JP5372877B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP5372877B2
JP5372877B2 JP2010205030A JP2010205030A JP5372877B2 JP 5372877 B2 JP5372877 B2 JP 5372877B2 JP 2010205030 A JP2010205030 A JP 2010205030A JP 2010205030 A JP2010205030 A JP 2010205030A JP 5372877 B2 JP5372877 B2 JP 5372877B2
Authority
JP
Japan
Prior art keywords
core material
heat insulating
vacuum heat
core
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010205030A
Other languages
Japanese (ja)
Other versions
JP2012063021A (en
Inventor
祐志 新井
邦成 荒木
恒 越後屋
崇 井関
康人 寺内
裕之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010205030A priority Critical patent/JP5372877B2/en
Publication of JP2012063021A publication Critical patent/JP2012063021A/en
Application granted granted Critical
Publication of JP5372877B2 publication Critical patent/JP5372877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material suppressing degradation in heat insulation performance and including a recess for storing a heat radiation pipe or the like, and to provide a refrigerator using the vacuum heat insulating material. <P>SOLUTION: The vacuum heat insulating material includes a core material of fiber aggregate and a covering material for storing the core material, with the inside of the covering material being decompressed. The core material includes a first core material and a second core material being larger than the first core material, both materials being stacked together. The second core material is bent toward the first core material side to form a recess continuing along the periphery. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material and a refrigerator to which the vacuum heat insulating material is applied.

本技術分野の背景技術として、特開2008−64323号公報(特許文献1)がある。この公報には、「外箱と内箱間に発泡断熱材を充填した断熱箱体と、外箱の内面側に配される放熱パイプと、芯材を外包材で覆って内部が減圧されるとともに放熱パイプが嵌められる溝部を設けた真空断熱パネルとを備えた冷蔵庫において、真空断熱パネルは、溝部を形成した面の裏面に溝部に対向して形成されるとともに溝部よりも長手方向に垂直な幅が広い凸部を有することを特徴としている」と記載されている。   As a background art in this technical field, there is JP 2008-64323 A (Patent Document 1). In this publication, “a heat insulating box body filled with a foam heat insulating material between an outer box and an inner box, a heat radiating pipe arranged on the inner surface side of the outer box, and a core material is covered with an outer packaging material to reduce the inside. And a vacuum heat insulating panel provided with a groove portion into which a heat radiating pipe is fitted, the vacuum heat insulating panel is formed on the back surface of the surface on which the groove portion is formed so as to face the groove portion and is perpendicular to the longitudinal direction than the groove portion. It is characterized by having a wide protrusion. "

特開2008−64323号公報JP 2008-64323 A

特許文献1では、真空引きされた真空断熱パネルが、上金型及び下金型によってプレス加工されて、放熱パイプが嵌められる溝部及び凸部を形成している。プレス加工によって溝部及び凸部を形成する場合、例えば、プレス加工時に、金型に埃などが付着していると真空断熱材が傷付けられ、リークする場合がある。また、プレス加工により芯材が切断されて、断熱性能が低下する。   In Patent Document 1, a vacuum-insulated vacuum heat-insulated panel is pressed by an upper mold and a lower mold to form a groove portion and a convex portion into which a heat radiating pipe is fitted. When forming a groove part and a convex part by press work, for example, when dust or the like adheres to the mold during press work, the vacuum heat insulating material may be damaged and leak. Moreover, a core material is cut | disconnected by press work and heat insulation performance falls.

また、溝部を形成した面の裏面に溝部に対向して形成されるとともに溝部よりも長手方向に垂直な幅が広い凸部を有するため、凸部で外包材が大きく伸ばされて、クラックなどが発生して信頼性が低下する。   In addition, since the rear surface of the surface on which the groove portion is formed is opposed to the groove portion and has a convex portion that is wider in the longitudinal direction than the groove portion, the outer packaging material is greatly extended at the convex portion, and cracks and the like are generated. It occurs and reliability decreases.

そこで本発明は、断熱性能の低下を抑制しつつ放熱パイプ等を収納する凹所を有する真空断熱材及びこれを用いた冷蔵庫を提供することを目的とする。   Then, an object of this invention is to provide the vacuum heat insulating material which has a recess which accommodates a heat radiating pipe etc., suppressing the fall of heat insulation performance, and a refrigerator using the same.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。一例として、繊維集合体の芯材と、該芯材を収納する外被材とを有し、前記外被材内を減圧した真空断熱材において、前記芯材は第一の芯材と、該第一の芯材より大きい第二の芯材とを積層して、前記第二の芯材は前記第一の芯材側に湾曲することで周囲に連続する凹部が形成する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. As an example, in a vacuum heat insulating material having a core material of a fiber assembly and a jacket material that houses the core material, and the inside of the jacket material is decompressed, the core material includes the first core material, A second core material that is larger than the first core material is laminated, and the second core material is curved toward the first core material to form a continuous recess.

