JP5571610B2 - Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same - Google Patents

Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same Download PDF

Info

Publication number
JP5571610B2
JP5571610B2 JP2011092097A JP2011092097A JP5571610B2 JP 5571610 B2 JP5571610 B2 JP 5571610B2 JP 2011092097 A JP2011092097 A JP 2011092097A JP 2011092097 A JP2011092097 A JP 2011092097A JP 5571610 B2 JP5571610 B2 JP 5571610B2
Authority
JP
Japan
Prior art keywords
heat insulating
core material
inner bag
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011092097A
Other languages
Japanese (ja)
Other versions
JP2012225389A5 (en
JP2012225389A (en
Inventor
恒 越後屋
邦成 荒木
崇 井関
祐志 新井
康人 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011092097A priority Critical patent/JP5571610B2/en
Publication of JP2012225389A publication Critical patent/JP2012225389A/en
Publication of JP2012225389A5 publication Critical patent/JP2012225389A5/ja
Application granted granted Critical
Publication of JP5571610B2 publication Critical patent/JP5571610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、整形性、省エネに配慮した真空断熱材の製造方法、真空断熱材及びこれを備えた冷蔵庫に関する。   The present invention relates to a method for manufacturing a vacuum heat insulating material in consideration of formability and energy saving, a vacuum heat insulating material, and a refrigerator including the same.

従来、内部に熱伝導率が低い真空空間を形成し断熱性を高めた真空断熱材や、その製造方法、及び真空断熱材を備えた冷蔵庫に係わる文献公知発明として、以下の特許文献1〜4がある。   Conventionally, the following Patent Documents 1 to 4 are disclosed as literature well-known inventions related to a vacuum heat insulating material in which a vacuum space having a low thermal conductivity is formed to improve heat insulation, a manufacturing method thereof, and a refrigerator equipped with a vacuum heat insulating material. There is.

特許文献1には、真空断熱材の芯をなす芯材の厚み方向においてバインダ(結合剤)濃度を芯材表面と厚みの中心部で異なるようにすることで、バインダの固形成分の熱伝導に依る熱架橋の影響を低減する。これにより、芯材が厚み方向で結合度合いが異なり、製造工程の真空排気時の排気抵抗を小さくできることから、排気時間が短縮され生産性を向上させた例が示されている。   In Patent Document 1, the binder (binder) concentration in the thickness direction of the core material that forms the core of the vacuum heat insulating material is made different between the core material surface and the central portion of the thickness, so that heat conduction of the solid component of the binder can be achieved. Relying on the influence of thermal crosslinking. As a result, the degree of coupling of the core materials differs in the thickness direction, and the exhaust resistance during vacuum exhaust in the manufacturing process can be reduced. Thus, an example in which the exhaust time is shortened and the productivity is improved is shown.

一方、従来、ガラス繊維等を芯材に使用した真空断熱材において、芯材に用いる結合剤がガラス繊維間に熱架橋として作用してしまうために断熱性能を悪化させる問題に対応するものとして、特許文献2がある。
特許文献2は、結合剤を用いることなく芯材をその融点の400〜500℃位まで加熱しながら加圧することにより、温度領域を弾性変形領域から塑性変形領域に移行させて塑性変形させて芯材の形状を維持し、熱架橋を抑制した断熱性能に優れる真空断熱材が示されている。
On the other hand, conventionally, in the vacuum heat insulating material using glass fiber or the like as a core material, the binder used for the core material acts as a thermal cross-link between the glass fibers, so as to cope with the problem of deteriorating the heat insulating performance. There exists patent document 2. FIG.
Patent Document 2 discloses that a core material is plastically deformed by transferring a temperature region from an elastic deformation region to a plastic deformation region by applying pressure while heating the core material to a melting point of about 400 to 500 ° C. without using a binder. A vacuum heat insulating material excellent in heat insulating performance that maintains the shape of the material and suppresses thermal crosslinking is shown.

また、特許文献3には、グラスウールからなる芯材を圧縮状態で保持できる袋状のシート材で拘束することで真空断熱材の整形体を得、グラスウール単体として性能を高めた真空断熱材の整形体が示されている。   Patent Document 3 discloses that a vacuum insulation material is shaped by constraining a core material made of glass wool with a bag-like sheet material that can be held in a compressed state, and shaping the vacuum insulation material with improved performance as a glass wool alone. The body is shown.

また、特許文献4には、バインダ処理や加熱成形処理されていない無機繊維集合体(例えば、ガラス繊維の集合体)を合成樹脂フィルムからなる内袋で覆い、内袋の外側の外袋内で減圧封止することで内圧を低下させ、無機繊維集合体の大気圧に対する反発力を抑えた真空断熱材を冷蔵庫に適用した例が示されている。   In Patent Document 4, an inorganic fiber aggregate (for example, an aggregate of glass fibers) that has not been subjected to binder treatment or heat molding treatment is covered with an inner bag made of a synthetic resin film, and the outer bag outside the inner bag is covered. The example which applied the vacuum heat insulating material which reduced the internal pressure by carrying out pressure reduction sealing and suppressed the repulsive force with respect to the atmospheric pressure of an inorganic fiber aggregate | assembly to a refrigerator is shown.

特開2004−11707号公報JP 2004-11707 A 特開2005−220954号公報Japanese Patent Laid-Open No. 2005-220954 特開2005−207556号公報JP 2005-207556 A 特開2006−112439号公報JP 2006-112439 A

ところで、近年、地球環境保護の一環から家庭用の冷蔵庫等の家電製品をはじめとして、様々ないわゆる電気製品と称される機器の省エネ化が各業界において推進されている。このような昨今の潮流により、家庭用の冷蔵庫においては冷熱箱体の断熱性能を向上させるために、断熱性が高い真空断熱材がこれまで以上に多く採用されつつある。   By the way, in recent years, various industries have promoted energy saving of various so-called electric appliances including home appliances such as a refrigerator for home use as part of global environmental protection. Due to such a recent trend, vacuum heat insulating materials having high heat insulating properties are being used more frequently than ever in the refrigerator for home use in order to improve the heat insulating performance of the cold box.

しかしながら、製品の省エネ化を重視するあまり、真空断熱材の製造工程で消費されるエネルギについては必ずしも省エネ化にはなっておらず、配慮が行き届いていない。また、製品に使用される真空断熱材の面積や枚数の増加によって、製品の外観品質や意匠性が損なわれているケースも少なくない。   However, because of the importance of energy saving of products, the energy consumed in the manufacturing process of the vacuum heat insulating material is not necessarily energy saving and is not carefully considered. In addition, there are many cases in which the appearance quality and design properties of products are impaired due to an increase in the area and number of vacuum heat insulating materials used in products.

特許文献1に記載の真空断熱材については、ガラス繊維にバインダ(結合剤)を塗布して加熱プレスすることで芯材を成形する。これにより、芯材の表面に硬化層が形成されるため真空断熱材の表面性(平坦度)が良好であり、また、成形後に所定寸法に切断されるため外形寸法精度が高いという利点がある。   About the vacuum heat insulating material of patent document 1, a core material is shape | molded by apply | coating a binder (binder) to glass fiber, and heat-pressing. As a result, since a hardened layer is formed on the surface of the core material, the surface property (flatness) of the vacuum heat insulating material is good, and there is an advantage that the external dimension accuracy is high because it is cut into a predetermined dimension after molding. .

