JP2011149624A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2011149624A
JP2011149624A JP2010011558A JP2010011558A JP2011149624A JP 2011149624 A JP2011149624 A JP 2011149624A JP 2010011558 A JP2010011558 A JP 2010011558A JP 2010011558 A JP2010011558 A JP 2010011558A JP 2011149624 A JP2011149624 A JP 2011149624A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
refrigerator
vacuum heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010011558A
Other languages
Japanese (ja)
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Takashi Izeki
崇 井関
Yushi Arai
祐志 新井
Toshimitsu Tsuruga
俊光 鶴賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010011558A priority Critical patent/JP2011149624A/en
Publication of JP2011149624A publication Critical patent/JP2011149624A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator reducing heat bridge effects by a vacuum heat insulating material and improving heat insulating performance by suppressing a urethane foam unfilled part. <P>SOLUTION: In the refrigerator, a foamed heat insulating material (23) and the vacuum heat insulating material (50) are provided between an outer casing (21) and an inner casing (22). The vacuum heat insulating material (50) is a composite heat insulating material (70) beforehand covered with a foamed heat insulating material (72), and at least one face of the composite heat insulating material (70) is bonded to the outer casing (21) or the inner casing (22) and is embedded in the foamed heat insulating material (23). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

従来から冷蔵庫は、省エネルギー化のため、冷蔵庫筐体の断熱材である硬質ウレタンフォームに真空断熱材を併用して断熱性能を大幅に向上させた製品が発売されている。真空断熱材は硬質ウレタンフォームの10倍以上の断熱性能を有するものである。   Conventionally, in order to save energy, refrigerators have been put on the market in which the heat insulation performance is greatly improved by using a vacuum urethane heat insulating material together with a hard urethane foam as a heat insulating material for the refrigerator case. The vacuum heat insulating material has a heat insulating performance 10 times or more that of rigid urethane foam.

従来の技術としては、真空断熱材は一般的には作業性等を考慮して、例えば冷蔵庫筐体の外箱側の平坦な部分に配置される例が多いが、真空断熱材特有である外被材のヒートブリッジ影響によって本来の断熱性能を十分に発揮することができていない場合があった。また、外箱側には放熱パイプ等の高温部品を設置する場合があるため、外被材のヒートブリッジを助長し、所定の効果が得られないことがあった。   As a conventional technique, the vacuum heat insulating material is generally arranged in a flat part on the outer box side of the refrigerator case, for example, in consideration of workability and the like. In some cases, the original heat insulation performance cannot be sufficiently exhibited due to the heat bridge effect of the material. Moreover, since high temperature parts, such as a heat radiating pipe, may be installed on the outer box side, a heat bridge of the jacket material is promoted, and a predetermined effect may not be obtained.

ここで、ヒートブリッジとは、鋼板等の熱伝導率の高い部材からなる冷蔵庫外箱に設置された真空断熱材が、温度の高い外気から外箱を通し,さらに後述する図3に示す真空断熱材の外被材(例えば金属層を有する多層にラミネートされたフィルム状の材料とする)の端部に形成された折り曲げ部を介して、芯材を通ることなく発泡ウレタン(硬質ウレタンフォーム)に橋絡する現象(逆に冷蔵庫内部から外気への流れでも同様)を云う。   Here, the heat bridge means that the vacuum heat insulating material installed in the refrigerator outer box made of a member having a high thermal conductivity such as a steel plate passes through the outer box from a high temperature outside air, and further, the vacuum heat insulating shown in FIG. In urethane foam (rigid urethane foam) without passing through the core through the bent part formed at the end of the outer cover material (for example, a film-like material laminated in a multilayer having a metal layer) The phenomenon of bridging (inversely the flow from the inside of the refrigerator to the outside air).

また、特許文献1に示される従来技術として、真空断熱材を両側面,天面,背面,底面及び前面の各面に配置し、外箱表面積が外気温度よりも高くなる面において真空断熱材を外箱と内箱の中間で硬質ウレタンフォーム内に埋設して真空断熱材の経時的な劣化を押さえようとする冷蔵庫の例が示されている。   Moreover, as a prior art shown by patent document 1, a vacuum heat insulating material is arrange | positioned on each surface of both sides | surfaces, a top surface, a back surface, a bottom surface, and a front surface, and a vacuum heat insulating material is used in the surface where an outer box surface area becomes higher than external temperature. There is shown an example of a refrigerator which is embedded in a rigid urethane foam between an outer box and an inner box to suppress deterioration with time of the vacuum heat insulating material.

また、特許文献2に示される従来技術として、外箱と内箱の間に外箱側に固定されたスペーサに支持された真空断熱材が、外箱と内箱に接しないように配置されるとともに、外箱と真空断熱材および内箱と真空断熱材との隙間に硬質ウレタンフォームが充填された冷蔵庫が示されている。   Moreover, as a prior art shown by patent document 2, the vacuum heat insulating material supported by the spacer fixed to the outer box side between an outer box and an inner box is arrange | positioned so that it may not contact an outer box and an inner box. In addition, a refrigerator is shown in which hard urethane foam is filled in the gap between the outer box and the vacuum heat insulating material and between the inner box and the vacuum heat insulating material.

特開2003−14368号公報JP 2003-14368 A 特開2005−55086号公報JP-A-2005-55086

一般に真空断熱材の特性として、低温雰囲気中で使用した場合に比べ、高温雰囲気中で使用した場合は断熱性能が低下する傾向が見られる。特に放熱パイプ等の高温部品に接して使用した場合は、真空断熱材の断熱性能を低下させる恐れがあるのと、外被材のヒートブリッジ影響により、冷蔵庫の寿命年数を迎える前に断熱性能が著しく低下する可能性があった。   In general, as a characteristic of a vacuum heat insulating material, when used in a high temperature atmosphere, the heat insulating performance tends to be lower than when used in a low temperature atmosphere. Especially when used in contact with high-temperature parts such as heat-dissipating pipes, there is a risk of reducing the heat insulation performance of the vacuum insulation material. There was a possibility of a significant decrease.

また、特許文献1に示される従来の冷蔵庫の構造では、外箱側に設けたウレタン製のスペーサにより真空断熱材を硬質ウレタンフォーム(発泡ウレタン)の中間位置になるように配置しているが、真空断熱材の姿勢を安定化するため、数多くのスペーサを1つ1つ配置しなくてはならず、組み立て工数が増加する課題がある。また、スペーサが大きすぎると硬質ウレタンフォームの流れを阻害する要因となり、小さすぎると発泡圧に耐えることができない、という課題もあった。   Moreover, in the structure of the conventional refrigerator shown by patent document 1, although arrange | positioning so that a vacuum heat insulating material may become an intermediate position of a hard urethane foam (foaming urethane) with the urethane-made spacer provided in the outer case side, In order to stabilize the posture of the vacuum heat insulating material, a large number of spacers must be arranged one by one, and there is a problem that the number of assembly steps increases. Moreover, when the spacer is too large, it becomes a factor that hinders the flow of the rigid urethane foam, and when it is too small, there is a problem that the foaming pressure cannot be endured.

また、ウレタンスペーサが外箱と真空断熱材の間にのみ設置されていることから、硬質ウレタンフォームが発泡方向に立ち上がる際、流動抵抗等によって外箱と真空断熱材の間に多く流れた場合、発泡圧によって真空断熱材がスペーサから剥がされ、真空断熱材が内箱に接触する等によって発泡ウレタンの未充填部(ボイド)を発生させることがあり、真空断熱材の断熱性能を十分に発揮できない、という課題があった。   In addition, since the urethane spacer is installed only between the outer box and the vacuum heat insulating material, when the hard urethane foam rises in the foaming direction, if it flows a lot between the outer box and the vacuum heat insulating material due to flow resistance etc., The vacuum heat insulating material is peeled off from the spacer by the foaming pressure, and the vacuum heat insulating material may come into contact with the inner box to generate unfilled parts (voids) of urethane foam. There was a problem.