本発明によれば、断熱性能の低下を抑制しつつ放熱パイプ等を収納する凹所を有する真空断熱材及びこれを用いた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which has a recess which accommodates a heat radiating pipe etc., suppressing the fall of heat insulation performance, and a refrigerator using this can be provided.

本発明の実施例における冷蔵庫の正面図。The front view of the refrigerator in the Example of this invention. 図1のA−A断面図。AA sectional drawing of FIG. 本発明の実施例における真空断熱材の概略断面図。The schematic sectional drawing of the vacuum heat insulating material in the Example of this invention. (a)は真空断熱材の芯材配置説明図、(b)は矢印Cから目視した図、(c)は真空断熱材の概略断面図。(A) is core material arrangement | positioning explanatory drawing of a vacuum heat insulating material, (b) is the figure observed from the arrow C, (c) is a schematic sectional drawing of a vacuum heat insulating material. 本発明の実施例1を示す真空断熱材の芯材構成の説明図。Explanatory drawing of the core material structure of the vacuum heat insulating material which shows Example 1 of this invention. 本発明の実施例1を示す真空断熱材の縦断面図(図5のB−B断面図)。The longitudinal cross-sectional view (BB sectional drawing of FIG. 5) of the vacuum heat insulating material which shows Example 1 of this invention. 本発明の実施例2を示す真空断熱材の芯材構成の説明図。Explanatory drawing of the core material structure of the vacuum heat insulating material which shows Example 2 of this invention. 本発明の実施例2を示す真空断熱材の外箱への設置状態の説明図。Explanatory drawing of the installation state to the outer box of the vacuum heat insulating material which shows Example 2 of this invention.

以下、本発明の実施形態について、図1〜図3を用いて説明する。図1は本実施形態を示す冷蔵庫の正面図であり、図2は図1のA−A断面図を示している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a refrigerator showing the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

冷蔵庫1は、図2に示すように、上から冷蔵室2,製氷室3a(上段冷凍室3b),下段冷凍室4,野菜室5を有している。図1の符号は、各室の前面開口を閉塞する扉であり、冷蔵室2にはヒンジ10等を中心に回動する冷蔵室扉6a,6bを備えている。冷蔵室扉6a,6b以外は、引き出し式の扉であり、製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9をそれぞれ配置する。これらの引き出し式扉を引き出すと、各室の容器が共に引き出されてくる。各扉には冷蔵庫1と密着させるためのパッキン11を備え、各扉の室内側外周縁に取り付けられている。   As shown in FIG. 2, the refrigerator 1 has a refrigerator room 2, an ice making room 3 a (upper freezer room 3 b), a lower freezer room 4, and a vegetable room 5 from the top. The code | symbol of FIG. 1 is a door which obstruct | occludes the front opening of each chamber, and the refrigerator compartment 2 is equipped with refrigerator door 6a, 6b rotated centering on hinge 10 grade | etc.,. Except for the refrigerator compartment doors 6a and 6b, they are drawer type doors, and an ice making compartment door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, and a vegetable compartment door 9 are arranged respectively. When these pull-out doors are pulled out, the containers in each chamber are pulled out together. Each door is provided with a packing 11 to be in close contact with the refrigerator 1, and is attached to the indoor peripheral edge of each door.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために、仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム,発泡断熱材(硬質ウレタンフォーム),真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて構成されている。   In addition, a partition heat insulation wall 12 is disposed in order to partition and insulate between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is composed of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, and the like. .

製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。   Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation.

下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム),真空断熱材等で構成されている。   A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, and is made of styrofoam or foam insulation. (Rigid urethane foam), vacuum heat insulating material, etc.

基本的に冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。尚、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉,引き出しによる開閉及び扉の分割数等、特に限定するものではない。   Basically, partition insulation walls are installed in the partitions of rooms with different storage temperature zones such as refrigeration and freezing. In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are particularly limited in terms of opening and closing by rotation, opening and closing by drawers, and the number of divided doors. is not.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材50については図3で詳細に説明する。   The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. The vacuum heat insulating material 50 will be described in detail with reference to FIG.

また、冷蔵庫の冷蔵室2,製氷室3a,上段冷凍室3b,下段冷凍室4,野菜室5等の各室を所定の温度に冷却するために製氷室3a,上段冷凍室3b,下段冷凍室4の背側には冷却器28が備えられている。この冷却器28と圧縮機30と凝縮器30a、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   Further, the ice making room 3a, the upper freezing room 3b, and the lower freezing room are used for cooling the refrigerator room 2, the ice making room 3a, the upper freezing room 3b, the lower freezing room 4, the vegetable room 5 and the like to a predetermined temperature. 4 is provided with a cooler 28. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 30a, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to keep in the range within 10 mm.

これに伴って、凹部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまう。このため、凹部40の発泡断熱材23中に真空断熱材50aを配置して断熱性能を確保,強化している。本実施例では、真空断熱材50aを前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、前記カバー42は耐熱性を考慮し鋼板製としている。   Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the side of the foam heat insulating material 23, so that the internal volume is inevitably sacrificed in order to ensure the heat insulation thickness. If the internal volume is made larger, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 becomes thin. For this reason, the vacuum heat insulating material 50a is arrange | positioned in the foam heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a and the electrical component 41 of the interior lamp 45 described above. The cover 42 is made of a steel plate in consideration of heat resistance.