しかし、バインダ(結合剤)を用いて芯材を成形するために膨大な熱エネルギ(200℃以上に加熱)を使用するという製法であり、温室効果ガスの排出が過大で、環境への配慮が欠落している。また、芯材のガラス繊維間にバインダが固形分として存在するため、これが熱架橋となるため断熱性能が悪化するという問題がある。更に、バインダにより固化しているため真空断熱自体の強度が高くなり、真空断熱材を折り曲げる際の形状の自由度が低いという難点がある。   However, it is a manufacturing method that uses enormous heat energy (heated to 200 ° C or higher) to form a core material using a binder (binder), and greenhouse gas emissions are excessive, giving consideration to the environment. It is missing. Moreover, since the binder exists as a solid content between the glass fibers of the core material, there is a problem that the heat insulation performance is deteriorated because this becomes thermal crosslinking. Furthermore, since it is solidified by the binder, the strength of the vacuum heat insulation itself is increased, and there is a difficulty in that the degree of freedom in shape when the vacuum heat insulating material is bent is low.

一方、特許文献2に示される真空断熱材については、バインダは使用しないが、ガラス繊維を成形するために、ガラスの軟化点付近(融点400〜500℃位)の温度まで加熱する必要があるため、特許文献1と同様、芯材を成形するために膨大な熱エネルギを使用するという不都合がある。   On the other hand, the vacuum heat insulating material shown in Patent Document 2 does not use a binder, but it is necessary to heat to a temperature near the softening point of glass (melting point: 400 to 500 ° C.) in order to form glass fibers. As with Patent Document 1, there is an inconvenience that enormous heat energy is used to form the core material.

また、ガラス繊維を軟化点(融点)付近まで加熱しながらプレス加工するため、ガラス繊維同士が密着し、その条件のばらつき具合によってはガラス繊維同士が融着する場合がある。そのため、固体(ガラス繊維)の伝熱の影響が大きく、断熱性能の悪化や真空排気時の抵抗になる等の問題がある。また、芯材のガラス繊維が密着または融着しているため、弾性係数が高くなり柔軟性が低下し、特許文献1と同様、真空断熱材を折り曲げる際の形状自由度が不足する。   Further, since the glass fibers are pressed while being heated to the vicinity of the softening point (melting point), the glass fibers are in close contact with each other, and the glass fibers may be fused depending on how the conditions vary. Therefore, there is a problem that the influence of heat transfer of the solid (glass fiber) is large, resulting in deterioration of heat insulation performance and resistance during evacuation. In addition, since the glass fibers of the core material are in close contact with each other, the elastic modulus is increased and the flexibility is reduced, and the degree of freedom in shape when the vacuum heat insulating material is bent is insufficient as in Patent Document 1.

また、特許文献3に示される真空断熱材については、グラスウール(ガラス繊維)を圧縮状態に整形する手段として、形状拘束材のシート材を用いることで、特許文献1、2の課題である膨大な熱エネルギ消費を解決している。しかしながら、グラスウール特有のガラス繊維目付量(ガラス繊維密度)のばらつきが真空断熱材の表面の凹凸になって現出する等の表面平坦性に問題がある。
また、グラスウールは嵩高である(質量体積比が大きい)ため、厚み方向に圧縮する際に端部が延在方向に膨出する場合が多く、真空断熱材の外形寸法の精度を出しにくいという問題がある。
Moreover, about the vacuum heat insulating material shown by patent document 3, as a means to shape glass wool (glass fiber) in a compression state, the enormous amount which is a subject of patent documents 1 and 2 is used by using the sheet material of a shape restraint material. Solves heat energy consumption. However, there is a problem in surface flatness such that variation in glass fiber basis weight (glass fiber density) peculiar to glass wool appears as irregularities on the surface of the vacuum heat insulating material.
In addition, since glass wool is bulky (mass volume ratio is large), when compressing in the thickness direction, the end often bulges in the extending direction, and it is difficult to obtain the accuracy of the external dimensions of the vacuum heat insulating material There is.

また、特許文献4に示される真空断熱材については、特許文献3と同様、無機繊維集合体を圧縮状態にする手段として、合成樹脂フィルムを内袋として用いており、特許文献1、2の問題である膨大な熱エネルギ消費や形状の自由度については解決している。しかし、特許文献3と同様、真空断熱材としての表面平坦性が低く、外形寸法精度が悪いという問題が依然存在する。   Moreover, about the vacuum heat insulating material shown by patent document 4, the synthetic resin film is used as an inner bag as a means to make an inorganic fiber aggregate into a compression state like patent document 3, and the problem of patent documents 1 and 2 is shown. It solves the enormous heat energy consumption and the freedom of shape. However, as in Patent Document 3, there still remains a problem that the surface flatness as a vacuum heat insulating material is low and the external dimension accuracy is poor.

このように、従来、結合剤(バインダ)や加熱によって成形していない芯材を採用した真空断熱材は、製造工程や材料面での環境配慮はされているものの、真空断熱材の外観品質ではバインダや加熱によって成形した芯材に対して劣っている現状にある。   As described above, the vacuum heat insulating material that conventionally employs a binder (binder) or a core material that is not molded by heating has been considered environmentally in terms of manufacturing process and material, but the appearance quality of the vacuum heat insulating material is The present condition is inferior to the core material formed by binder or heating.

本発明は上記実状に鑑み、熱エネルギ消費を抑制するとともに、表面平坦性と外形寸法精度が良好で、形状自由度を有する真空断熱材の製造方法、真空断熱材及びこれを備えた冷蔵庫の提供を目的とする。   In view of the above-mentioned actual situation, the present invention suppresses heat energy consumption, provides a method of manufacturing a vacuum heat insulating material having good surface flatness and external dimension accuracy, and has a degree of freedom, a vacuum heat insulating material, and a refrigerator provided with the same. With the goal.

上記目的を達成すべく、第1の本発明に関わる真空断熱材の製造方法は、繊維材料を厚さ方向に結合剤を用いることなく積層した繊維集合体を単層或いは複数層に重ね合わてなる芯材と、前記芯材の水分およびガス成分を吸着する吸着剤と、前記芯材と前記吸着剤とを収納する内袋と、該内袋を内部に収納する外袋とを備える真空断熱材の製造方法であって、前記芯材を所定の第1密度範囲になるように圧縮する圧縮工程と、前記第1密度範囲よりも低い第2密度範囲に保持した状態で前記芯材を所定の外形寸法に切断する切断工程と、前記切断工程における前記第2密度範囲を保持したまま前記芯材を前記内袋で密封する内袋包装工程と、前記外袋に前記内袋で密封した芯材を挿入する袋詰め工程と、前記内袋の密封が解除された前記芯材を前記第2密度範囲に保持した状態で真空排気して前記外袋で封止する真空包装工程とを含んで成る。 To achieve the above object, the manufacturing method of the vacuum heat insulating material according to the first of the present invention, by overlapping a fiber aggregate formed by laminating without using a binder fiber material in the thickness direction of single wall or a plurality of layers Vacuum insulation comprising: a core material comprising: an adsorbent that adsorbs moisture and gas components of the core material; an inner bag that houses the core material and the adsorbent; and an outer bag that houses the inner bag. A method of manufacturing a material, the compression step of compressing the core material so as to be in a predetermined first density range, and the core material being predetermined in a state of being held in a second density range lower than the first density range A cutting step of cutting into the outer dimensions, an inner bag packaging step of sealing the core material with the inner bag while maintaining the second density range in the cutting step, and a core sealed with the inner bag on the outer bag A bagging step for inserting a material, and the core released from sealing of the inner bag Comprising a vacuum packaging process is evacuated sealed with said outer bag being maintained at the second density range.