また、特許文献2に示される従来の冷蔵庫は、真空断熱材と外箱の間に設置されたスペーサが、その底部を真空断熱材に接着され、さらに外箱に接着された頂部が互い違いになった略波形状を形成しており、そのスペーサを発泡方向に並列するように設けているため、真空断熱材と外箱の間にもウレタンが充填されやすいという利点はあるが、波形状の頂部と外箱の接着面が分割された矩形面であるため、接着面積が十分に取れず、特許文献1と同様に外箱側のみに設置されていることから、例えば外箱と真空断熱材の間のウレタンが早く立ち上がった場合等において、発泡ウレタンの発泡圧によって真空断熱材が剥がされて内箱に接触する等して、未充填部(ボイド)を発生させてしまう、という課題があった。   Moreover, the conventional refrigerator shown by patent document 2 has the spacer installed between the vacuum heat insulating material and an outer box, the bottom part adhere | attached on a vacuum heat insulating material, and the top part further adhere | attached on the outer box became alternate. However, since the spacers are arranged in parallel with the foaming direction, there is an advantage that urethane is easily filled between the vacuum heat insulating material and the outer box. Since the adhesive surface of the outer box is a divided rectangular surface, the adhesive area is not sufficient and is installed only on the outer box side as in Patent Document 1, for example, between the outer box and the vacuum heat insulating material. In the case where the urethane in the middle rises quickly, the vacuum heat insulating material is peeled off by the foaming pressure of the foamed urethane and comes into contact with the inner box, causing an unfilled portion (void) to occur. .

また、真空断熱材を外箱に配置する際に、接着を安定させるために押付けるが、スペーサの接着面が島状の矩形面であるため、外箱表面に凹凸形状が現れてしまい、外観上の見栄えの課題があった。   In addition, when placing the vacuum heat insulating material on the outer box, it is pressed to stabilize the adhesion, but since the bonding surface of the spacer is an island-shaped rectangular surface, an uneven shape appears on the outer box surface, and the appearance There was a problem with the above appearance.

また、特許文献1と2に共通する課題として、外箱と内箱の間の空間、いわゆる断熱壁の厚さが冷蔵庫内容積の拡大化等によって薄肉化された場合、硬質ウレタンフォーム(発泡ウレタン)の中間位置に配置された真空断熱材と外箱或いは内箱の間の空間が狭くなるため、硬質ウレタンフォームの流動抵抗が大きくなり、発泡ウレタンの注入量を実際の注入容積よりも多くしなくてはならない、という課題があった。特に、特許文献2に示されるように、真空断熱材と外箱の間に放熱パイプを配置した例においては、発泡ウレタンの流動抵抗がより大きくなるという課題を有している。   Further, as a problem common to Patent Documents 1 and 2, when the thickness of the space between the outer box and the inner box, that is, the so-called heat insulating wall, is reduced by increasing the refrigerator internal volume or the like, a rigid urethane foam (foamed urethane) ), The space between the vacuum heat insulating material and the outer or inner box placed in the middle position becomes narrow, so the flow resistance of the rigid urethane foam increases, and the amount of urethane foam injected exceeds the actual injection volume. There was a problem that it was necessary. In particular, as shown in Patent Document 2, the example in which the heat radiating pipe is disposed between the vacuum heat insulating material and the outer box has a problem that the flow resistance of urethane foam becomes larger.

上記課題に鑑みて、本発明の目的は、真空断熱材のヒートブリッジ影響を低減し、且つ発泡ウレタンの未充填部を抑制して断熱性能の向上した冷蔵庫を提供することである。   In view of the above problems, an object of the present invention is to provide a refrigerator that has an improved heat insulation performance by reducing the heat bridge effect of the vacuum heat insulating material and suppressing an unfilled portion of urethane foam.

上記課題を解決するために、本発明は、外箱と内箱との間に発泡ウレタン断熱材と真空断熱材とを備えた冷蔵庫において、前記真空断熱材は予め発泡系断熱材で覆った複合断熱材とし、該複合断熱材の少なくとも一面を前記外箱又は前記内箱に接着して前記発泡ウレタン断熱材中に埋設することを特徴とする。   In order to solve the above problems, the present invention provides a refrigerator including a urethane foam heat insulating material and a vacuum heat insulating material between an outer box and an inner box, wherein the vacuum heat insulating material is a composite that is covered with a foam heat insulating material in advance. A heat insulating material is used, and at least one surface of the composite heat insulating material is bonded to the outer box or the inner box and embedded in the urethane foam heat insulating material.

また、前記複合断熱材はフィルム状部材又は板状部材,発泡系断熱材,真空断熱材の順に積層されて配置し、前記フィルム状部材又は前記板状部材の表面に接着剤を塗布したことを特徴とする。   Further, the composite heat insulating material is arranged in the order of a film-like member or plate-like member, a foam heat insulating material, and a vacuum heat insulating material, and an adhesive is applied to the surface of the film-like member or the plate-like member. Features.

また、前記フィルム状部材又は前記板状部材は表面張力が35〜70mN/mの樹脂材料又は金属材料であることを特徴とする。   The film-like member or the plate-like member is a resin material or a metal material having a surface tension of 35 to 70 mN / m.

また、前記発泡系断熱材の表面に樹脂硬化層を有し、該樹脂硬化層に接着剤を塗布したことを特徴とする。   Moreover, it has the resin cured layer on the surface of the said foaming type heat insulating material, and apply | coated the adhesive agent to this resin cured layer, It is characterized by the above-mentioned.

また、前記接着剤は合成ゴム系の粘着型接着剤であり、塗布厚さが20〜300μmであることを特徴とする。   The adhesive is a synthetic rubber-based adhesive and has a coating thickness of 20 to 300 μm.

また、前記複合断熱材は前記冷蔵庫の複数の面に跨って配置したことを特徴とする。   Moreover, the said composite heat insulating material has been arrange | positioned ranging over the several surface of the said refrigerator, It is characterized by the above-mentioned.

また、外箱と内箱との間に発泡ウレタン断熱材と真空断熱材とを備え、前記外箱内面に放熱パイプを備えた冷蔵庫において、前記真空断熱材はその稜線を予め発泡系断熱材で覆った複合断熱材とし、該複合断熱材の前記外箱内面と接着される面に、薄板状又は薄膜状の伝熱部材を配置し、該伝熱部材と前記放熱パイプが接触するように配置したことを特徴とする。   Further, in the refrigerator provided with a urethane foam heat insulating material and a vacuum heat insulating material between the outer box and the inner box, and provided with a heat radiating pipe on the inner surface of the outer box, the ridge line of the vacuum heat insulating material is a foam heat insulating material in advance. As a covered composite heat insulating material, a thin plate or thin film heat transfer member is disposed on the surface of the composite heat insulating material to be bonded to the inner surface of the outer box, and the heat transfer member and the heat radiating pipe are in contact with each other. It is characterized by that.

また、前記複合断熱材は前記放熱パイプと接触する部分に凹部を有することを特徴とする。   In addition, the composite heat insulating material has a concave portion in a portion in contact with the heat radiating pipe.

また、前記真空断熱材は少なくともガスバリヤ性を有する多層ラミネートフィルム製の外被材と、柔軟性を有する繊維集合体を合成樹脂フィルム製の内袋で覆った芯材とを有し、前記外被材の最外層フィルム及び前記内袋の表面張力を35〜70mN/mとしたことを特徴とする。   The vacuum heat insulating material has a jacket material made of a multilayer laminate film having at least gas barrier properties, and a core material in which a flexible fiber assembly is covered with an inner bag made of a synthetic resin film. The outermost layer film of the material and the inner bag have a surface tension of 35 to 70 mN / m.