また、箱体20の背面下部に配置された圧縮機30や凝縮器31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

次に、真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52と、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、吸着剤とを備えている。   Next, the structure of the vacuum heat insulating material 50 will be described with reference to FIG. The vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. And an adsorbent.

外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着された溶着部56により貼り合わせた袋状で構成されている。なお、本実施例において、芯材51についてはバインダー等で接着や結着していない柔軟性を有する無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。   The jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which a portion having a certain width is bonded to a ridge line of a laminate film of the same size by a welded portion 56 that is thermally welded. In the present embodiment, for the core material 51, glass wool having an average fiber diameter of 4 μm was used as a laminate of flexible inorganic fibers that are not bonded or bound with a binder or the like.

芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール,グラスウール以外のガラス繊維等の無機繊維等でも良い。   The core material 51 is advantageous in terms of heat insulation performance because the outgas is reduced by using a laminate of inorganic fiber materials. However, the core material 51 is not limited to this. For example, ceramic fibers, rock wool, glass wool, etc. Other inorganic fibers such as glass fibers may be used.

芯材51の種類によっては内包材52が不要の場合もある。また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート,ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。   Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary. Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on use as long as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spun bond method, If it is a fiberization method, it will not ask in particular.

外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層,ガスバリヤ層a,ガスバリヤ層b,熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層aは樹脂フィルムに金属蒸着層を設け、ガスバリヤ層bは酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層aとガスバリヤ層bは金属蒸着層同士が向かい合うように貼り合わせている。   The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, the surface protective layer, the gas barrier layer a, the gas barrier layer b, and the heat welded layer are used. The laminate film is composed of the following four layers, the surface layer is a resin film serving as a protective material, the gas barrier layer a is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer b is metal vapor deposited on a resin film having a high oxygen barrier property. A layer is provided, and the gas barrier layer a and the gas barrier layer b are bonded so that the metal deposition layers face each other.

熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。具体的には、表面層を二軸延伸タイプのポリプロピレン,ポリアミド,ポリエチレンテレフタレート等の各フィルム、ガスバリヤ層aをアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、ガスバリヤ層bをアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン,ポリプロピレン等の各フィルムとした。   For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer. Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the gas barrier layer a is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer b is biaxially stretched with aluminum vapor deposition An ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film.

この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層a,bとして、金属箔、或いは樹脂系のフィルムに無機層状化合物,ポリアクリル酸等の樹脂系ガスバリヤコート材,DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。   The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as the gas barrier layers a and b, a metal foil or a resin-based film provided with a gas-barrier film made of an inorganic layered compound, a resin-based gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), etc. For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer.

表面層についてはガスバリヤ層aの保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常ガスバリヤ層bに使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。   The surface layer is a protective material for the gas barrier layer a. However, in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. Moreover, since the resin-based film other than the metal foil normally used for the gas barrier layer b deteriorates the gas barrier property due to moisture absorption, it is possible to arrange the gas barrier property by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the moisture absorption of the entire laminate film.

これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法,サーマルラミネート法等の他の方法によるものでも何ら構わない。   As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method via a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. However, it may be any other method such as a wet laminating method or a thermal laminating method.

また、内包材52については本実施例では熱溶着可能なポリエチレンフィルム、吸着剤については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤については水分やガスを吸着するもので、物理吸着,化学反応型吸着のどちらでも良い。   Further, in the present embodiment, a polyethylene film that can be thermally welded is used for the encapsulating material 52, and a physical adsorption type synthetic zeolite is used for the adsorbent, but these are not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be heat-welded and has little outgas. The adsorbent adsorbs moisture and gas, and is physically adsorbed. Either chemical reaction type adsorption may be used.

本発明の実施例1について、図4及び図5を参照しながら説明する。   A first embodiment of the present invention will be described with reference to FIGS. 4 and 5.

まず、図4において、ロール状に予め作成された無機繊維の積層体をカットして、複数の芯材51a〜51dを重ねて配置する。   First, in FIG. 4, the laminated body of the inorganic fiber previously produced in roll shape is cut, and the several core materials 51a-51d are piled up and arrange | positioned.

本実施例では、厚さ100mmの芯材51a(第四の積層体)の上に、同程度の厚さ(100mm程度)の芯材51b(第一の積層体)を積層している。さらに、芯材51bの上には、同程度の厚さ(100mm程度)の芯材51c(第二の積層体)及び芯材51d(第三の積層体)を、所定間隔を空けて重ねる。本実施例では、芯材51c及び芯材51dの間に50mm程度の間隔を空けており、芯材51b、芯材51c及び芯材51dで形成された凹形状の空間60aが存在する。   In this embodiment, a core material 51b (first laminated body) having the same thickness (about 100 mm) is laminated on a core material 51a (fourth laminated body) having a thickness of 100 mm. Furthermore, a core material 51c (second laminated body) and a core material 51d (third laminated body) having the same thickness (about 100 mm) are stacked on the core material 51b at a predetermined interval. In this embodiment, an interval of about 50 mm is provided between the core material 51c and the core material 51d, and there is a concave space 60a formed by the core material 51b, the core material 51c, and the core material 51d.