の本発明に関わる真空断熱材は、繊維材料を厚さ方向に結合剤を用いることなく積層した繊維集合体を単層或いは複数層に重ね合わてなる芯材と、前記芯材の水分およびガス成分を吸着する吸着剤と、前記芯材と前記吸着剤とを収納する内袋と、該内袋を内部に収納する外袋とを備える真空断熱材であって、前記芯材を所定の第1密度範囲になるように圧縮し、前記第1密度範囲よりも低い第2密度範囲に保持した状態で所定の外形寸法に切断し、その切断時の前記第2密度範囲を保持しながら前記芯材を前記内袋で密封したものを、前記外袋に挿入して前記第2密度範囲を保持したまま前記内袋の密封を解除するとともに、真空排気して前記外袋で封止している。 Vacuum heat insulating material according to a second aspect of the present invention, a core formed by a laminated fiber aggregate superimposed single layer or plural layers without using a binder fiber material in the thickness direction, the moisture of the core material and an adsorbent for adsorbing gas components, and the bag inner housing and said adsorbent and said core material, a vacuum heat insulating material comprising an outer bag for accommodating the inner bag therein, Tokoro said core member and compressed so that the first density range of the constant, the cut into a predetermined outer dimensions while maintaining the lower second density range than the first density range, holding the second density range at the time of cutting The core material sealed with the inner bag is inserted into the outer bag to release the sealing of the inner bag while maintaining the second density range, and is evacuated and sealed with the outer bag. It has stopped.

第3の本発明に関わる冷蔵庫は、第の本発明に関わる真空断熱材を備えている。 The refrigerator according to the third aspect of the present invention includes the vacuum heat insulating material according to the second aspect of the present invention.

本発明によれば、熱エネルギ消費を抑制するとともに、表面平坦性と外形寸法精度が良好で、形状自由度を有する真空断熱材の製造方法、真空断熱材及びこれを備えた冷蔵庫を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, while suppressing heat energy consumption, the surface flatness and the external dimension precision are favorable, the manufacturing method of the vacuum heat insulating material which has a shape freedom degree, a vacuum heat insulating material, and a refrigerator provided with this are realizable.

本発明に係わる実施形態の冷蔵庫の正面図である。It is a front view of the refrigerator of embodiment concerning this invention. 図1の冷蔵庫のA−A線断面図である。It is AA sectional view taken on the line of the refrigerator of FIG. 図1の冷蔵庫のZ−Z線断面図である。It is ZZ sectional view taken on the line of the refrigerator of FIG. 実施形態1の真空断熱材を示す横断面図である。2 is a cross-sectional view showing a vacuum heat insulating material of Embodiment 1. FIG. (a)は実施形態1の真空断熱材の製造方法を示す図であり、(b)は比較例(従来)の真空断熱材の製造方法の一例を示す図である。(a) is a figure which shows the manufacturing method of the vacuum heat insulating material of Embodiment 1, (b) is a figure which shows an example of the manufacturing method of the vacuum heat insulating material of a comparative example (conventional). (a)は実施形態1の芯材圧縮工程を概念的に示す側面図であり、(b)は第2の芯材切断工程と内袋包装工程を概念的に示す側面図であり、 (c)は内袋包装工程を概念的に示す側面図である。(a) is a side view conceptually showing the core material compression step of Embodiment 1, (b) is a side view conceptually showing a second core material cutting step and an inner bag packaging step, (c) ) Is a side view conceptually showing the inner bag packaging step. (a)は従来のガラス繊維を積層した芯材をなすグラスウールの圧縮前の状態を示す図であり、(b)は従来のガラス繊維を積層した芯材をなすグラスウールを圧縮した時に圧縮方向ではない方向に積層ズレを起こす状態を示した図である。(a) is a figure which shows the state before compression of the glass wool which makes the core material which laminated | stacked the conventional glass fiber, (b) is a compression direction when the glass wool which makes the core material which laminated | stacked the conventional glass fiber is compressed. It is the figure which showed the state which raise | generates lamination | stacking shift | offset | difference in the direction which is not. (a)は従来の真空排気前に芯材が膨張して復元してしまった状態を示す側断面図であり、(b)は実施形態1の芯材を内部に密封した内袋の一端を開口する作業を示す側断面図である。(a) is a sectional side view showing a state in which the core material has expanded and restored before the conventional evacuation, and (b) shows one end of the inner bag in which the core material of Embodiment 1 is sealed. It is a sectional side view which shows the operation | work which opens. (a)は、真空断熱材の芯材の外包材である内袋の切欠き部を示す内袋の平面図であり、(b)、(c)、(d)は、それぞれ内袋の切欠き部等の易密封解除手段の例を拡大して示す(a)のA部拡大図である。(a) is a plan view of the inner bag showing the notch portion of the inner bag that is the outer packaging material of the core material of the vacuum heat insulating material, and (b), (c), (d) are the cuts of the inner bag, respectively. It is the A section enlarged view of (a) which expands and shows an example of easy seal release means, such as a notch part. 実施形態1、2の真空断熱材と比較例1〜4の真空断熱材の測定結果をまとめた図である。It is the figure which put together the measurement result of the vacuum heat insulating material of Embodiment 1, 2, and the vacuum heat insulating material of Comparative Examples 1-4.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明に係わる実施形態の冷蔵庫1の正面図であり、図2は、図1の冷蔵庫1のA−A線断面図である。
実施形態の冷蔵庫1は、上から下に、冷蔵室2、製氷室3a、上段冷凍室3b、冷凍室4、および野菜室5が配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a front view of a refrigerator 1 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of the refrigerator 1 of FIG.
In the refrigerator 1 of the embodiment, a refrigerator compartment 2, an ice making chamber 3a, an upper freezer compartment 3b, a freezer compartment 4, and a vegetable compartment 5 are arranged from the top to the bottom.

冷蔵室2前面側(図1の紙面手前)には、冷蔵庫1の前面開口を開閉するための扉が配設されている。
具体的には、冷蔵室2は、ヒンジ10等に支承される冷蔵室扉6a、6bが、回動することで、その前面の開口部が開閉される。
A door for opening and closing the front opening of the refrigerator 1 is disposed on the front side of the refrigerating room 2 (front side of the sheet of FIG. 1).
Specifically, in the refrigerator compartment 2, the refrigerator compartment doors 6a and 6b supported by the hinges 10 and the like are rotated to open and close the front opening.

冷蔵室扉6a、6b以外の各室3a、3b、4、5の扉は全て引き出し式の扉である。
製氷室3a、上段冷凍室3bには、製氷室扉7aと上段冷凍室扉7bが引き出し自在に設けられ、また、冷凍室4には、下段冷凍室扉8が引き出し自在に設けられている。同様に、野菜室5には、野菜室扉9が引き出し自在に設けられている。
これら引き出し式扉7a〜9は、各扉を引き出すと、各室3a〜5の収納空間を形成する容器が扉と共に引き出されてくる。
All the doors of the chambers 3a, 3b, 4, 5 other than the refrigerator doors 6a, 6b are drawer type doors.
The ice making room 3a and the upper freezing room 3b are provided with an ice making room door 7a and an upper freezing room door 7b that can be pulled out, and the freezing room 4 is provided with a lower freezing room door 8 that can be pulled out. Similarly, the vegetable compartment door 9 is provided in the vegetable compartment 5 so that it can be pulled out.
When each of the drawer type doors 7a to 9 is pulled out, the container forming the storage space of each of the chambers 3a to 5 is pulled out together with the door.

