an inner box, at least two surfaces among a top surface, a side surface, a back surface, and a bottom surface (including an inclined portion toward the back side) constituting the box body By disposing the vacuum heat insulation panels formed into three-dimensional shapes, it is possible to efficiently insulate, for example, portions where a large amount of heat is generated, such as a compressor.

また、外箱と内箱とによって形成される空間に断熱材を配置し、制御基板を前記外箱の天面後方部に設けた凹段部に収納し、圧縮機及び凝縮器等を前記外箱の背面下部に配置した冷蔵庫において、前記制御基板の前記内箱側投影面と前記圧縮機及び前記凝縮器の内箱側投影面にそれぞれ立体形状の真空断熱パネルを配置したことにより、制御基板や圧縮機及び凝縮器等から発生する熱が庫内に侵入することを抑制でき、冷蔵庫箱体の断熱性能を改善することができる。   In addition, a heat insulating material is disposed in a space formed by the outer box and the inner box, the control board is housed in a recessed step provided on the rear surface of the top surface of the outer box, and the compressor, the condenser, and the like are In the refrigerator arranged at the lower back of the box, a control board is provided by arranging three-dimensional vacuum heat insulation panels on the inner box side projection surface of the control board and the inner box side projection surfaces of the compressor and the condenser, respectively. It is possible to suppress the heat generated from the compressor, the condenser, and the like from entering the cabinet, and to improve the heat insulation performance of the refrigerator box.

また、外箱と内箱とによって形成される空間に断熱材を配置し、少なくとも冷却器と圧縮機を備えた冷蔵庫において、前記冷却器と前記圧縮機の間に真空断熱パネルを配置したことにより、冷蔵庫を冷却するための低温部への発熱部からの熱侵入を効果的に抑制でき、上記同様に冷蔵庫箱体の断熱性能を改善できる。   Further, by disposing a heat insulating material in a space formed by the outer box and the inner box, and in a refrigerator having at least a cooler and a compressor, a vacuum heat insulating panel is disposed between the cooler and the compressor. The heat intrusion from the heat generating part to the low temperature part for cooling the refrigerator can be effectively suppressed, and the heat insulating performance of the refrigerator box can be improved as described above.

また、外箱と内箱とによって形成される空間に断熱材を配置し、前記外箱の天面内面に接するように配置された放熱パイプと、前記外箱天面部の背面側に制御基板や電源基板等の電気部品等の自己発熱部品を収納するための凹段部を設けると共に、前記外箱背面下部に前記圧縮機及び凝縮器等を配置し、前記内箱底部に少なくとも庫内温度検知手段等を取り付けるために外箱側に突き出し部を形成した冷蔵庫において、前記放熱パイプと前記凹段部の内箱側への投影面に跨るように略Z形立体形状の真空断熱パネルを配置し、また、前記圧縮機及び前記凝縮器の内箱側への投影面と前記内箱の底面に跨るように、且つ、少なくとも一部の板厚方向表裏面にそれぞれ窪み部と膨らみ部を一対に形成し、前記窪み部と膨らみ部の間の板厚が他部とほぼ同じとした立体形状の真空断熱パネルを配置したものであるから、制御基板や電源基板、圧縮機及び凝縮器等の自己発熱部品から発生する熱、及び天井部に設けた放熱パイプの熱を庫内に侵入するのを抑制すると共に、放熱パイプに関しては熱を効率良く放熱させることができ、省エネルギー性を考慮した冷蔵庫を提供できるものである。   Further, a heat insulating material is disposed in a space formed by the outer box and the inner box, a heat radiating pipe disposed so as to be in contact with the inner surface of the outer surface of the outer box, a control board on the back side of the outer surface of the outer box, Provided with a concave step for storing self-heating parts such as electric parts such as a power supply board, and the compressor and condenser are arranged at the lower back of the outer box, and at least the temperature inside the box is detected at the bottom of the inner box In a refrigerator in which a protruding part is formed on the outer box side for attaching means, etc., a substantially Z-shaped three-dimensional vacuum heat insulation panel is arranged so as to straddle the projection surface of the heat radiating pipe and the concave step part to the inner box side. Also, a pair of depressions and bulges are formed on the front and back surfaces of at least a part of the thickness direction so as to straddle the projection surface of the compressor and the condenser on the inner box side and the bottom surface of the inner box. And the thickness between the dent and the bulge is Since the three-dimensional vacuum heat insulation panels are almost the same, heat generated from self-heating parts such as control boards, power supply boards, compressors and condensers, and heat from the heat radiating pipes installed on the ceiling In addition to suppressing entry into the cabinet, heat can be radiated efficiently with respect to the heat radiating pipe, and a refrigerator considering energy saving can be provided.