この状態で、芯材51a,51b,51c,51d(以下、芯材全体を指す場合は「芯材51」という)を内包材52(肉厚20μm前後のポリエチレン製の合成樹脂フィルム)内に収納する。この時、一定間隔(空間60a)を保つために治具を使用して、袋状の内包材52の開口から収納してもよい。   In this state, the core materials 51a, 51b, 51c, 51d (hereinafter referred to as “core material 51” when referring to the entire core material) are stored in the inner packaging material 52 (polyethylene synthetic resin film having a thickness of about 20 μm). To do. At this time, in order to maintain a constant interval (space 60a), a jig may be used to store from the opening of the bag-shaped inner packaging material 52.

内包材52へ収納した芯材51は、プレス機を使って圧縮してから内包材52内を減圧する。そして、内包材52内に収納した芯材51の位置がずれないように、内包材52の開口全体を熱溶着機で溶着密封して、芯材51を仮圧縮した状態にする。また、この状態で芯材51を一時保管することも可能である。   The core material 51 accommodated in the inner packaging material 52 is compressed using a press machine, and then the inner packaging material 52 is decompressed. Then, the entire opening of the inner packaging material 52 is welded and sealed with a thermal welding machine so that the core material 51 accommodated in the inner packaging material 52 is not displaced, so that the core material 51 is temporarily compressed. In addition, the core material 51 can be temporarily stored in this state.

次いで、内包材52の内部に仮圧縮した状態の芯材51を外被材53内に収納する。芯材51は圧縮されているので、外被材53を損傷することなく、スムーズに外被材53内に挿入できる。その後、内包材52の熱溶着を一部開封すると、芯材51は圧縮が解除されて、外被材53内で外側に広がる。この状態で、外被材53及び内包材52内を減圧して、外被材53及び内包材52の開口を溶着密封することにより、真空断熱材50が製作される。   Next, the core material 51 in a temporarily compressed state is accommodated in the envelope material 53 in the inner packaging material 52. Since the core material 51 is compressed, it can be smoothly inserted into the jacket material 53 without damaging the jacket material 53. Thereafter, when a part of the heat-sealing of the inner packaging material 52 is opened, the core material 51 is released from the compression and spreads outside in the outer jacket material 53. In this state, the inside of the outer covering material 53 and the inner packaging material 52 is decompressed, and the openings of the outer covering material 53 and the inner packaging material 52 are welded and sealed, whereby the vacuum heat insulating material 50 is manufactured.

このように、圧縮−減圧−溶着密封工程を経ることで、真空断熱材50の厚み方向には凹部58aが形成される。その構成について、図4(c)に真空断熱材50の概略断面図を示す。減圧工程で外被材53及び内包材52は、外側より芯材51を圧縮する。このとき、本実施例では、芯材51a(第四の積層体)及び芯材51b(第一の積層体)は、外側より圧縮されて、芯材51c(第二の積層体)及び芯材51d(第三の積層体)の間の部分に入り込むように変形する。   In this way, the recess 58a is formed in the thickness direction of the vacuum heat insulating material 50 through the compression-decompression-welding sealing step. About the structure, the schematic sectional drawing of the vacuum heat insulating material 50 is shown in FIG.4 (c). In the decompression step, the jacket material 53 and the inner packaging material 52 compress the core material 51 from the outside. At this time, in this embodiment, the core material 51a (fourth laminated body) and the core material 51b (first laminated body) are compressed from the outside, and the core material 51c (second laminated body) and the core material are compressed. It deform | transforms so that it may enter into the part between 51d (3rd laminated bodies).

すなわち、第一の積層体(及び第四の積層体)の上に、第一の積層体(及び第四の積層体)よりも面積の小さい第二の積層体(及び第三の積層体)を重ねて外被材内に収納して内部を減圧すると、第一の積層体(及び第四の積層体)は空間60aを埋めるように圧縮変形する。   That is, the second laminated body (and the third laminated body) having an area smaller than that of the first laminated body (and the fourth laminated body) on the first laminated body (and the fourth laminated body). When the inner layers are stored in the jacket material and the inside is depressurized, the first stacked body (and the fourth stacked body) are compressed and deformed so as to fill the space 60a.

減圧時、芯材51は外被材53(及び内包材52)によって外側に広がろうとする弾性変形が規制されている。そして、減圧が進行すると、芯材51の繊維間に存在する隙間は次第に減少して、外側から内側に圧縮変形する。   At the time of decompression, the core member 51 is restricted from elastic deformation that tends to spread outward by the outer covering member 53 (and the inner covering member 52). And when pressure reduction progresses, the clearance gap which exists between the fibers of the core material 51 reduces gradually, and compresses and deforms from the outer side to the inner side.