図2に示すように、各扉6a〜9には、冷蔵庫1の貯蔵空間を形成する箱体1Hの各室2〜5の前側外周縁に沿ってパッキン11がそれぞれ固着されている。パッキン11は各扉6a〜9と各室2〜5の前側外周縁との間を気密に封止している。
パッキン11は、例えばブタジエン(butadiene)ゴム等でなる弾性体であり、弾性変形することで、冷蔵庫1の箱体1Hと各扉6a〜9とに沿うよう変形し、その間を封止し気密とする。なお、パッキン11は、説明した気密とする機能を果たせれば、その材料は限定されない。
As shown in FIG. 2, packings 11 are fixed to the doors 6 a to 9 along the front outer peripheral edges of the chambers 2 to 5 of the box 1 </ b> H that forms the storage space of the refrigerator 1. The packing 11 hermetically seals between each door 6a-9 and the front outer periphery of each chamber 2-5.
The packing 11 is an elastic body made of, for example, butadiene rubber, and is deformed along the box 1H of the refrigerator 1 and the doors 6a to 9 by being elastically deformed. To do. In addition, the material of the packing 11 will not be limited if the airtight function demonstrated can be fulfill | performed.

また、冷蔵庫1の箱体1Hには、冷蔵室2と製氷室3a及び上段冷凍室3bとの異なる貯蔵温度帯の室間を区画して断熱するため、仕切断熱壁12が設けられている。仕切断熱壁12は厚さ30〜50mm程度の断熱壁であり、スチロフォームや、発泡断熱材(ウレタンフォーム)、真空断熱材50e等の各種断熱材を、それぞれ単独使用するか、又は、複数の断熱材を組み合わせて製作されている。   In addition, the box body 1H of the refrigerator 1 is provided with a partition heat insulation wall 12 in order to partition and insulate between different storage temperature zones of the refrigerating room 2, the ice making room 3a, and the upper freezing room 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and each of various heat insulating materials such as styrofoam, foam heat insulating material (urethane foam), and vacuum heat insulating material 50e is used alone, or a plurality of heat insulating walls are used. It is manufactured by combining heat insulating materials.

例えば、仕切断熱壁12は、発泡ポリスチレン33と真空断熱材50eで構成されている。仕切断熱壁12については、硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50eに限定されない。   For example, the partition heat insulation wall 12 is comprised with the expanded polystyrene 33 and the vacuum heat insulating material 50e. The partition heat insulating wall 12 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and is not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50e.

一方、製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、同じ冷凍温度帯であるため断熱の必要はなく、区画して断熱する仕切り断熱壁ではなく区画するための仕切り部材13が設けられている。仕切り部材13の前面には、製氷室3a及び上段冷凍室3bと下段冷凍室4のパッキン11の受面が形成されている。   On the other hand, the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4 are in the same freezing temperature zone, so there is no need for heat insulation, and the partition member 13 for partitioning is not a partition heat insulating wall for partitioning and insulating. Is provided. On the front surface of the partition member 13, a receiving surface for the packing 11 of the ice making chamber 3 a and the upper freezing chamber 3 b and the lower freezing chamber 4 is formed.

冷却温度が異なる下段冷凍室4と野菜室5の間には区画して断熱するための仕切断熱壁14を設けている。仕切断熱壁14は、仕切断熱壁12と同様、厚さ30〜50mm程度の断熱壁であり、スチロフォームや、発泡断熱材(ウレタンフォーム)、真空断熱材50等で製作されている。   A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 having different cooling temperatures to partition and insulate. The partition heat insulation wall 14 is a heat insulation wall having a thickness of about 30 to 50 mm, similar to the partition heat insulation wall 12, and is made of styrofoam, foam heat insulation (urethane foam), vacuum heat insulation 50 or the like.

例えば、仕切断熱壁14は、発泡ポリスチレン33と真空断熱材50で構成されている。仕切断熱壁14については、硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50に限定されない。
基本的に、冷蔵、冷凍等の貯蔵温度帯の異なる室を仕切る部材には、隣接する各室を区画して断熱する仕切断熱壁を設置している。
For example, the partition heat insulating wall 14 is composed of expanded polystyrene 33 and a vacuum heat insulating material 50. The partition heat insulating wall 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and is not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50.
Basically, a partition heat insulating wall that partitions and insulates adjacent rooms is installed on a member that partitions the chambers having different storage temperature zones such as refrigeration and freezing.

なお、箱体1H内は、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の各貯蔵室をそれぞれ画設した場合を例示したが、各貯蔵室の配置については特にこれに限定されない。
また、図1に示す冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても、回転による開閉、引出しによる開閉、及び各扉の分割数等、特にこれに限定されない。
In addition, although the inside of the box body 1H illustrated the case where each storage room of the refrigerator compartment 2, the ice making room 3a, the upper stage freezer room 3b, the lower stage freezer room 4, and the vegetable room 5 was respectively arranged from the top, The arrangement is not particularly limited to this.
In addition, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer door 7b, the lower freezer door 8, and the vegetable door 9 shown in FIG. 1 are also opened and closed by rotation, opened and closed by drawers, and divided into doors. The number is not particularly limited to this.

図2に示す箱体1Hは、外板を形成する例えば数ミリ厚の鋼板製の外箱21と、貯蔵物の収容空間を形成する例えばポリプロピレン(polypropylene)等の樹脂製の内箱22とを備えている。
箱体1Hの外箱21と内箱22とによって形成される空間には、箱体1H内の各貯蔵室2〜5と外部空間Gとを断熱する断熱部を設けている。この断熱部内の外箱21側または内箱22側の何れかに断熱性が高い真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23(図2参照)を充填している。
A box 1H shown in FIG. 2 includes an outer box 21 made of, for example, several millimeters of steel plate that forms an outer plate, and an inner box 22 made of resin such as polypropylene that forms a storage space for stored items. I have.
In a space formed by the outer box 21 and the inner box 22 of the box body 1H, a heat insulating portion for insulating the storage chambers 2 to 5 and the outer space G in the box body 1H is provided. A vacuum heat insulating material 50 having a high heat insulating property is disposed on either the outer box 21 side or the inner box 22 side in the heat insulating portion, and a foam heat insulating material 23 such as hard urethane foam (see FIG. 2) in a space other than the vacuum heat insulating material 50. Filling).

<冷凍サイクル>
図2に示すように、冷蔵庫1の冷蔵室2、製氷室3a、上段・下段冷凍室3b、4、野菜室5等の各室を所定の温度に冷却するために製氷室3a、上段・下段冷凍室3b、4の背(後方)側には、冷媒の蒸発により吸熱して庫内を冷却する冷却器(蒸発器)28が備えられている。
<Refrigeration cycle>
As shown in FIG. 2, in order to cool each room, such as the refrigerator compartment 2, the ice making room 3a, the upper and lower freezing rooms 3b and 4 and the vegetable room 5 of the refrigerator 1, the ice making room 3a, the upper and lower stages On the back (rear) side of the freezer compartments 3b and 4, there is provided a cooler (evaporator) 28 that absorbs heat by evaporating the refrigerant and cools the interior.

冷却器(蒸発器)28と圧縮機30と凝縮機31と、図示しないキャピラリーチューブとを接続し、冷媒が循環する冷凍サイクルを構成している。冷却器28の上方には、冷却器28にて冷却された冷気を冷蔵庫1内に循環して所定の低温に保持する送風機27が配設されている。   A cooler (evaporator) 28, a compressor 30, a condenser 31, and a capillary tube (not shown) are connected to form a refrigeration cycle in which refrigerant circulates. Above the cooler 28, a blower 27 that circulates the cold air cooled by the cooler 28 in the refrigerator 1 and keeps it at a predetermined low temperature is disposed.