本発明によれば、真空断熱材のヒートブリッジ影響を低減し、且つ発泡ウレタンの未充填部を抑制して断熱性能の向上した冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat bridge influence of a vacuum heat insulating material can be reduced, and the unfilled part of urethane foam can be suppressed, and the refrigerator which heat insulation performance improved can be provided.

本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫の外観を示す正面図である。It is a front view which shows the external appearance of the refrigerator provided with the vacuum heat insulating material which concerns on the 1st Embodiment of this invention. 図1のA−A線の切断図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の第1の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 1st Embodiment of this invention. 図2のX−X線の切断図である。FIG. 3 is a sectional view taken along line XX in FIG. 2. 図1のZ−Z線の切断図である。FIG. 3 is a cutaway view taken along line ZZ in FIG. 1. 本発明の第2の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る複合断熱材の断面図である。It is sectional drawing of the composite heat insulating material which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る複合断熱材と放熱パイプとの配置構造を示す図である。It is a figure which shows the arrangement structure of the composite heat insulating material which concerns on 2nd Embodiment, and a thermal radiation pipe. 比較例1を示す図である。It is a figure which shows the comparative example 1. FIG. 比較例2を示す図である。It is a figure which shows the comparative example 2. FIG.

本発明の実施形態に係る真空断熱材を備えた冷蔵庫について、図面を参照しながら以下詳細に説明する。本発明の第1の実施形態については図1〜図5を用いて、第2の実施形態については図6と図7を用いて、それぞれ説明する。なお、図8,図9は本実施形態と対比すべき比較例を示す図である。   A refrigerator provided with a vacuum heat insulating material according to an embodiment of the present invention will be described in detail below with reference to the drawings. The first embodiment of the present invention will be described with reference to FIGS. 1 to 5, and the second embodiment will be described with reference to FIGS. 6 and 7. 8 and 9 are diagrams showing a comparative example to be compared with the present embodiment.

「第1の実施形態」
本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫について、図1〜図5を参照しながら説明する。図1は本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫の外観を示す正面図である。図2は第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図1のA−A線の切断図である。図3A,図3Bは第1の実施形態に用いた真空断熱材を発泡系断熱材で覆った複合断熱材の断面図である。
“First Embodiment”
A refrigerator provided with a vacuum heat insulating material according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view showing an appearance of a refrigerator provided with a vacuum heat insulating material according to the first embodiment of the present invention. FIG. 2 is a longitudinal sectional view of the refrigerator provided with the vacuum heat insulating material according to the first embodiment, and is a cross-sectional view taken along line AA of FIG. 3A and 3B are cross-sectional views of a composite heat insulating material in which the vacuum heat insulating material used in the first embodiment is covered with a foam heat insulating material.

また、図4は第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図2のX−X線の切断図である。図5は第1の実施形態に係る真空断熱材を備えた冷蔵庫の横断面図であり、図1のZ−Z線の切断図である。   Moreover, FIG. 4 is a longitudinal cross-sectional view of the refrigerator provided with the vacuum heat insulating material which concerns on 1st Embodiment, and is the sectional view of the XX line of FIG. FIG. 5 is a transverse cross-sectional view of the refrigerator provided with the vacuum heat insulating material according to the first embodiment, and is a sectional view taken along the line ZZ of FIG. 1.

図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2,製氷室3aと上段冷凍室3b,下段冷凍室4,野菜室5を有している。図1の符号は、上記各室の前面開口部を閉塞する扉であり、上からヒンジ10等を中心に回動する冷蔵室扉6a,6b以外は全て引き出し式の扉であり、製氷室扉7aと上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9を配置する。これらの引き出し式扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉には冷蔵庫1本体と密閉するためのパッキン11を備え、各扉の室内側外周縁に取り付けられている。   The refrigerator 1 provided with this embodiment shown in FIG. 1 has the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 from the top, as shown in FIG. 1 is a door that closes the front opening of each of the above-mentioned chambers, and all are refrigerator doors except the refrigerator doors 6a and 6b that rotate around the hinge 10 and the like from above. 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are arranged. When these pull-out doors are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door is provided with a packing 11 for sealing with the refrigerator 1 main body, and is attached to the indoor peripheral edge of each door.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために断熱仕切12を配置している。この断熱仕切12は、厚さ30〜50mm程度の断熱壁で、スチロフォーム,発泡断熱材(発泡ウレタン),真空断熱材等で構成されており、それぞれを単独使用又は複数の断熱材を組み合わせて設けられている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には、区画断熱するための断熱仕切14を設けている。断熱仕切14は、断熱仕切12と同様に30〜50mm程度の断熱壁で、スチロフォーム、或いは発泡断熱材(発泡ウレタン)、真空断熱材等で構成されている。すなわち、冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには断熱仕切を設置している。   In addition, a heat insulating partition 12 is arranged to insulate the compartment between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. The heat insulating partition 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is composed of a styrofoam, a foam heat insulating material (foamed urethane), a vacuum heat insulating material, or the like. Is provided. Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. Between the lower freezer compartment 4 and the vegetable compartment 5, a heat insulating partition 14 is provided for compartmental heat insulation. The heat insulating partition 14 is a heat insulating wall of about 30 to 50 mm, similar to the heat insulating partition 12, and is made of styrofoam, foamed heat insulating material (foamed urethane), vacuum heat insulating material, or the like. That is, a heat insulating partition is installed in a partition of a room having different storage temperature zones such as refrigeration and freezing.

なお、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉,引き出しによる開閉及び扉の分割数等について、特に限定するものではない。   In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. It is not a thing.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には発泡ウレタン等の発泡断熱材23を充填している。真空断熱材50については、図3で詳細を説明するが、後述する発泡系断熱材72等で覆われた複合断熱材70として使用されている。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as urethane foam. The vacuum heat insulating material 50 will be described in detail with reference to FIG. 3, but is used as a composite heat insulating material 70 covered with a foam heat insulating material 72 and the like described later.

また、冷蔵室2,製氷室3a,上段冷凍室3b,下段冷凍室4及び野菜室5の各室を所定の温度に冷却するために、製氷室3a,上段冷凍室3b及び下段冷凍室4の背側には、冷却器28が備えられている。   Moreover, in order to cool each room of the refrigerator compartment 2, the ice making room 3a, the upper freezing room 3b, the lower freezing room 4, and the vegetable room 5 to predetermined temperature, the ice making room 3a, the upper freezing room 3b, and the lower freezing room 4 A cooler 28 is provided on the back side.

箱体20の下部後方には、圧縮機30が設けられている。また、圧縮機30が設けられた空間には凝縮器31が設けられている。冷却器28,圧縮機30,凝縮機31及び図示しないキャピラリーチューブを接続し、冷凍サイクルを構成している。   A compressor 30 is provided at the lower rear of the box 20. A condenser 31 is provided in the space where the compressor 30 is provided. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown).

冷却器28の上方には、冷却器28にて冷却された冷気を冷蔵庫1内に循環して所定の低温度を維持する送風機27が配設されている。また、冷蔵庫1の冷蔵室2と製氷室3a及び上段冷凍室3b,冷凍室4と野菜室5を区画する断熱材として設ける断熱仕切12,14は、それぞれ発泡ポリスチレン33と真空断熱材50cで構成されている。なお、断熱仕切12,14については、発泡ウレタン等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   Above the cooler 28, a blower 27 that circulates the cold air cooled by the cooler 28 in the refrigerator 1 and maintains a predetermined low temperature is disposed. Moreover, the heat insulation partitions 12 and 14 provided as the heat insulating material which partitions the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the freezer compartment 4 and the vegetable compartment 5 of the refrigerator 1 are comprised with the foamed polystyrene 33 and the vacuum heat insulating material 50c, respectively. Has been. In addition, about the heat insulation partitions 12 and 14, you may fill with the foam heat insulating materials 23, such as foaming urethane, and it does not specifically limit to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されている。また、電気部品41を覆うためのカバー42が上部に設けられている。カバー42の高さは、外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱21の天面よりも突き出る場合は、10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまう。   Moreover, the recessed part 40 for accommodating electrical components 41, such as a board | substrate for controlling the driving | operation of the refrigerator 1, and a power supply board, is formed in the top surface rear part of the box 20. As shown in FIG. In addition, a cover 42 for covering the electrical component 41 is provided at the top. The height of the cover 42 is arranged so as to be substantially the same as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of the outer case 21, it is desirable to set it in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the side of the foam heat insulating material 23, so that the internal volume is inevitably sacrificed in order to ensure the heat insulation thickness. If the internal volume is made larger, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 becomes thin.