仮に、芯材51がほぼ同一の厚みからなる積層体の場合、減圧によって均等に圧力が加わるので、形成される真空断熱材は平板状になる。   If the core material 51 is a laminated body having substantially the same thickness, the pressure is evenly applied by the reduced pressure, so that the formed vacuum heat insulating material has a flat plate shape.

一方、芯材51c及び芯材51dの間に空間60aが存在するような積層体の場合、図4(c)に示すように、空間60aの反対側に凹部58aが形成される。   On the other hand, in the case of a laminate in which a space 60a exists between the core material 51c and the core material 51d, as shown in FIG. 4C, a recess 58a is formed on the opposite side of the space 60a.

凹部58aは、以下のようにして形成される。芯材51を外被材53で覆って、減圧チャンバー内に設置して減圧した状態では、外被材53の内部と外部の圧力がほぼ同一のため、芯材51の厚みはすぐに変化しない。その後、減圧完了してから外被材53の開口を溶着密封して、減圧チャンバー内を大気圧に戻すと、外被材53の内部と外部の圧力差により、芯材51の厚みが圧縮される。   The recess 58a is formed as follows. In a state where the core material 51 is covered with the jacket material 53 and installed in a decompression chamber and the pressure is reduced, the pressure inside and outside the jacket material 53 is almost the same, so the thickness of the core material 51 does not change immediately. . After that, when the decompression is completed, the opening of the jacket material 53 is welded and sealed, and the inside of the decompression chamber is returned to the atmospheric pressure. The

芯材51の全体の厚みが小さくなる際に、芯材51c及び芯材51dと外被材53との間の空間60aを埋めるように、芯材51a及び芯材51bの層が空間60aに引き込まれるように繊維が曲線状に変形する。   When the overall thickness of the core material 51 is reduced, the layers of the core material 51a and the core material 51b are drawn into the space 60a so as to fill the space 60a between the core material 51c and the core material 51d and the jacket material 53. The fiber is deformed into a curved shape.

より詳細に説明すると、まず、所定間隔を空けて配置した芯材51c及び芯材51dに跨るように重ねた芯材51a及び芯材51bには、減圧によって均等に圧力が加わる。すると、芯材51a及び芯材51bは、積層した繊維間の隙間を埋めるように圧縮が進行する。   More specifically, first, the core material 51a and the core material 51b that are stacked so as to straddle the core material 51c and the core material 51d that are arranged at a predetermined interval are equally pressurized by decompression. Then, compression progresses so that the core material 51a and the core material 51b may fill the gap between the laminated fibers.

ここで、芯材51c及び芯材51dに重なっている部分は変形が規制されるが、芯材51c及び芯材51dに重なっていない部分(空間60aの下方)では変形を規制するものがない状態である。すると、芯材51a及び芯材51bは空間60aに入り込み、空間60aを埋めることで安定した真空状態になろうとする。すなわち、空間60aに入り込んだ芯材51a及び芯材51bは、外被材53及び内包材52によって変形が規制されて、次第に内部の気体が減少することで、空間60aに芯材51a及び芯材51bが入り込んだ状態で減圧が終了する。これにより、真空断熱材50には、空間60aの反対側の面に凹部58aが形成される。   Here, the portion overlapping the core material 51c and the core material 51d is restricted from being deformed, but the portion not overlapping the core material 51c and the core material 51d (below the space 60a) is in a state where no deformation is restricted. It is. Then, the core material 51a and the core material 51b enter the space 60a and fill the space 60a to achieve a stable vacuum state. That is, the core material 51a and the core material 51b that have entered the space 60a are restricted from being deformed by the jacket material 53 and the inner packaging material 52, and the internal gas gradually decreases, so that the core material 51a and the core material in the space 60a. The pressure reduction ends with 51b entering. Thereby, in the vacuum heat insulating material 50, the recessed part 58a is formed in the surface on the opposite side of the space 60a.

本実施例によれば、プレス加工により芯材が切断されて断熱性能が低下することがない。また、凹部の裏面に凸部が形成されにくく、凸部で外被材が伸ばされてクラックなどが発生することを抑制できる。よって、断熱性能の低下を抑制しつつ放熱パイプ等を収納する凹部を有する真空断熱材となる。   According to the present embodiment, the core material is not cut by press working and the heat insulation performance is not deteriorated. Moreover, it is difficult to form a convex part on the back surface of the concave part, and it is possible to suppress the occurrence of a crack or the like due to the covering material being stretched by the convex part. Therefore, it becomes a vacuum heat insulating material which has a recessed part which accommodates a thermal radiation pipe etc., suppressing the fall of heat insulation performance.

次に、図5は凹部を設けた真空断熱材50の断面図である。真空断熱材50aの芯材は、小さい寸法の第一の芯材51eと大きい寸法の第二の芯材51fを重ね合わせる。そして、内包材52に第一の芯材51eと第二の芯材51fを収納して、さらに外被材53に挿入する。この状態で真空包装を行うことで真空断熱材50を形成する。   Next, FIG. 5 is a cross-sectional view of the vacuum heat insulating material 50 provided with a recess. The core material of the vacuum heat insulating material 50a overlaps the first core material 51e having a small size and the second core material 51f having a large size. Then, the first core material 51 e and the second core material 51 f are accommodated in the inner packaging material 52 and further inserted into the jacket material 53. The vacuum heat insulating material 50 is formed by performing vacuum packaging in this state.