<庫内灯45>
箱体1Hの内箱22の天面の一部には、上方の発泡断熱材23側に突き出したケース45aを有する庫内灯45が配置され、ユーザが、冷蔵庫1の扉を開けた際に庫内を明るく、目視し易くしている。庫内灯45については、LED(Light Emitting Diode)、電球、蛍光灯、キセノンランプ等、庫内を明るく照光できれば特に限定されない。
<Inside light 45>
An interior lamp 45 having a case 45a protruding toward the upper foamed heat insulating material 23 is arranged on a part of the top surface of the inner box 22 of the box 1H, and when the user opens the door of the refrigerator 1 The interior is bright and easy to see. The interior light 45 is not particularly limited as long as it can brightly illuminate the interior such as an LED (Light Emitting Diode), a light bulb, a fluorescent lamp, and a xenon lamp.

庫内灯45の配置により、ケース45aと外箱21との間の発泡断熱材23の厚さが薄肉となり(厚さ寸法が小さくなり)断熱性能が低下するため、図2の例では、断熱性が高い真空断熱材50aを配置して断熱性能を確保している。なお、庫内灯45については、特に図示の位置でなくともよいのは言うまでもない。
<制御部>
The arrangement of the interior lamp 45 reduces the thickness of the foam heat insulating material 23 between the case 45a and the outer box 21 (the thickness dimension is reduced) and the heat insulating performance is lowered. A highly heat-insulating vacuum heat insulating material 50a is disposed to ensure heat insulating performance. Needless to say, the interior light 45 does not have to be in the illustrated position.
<Control unit>

箱体1Hの天面後方部には、冷蔵庫1の運転を制御するための制御基板や電源基板等に実装される電気部品41を収納するための凹部40が凹設されている。そして、カバー42が、凹部40に配設される制御基板や電源基板等に実装される電気部品41を覆って設けられている。   A recessed portion 40 for housing an electrical component 41 mounted on a control board, a power supply board, and the like for controlling the operation of the refrigerator 1 is provided in the rear portion of the top surface of the box 1H. A cover 42 is provided to cover the electrical component 41 mounted on a control board, a power supply board, and the like disposed in the recess 40.

カバー42の高さは、商品性に係る外観意匠性と冷蔵庫1の(貯蔵)容量である内容積確保を勘案して、外箱21の天面と同じ高さまたはほぼ同じ高さとしている。特に限定されるものではないが、カバー42の高さが外箱21の天面よりも上方に突出する場合は10mm以内の範囲に収めることが望ましい。   The height of the cover 42 is set to the same height as the top surface of the outer box 21 or substantially the same height in consideration of the appearance design property relating to the merchantability and securing the internal volume that is the (storage) capacity of the refrigerator 1. Although not particularly limited, when the height of the cover 42 protrudes upward from the top surface of the outer box 21, it is desirable that the cover 42 be within a range of 10 mm.

このように、凹部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態で形成されるため、このままでは所定の断熱性をもつ厚さを確保するためには必然的に内容積(冷蔵庫1の容量)が犠牲になる。一方、内容積(冷蔵庫1の容量)をより大きくとると凹部40と内箱22間の発泡断熱材23の厚さが薄くなり、所定の断熱性能を確保できない。ここで、熱伝達率は、発泡断熱材23の厚さに反比例するので、断熱性能は発泡断熱材23の厚さに比例することとなる。   Thus, since the recessed part 40 is formed in the state which only the space which accommodates the electrical component 41 in the foam heat insulating material 23 side is depressed, in order to ensure the thickness which has predetermined heat insulation in this state, it is inevitably content. Product (capacity of refrigerator 1) is sacrificed. On the other hand, if the internal volume (capacity of the refrigerator 1) is increased, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 becomes thin, and a predetermined heat insulating performance cannot be ensured. Here, since the heat transfer coefficient is inversely proportional to the thickness of the foam heat insulating material 23, the heat insulating performance is proportional to the thickness of the foam heat insulating material 23.

<真空断熱材の配置>
そこで、図2に示す冷蔵庫1では、凹部40の発泡断熱材23に対向する面に、発泡断熱材23より断熱性が高い真空断熱材50aを配設して断熱性能を確保し強化している。真空断熱材50aは、庫内から外部空間Gに投影する外箱21aの内面に沿った位置に、庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した真空断熱材としている。
なお、カバー42は、外部からのもらい火や何らかの原因で制御基板や電源基板等に実装される電気部品41が発火した場合等を考慮し、耐火性がある鋼板製としている。
<Arrangement of vacuum insulation>
Therefore, in the refrigerator 1 shown in FIG. 2, a vacuum heat insulating material 50 a having a higher heat insulating property than the foam heat insulating material 23 is provided on the surface of the recess 40 facing the foam heat insulating material 23 to secure and enhance the heat insulating performance. . The vacuum heat insulating material 50a is formed in a substantially Z shape so as to straddle the case 45a of the internal light 45 and the electrical component 41 at a position along the inner surface of the outer box 21a projected from the inside to the external space G. It is said.
The cover 42 is made of a fire-resistant steel plate in consideration of fire from the outside or a case where the electrical component 41 mounted on the control board, the power supply board or the like is ignited for some reason.

一方、箱体1Hの背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であることから庫内への熱侵入を防止するため、圧縮機30や凝縮機31の内箱22側への投影面に、断熱性が高い真空断熱材50bを配置している。
図3は、図1の冷蔵庫1のZ−Z線断面図である。
箱体1H(図1参照)の側面部の外箱21cの内面に真空断熱材50を配置している。図3の例では、箱体1Hの背面部の外箱21b内面に配置した真空断熱材50cは、箱体1Hの背面部の外箱21bを覆う態様で、略コの字状に折り曲げて設けている。
On the other hand, since the compressor 30 and the condenser 31 disposed at the lower back of the box 1H are components that generate a large amount of heat, the inner box 22 of the compressor 30 and the condenser 31 is prevented in order to prevent heat from entering into the cabinet. A vacuum heat insulating material 50b having a high heat insulating property is disposed on the projection surface to the side.
FIG. 3 is a cross-sectional view of the refrigerator 1 in FIG. 1 taken along the line ZZ.
The vacuum heat insulating material 50 is arrange | positioned at the inner surface of the outer box 21c of the side part of the box 1H (refer FIG. 1). In the example of FIG. 3, the vacuum heat insulating material 50 c disposed on the inner surface of the outer box 21 b on the back surface of the box 1 </ b> H is provided so as to cover the outer box 21 b on the back surface of the box 1 </ b> H and is bent in a substantially U shape. ing.

(実施形態1)
次に、本発明の実施形態1における真空断熱材50について説明する。
図4は、本発明の実施形態1の真空断熱材50を示す横断面図である。なお、図4においては、吸着剤54を拡大して示している。
真空断熱材50は、芯材51と、該芯材51を圧縮状態に保持するための内袋52、該内袋52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53と、外被材53の内部で水分(HO)、ガス分(N、O、CO等)を吸着する吸着剤54とを有し構成されている。
(Embodiment 1)
Next, the vacuum heat insulating material 50 in Embodiment 1 of this invention is demonstrated.
FIG. 4 is a cross-sectional view showing the vacuum heat insulating material 50 according to the first embodiment of the present invention. In FIG. 4, the adsorbent 54 is shown enlarged.
The vacuum heat insulating material 50 includes a core material 51, an inner bag 52 for holding the core material 51 in a compressed state, and a jacket material having a gas barrier layer that covers the core material 51 held in a compressed state by the inner bag 52. 53 and an adsorbent 54 that adsorbs moisture (H 2 O) and gas components (N 2 , O 2 , CO 2, etc.) inside the jacket material 53.