このため、本実施形態では凹部40の発泡断熱材23中に真空断熱材50aを発泡系断熱材72で覆った複合断熱材70を配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。これに伴い、複合断熱材70の形状も略Z形状を成している。   For this reason, in this embodiment, the composite heat insulating material 70 in which the vacuum heat insulating material 50a is covered with the foam heat insulating material 72 is disposed in the foam heat insulating material 23 of the recess 40 to secure and enhance the heat insulating performance. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a of the interior lamp 45 and the electrical component 41. Accordingly, the shape of the composite heat insulating material 70 is also substantially Z-shaped.

なお、カバー42は耐火性を考慮し鋼板製としている。また、複合断熱材70は、直接ケース45aに設けた凹部の上面45bに接するようにしてもよく、この場合、複合断熱材70が位置決めされて位置ズレが抑制される。   The cover 42 is made of a steel plate in consideration of fire resistance. In addition, the composite heat insulating material 70 may be in direct contact with the upper surface 45b of the recess provided in the case 45a. In this case, the composite heat insulating material 70 is positioned and positional deviation is suppressed.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品である。そのため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。真空断熱材50dについても発泡系断熱材72で覆われた複合断熱材70の形態を成している。   Moreover, the compressor 30 and the condenser 31 arrange | positioned at the back lower part of the box 20 are components with big heat_generation | fever. Therefore, a vacuum heat insulating material 50d is disposed on the projection surface toward the inner box 22 in order to prevent heat from entering the interior. The vacuum heat insulating material 50d is also in the form of a composite heat insulating material 70 covered with the foam heat insulating material 72.

次に、真空断熱材50について、図3A,図3Bを用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52,前記内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53、及び吸着剤54とから構成される。   Next, the structure of the vacuum heat insulating material 50 will be described with reference to FIGS. 3A and 3B. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. , And an adsorbent 54.

外被材53は、真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。本実施形態においては、真空断熱材50を予め発泡系断熱材72で覆ったものとし、外箱21や内箱22等に接着する面には、樹脂系材料からなるシート材74を配置している。ここで、発泡系断熱材72は、ウレタンフォーム,スチロフォーム,フェノールフォーム等であるが、特にこれらに限定するものではない。また、シート材74は、ポリプロピレン,ポリアミド,ポリエチレンテレフタレート,ポリエチレン等のフィルムや薄板状の材料である。   The jacket material 53 is arranged on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the same size laminate film. In the present embodiment, it is assumed that the vacuum heat insulating material 50 is covered with the foam heat insulating material 72 in advance, and a sheet material 74 made of a resin material is disposed on the surface to be bonded to the outer box 21, the inner box 22, or the like. Yes. Here, the foam heat insulating material 72 is urethane foam, styrofoam, phenol foam, or the like, but is not particularly limited thereto. The sheet material 74 is a film or a thin plate material such as polypropylene, polyamide, polyethylene terephthalate, or polyethylene.

シート材74は、無機系,金属系等の蒸着膜を設けてもよく、金属箔等と組み合わせた複数層のラミネートフィルムであってもよく、特に限定するものではないが、シート材74の表面(両面)は、接着剤や発泡ウレタンとの密着性がよいものである必要がある。具体的には、シート材74の表面張力が35〜70(mN/m)であることが好ましい。表面張力をこの範囲にするためには、材料的にポリエチレンテレフタレート,ポリアミド(ナイロン)等がこの範囲内にある。また、この範囲より値が小さい材料であるポリプロピレンやポリエチレン等であっても表面処理を施すことで表面張力を大きくできる。表面張力を高める方法としては、コロナ放電法,微細な凹凸を付与するサンドブラスト処理法,高温処理するフレーム処理法,表面を酸化処理するオゾン処理法,溶剤処理法,薬品処理法,電子線照射処理法等があるが、特にこれらの方法に限定するものではない。本実施形態においてはコロナ処理法を用いた。   The sheet material 74 may be provided with a vapor deposition film such as inorganic or metal, and may be a multi-layer laminate film combined with a metal foil or the like, and is not particularly limited, but the surface of the sheet material 74 (Double-sided) needs to have good adhesiveness with an adhesive or urethane foam. Specifically, the surface tension of the sheet material 74 is preferably 35 to 70 (mN / m). In order to make the surface tension within this range, polyethylene terephthalate, polyamide (nylon), etc. are within this range. Moreover, even if it is polypropylene, polyethylene, etc. which are materials smaller than this range, surface tension can be enlarged by performing a surface treatment. Methods for increasing surface tension include corona discharge, sand blasting that gives fine irregularities, flame treatment that treats high temperatures, ozone treatment that oxidizes the surface, solvent treatment, chemical treatment, and electron beam irradiation. Although there are laws and the like, it is not particularly limited to these methods. In this embodiment, a corona treatment method is used.

なお、本実施形態において、芯材51についてはバインダー等で接着や結着していない柔軟性を有する無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため(一方、有機系の場合、真空引きのとき又は経時的にガスが発生し、このガスをアウトガスと云う)、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミックス繊維やロックウール,グラスウール以外のガラス繊維等の無機繊維等でもよい。芯材51の種類によっては内包材52が不要の場合もある。   In the present embodiment, glass wool having an average fiber diameter of 4 μm is used as the core material 51 as a laminate of flexible inorganic fibers that are not bonded or bound with a binder or the like. As for the core material 51, outgas is reduced by using a laminate of inorganic fiber materials (on the other hand, in the case of an organic material, gas is generated during evacuation or over time, and this gas is called outgas. ), Which is advantageous in terms of heat insulation performance, but is not particularly limited thereto, and may be ceramic fibers, rock wool, inorganic fibers such as glass fibers other than glass wool, and the like. Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary.

また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、アウトガスや耐熱温度等の問題をクリヤーしていれば、特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート,ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。   Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on use as long as problems such as outgas and heat-resistant temperature are cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spun bond method, If it is a fiberization method, it will not ask in particular.

外被材53のラミネート構成については、ガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層,第1ガスバリヤ層,第2ガスバリヤ層,熱溶着層の4層構成からなるラミネートフィルムとする。表面層は、保護材の役割を持つ樹脂フィルムとする。第1ガスバリヤ層は、樹脂フィルムに金属蒸着膜を設ける。第2ガスバリヤ層は、酸素バリヤ性の高い樹脂フィルムに金属蒸着膜を設ける。第1ガスバリヤ層と第2ガスバリヤ層は、金属蒸着膜同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   The laminate configuration of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface protective layer, the first gas barrier layer, the second gas barrier layer, It is set as the laminated film which consists of a four-layer structure of a heat welding layer. The surface layer is a resin film that serves as a protective material. The first gas barrier layer is provided with a metal vapor deposition film on a resin film. The second gas barrier layer is provided with a metal vapor deposition film on a resin film having a high oxygen barrier property. The first gas barrier layer and the second gas barrier layer are bonded together so that the metal vapor deposition films face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、表面層を二軸延伸タイプのポリプロピレン,ポリアミド,ポリエチレンテレフタレート等の各フィルム,第1ガスバリヤ層をアルミニウム蒸着膜付きの二軸延伸ポリエチレンテレフタレートフィルム,第2ガスバリヤ層をアルミニウム蒸着膜付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着膜付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン,ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えば、第1ガスバリヤ層や第2ガスバリヤ層として、金属箔、或いは樹脂系のフィルムに無機層状化合物,ポリアクリル酸等の樹脂系ガスバリヤコート材,DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には、例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the first gas barrier layer is a biaxially stretched polyethylene terephthalate film with an aluminum vapor deposition film, and the second gas barrier layer is an aluminum vapor deposition film. The biaxially stretched ethylene vinyl alcohol copolymer resin film, the biaxially stretched polyvinyl alcohol resin film with an aluminum vapor deposition film, or aluminum foil, and the heat-welded layer were unstretched polyethylene, polypropylene, or other films. The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as a first gas barrier layer or a second gas barrier layer, a metal foil or a resin-based film is provided with a gas-barrier film made of an inorganic layered compound, a resin-based gas barrier coating material such as polyacrylic acid, or DLC (diamond-like carbon). For example, a polybutylene terephthalate film having a high oxygen barrier property or the like may be used for the heat-bonding layer.