真空包装後に真空包装機内の雰囲気を大気圧状態に開放すると、真空断熱材50の内部が負圧状態であるため、外からの圧力で圧縮変形する。このとき、第二の芯材51fが第一の芯材51eの外周を包囲するように第一の芯材51e側に湾曲して変形する。これにより、連続する凹部54を第一の芯材51eの周囲にU字状に設けることが可能となる。また、真空断熱材50aの外側に凹部54を形成することができるため、放熱パイプ60を凹部54に沿ってU字状に周囲に配置することが可能となる。   When the atmosphere in the vacuum packaging machine is released to an atmospheric pressure state after vacuum packaging, the inside of the vacuum heat insulating material 50 is in a negative pressure state, so that it is compressed and deformed by pressure from the outside. At this time, the second core member 51f is bent and deformed toward the first core member 51e so as to surround the outer periphery of the first core member 51e. Thereby, it becomes possible to provide the continuous recessed part 54 in the U shape around the 1st core material 51e. Moreover, since the recessed part 54 can be formed in the outer side of the vacuum heat insulating material 50a, it becomes possible to arrange | position the thermal radiation pipe 60 around the recessed part 54 at a U shape.

また、大きい寸法の第二の芯材51fは、小さい寸法の第一の芯材51eよりも外側の部分の角部にスリット55を有している。これは、真空断熱材50aの内部が負圧状態になって、外からの圧力により第二の芯材51fが第一の芯材51eの側面を包み込むような連続する凹部54を形成するときに、第一の芯材51eの凹部54となる部分で均一にならず寄りや波状の凹凸が発生することを抑制するものである。すなわち、凹部54に位置する部分の第二の芯材51fにスリット55又は切り欠きを設けることにより、スリット55の部分で角部の芯材の寄りや波状の凹凸を抑制することができる。   Further, the second core material 51f having a large size has a slit 55 at a corner of the outer portion of the first core material 51e having a small size. This is because when the inside of the vacuum heat insulating material 50a is in a negative pressure state and the second core material 51f wraps the side surface of the first core material 51e by the pressure from the outside, a continuous recess 54 is formed. In the first core material 51e, it is possible to suppress the occurrence of unevenness and wavy unevenness in a portion that becomes the concave portion 54. That is, by providing the slit 55 or the notch in the second core material 51f located in the concave portion 54, the corner material near the corner 55 and wavy irregularities can be suppressed in the slit 55 portion.

なお、スリット55は凹部54が2辺重なり合う角部、すなわち屈曲部に設けることが好ましい。これは、凹部54が2辺重なり合う角部において、大きい寸法の第二の芯材51fが小さい寸法の第一の芯材51eの外周を包み込むとき、芯材に寄りが発生しやすいためである。   The slit 55 is preferably provided at a corner where the concave portion 54 overlaps two sides, that is, a bent portion. This is because when the second core material 51f having a large size wraps around the outer periphery of the first core material 51e having a small size at a corner where the concave portion 54 overlaps two sides, the core material is likely to be displaced.

図6には、本実施例における真空断熱材50aを冷蔵庫1の外箱21の内面に貼り付けた断面図を示す。真空断熱材50aの凹部54には、放熱パイプ60を配置しており、放熱パイプ60はアルミニウムテープ61で鉄板製の外箱21に貼り付けている。なお、真空断熱材50aの凹部54に冷蔵庫1の構成部品を配置してもよい。   In FIG. 6, sectional drawing which affixed the vacuum heat insulating material 50a in a present Example on the inner surface of the outer box 21 of the refrigerator 1 is shown. A heat radiating pipe 60 is disposed in the recess 54 of the vacuum heat insulating material 50 a, and the heat radiating pipe 60 is attached to the outer box 21 made of iron plate with an aluminum tape 61. In addition, you may arrange | position the component of the refrigerator 1 in the recessed part 54 of the vacuum heat insulating material 50a.

次に、実施例2について、図7及び図8を参照して説明する。真空断熱材50bは、小さい寸法の第一の芯材51gを大きい寸法の第二の芯材51hの上に配置する。また、第一の芯材51gの周囲に所定間隔を空けて第三の芯材51iを配置する。   Next, Example 2 will be described with reference to FIGS. The vacuum heat insulating material 50b arrange | positions the 1st core material 51g of a small dimension on the 2nd core material 51h of a large dimension. Further, the third core material 51i is arranged around the first core material 51g with a predetermined interval.