芯材51、内袋52、吸着剤54を覆う外被材53の周辺部は、溶着され溶着部53cとされ、外被材53の内部を封止している。真空断熱材50は、使用状態においては、溶着部53cを本体側に屈曲して用いられる。   The peripheral portion of the jacket material 53 that covers the core material 51, the inner bag 52, and the adsorbent 54 is welded to form a welded portion 53c, which seals the inside of the jacket material 53. The vacuum heat insulating material 50 is used by bending the welded portion 53c toward the main body side in the use state.

実施形態1の真空断熱材50は、芯材51として結合剤(バインダ)等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いている。グラスウールは、ガラス繊維を遠心法にて単位容積当たりの質量(以下、目付量と記す)が所定の値になるように層状に積層されたガラス繊維の集合体である。グラスウールは、結合剤(バインダ)等により成形されていないため綿状であり、嵩密度(質量体積比)が大きいことが特徴である。   In the vacuum heat insulating material 50 of the first embodiment, glass wool having an average fiber diameter of 4 μm is used as the core material 51 as a laminate of inorganic fibers not bonded or bound with a binder (binder) or the like. Glass wool is an aggregate of glass fibers obtained by laminating glass fibers in a layer so that the mass per unit volume (hereinafter referred to as basis weight) is a predetermined value by a centrifugal method. Glass wool is cotton-like because it is not molded with a binder (binder) or the like, and is characterized by a large bulk density (mass volume ratio).

内袋52は、熱溶着可能な合成樹脂フィルムであれば特に限定されないが、実施形態1では高密度ポリエチレンフィルム(polyethylene film)を用いている。
なお、内袋52として高密度ポリエチレンフィルムを用いる場合を例示しているが、熱溶着可能な合成樹脂フィルムであればよく、高密度に限らずポリエチレン系のフィルムや、ポリプロピレン(polypropylene)、ポリブチレンテレフタレート(polybutylene terephthalate)等のフィルムとしてもよい。
The inner bag 52 is not particularly limited as long as it is a heat-weld synthetic resin film, but in the first embodiment, a high-density polyethylene film is used.
In addition, although the case where a high density polyethylene film is used as the inner bag 52 is illustrated, it may be a synthetic resin film that can be thermally welded, and is not limited to a high density, but a polyethylene film, polypropylene (polypropylene), polybutylene It is good also as films, such as a terephthalate (polybutylene terephthalate).

外被材53は、所定のガスバリヤ性を有し、合成樹脂等のフィルムを数種類重ねて張り合わせた多層のラミネートフィルムからなる。外被材53は、ガスバリヤ性を有するとともに熱溶着可能であり、所定の真空度を維持(保持)できるものであれば特に限定されない。
実施形態1では、外被材53として、表面保護層、第一のガスバリヤ層、第二のガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとした。具体的な構成としては、例えば、表面保護層をポリアミド(polyamide)、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルムとしている。
The jacket material 53 has a predetermined gas barrier property, and is formed of a multilayer laminate film in which several kinds of films such as synthetic resins are laminated and bonded together. The covering material 53 is not particularly limited as long as it has gas barrier properties and can be heat-welded and can maintain (hold) a predetermined degree of vacuum.
In the first embodiment, the outer covering material 53 is a laminated film having a four-layer structure including a surface protective layer, a first gas barrier layer, a second gas barrier layer, and a heat welding layer. As a specific configuration, for example, the surface protective layer is a synthetic resin film such as polyamide, polypropylene, polyethylene terephthalate, or the like.

外被材53は、ガスバリヤ性や吸湿性等を考慮すると二軸方向に延伸して成形された二軸延伸タイプのフィルムが好ましい。第一及び第二のガスバリヤ層としては金属、金属酸化物、無機系材料等からなるガスバリヤ膜を備えた二軸延伸タイプのフィルムが好ましく、例えばポリエチレンテレフタレート、エチレンビニルアルコール共重合体(Ethylene- Vinylalcohol-Copolymer)、ポリビニルアルコール(polyvinyl alcohol)等のフィルムがある。なお、外被材53の第一及び第二のガスバリヤ層の何れか一方又は両方に金属箔層を設けてもよい。   The jacket material 53 is preferably a biaxially stretched film formed by stretching in the biaxial direction in consideration of gas barrier properties, hygroscopicity, and the like. As the first and second gas barrier layers, a biaxially stretched type film having a gas barrier film made of metal, metal oxide, inorganic material or the like is preferable, for example, polyethylene terephthalate, ethylene vinyl alcohol copolymer (Ethylene- Vinylalcohol). There are films such as -Copolymer) and polyvinyl alcohol. Note that a metal foil layer may be provided on one or both of the first and second gas barrier layers of the jacket material 53.

外被材53の熱溶着層としては、熱溶着時の強度が求められる。熱溶着層は、例えば低密度、中密度、高密度及び直鎖状低密度等のポリエチレンや、ポリプロピレン、ポリブチレンテレフタレート等のフィルムとすることが多い。各層のフィルムは二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせられるが、接着剤や貼り合わせの方法については特にこれに限定されない。
なお、外被材53のラミネート構成については4層構成に限定するものではなく、3層や5層又はそれ以外の複数層でも真空断熱材として所定の性能を確保できるものであればよく、限定されない。
As the heat welding layer of the jacket material 53, the strength at the time of heat welding is required. The heat-welded layer is often a film such as polyethylene, such as low density, medium density, high density, and linear low density, or polypropylene, polybutylene terephthalate. The film of each layer is bonded by a dry laminating method through a two-component curable urethane adhesive, but the adhesive and the bonding method are not particularly limited thereto.
Note that the laminate structure of the jacket material 53 is not limited to a four-layer structure, and may be a three-layer, five-layer, or a plurality of other layers as long as a predetermined performance can be secured as a vacuum heat insulating material. Not.

吸着剤54は、物理吸着タイプの合成ゼオライトを用いたが、特にこれに限定するものではない。水分やガス(少なくとも酸素、窒素、二酸化炭素)を吸着するものであれば、水分子やガス分子を細孔で捕捉するタイプの物理吸着、化学反応のイオン結合や共有結合で水分子やガス分子を吸着するタイプの化学反応型吸着のどちらでも構わない。ただし、反応性が強く真空断熱材50を構成する材料を変質させたり、副生成物が発生するような材料は当然のことながら使用することはできない。   As the adsorbent 54, a physical adsorption type synthetic zeolite was used, but the adsorbent 54 is not particularly limited thereto. If water and gas (at least oxygen, nitrogen, carbon dioxide) are adsorbed, water molecules and gas molecules can be captured by pore-type physical adsorption or chemical reaction ionic bonds or covalent bonds. Either of the types of chemical reaction type adsorption that adsorbs bismuth may be used. However, it is naturally impossible to use a material that is highly reactive and that alters the material constituting the vacuum heat insulating material 50 or generates a by-product.