表面層については、第1ガスバリヤ層の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。なお、発泡系断熱材72等との接着或いは密着性が良好であることが望まれる。また、通常、第2ガスバリヤ層に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。なお、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法は特にこれに限定するものではなく、ウェットラミネート法,サーマルラミネート法等の他の方法によるものでもよい。   The surface layer is a protective material for the first gas barrier layer, but a resin with low hygroscopicity is preferably disposed in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material. In addition, it is desired that the adhesion or adhesion with the foamed heat insulating material 72 or the like is good. In addition, the resin-based film other than the metal foil used for the second gas barrier layer usually has a gas barrier property that is significantly deteriorated by moisture absorption. While suppressing deterioration of gas barrier property, the moisture absorption amount of the whole laminate film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry laminating method via a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It may be based on other methods such as a wet laminating method and a thermal laminating method.

また、内包材52については、本実施形態では熱溶着可能なポリエチレンフィルム,吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分やガスを吸着するもので、物理吸着,化学反応型吸着のどちらでも良い。   Further, in the present embodiment, the encapsulating material 52 is a polyethylene film that can be thermally welded, and the adsorbent 54 is a physical adsorption type synthetic zeolite, but these are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be heat-welded and has little outgas, and the adsorbent 54 adsorbs moisture and gas. Either adsorption or chemical reaction type adsorption may be used.

次に、第1の実施形態に係る冷蔵庫について、図4及び図5を用いて説明する。図4及び図5は、図2及び図1におけるX−X切断面及びZ−Z切断面をそれぞれ示すものである。第1の実施形態に係る冷蔵庫1は、箱体20に使用する真空断熱材50のうち、外箱21の側面21eに配置する真空断熱材50e,天面,背面及び底面はそれぞれ外箱21の天板21a,後板21b及び内箱22にそれぞれ真空断熱材50a,50b,50dを発泡断熱材23の略中間に埋設した例である。断熱仕切12,14については、図2には真空断熱材50cを図示しているが、第1の実施形態においては真空断熱材50cを使用しなかった。図示の通り、真空断熱材50cについては使用しても断熱性能上の問題はない。   Next, the refrigerator which concerns on 1st Embodiment is demonstrated using FIG.4 and FIG.5. 4 and 5 show the XX cut surface and the ZZ cut surface in FIG. 2 and FIG. 1, respectively. In the refrigerator 1 according to the first embodiment, among the vacuum heat insulating materials 50 used for the box body 20, the vacuum heat insulating material 50 e, the top surface, the back surface, and the bottom surface disposed on the side surface 21 e of the outer box 21 are respectively the outer box 21. In this example, vacuum heat insulating materials 50 a, 50 b, and 50 d are embedded in the top plate 21 a, the rear plate 21 b, and the inner box 22 approximately in the middle of the foam heat insulating material 23. As for the heat insulating partitions 12 and 14, the vacuum heat insulating material 50c is illustrated in FIG. 2, but the vacuum heat insulating material 50c is not used in the first embodiment. As shown in the figure, there is no problem in heat insulating performance even if the vacuum heat insulating material 50c is used.

また、本実施形態に用いた真空断熱材50については、外被材53のラミネート構成として、表面層を二軸延伸ポリプロピレンフィルム,第1ガスバリヤ層をアルミニウム蒸着膜付き二軸延伸ポリエチレンテレフタレートフィルム,第2ガスバリヤ層をアルミニウム蒸着膜付き二軸延伸エチレンビニルアルコール共重合体樹脂フィルム,熱溶着層を未延伸タイプの直鎖状低密度ポリエチレンフィルムとした。芯材51については、無機系繊維材料である平均繊維径4μmのガラス繊維の集合体であるノンバインダーのグラスウールを用いた。その他の材料については上述した通りである。   In addition, the vacuum heat insulating material 50 used in the present embodiment has a laminate structure of the covering material 53, the surface layer being a biaxially stretched polypropylene film, the first gas barrier layer being a biaxially stretched polyethylene terephthalate film with an aluminum vapor deposition film, The two-gas barrier layer was a biaxially stretched ethylene vinyl alcohol copolymer resin film with an aluminum vapor deposition film, and the heat-welded layer was an unstretched linear low density polyethylene film. For the core material 51, non-binder glass wool, which is an aggregate of glass fibers having an average fiber diameter of 4 μm, which is an inorganic fiber material, was used. Other materials are as described above.

次に、第1の実施形態に係る真空断熱材における外箱21と内箱22の間での配置について図4と図5を参照しながら説明する。図3に示す真空断熱材50が薄厚方向(図3の図示例で紙面上下方向)からみて矩形形状であると(正方形又は多角形形状でも構わない)、短辺と長辺の対からなる4辺の端縁部が外箱21又は内箱22から浮いていれば、当該端縁部を介したヒートブリッジの影響を避けることができる。すなわち、真空断熱材50の4辺の端部が外箱21又は内箱22に接していると、当該端部を介した熱伝導の回り込み、いわゆるヒートブリッジが発生して断熱性能が低くなるので、真空断熱材50を外箱21と内箱22の略中間位置に配置する必要がある。   Next, the arrangement between the outer box 21 and the inner box 22 in the vacuum heat insulating material according to the first embodiment will be described with reference to FIGS. 4 and 5. When the vacuum heat insulating material 50 shown in FIG. 3 has a rectangular shape (which may be a square or a polygonal shape) when viewed from the thin direction (the vertical direction in the drawing in the example of FIG. 3), 4 consisting of pairs of short sides and long sides. If the edge part of the side is floating from the outer box 21 or the inner box 22, the influence of the heat bridge via the edge part can be avoided. That is, if the end portions on the four sides of the vacuum heat insulating material 50 are in contact with the outer box 21 or the inner box 22, heat conduction through the end portions, so-called heat bridges, occurs and the heat insulating performance decreases. The vacuum heat insulating material 50 needs to be disposed at a substantially intermediate position between the outer box 21 and the inner box 22.

そこで、図4,図5及び図6Aに示すように、複合断熱材70a,70b,70eの接着面であるシート材74に図示しない合成ゴム系粘着タイプのホットメルト接着剤を塗布し、天板21a,後板21b,側面21eの内側の面に接着する。このとき、真空断熱材50は発泡系断熱材72によって外箱21から浮いた状態で配置されるため、ヒートブリッジの影響を抑制することができる。内箱22にも同様に複合断熱材70dが配置されている。   Therefore, as shown in FIG. 4, FIG. 5 and FIG. 6A, a synthetic rubber-based adhesive hot melt adhesive (not shown) is applied to the sheet material 74, which is the bonding surface of the composite heat insulating materials 70a, 70b, 70e. Adhere to the inner surface of 21a, rear plate 21b, and side surface 21e. At this time, since the vacuum heat insulating material 50 is disposed in a state of being floated from the outer box 21 by the foam heat insulating material 72, the influence of the heat bridge can be suppressed. Similarly, the composite heat insulating material 70d is also disposed in the inner box 22.