また、前記外箱の天面、背面及び底面に前記外箱又は前記内箱形状に沿った立体形状の真空断熱パネルを配置し、且つ側面には矩形板状、切欠き形状、立体形状のいずれかの真空断熱パネルを配置したものであるから、今まで部品の配置等の問題で真空断熱パネルを配置できなかった部分にも、立体形状や切欠き形状等によって配置できるようになり、箱体の断熱性能を飛躍的に向上させることができる。   Further, a three-dimensional vacuum heat insulation panel is arranged along the shape of the outer box or the inner box on the top, back, and bottom of the outer box, and the side surface is any of a rectangular plate shape, a notch shape, and a three-dimensional shape. Since this vacuum insulation panel is arranged, it can be placed in a three-dimensional shape or notch shape, etc. even in parts where the vacuum insulation panel could not be placed due to the placement of parts etc. The heat insulation performance can be dramatically improved.

また、外箱と内箱とによって形成される空間に断熱材を配置した冷蔵庫において、前記外箱の天面内面に接するように配置された放熱パイプと、前記外箱天面部の背面側に制御基板や電源基板等の電気部品等の自己発熱部品を収納するための凹段部を設け、前記放熱パイプと前記凹段部の内箱側への投影面に跨るように折り曲げられた立体形状の真空断熱パネルを配置し、且つ、前記外箱背面の内面に接するように配置された放熱パイプを跨ぐように、折り曲げた立体形状の真空断熱パネルを配置し、それぞれの真空断熱パネルは異なる立体形状であり、それぞれの前記真空断熱パネルと放熱パイプとの間に熱緩衝部材を挟んだものであるから、放熱パイプの熱を直接真空断熱パネルに伝えないため、熱による真空断熱パネルの断熱性能の経時劣化を抑制し、長期に亘って断熱性能を維持することができる。また、放熱パイプを跨ぐような立体形状としたことによって、真空断熱パネル1枚あたりの面積を大きくできるため、外被材のヒートブリッジ影響が軽減され、断熱性能面で有利になるため、外箱と内箱の間の断熱材厚みを増やすことなく断熱性能を向上することができるものである。
また、前記外箱の前面に複数の扉を有し、少なくとも最下段が電動で開又は閉のいずれか或いは開閉する電動ユニットを有する引き出し扉を配置し、前記内箱底面部断熱材側に前記電動ユニットの駆動部分が突き出した状態で配置された冷蔵庫において、前記駆動部分を覆うように立体形状の真空断熱パネルを配置したものであるから、前記電動ユニットの駆動部分の突き出しによって外箱底面との間の断熱厚が薄い部分に立体形状真空断熱パネルですっぽり覆うことによって断熱性能を大幅に改善することができるものである。また、駆動部分から発生する動作音を遮音する効果も併せ持つ。
Further, in the refrigerator in which a heat insulating material is arranged in a space formed by the outer box and the inner box, the heat radiating pipe arranged so as to be in contact with the inner surface of the outer box and the rear side of the outer box top surface part is controlled. Provided with a concave step for storing self-heating parts such as electric parts such as a board and a power supply board, and a three-dimensional shape bent so as to straddle the projection surface to the inner box side of the heat radiating pipe and the concave step A vacuum heat insulation panel is arranged, and a three-dimensional vacuum heat insulation panel that is folded so as to straddle the heat radiating pipe arranged so as to contact the inner surface of the rear surface of the outer box is arranged, and each vacuum heat insulation panel has a different three-dimensional shape. Since the heat buffer member is sandwiched between the vacuum insulation panel and the heat radiating pipe, the heat of the heat radiating pipe is not directly transmitted to the vacuum heat insulation panel. Sutra Suppressing degradation, it is possible to maintain the insulation performance for a long period of time. In addition, since the area per vacuum insulation panel can be increased by adopting a three-dimensional shape that straddles the heat radiating pipe, the effect of heat bridge on the jacket material is reduced and the insulation performance is advantageous. The heat insulation performance can be improved without increasing the thickness of the heat insulating material between the inner box and the inner box.
In addition, a drawer door having a plurality of doors on the front surface of the outer box and having an electric unit that opens or closes at least at the bottom is electrically opened or closed, and is arranged on the inner box bottom surface heat insulating material side. In the refrigerator arranged with the drive part of the unit protruding, a three-dimensional vacuum heat insulation panel is arranged to cover the drive part, so that the drive part of the electric unit protrudes from the bottom of the outer box. The insulation performance can be significantly improved by covering the thin insulation portion with a three-dimensional vacuum insulation panel. In addition, it also has the effect of insulating the operation sound generated from the drive part.