この状態で真空包装すると、第二の芯材51hが第一の芯材51gと第三の芯材51iの間に入り込むように変形する。そして、真空断熱材50bには屈曲部54aを有する凹部54が形成される。これにより、真空断熱材50bの凹部54に放熱パイプ60をU字状に蛇行して配置することが可能となる。放熱パイプ60を凹部54に配置することで、放熱効率をより高くすることができる。   When vacuum packaging is performed in this state, the second core material 51h is deformed so as to enter between the first core material 51g and the third core material 51i. And the recessed part 54 which has the bending part 54a is formed in the vacuum heat insulating material 50b. Thereby, it becomes possible to arrange the heat radiating pipe 60 meandering in the U-shape in the recess 54 of the vacuum heat insulating material 50b. By disposing the heat radiating pipe 60 in the recess 54, the heat radiating efficiency can be further increased.

また、第二の芯材51hには、第一の芯材51gと第三の芯材51iとの間に位置する部分の角部、すなわち屈曲部54aの位置にスリット55を設けている。これにより、圧縮変形によって生じる芯材の寄りや凹凸等は、スリット55部分で吸収されるので、屈曲部54aを有する凹部54を適切に形成できる。   In addition, the second core material 51h is provided with slits 55 at the corners of the portion located between the first core material 51g and the third core material 51i, that is, at the positions of the bent portions 54a. As a result, the deviation or unevenness of the core material caused by the compressive deformation is absorbed by the slit 55 portion, so that the concave portion 54 having the bent portion 54a can be appropriately formed.

図8は、本実施例における真空断熱材50bを冷蔵庫1の外箱21の内面に貼り付けた断面図を示す。放熱パイプ60の間隔は10cm程度として、真空断熱材50bの凹部54に放熱パイプ60をそれぞれ位置させる。これにより、放熱パイプ60は放熱効率を考慮した好適な間隔で配置できる。   FIG. 8 shows a cross-sectional view in which the vacuum heat insulating material 50 b in this embodiment is attached to the inner surface of the outer box 21 of the refrigerator 1. The interval between the heat radiating pipes 60 is about 10 cm, and the heat radiating pipes 60 are positioned in the recesses 54 of the vacuum heat insulating material 50b. Thereby, the heat radiating pipe 60 can be arrange | positioned at the suitable space | interval which considered the heat radiation efficiency.

本実施例においては、小さい寸法の第一の芯材51gの周囲に設けた凹部54をコの字型に配置しているが、芯材の形状を適宜調整することで、貼り付け面の形状に応じた凹部形状とすることができる。例えば、冷蔵庫1の内箱22形状に沿った凹凸形状として、凹部54をT字型やL字型等にすることで、配置形状に沿った立体形状とすることが可能である。   In this embodiment, the concave portions 54 provided around the first core material 51g having a small size are arranged in a U-shape, but the shape of the attachment surface can be adjusted by appropriately adjusting the shape of the core material. It can be set as the recessed part shape according to. For example, it is possible to make a three-dimensional shape along the arrangement shape by making the concave portion 54 T-shaped, L-shaped or the like as the concave-convex shape along the shape of the inner box 22 of the refrigerator 1.

以上のように、異なる寸法の芯材を積層して用いることで、小さい寸法の芯材の周囲に凹部を設けて放熱パイプや冷蔵庫の凹凸に合わせた形状にすることができる。また、真空断熱材に形成される放熱パイプ収納用の凹部を、芯材の無機繊維が切断されることなく形成できるようにして、外被材のガスバリヤ性の低下を抑制し、長期に亘って断熱性能を確保できる真空断熱材及び冷蔵庫を提供することができる。   As described above, by stacking and using core materials having different dimensions, it is possible to provide a recess around the core material having a small size and to have a shape that matches the unevenness of the heat radiating pipe or the refrigerator. In addition, the recess for housing the heat radiating pipe formed in the vacuum heat insulating material can be formed without cutting the inorganic fibers of the core material, and the deterioration of the gas barrier property of the jacket material is suppressed, and for a long time. The vacuum heat insulating material and refrigerator which can ensure heat insulation performance can be provided.

1 冷蔵庫
20 箱体
21 外箱
22 内箱
23 発泡断熱材
50,50a,50b 真空断熱材
51 芯材
51a 芯材(第四の積層体)
51b 芯材(第一の積層体)
51c 芯材(第二の積層体)
51d 芯材(第三の積層体)
51e,51g 第一の芯材
51f,51h 第二の芯材
51i 第三の芯材
52 内包材
53 外被材
54,58a 凹部
55 スリット
60 放熱パイプ
DESCRIPTION OF SYMBOLS 1 Refrigerator 20 Box 21 Outer box 22 Inner box 23 Foam heat insulating material 50, 50a, 50b Vacuum heat insulating material 51 Core material 51a Core material (fourth laminated body)
51b Core material (first laminate)
51c Core material (second laminate)
51d Core material (third laminate)
51e, 51g 1st core material 51f, 51h 2nd core material 51i 3rd core material 52 Inner material 53 Outer material 54, 58a Recessed part 55 Slit 60 Radiation pipe

Claims (5)