<真空断熱材50の製造方法>
次に、実施形態1の真空断熱材50の製造方法について説明する。
図5(a)に実施形態1の真空断熱材50の製造方法について示し、図5(b)に比較例(従来)の真空断熱材の製造方法の一例を示す。
<Method of manufacturing vacuum heat insulating material 50>
Next, the manufacturing method of the vacuum heat insulating material 50 of Embodiment 1 is demonstrated.
FIG. 5 (a) shows a method for manufacturing the vacuum heat insulating material 50 of Embodiment 1, and FIG. 5 (b) shows an example of a method for manufacturing a vacuum heat insulating material of a comparative example (conventional).

まず、実施形態1の真空断熱材50の製造工程を、図5(a)を用いて説明する。
図5(a)に示すように、芯材51の材料であり所定の目付量としたグラスウール51aを供給し、第1の芯材切断工程101において、製作しようとしている真空断熱材50の芯材51の外形サイズよりも一回り大きいサイズに、グラスウール51aを切断、つまり荒切りする。
First, the manufacturing process of the vacuum heat insulating material 50 of Embodiment 1 is demonstrated using Fig.5 (a).
As shown in FIG. 5A, a glass wool 51a which is a material of the core material 51 and has a predetermined basis weight is supplied, and the core material of the vacuum heat insulating material 50 to be manufactured in the first core material cutting step 101. The glass wool 51a is cut, that is, roughly cut to a size that is slightly larger than the outer size of 51.

続いて、芯材積層工程102において、真空断熱材50の必要厚さに応じてグラスウール51aを複数層に積層する。
なお、グラスウール51aは、単層でもよく、この場合には芯材積層工程102は行なわない。
Subsequently, in the core material laminating step 102, the glass wool 51a is laminated in a plurality of layers according to the required thickness of the vacuum heat insulating material 50.
Glass wool 51a may be a single layer, and in this case, core material lamination step 102 is not performed.

続いて、芯材乾燥工程103により、複数層に積層した芯材51を高温の乾燥炉の中を、必要時間通過させ、水分を除去し、芯材51の持込み水分量を低減する。なお、芯材51を高温の乾燥炉の中に、必要時間入れるバッチ式を採用してもよい。
図6(a)は実施形態1の芯材圧縮工程104を概念的に示す側面図であり、図6(b)は第2の芯材切断工程105と内袋包装工程106を概念的に示す側面図であり、図6(c)は内袋包装工程106を概念的に示す側面図である。
Subsequently, in the core material drying step 103, the core material 51 laminated in a plurality of layers is passed through a high-temperature drying furnace for a necessary time to remove moisture and reduce the amount of moisture brought into the core material 51. In addition, you may employ | adopt the batch type which puts the core material 51 in a high temperature drying furnace for required time.
FIG. 6A is a side view conceptually showing the core material compression step 104 of the first embodiment, and FIG. 6B conceptually shows a second core material cutting step 105 and an inner bag packaging step 106. FIG. 6C is a side view conceptually showing the inner bag packaging step 106.

続いて、図5(a)の芯材圧縮工程104において、図6(a)に示すように、グラスウール51aの目付量のばらつきを平均化するため、圧縮装置104a、104bにて積層され乾燥させた芯材51aを、後記する密度範囲(A)になるように圧縮する(図6(a)の矢印α1参照)。   Subsequently, in the core material compressing step 104 in FIG. 5A, as shown in FIG. 6A, in order to average the variation in the basis weight of the glass wool 51a, they are laminated and dried by the compression devices 104a and 104b. The core material 51a is compressed to a density range (A) described later (see arrow α1 in FIG. 6A).

続いて、図6(b)に示すように、芯材51を、第2の芯材切断工程105において、密度範囲(A)より低い密度範囲(B)(詳細は後記)になるようにコンベア105a、105b、105cで搬送し拘束して密度範囲(B)にする。そして、コンベア105b、105cで押圧した密度範囲(B)のグラスウール51aの外形サイズを、密度範囲(B)に保持した状態で、真空断熱材50の芯材51の完成品形状になるように切断刃105d、105e、105fで切断する。この際、図示しない吸着剤投入工程により芯材51の内部に吸着剤54を投入する。
なお、図6(b)において、切断刃105fは、コンベア105b、105cを挟んで図6(b)の紙面手前側と図6(b)の紙面奥側との少なくとも何れかに設けられている。
Subsequently, as shown in FIG. 6 (b), the core material 51 is conveyed in the second core material cutting step 105 so as to have a density range (B) (details will be described later) lower than the density range (A). 105a, 105b and 105c are transported and restrained to obtain a density range (B). And it cut | disconnects so that it may become the finished product shape of the core material 51 of the vacuum heat insulating material 50 in the state which hold | maintained the external size of the glass wool 51a of the density range (B) pressed by the conveyors 105b and 105c in the density range (B). Cutting with blades 105d, 105e, and 105f. At this time, the adsorbent 54 is introduced into the core material 51 by an adsorbent introduction process (not shown).
In FIG. 6B, the cutting blade 105f is provided on at least one of the front side of the paper in FIG. 6B and the back side of the paper in FIG. 6B with the conveyors 105b and 105c interposed therebetween. .

続いて、内袋包装工程106において、図6(c)に示すように、先端部52a1が溶着された内袋用フィルム52aがローラr1、r2から、コンベア106a、106bで密度範囲(B)を保持した状態で搬送される芯材51に、供給される。そして、密度範囲(B)を保持した状態で、熱溶着装置106c、106dで芯材51を被覆した内袋用フィルム52aの周囲が熱溶着され芯材51を覆って密封することより、密度範囲(B)を保持し内袋52によって密封状態となった芯材51が得られる。   Subsequently, in the inner bag packaging step 106, as shown in FIG. 6 (c), the inner bag film 52a with the front end 52a1 welded is transferred from the rollers r1 and r2 to the density range (B) by the conveyors 106a and 106b. It is supplied to the core material 51 which is conveyed in a held state. Then, in the state where the density range (B) is maintained, the periphery of the inner bag film 52a covered with the core material 51 by the heat welding devices 106c and 106d is heat-welded so as to cover the core material 51 and seal the density range. A core material 51 is obtained that is held in a sealed state by the inner bag 52 while holding (B).

続いて、袋詰め工程107において、内袋52で密封された芯材51を外被材53に挿入し、外被材53の内部を真空状態にするため、図示しない真空チャンバを有する真空包装機内に投入する。このとき、真空包装機に投入する前に、外被材53や芯材51の内部の真空排気を効率よくする目的で、内袋52で圧縮状態にした芯材51を挿入した状態の外被材53を100℃程度に十分に温めてもよい。   Subsequently, in the bag filling process 107, the core material 51 sealed with the inner bag 52 is inserted into the jacket material 53, and the inside of the jacket material 53 is evacuated, so that the inside of the vacuum packaging machine having a vacuum chamber (not shown). In At this time, in order to efficiently evacuate the inside of the jacket material 53 and the core material 51 before putting into the vacuum packaging machine, the jacket in a state where the core material 51 compressed by the inner bag 52 is inserted. The material 53 may be sufficiently warmed to about 100 ° C.

続いて、内袋開口工程108において、密度範囲(B)を保持した状態で芯材51の内部まで真空引きされるように、密度範囲(B)を保持した状態で内袋52の一端を開口させる。
続いて、真空排気工程109において、密度範囲(B)を保持した状態で、一端を開口した内袋52内の芯材51が外被材53に収納されたものが入れられた真空チャンバ内を真空排気する。
Subsequently, in the inner bag opening step 108, one end of the inner bag 52 is opened while the density range (B) is maintained so that the inside of the core material 51 is evacuated while the density range (B) is maintained. Let
Subsequently, in the evacuation process 109, the inside of the vacuum chamber in which the core material 51 in the inner bag 52 having one end opened is placed in the outer jacket material 53 while maintaining the density range (B). Evacuate.