以上説明した真空断熱材50を埋設した複合断熱材70の冷蔵庫への組み込みによって、真空断熱材は外箱21と内箱22との間に発泡系断熱材を介在して離れた状態で設置されることとなり、真空断熱材によるヒートブリッジによる断熱性能の低下を回避することができ、発泡ウレタンの流動空間を十分確保できるため、ウレタンの流動を阻害することなく、未充填(ボイド)の発生を防止できる。   By incorporating the composite heat insulating material 70 in which the vacuum heat insulating material 50 described above is embedded in the refrigerator, the vacuum heat insulating material is installed in a state where the foamed heat insulating material is interposed between the outer box 21 and the inner box 22. As a result, it is possible to avoid the deterioration of the heat insulation performance due to the heat bridge due to the vacuum heat insulating material, and to secure a sufficient flow space of the foamed urethane, so that the generation of unfilled (voids) without impeding the flow of the urethane. Can be prevented.

真空断熱材の組み込みが完了した後に、発泡ウレタンを注入した結果、複合断熱材70a,70b,70eと内箱22の間及び複合断熱材70dと外箱21のそれぞれの空間には、未充填部(ボイド)部は確認されず、発泡断熱材23が均一に充填されていることを確認した。   As a result of injecting urethane foam after the vacuum heat insulating material has been assembled, the spaces between the composite heat insulating materials 70a, 70b, 70e and the inner box 22 and the spaces between the composite heat insulating material 70d and the outer box 21 are not filled. (Void) part was not confirmed but it confirmed that the foam heat insulating material 23 was filled uniformly.

第1の実施形態に係る冷蔵庫の断熱性能を測定した結果、後述する比較例1(対比する基準となる構成例)を100(指数)とした場合、96(数値が小さい方が高断熱性能を表す)となり、真空断熱材50eを発泡断熱材23の略中間に配置することで、断熱性能が約4%改善することを確認した。   As a result of measuring the heat insulation performance of the refrigerator according to the first embodiment, when Comparative Example 1 described later (a configuration example serving as a reference for comparison) is 100 (index), 96 (the smaller the numerical value, the higher the heat insulation performance). It was confirmed that the heat insulation performance was improved by about 4% by disposing the vacuum heat insulating material 50e substantially in the middle of the foam heat insulating material 23.

「比較例1」
上述した第1の実施形態と対比すべき断熱性能に関する基準の比較例1について、図8を参照しながら説明する。図8は本発明の実施形態と対比すべき断熱性能に関する基準の比較例1を示す図であり、X−X線の切断図である。
"Comparative Example 1"
A reference comparative example 1 regarding the heat insulation performance to be compared with the first embodiment will be described with reference to FIG. FIG. 8 is a diagram showing a comparative example 1 of a standard regarding the heat insulation performance to be compared with the embodiment of the present invention, and is a sectional view taken along line XX.

比較例1に示す冷蔵庫は、本発明の第1の実施形態において、外箱21の側面21eの真空断熱材50eは、従来技術のように、外箱21の内面にホットメルト接着剤で直接貼り付けた構造とした。それ以外は全て第1の実施形態と同じ仕様とした。   In the refrigerator shown in Comparative Example 1, in the first embodiment of the present invention, the vacuum heat insulating material 50e on the side surface 21e of the outer box 21 is directly attached to the inner surface of the outer box 21 with a hot melt adhesive as in the conventional technique. The structure was attached. All other specifications are the same as in the first embodiment.

以上の仕様で発泡ウレタンを充填した結果、真空断熱材50eと内箱22の間には未充填部(ボイド)部は確認されず、発泡ウレタンが均一に充填されていることを確認し、未充填部効果には問題はないが、比較例1の冷蔵庫の断熱性能については、前述の通り100(指数)であり、実施形態1よりも断熱性能では劣る。   As a result of filling urethane foam with the above specifications, no unfilled part (void) part was confirmed between the vacuum heat insulating material 50e and the inner box 22, and it was confirmed that the urethane foam was uniformly filled. Although there is no problem in the filling portion effect, the heat insulation performance of the refrigerator of Comparative Example 1 is 100 (index) as described above, which is inferior to the heat insulation performance of the first embodiment.

「第2の実施形態」
次に、第2の実施形態に関する複合断熱材と放熱パイプとの関連構造並びに配置構造について、図6と図7を参照しながら説明する。第2の実施形態に用いた複合断熱材170は、図6A,図6Bに示すように、第1の実施形態の複合断熱材70のシート材74を高熱伝導性材料174にしたものである。熱伝導性の良い材料については、アルミニウムや銅製の薄板や箔等が好ましいが、特にこれらに限定するものではない。ここで用いた真空断熱材50は第1の実施形態と同じものである。図6A,図6Bに示すように、真空断熱材50の外被材53の端部は、折り曲げても折り曲げていなくてどちらでも良い。図7に示すように、外箱21にアルミテープ94で貼付けられた放熱パイプ90の上に複合断熱材170を配置するためには、複合断熱材170に溝部178を設ける必要がある。この溝部178は、放熱パイプ90の直径に合わせて設定される。このとき、放熱パイプ90の熱がアルミテープ94を介し、高熱伝導性材料174によって熱が拡散されるため、庫内への熱侵入を抑制することができるものである。第2の実施形態においては、冷蔵庫1の外箱21の側面21eの内側に、放熱パイプ90を配置し、この部分に複合断熱材170を配置した以外は第1の実施形態と同じ仕様とした。
“Second Embodiment”
Next, a related structure and arrangement structure of the composite heat insulating material and the heat radiating pipe according to the second embodiment will be described with reference to FIGS. 6 and 7. As shown in FIGS. 6A and 6B, the composite heat insulating material 170 used in the second embodiment is obtained by replacing the sheet material 74 of the composite heat insulating material 70 of the first embodiment with a high thermal conductivity material 174. The material having good thermal conductivity is preferably aluminum or copper thin plate or foil, but is not particularly limited thereto. The vacuum heat insulating material 50 used here is the same as in the first embodiment. As shown in FIG. 6A and FIG. 6B, the end portion of the outer covering material 53 of the vacuum heat insulating material 50 may be bent or not bent. As shown in FIG. 7, in order to dispose the composite heat insulating material 170 on the heat radiating pipe 90 affixed to the outer box 21 with the aluminum tape 94, it is necessary to provide a groove 178 in the composite heat insulating material 170. The groove 178 is set according to the diameter of the heat radiating pipe 90. At this time, since the heat of the heat radiating pipe 90 is diffused by the high thermal conductivity material 174 through the aluminum tape 94, the heat intrusion into the cabinet can be suppressed. In 2nd Embodiment, it was set as the same specification as 1st Embodiment except having arrange | positioned the thermal radiation pipe 90 inside the side surface 21e of the outer case 21 of the refrigerator 1, and arrange | positioned the composite heat insulating material 170 in this part. .

以上の仕様で発泡ウレタンを充填した結果、複合断熱材70a,70b,70eと内箱22の間及び複合断熱材70dと外箱21のそれぞれの空間には、未充填部(ボイド)は確認されず、発泡断熱材23が均一に充填されていることを確認した。   As a result of filling urethane foam with the above specifications, unfilled portions (voids) are confirmed in the spaces between the composite heat insulating materials 70a, 70b, 70e and the inner box 22 and between the composite heat insulating material 70d and the outer box 21. It was confirmed that the foam insulation 23 was uniformly filled.

第2の実施形態の冷蔵庫の断熱性能を測定した結果、比較例1を100(指数)とした場合96となり、実施例1と同様の効果が得られた。   As a result of measuring the heat insulation performance of the refrigerator of the second embodiment, it was 96 when Comparative Example 1 was set to 100 (index), and the same effect as Example 1 was obtained.