また、前記真空断熱パネルは、少なくとも圧縮方向に対し反発性を有する繊維積層体を合成樹脂フィルムからなる内袋で覆って一時的に圧縮密封した芯材と、少なくとも熱溶着層とガスバリヤ膜を成膜した合成樹脂フィルムを2層以上組み合わせてなるガスバリヤ層を有するラミネートフィルムを、前記熱溶着層同士を向かい合わせて端部を溶着した外被材とで構成し、前記内袋の耳部を前記外被材の耳部内に配置させ、前記外被材の内部を、前記内袋の密封を解除した後に減圧して封止したものであるから、バインダーを含まないためリサイクル性が良いという特徴を持っている。   The vacuum heat insulation panel comprises a core material which is temporarily compressed and sealed by covering a fiber laminate having resilience in at least the compression direction with an inner bag made of a synthetic resin film, and at least a heat-welded layer and a gas barrier film. A laminate film having a gas barrier layer formed by combining two or more layers of synthetic resin films thus formed is composed of an outer cover material in which the heat-welding layers face each other and end portions are welded, and the ear portion of the inner bag is Since it is placed in the ear part of the jacket material, and the inside of the jacket material is sealed by depressurization after releasing the sealing of the inner bag, it is characterized by good recyclability because it does not contain a binder. have.

また、前記真空断熱パネルの立体形状が、折り曲げや板厚方向に凹凸部を有する形状からなり、前記折り曲げ部や凹凸部の板厚が、他部の板厚とほぼ同じであることを特徴とするものであるから、曲げ部分等に板厚の減少が無い分、断熱性能の悪化もないため真空断熱パネルの断熱性能を効率よく発揮することができ、冷蔵庫の省エネルギー性を向上させている。前記芯材が圧縮方向に対して反発性を有し、バインダー等による硬化層が無い繊維集合体を用いているため、折り曲げや凹凸加工を施しても割れや潰れることが無く、加工前の板厚とほぼ同じにすることができるものである。例えば、特許文献1のように無機繊維をシート状成形体とした芯材を曲げ成形するためには、曲げの基点となる溝の加工を必要としていたが、本実施形態の前記真空断熱パネルは芯材が成形されていないので柔軟性を有しており、容易に略L形の曲げ形状や、略Z形の曲げ形状、或いは部分的に窪み部と膨らみ部が一対となるような形状も比較的容易に成形することができる。曲げ部に溝等の加工を必要としないので、芯材厚みが薄くなる部分が発生せず、断熱性能が悪化する部分が無い。これらの立体形状に成形する方法及び手段として、2箇所以上の折り曲げについては、フィルムへの歪み発生を軽減するため、複数箇所を同時に曲げるのではなく、逐次曲げ加工をすることが望ましい。   Further, the three-dimensional shape of the vacuum heat insulating panel is a shape having a concavo-convex portion in the direction of bending or plate thickness, and the plate thickness of the fold portion or the concavo-convex portion is substantially the same as the plate thickness of other portions. Therefore, the heat insulation performance of the vacuum heat insulation panel can be exhibited efficiently and the energy saving performance of the refrigerator is improved because there is no deterioration of the heat insulation performance because there is no reduction in the thickness of the bent portion or the like. Since the core material has a resilience to the compression direction and uses a fiber assembly without a hardened layer of a binder or the like, it is not cracked or crushed even if subjected to bending or uneven processing, and the plate before processing It can be almost the same as the thickness. For example, in order to bend a core material in which inorganic fibers are made into a sheet-like molded body as in Patent Document 1, it is necessary to process a groove serving as a base point of bending, but the vacuum heat insulating panel of this embodiment is Since the core material is not molded, it has flexibility and can be easily bent in an approximately L shape, an approximately Z shape, or a shape in which a dent and a bulge are partially paired. It can be molded relatively easily. Since processing of a groove or the like is not required in the bent portion, there is no portion where the core material thickness is reduced, and there is no portion where the heat insulation performance is deteriorated. As a method and means for forming these three-dimensional shapes, it is desirable to sequentially bend rather than simultaneously bend a plurality of locations for bending at two or more locations in order to reduce distortion in the film.

なお、本発明の中で、前記自己発熱部品とは、制御基板や電源基板等の電気部品、圧縮機の他に、凝縮器、放熱パイプ等、冷蔵庫の運転時に温度上昇して高い温度になる部品を示すが、特にこれらに限定するものではない。   In the present invention, the self-heating component means that the temperature rises to a high temperature during operation of the refrigerator, such as a condenser, a heat radiating pipe, etc., in addition to an electric component such as a control board and a power supply board, and a compressor. Although parts are shown, it is not limited to these.