繊維集合体の芯材と、該芯材を収納する外被材とを有し、前記外被材内を減圧した真空断熱材において、
前記芯材は第一の芯材と、該第一の芯材より大きい第二の芯材とを積層して、前記第二の芯材は前記第一の芯材側に湾曲することで周囲に連続する凹部が形成されたことを特徴とする真空断熱材。
In a vacuum heat insulating material having a core material of a fiber assembly, and a jacket material that houses the core material, the inside of the jacket material being decompressed,
The core material is formed by laminating a first core material and a second core material larger than the first core material, and the second core material is curved to the first core material side to surround the core material. A vacuum heat insulating material characterized in that a concavity continuous to is formed.
前記第二の芯材の角部にスリットを設けたことを特徴とする、請求項1記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a slit is provided at a corner of the second core material. 繊維集合体の芯材と、該芯材を収納する外被材とを有し、前記外被材内を減圧した真空断熱材において、
前記芯材は、第一の芯材と、該第一の芯材より大きい第二の芯材とを積層して、前記第一の芯材の周囲には間隔を空けて第三の芯材を配置して、
前記第二の芯材は前記第一の芯材と前記第三の芯材の間に入り込むように曲がり、屈曲部を有する凹部が形成されたことを特徴とする真空断熱材。
In a vacuum heat insulating material having a core material of a fiber assembly, and a jacket material that houses the core material, the inside of the jacket material being decompressed,
The core material is formed by laminating a first core material and a second core material larger than the first core material, and a third core material is spaced around the first core material. And place
The vacuum heat insulating material, wherein the second core material is bent so as to enter between the first core material and the third core material, and a concave portion having a bent portion is formed.
前記屈曲部に位置する前記第二の芯材にスリットを設けたことを特徴とする、請求項3記載の真空断熱材。   The vacuum heat insulating material according to claim 3, wherein a slit is provided in the second core member positioned at the bent portion. 外箱の内側に配置された真空断熱材と、該真空断熱材と前記外箱との間に配置された放熱パイプと、を備えた冷蔵庫において、
前記真空断熱材は、繊維集合体の芯材と、該芯材を収納する外被材とを有し、前記外被材内を減圧して、
前記芯材は第一の芯材と、該第一の芯材より大きい第二の芯材とを積層して、前記第二の芯材は前記第一の芯材側に湾曲することで周囲に連続する凹部が形成され、該凹部に前記放熱パイプを配置したことを特徴とする冷蔵庫。
In a refrigerator comprising a vacuum heat insulating material disposed inside an outer box, and a heat radiating pipe disposed between the vacuum heat insulating material and the outer box,
The vacuum heat insulating material has a core material of a fiber assembly and a jacket material that stores the core material, and the inside of the jacket material is depressurized,
The core material is formed by laminating a first core material and a second core material larger than the first core material, and the second core material is curved to the first core material side to surround the core material. A refrigerator having a continuous recess formed therein, and the heat radiating pipe disposed in the recess.
JP2010205030A 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same Active JP5372877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205030A JP5372877B2 (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205030A JP5372877B2 (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2012063021A JP2012063021A (en) 2012-03-29
JP5372877B2 true JP5372877B2 (en) 2013-12-18

Family

ID=46058918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205030A Active JP5372877B2 (en) 2010-09-14 2010-09-14 Vacuum heat insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP5372877B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6113612B2 (en) * 2013-09-10 2017-04-12 日立アプライアンス株式会社 Vacuum heat insulating material and refrigerator using the same
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
JP6562682B2 (en) * 2015-04-07 2019-08-21 日立グローバルライフソリューションズ株式会社 refrigerator
JP6874529B2 (en) * 2016-09-12 2021-05-19 パナソニック株式会社 Vacuum heat insulating material
JP2018194016A (en) * 2017-05-12 2018-12-06 東芝ホームテクノ株式会社 Vacuum heat insulation material, manufacturing method of the same, and heat insulation storage including the same
JP7108945B2 (en) * 2018-06-07 2022-07-29 パナソニックIpマネジメント株式会社 Vacuum insulation material and insulation box body using the same
JP6674522B2 (en) * 2018-10-30 2020-04-01 東芝ライフスタイル株式会社 refrigerator
JP6955587B2 (en) * 2018-10-30 2021-10-27 東芝ライフスタイル株式会社 refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065589U (en) * 1983-10-11 1985-05-09 松下冷機株式会社 Insulated box with vacuum insulation
JPH0158087U (en) * 1987-10-01 1989-04-11
JP3456988B1 (en) * 2002-06-05 2003-10-14 松下冷機株式会社 Vacuum heat insulating material, method of manufacturing the same, and heat insulating box using vacuum heat insulating material
JP4545126B2 (en) * 2006-09-04 2010-09-15 シャープ株式会社 Vacuum insulation panel and refrigerator using the same
JP4897473B2 (en) * 2006-12-26 2012-03-14 倉敷紡績株式会社 Vacuum insulation

Also Published As

Publication number Publication date
JP2012063021A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP5608457B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100980175B1 (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2009024922A (en) Refrigerator
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP5401258B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP5401422B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013024440A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2011149624A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350