「比較例2」
上述した本発明の第2の実施形態と対比すべき断熱性能に関する比較例2について、図9を参照しながら説明する。比較例2は、第2の実施形態において、複合断熱材170を真空断熱材50に溝部58を設け、放熱パイプ90上に直接配置したものである。それ以外は第1の実施形態と同じ仕様とした。
"Comparative Example 2"
Comparative Example 2 relating to the heat insulation performance to be compared with the above-described second embodiment of the present invention will be described with reference to FIG. In Comparative Example 2, the composite heat insulating material 170 is directly disposed on the heat radiating pipe 90 by providing the composite heat insulating material 170 with the groove 58 in the vacuum heat insulating material 50. The other specifications are the same as those in the first embodiment.

以上の仕様で発泡ウレタンを充填した結果、外箱21と真空断熱材50の間及び内箱22と真空断熱材50の間、さらには放熱パイプ90の周囲のそれぞれには未充填部(ボイド)は確認されず、発泡ウレタンが均一に充填されていることを確認した。比較例2の冷蔵庫の断熱性能を測定した結果、比較例1と同等であった。また、1年相当経過後に断熱性能を測定した結果、指数107を示した。   As a result of filling urethane foam with the above specifications, there are unfilled portions (voids) between the outer box 21 and the vacuum heat insulating material 50, between the inner box 22 and the vacuum heat insulating material 50, and around the heat radiating pipe 90. It was not confirmed, and it confirmed that foaming urethane was filled uniformly. As a result of measuring the heat insulation performance of the refrigerator of Comparative Example 2, it was the same as Comparative Example 1. Moreover, as a result of measuring the heat insulation performance after the passage of one year, an index 107 was shown.

以上説明した本発明の第1及び第2の実施形態と比較例1とを対比した件を取り纏めると次のようになった。本実施形態と比較例の消費電力についてみると、これらの冷蔵庫の消費電力量を測定した結果、比較例1を100(指数)とした場合、第1の実施形態が90、第3の実施形態が85となった。第2の実施形態については、放熱パイプ90を配置した結果、放熱性が向上した効果により消費電力量が低減し、省エネ性で優位であることが確認できた。また、第2の実施形態と比較例2の1年相当経過後の断熱性能から、真空断熱材と放熱パイプが近接して配置された場合、真空断熱材が放熱パイプの熱影響により断熱性能が悪化している傾向が見られるが、第2の実施形態のように一定距離を維持し、放熱パイプが発泡ウレタンで断熱されることによって真空断熱材に与える熱影響の度合いが軽減されるため断熱性能の経時劣化を抑制しているといえる。   The case where the first and second embodiments of the present invention described above and the comparative example 1 are compared is summarized as follows. As for the power consumption of this embodiment and the comparative example, as a result of measuring the power consumption of these refrigerators, when the comparative example 1 is 100 (index), the first embodiment is 90, the third embodiment Was 85. About 2nd Embodiment, as a result of arrange | positioning the heat radiating pipe 90, it has confirmed that the amount of power consumption reduced by the effect which heat dissipation improved, and is superior in energy-saving property. Moreover, from the heat insulation performance after 1 year equivalent of 2nd Embodiment and the comparative example 2, when a vacuum heat insulating material and a heat radiating pipe are arrange | positioned adjacently, a heat insulating performance is a vacuum heat insulating material by the heat influence of a heat radiating pipe. Although there is a tendency to get worse, heat insulation is maintained because the degree of thermal influence on the vacuum heat insulating material is reduced by maintaining a certain distance as in the second embodiment and insulating the heat radiating pipe with urethane foam. It can be said that the deterioration with time of performance is suppressed.

従来技術のように、スペーサを外箱にのみ設置して真空断熱材を配置したのでは、発泡ウレタンの発泡圧で真空断熱材が剥がされ、ウレタンの未充填部(ボイド)の発生等の不具合発生頻度が高いものとなっていたのに対して、本実施形態に係る冷蔵庫は、真空断熱材を予め発泡系の断熱材で覆い、外箱や内箱との接着面となる部分に接着剤や発泡ウレタンとの接着性の良いフィルムを配置したことにより、接着による配置を可能にし、外箱と内箱から真空断熱材が離れた状態で配置することで、真空断熱材特有のヒートブリッジ影響を低減することができ、断熱性能の良好な省エネ性能の高い冷蔵庫を提供できるものである。   As in the conventional technology, when the spacer is installed only in the outer box and the vacuum heat insulating material is disposed, the vacuum heat insulating material is peeled off by the foaming pressure of the urethane foam, causing problems such as generation of unfilled parts (voids) of urethane. Whereas the frequency of occurrence is high, the refrigerator according to the present embodiment covers the vacuum heat insulating material in advance with a foam-based heat insulating material, and the adhesive is applied to a portion that becomes an adhesive surface with the outer box or the inner box. By placing a film with good adhesiveness with foam and urethane foam, it is possible to arrange by adhesion, and by placing the vacuum insulation away from the outer box and inner box, the heat bridge effect unique to vacuum insulation Therefore, it is possible to provide a refrigerator with good heat insulation performance and high energy saving performance.

本実施形態のように、真空断熱材を予め発泡系断熱材で覆うことで、組み立て時の作業性が飛躍的に向上し、組み立てにかかる工数低減によるコスト低減に効果を発揮するものである。具体的には、従来例のように真空断熱材を配置する際、スペーサの配置や真空断熱材自体の取り扱いにおいて、真空断熱材への傷付きや穴あきといった不具合が発生する割合が多かったが、本発明の実施形態のように真空断熱材を複合断熱材化することで、傷付きや穴あきの確率が大幅に減少するため、接着剤塗布作業や貼付け作業がしやすくなる。   As in this embodiment, by covering the vacuum heat insulating material with the foam heat insulating material in advance, the workability at the time of assembling is drastically improved, and the effect of reducing the cost by reducing the man-hour required for assembling is exhibited. Specifically, when placing a vacuum insulation material as in the conventional example, in the arrangement of spacers and the handling of the vacuum insulation material itself, there was a high rate of occurrence of defects such as scratches and perforations in the vacuum insulation material. By making the vacuum heat insulating material into a composite heat insulating material as in the embodiment of the present invention, the probability of scratching or perforation is greatly reduced, so that the adhesive application work and the pasting work are facilitated.

また、真空断熱材の投影面内に放熱パイプを配置しても、真空断熱材が熱による断熱性能の悪化等を生じさせない距離を確保できる逃げ溝付きのスペーサを採用したことによって、放熱特性が大幅に向上し、より省エネを実現できる冷蔵庫を提供できるものである。本実施形態は冷蔵庫のみならず、断熱材を必要とする製品,機器,住宅・建物及び自動車や電車等の車両分野にも広く適用できる。   In addition, even if a heat radiating pipe is arranged in the projection surface of the vacuum heat insulating material, the heat dissipation characteristics are improved by adopting a spacer with a relief groove that can secure a distance that does not cause the heat insulating performance to deteriorate due to heat. It is possible to provide a refrigerator that can greatly improve energy saving. This embodiment can be widely applied not only to refrigerators but also to products, equipment, houses / buildings, and vehicle fields such as automobiles and trains that require heat insulating materials.

以上のように、真空断熱材を予め発泡系断熱材で覆った複合断熱材としたことで、真空断熱材のヒートブリッジ影響を軽減でき、複合断熱材を外箱側或いは内箱側に配置することで、発泡ウレタンの流動空間を確保して、発泡ウレタンの使用量の増加を抑制でき、また、組み立て時の作業工数を削減できる冷蔵庫を提供することができる。   As described above, the heat insulation effect of the vacuum heat insulating material can be reduced by arranging the vacuum heat insulating material with the foam heat insulating material in advance, and the composite heat insulating material is arranged on the outer box side or the inner box side. Thus, it is possible to provide a refrigerator that can secure a flow space for urethane foam, suppress an increase in the amount of urethane foam used, and reduce the number of work steps during assembly.