1…冷蔵庫、2…冷蔵室、3a…製氷室、3b…上段冷凍室、4…下段冷凍室、5…野菜室、6a…冷蔵室扉、6b…冷蔵室扉、7a…製氷室扉、7b…上段冷凍室扉、8…下段冷凍室扉、9…野菜室扉、10…扉用ヒンジ、11…パッキン、12…断熱仕切り、13…仕切り部材、14…断熱仕切り、15…機械室、20…断熱箱体、21…外箱、22…内箱、23…発泡断熱材、27…送風機、28…冷却器、30…圧縮機、31…凝縮器、33…発泡ポリスチレン、40…凹段部、41…電気部品、42…カバー、45…庫内灯、45a…ケース、48…庫内温度検知手段、48a…突き出し部、50,50a,50b,50c,50d,50e,50f,50g,50x…真空断熱パネル、51…芯材、52…内包材、53…外被材、54…吸着剤、60…放熱パイプ、60a…アルミテープ、62…接着部材、63…熱緩衝部材、70…駆動部、71…連結手段、72…スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Refrigeration room, 3a ... Ice making room, 3b ... Upper stage freezing room, 4 ... Lower stage freezing room, 5 ... Vegetable room, 6a ... Refrigeration room door, 6b ... Refrigeration room door, 7a ... Ice making room door, 7b ... upper freezer compartment door, 8 ... lower freezer compartment door, 9 ... vegetable compartment door, 10 ... door hinge, 11 ... packing, 12 ... heat insulation partition, 13 ... partition member, 14 ... heat insulation partition, 15 ... machine room, 20 DESCRIPTION OF SYMBOLS ... Heat insulation box, 21 ... Outer box, 22 ... Inner box, 23 ... Foam insulation, 27 ... Blower, 28 ... Cooler, 30 ... Compressor, 31 ... Condenser, 33 ... Expanded polystyrene, 40 ... Concave step , 41 ... electric parts, 42 ... cover, 45 ... inside lamp, 45a ... case, 48 ... inside temperature detecting means, 48a ... extrusion part, 50, 50a, 50b, 50c, 50d, 50e, 50f, 50g, 50x ... Vacuum insulation panel, 51 ... Core material, 52 ... Inner packaging material, 53 ... Coating material 54 ... adsorbent, 60 ... radiator pipes, 60a ... aluminum tape, 62 ... bonding member, 63 ... thermal buffer, 70 ... drive unit, 71 ... connecting unit, 72 ... switch.

Claims (4)

繊維集合体からなる芯材と、該芯材を覆い内部を減圧して封止した外被材と、を備え、
前記芯材は圧縮方向に対する反発性を有し、該芯材の圧縮方向に対する反発性を利用して曲げ部又は凹凸部の内側部分の座屈及び割れを抑制した板厚の減少が抑制された立体形状としたことを特徴とする真空断熱パネル。
A core material made of a fiber assembly, and a jacket material that covers the core material and seals the inside by reducing the pressure,
The core material has resilience in the compression direction, and the reduction in plate thickness is suppressed by using the resilience in the compression direction of the core material to suppress buckling and cracking of the inner part of the bent portion or the uneven portion. A vacuum insulation panel characterized by a three-dimensional shape.
前記真空断熱パネルをパネル面に溝を形成することなく折り曲げたことを特徴とする、請求項1記載の真空断熱パネル。   The vacuum heat insulation panel according to claim 1, wherein the vacuum heat insulation panel is bent without forming a groove on the panel surface. 前記芯材を覆って圧縮密封した合成樹脂フィルムからなる内包材を有し、前記外被材は前記芯材及び前記内包材を覆い内部を減圧して封止したことを特徴とする、請求項1又は2記載の真空断熱パネル。   An inner packaging material comprising a synthetic resin film that covers and compresses and seals the core material, and the outer jacket material covers the core material and the inner packaging material and is sealed by reducing the inside. The vacuum insulation panel according to 1 or 2. 外箱と内箱とによって形成される空間内に真空断熱パネルを配置すると共に前記空間内に発泡断熱材を充填して断熱箱体を構成した冷蔵庫において、
前記真空断熱パネルは、繊維集合体からなる芯材と、該芯材を覆い内部を減圧して封止した外被材と、を備え、
前記芯材は圧縮方向に対する反発性を有し、該芯材の圧縮方向に対する反発性を利用して曲げ部又は凹凸部の内側部分の座屈及び割れを抑制した板厚の減少が抑制された立体形状とし、
前記外箱又は前記内箱の立体形状の箇所に沿って前記真空断熱パネルを設置した
ことを特徴とする冷蔵庫。
In the refrigerator in which the heat insulation box is configured by placing the vacuum heat insulation panel in the space formed by the outer box and the inner box and filling the space with the foam heat insulating material,
The vacuum heat insulation panel includes a core material made of a fiber assembly, and a jacket material that covers the core material and seals the inside by reducing the pressure,
The core material has resilience in the compression direction, and the reduction in plate thickness is suppressed by using the resilience in the compression direction of the core material to suppress buckling and cracking of the inner part of the bent portion or the uneven portion. A three-dimensional shape
The said heat insulation panel was installed along the three-dimensional location of the said outer box or the said inner box. The refrigerator characterized by the above-mentioned.
JP2011039465A 2011-02-25 2011-02-25 Vacuum heat insulating panel and refrigerator Abandoned JP2011099566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039465A JP2011099566A (en) 2011-02-25 2011-02-25 Vacuum heat insulating panel and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039465A JP2011099566A (en) 2011-02-25 2011-02-25 Vacuum heat insulating panel and refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008071617A Division JP4695663B2 (en) 2008-03-19 2008-03-19 refrigerator