1 冷蔵庫
12,14 断熱仕切
20 箱体
21 外箱
21a 天板
21b 後板
21d 底板
21e 側面
21f 前面
22 内箱
23 発泡断熱材
33 発泡ポリスチレン
40 凹部
50,50a,50b,50c,50d,50e 真空断熱材
51 芯材
52 内包材
53 外被材
54 吸着剤
58,178 溝部
70,70a,70b,70c,70d,70e,170 複合断熱材
72 発泡系断熱材
74 シート材
90 放熱パイプ
94 アルミテープ
174 高熱伝導性材料
DESCRIPTION OF SYMBOLS 1 Refrigerator 12, 14 Heat insulation partition 20 Box 21 Outer box 21a Top plate 21b Rear plate 21d Bottom plate 21e Side surface 21f Front surface 22 Inner box 23 Foam insulation 33 Foam polystyrene 40 Recesses 50, 50a, 50b, 50c, 50d, 50e Vacuum insulation Material 51 Core material 52 Enclosure material 53 Cover material 54 Adsorbent 58, 178 Groove parts 70, 70a, 70b, 70c, 70d, 70e, 170 Composite heat insulating material 72 Foamed heat insulating material 74 Sheet material 90 Heat radiation pipe 94 Aluminum tape 174 High heat Conductive material

Claims (9)

外箱と内箱との間に発泡ウレタン断熱材と真空断熱材とを備えた冷蔵庫において、
前記真空断熱材は予め発泡系断熱材で覆った複合断熱材とし、該複合断熱材の少なくとも一面を前記外箱又は前記内箱に接着して前記発泡ウレタン断熱材中に埋設することを特徴とする冷蔵庫。
In the refrigerator provided with a urethane foam heat insulating material and a vacuum heat insulating material between the outer box and the inner box,
The vacuum heat insulating material is a composite heat insulating material previously covered with a foam heat insulating material, and at least one surface of the composite heat insulating material is bonded to the outer box or the inner box and embedded in the foamed urethane heat insulating material. Refrigerator.
前記複合断熱材はフィルム状部材又は板状部材,発泡系断熱材,真空断熱材の順に積層されて配置し、前記フィルム状部材又は前記板状部材の表面に接着剤を塗布したことを特徴とする、請求項1記載の冷蔵庫。   The composite heat insulating material is arranged in the order of a film-like member or plate-like member, a foam heat-insulating material, and a vacuum heat-insulating material, and an adhesive is applied to the surface of the film-like member or the plate-like member. The refrigerator according to claim 1. 前記フィルム状部材又は前記板状部材は表面張力が35〜70mN/mの樹脂材料又は金属材料であることを特徴とする、請求項1又は2記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the film member or the plate member is a resin material or a metal material having a surface tension of 35 to 70 mN / m. 前記発泡系断熱材の表面に樹脂硬化層を有し、該樹脂硬化層に接着剤を塗布したことを特徴とする、請求項1記載の冷蔵庫。   The refrigerator according to claim 1, further comprising a cured resin layer on a surface of the foamed heat insulating material, and an adhesive applied to the cured resin layer. 前記接着剤は合成ゴム系の粘着型接着剤であり、塗布厚さが20〜300μmであることを特徴とする、請求項2又は4記載の冷蔵庫。   The refrigerator according to claim 2 or 4, wherein the adhesive is a synthetic rubber-based adhesive and has a coating thickness of 20 to 300 µm. 前記複合断熱材は前記冷蔵庫の複数の面に跨って配置したことを特徴とする、請求項1乃至5のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 5, wherein the composite heat insulating material is disposed across a plurality of surfaces of the refrigerator. 外箱と内箱との間に発泡ウレタン断熱材と真空断熱材とを備え、前記外箱内面に放熱パイプを備えた冷蔵庫において、
前記真空断熱材はその稜線を予め発泡系断熱材で覆った複合断熱材とし、該複合断熱材の前記外箱内面と接着される面に、薄板状又は薄膜状の伝熱部材を配置し、該伝熱部材と前記放熱パイプが接触するように配置したことを特徴とする冷蔵庫。
In the refrigerator provided with a urethane foam heat insulating material and a vacuum heat insulating material between the outer box and the inner box, and provided with a heat radiating pipe on the inner surface of the outer box,
The vacuum heat insulating material is a composite heat insulating material whose ridgeline is previously covered with a foam heat insulating material, and a thin plate or thin film heat transfer member is disposed on the surface of the composite heat insulating material to be bonded to the inner surface of the outer box, The refrigerator characterized by arrange | positioning so that this heat-transfer member and the said heat radiating pipe may contact.
前記複合断熱材は前記放熱パイプと接触する部分に凹部を有することを特徴とする、請求項7記載の冷蔵庫。   The refrigerator according to claim 7, wherein the composite heat insulating material has a concave portion in a portion in contact with the heat radiating pipe. 前記真空断熱材は少なくともガスバリヤ性を有する多層ラミネートフィルム製の外被材と、柔軟性を有する繊維集合体を合成樹脂フィルム製の内袋で覆った芯材とを有し、前記外被材の最外層フィルム及び前記内袋の表面張力を35〜70mN/mとしたことを特徴とする、請求項1乃至8のいずれかに記載の冷蔵庫。   The vacuum heat insulating material has a jacket material made of a multilayer laminate film having at least a gas barrier property, and a core material in which a flexible fiber assembly is covered with an inner bag made of a synthetic resin film. The refrigerator according to any one of claims 1 to 8, wherein the outermost layer film and the inner bag have a surface tension of 35 to 70 mN / m.
JP2010011558A 2010-01-22 2010-01-22 Refrigerator Withdrawn JP2011149624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011558A JP2011149624A (en) 2010-01-22 2010-01-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011558A JP2011149624A (en) 2010-01-22 2010-01-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2011149624A true JP2011149624A (en) 2011-08-04

Family

ID=44536770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011558A Withdrawn JP2011149624A (en) 2010-01-22 2010-01-22 Refrigerator

Country Status (1)

Country Link
JP (1) JP2011149624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031234A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Refrigerator and vacuum insulation material for same
JP2013234809A (en) * 2012-05-10 2013-11-21 Panasonic Corp Refrigerator
CN104728600A (en) * 2015-03-27 2015-06-24 中国科学院电工研究所 Low-temperature vacuum container gas adsorption device
WO2017168571A1 (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Refrigerator and manufacturing method for same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031234A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Refrigerator and vacuum insulation material for same
CN103370587A (en) * 2011-08-31 2013-10-23 松下电器产业株式会社 Refrigerator and vacuum insulation material for same
JP5661175B2 (en) * 2011-08-31 2015-01-28 パナソニックIpマネジメント株式会社 Refrigerator and vacuum insulation for refrigerator
JPWO2013031234A1 (en) * 2011-08-31 2015-03-23 パナソニックIpマネジメント株式会社 Refrigerator and vacuum insulation for refrigerator
US9791202B2 (en) 2011-08-31 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Refrigerator and vacuum heat insulating material for use in refrigerator
JP2013234809A (en) * 2012-05-10 2013-11-21 Panasonic Corp Refrigerator
CN104728600A (en) * 2015-03-27 2015-06-24 中国科学院电工研究所 Low-temperature vacuum container gas adsorption device
WO2017168571A1 (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Refrigerator and manufacturing method for same
JPWO2017168571A1 (en) * 2016-03-29 2018-09-27 三菱電機株式会社 Refrigerator and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
JP5689387B2 (en) Refrigerator and manufacturing method thereof
KR100980175B1 (en) Refrigerator
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2010276308A (en) Refrigerator having vacuum heat insulating material
TWI231356B (en) Refrigerator
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2001165557A (en) Refrigerator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2009024922A (en) Refrigerator
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP6272113B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP5401258B2 (en) refrigerator
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2006084077A (en) Vacuum heat insulating material and refrigerator using the same
JP2009024921A (en) Refrigerator
JP2011149624A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2013024440A (en) Refrigerator
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402