Publications (1)

Publication Number Publication Date
JP2011099566A true JP2011099566A (en) 2011-05-19

Family

ID=44190896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039465A Abandoned JP2011099566A (en) 2011-02-25 2011-02-25 Vacuum heat insulating panel and refrigerator

Country Status (1)

Country Link
JP (1) JP2011099566A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050242A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerator, method of manufacturing the same, and freezer
WO2013084582A1 (en) 2011-12-06 2013-06-13 株式会社 東芝 Refrigerator
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
KR101560355B1 (en) 2012-07-27 2015-10-15 히타치 어플라이언스 가부시키가이샤 Vacuum insulation material, refrigerator, equipment using vacuum insulation material
WO2016163026A1 (en) * 2015-04-10 2016-10-13 三菱電機株式会社 Refrigerator
JP2018025350A (en) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 refrigerator
JP2018169159A (en) * 2013-06-07 2018-11-01 三菱電機株式会社 refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050521A (en) * 2005-08-15 2007-03-01 Kurabo Ind Ltd Manufacturing method of vacuum heat insulating member
JP2007285496A (en) * 2006-04-20 2007-11-01 Hitachi Appliances Inc Vacuum heat insulating material, and refrigerator and vehicle using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050521A (en) * 2005-08-15 2007-03-01 Kurabo Ind Ltd Manufacturing method of vacuum heat insulating member
JP2007285496A (en) * 2006-04-20 2007-11-01 Hitachi Appliances Inc Vacuum heat insulating material, and refrigerator and vehicle using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050242A (en) * 2011-08-30 2013-03-14 Hitachi Appliances Inc Refrigerator, method of manufacturing the same, and freezer
WO2013084582A1 (en) 2011-12-06 2013-06-13 株式会社 東芝 Refrigerator
JP2014025538A (en) * 2012-07-27 2014-02-06 Hitachi Appliances Inc Vacuum heat insulation material, refrigerator, and apparatus using vacuum heat insulation material
KR101560355B1 (en) 2012-07-27 2015-10-15 히타치 어플라이언스 가부시키가이샤 Vacuum insulation material, refrigerator, equipment using vacuum insulation material
JP2014119081A (en) * 2012-12-19 2014-06-30 Hitachi Appliances Inc Vacuum insulation material and refrigerator using vacuum insulation material
JP2018169159A (en) * 2013-06-07 2018-11-01 三菱電機株式会社 refrigerator
WO2016163026A1 (en) * 2015-04-10 2016-10-13 三菱電機株式会社 Refrigerator
JPWO2016163026A1 (en) * 2015-04-10 2017-10-26 三菱電機株式会社 refrigerator
JP2018025350A (en) * 2016-08-10 2018-02-15 パナソニックIpマネジメント株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP4695663B2 (en) refrigerator
JP5689387B2 (en) Refrigerator and manufacturing method thereof
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2009024922A (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
TWI401404B (en) Refrigerator
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2009024921A (en) Refrigerator
JP5401258B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP2011149501A (en) Vacuum heat insulating material and refrigerator using the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
CN111503962B (en) Refrigerator and vacuum heat insulation plate
JP6023602B2 (en) Vacuum insulation, insulation box and refrigerator
JP2013024440A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2011149624A (en) Refrigerator
JPWO2017033313A1 (en) refrigerator
JP2012229849A (en) Refrigerator and freezer
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130107