続いて、真空包装工程110において、所定の真空度に到達後、外被材53の開口部を熱溶着して真空断熱材50が完成する。
このとき、袋詰め工程107で外被材53に投入した芯材52は、袋詰め工程107にて真空包装機内に投入した後、内袋開口工程108から真空包装工程110まで、密度範囲(B)を保持した状態に拘束されている。
Subsequently, in the vacuum packaging step 110, after reaching a predetermined degree of vacuum, the opening of the jacket material 53 is thermally welded to complete the vacuum heat insulating material 50.
At this time, the core material 52 introduced into the jacket material 53 in the bag filling process 107 is charged into the vacuum packaging machine 107 in the bag filling process 107, and then from the inner bag opening process 108 to the vacuum packaging process 110 in the density range (B ) Is held.

一方、図5(b)に示す比較例(従来)は、芯材切断工程201から芯材乾燥工程203までは、実施形態1の芯材切断工程101から芯材乾燥工程103と同様である。しかし、比較例(従来)の内袋包装工程204は、実施形態1の内袋包装工程106と密度範囲(B)を保持しない点で異なる。比較例(従来)の袋詰め工程205は、実施形態1の袋詰め工程107と同様である。   On the other hand, the comparative example (conventional) shown in FIG. 5B is similar to the core material cutting step 101 to the core material drying step 103 in the first embodiment from the core material cutting step 201 to the core material drying step 203. However, the inner bag packaging process 204 of the comparative example (conventional) is different from the inner bag packaging process 106 of the first embodiment in that the density range (B) is not maintained. The bag filling process 205 of the comparative example (conventional) is the same as the bag filling process 107 of the first embodiment.

しかし、比較例(従来)の内袋開口工程206から真空包装工程208は、実施形態1の内袋開口工程206から真空包装工程208と密度範囲(B)を保持しない点で異なる。
すなわち、本実施形態1は、比較例(従来)と異なり、芯材圧縮工程104において、芯材51を密度範囲(A)になるように圧縮する点、および、密度範囲(A)より低い点で、第2の芯材切断工程105、内袋包装工程106、内袋開口工程108〜真空包装工程110を行う点に特徴がある。
However, the inner bag opening process 206 to the vacuum packaging process 208 of the comparative example (conventional) are different from the inner bag opening process 206 to the vacuum packaging process 208 of the first embodiment in that the density range (B) is not maintained.
That is, unlike the comparative example (conventional), the first embodiment compresses the core material 51 so as to be in the density range (A) in the core material compression step 104, and is lower than the density range (A). Thus, the second core material cutting step 105, the inner bag packaging step 106, and the inner bag opening step 108 to the vacuum packaging step 110 are characterized.

芯材51を、真空引きする際の密度範囲(B)より高い密度範囲(A)になるように圧縮することで、真空断熱材50の芯材51の平坦度が向上する。
また、第2の芯材切断工程105において、芯材51の外形サイズを、密度範囲(A)より低い密度範囲(B)に保持したまま、真空断熱材50の完成品形状になるように切断する。そして、その後の内袋包装工程106、内袋開口工程108〜真空包装工程110を密度範囲(B)に保持することで、真空断熱材50の外径寸法の精度を高くできる。
The flatness of the core material 51 of the vacuum heat insulating material 50 is improved by compressing the core material 51 so that the density range (A) is higher than the density range (B) when vacuuming.
Also, in the second core material cutting step 105, the core material 51 is cut so as to have a finished product shape of the vacuum heat insulating material 50 while keeping the outer size of the core material 51 in the density range (B) lower than the density range (A). To do. And the precision of the outer diameter dimension of the vacuum heat insulating material 50 can be made high by hold | maintaining the subsequent inner bag packaging process 106 and the inner bag opening process 108-the vacuum packaging process 110 in a density range (B).

<実施形態1の芯材圧縮工程104〜内袋包装工程106の詳細>
第2の芯材切断工程105と内袋包装工程106で密度範囲(B)を保持する理由について、図7を用いて詳細に説明する。
図7(a)は従来のガラス繊維を積層した芯材51をなすグラスウール51aの圧縮前の状態を示す図であり、図7(b)は従来のガラス繊維を積層した芯材51をなすグラスウール51aを圧縮した時に圧縮方向ではない方向(圧縮方向と直交する方向)に積層ズレを起こす状態を示した図である。
<Details of Core Material Compression Step 104 to Inner Bag Packaging Step 106 of Embodiment 1>
The reason why the density range (B) is maintained in the second core material cutting step 105 and the inner bag packaging step 106 will be described in detail with reference to FIG.
FIG. 7A is a view showing a state before compression of the glass wool 51a forming the core material 51 laminated with the conventional glass fibers, and FIG. 7B is a glass wool forming the core material 51 laminated with the conventional glass fibers. It is the figure which showed the state which raise | generates lamination | stacking deviation in the direction (direction orthogonal to a compression direction) which is not a compression direction when 51a is compressed.

図7(a)に示すように、芯材51の材料であるグラスウール51aは、前記した通り、ガラス繊維が積層されただけの綿状をなしており、嵩密度(質量体積比)が大きいため、複数層に積層することで嵩が高い状態となっている。
ここでは、仮にグラスウール51aの厚さ方向に直交する延在方向(図7(a)の左右方向)の外形寸法をSに切断したものとして説明する。
As shown in FIG. 7A, the glass wool 51a, which is the material of the core material 51, has a cotton shape in which glass fibers are simply laminated as described above, and has a large bulk density (mass volume ratio). The bulkiness is increased by laminating the layers.
Here, it is assumed that the outer dimension in the extending direction (left-right direction in FIG. 7A) orthogonal to the thickness direction of the glass wool 51a is cut into S.

外形寸法Sに切断したグラスウール51aを内袋52に内包して圧縮装置104a、104bで圧縮する場合、図7(b)のように矢印α2方向に圧縮した際に、側端面51a1が圧縮前の元の位置からずれた状態になることが多い。つまり、圧縮時にグラスウール51aの側端面51a1が圧縮前の元の位置からX1、X2分だけはみ出した状態になってしまう。   When the glass wool 51a cut into the outer dimension S is enclosed in the inner bag 52 and compressed by the compression devices 104a and 104b, the side end face 51a1 is uncompressed when compressed in the direction of the arrow α2 as shown in FIG. In many cases, the position is shifted from the original position. That is, the side end face 51a1 of the glass wool 51a protrudes from the original position before compression by X1 and X2 during compression.

すなわち、従来の製造方法では、芯材51を予め所定の外形寸法に切断した後に内袋52内に包装して圧縮するため、図7(b)に示すように、芯材51の端面51a1が圧縮前の元の位置からX1、X2分だけずれる現象が起きていた。
これが、従来、真空断熱材50の外形寸法精度を悪化させている原因の一つである。
That is, in the conventional manufacturing method, since the core material 51 is cut into a predetermined outer dimension in advance and then packed and compressed in the inner bag 52, the end surface 51a1 of the core material 51 is formed as shown in FIG. There was a phenomenon in which X1 and X2 minutes shifted from the original position before compression.
This is one of the causes that have deteriorated the external dimension accuracy of the vacuum heat insulating material 50 conventionally.

そこで、本発明では、前記の如く、芯材51をなすグラスウール51aに密度範囲(B)を設定した後に所定の芯材51の外形寸法になるように切断している。
ここで、図5(a)に示す芯材圧縮工程104から内袋包装工程106までの工程の一例を、図6を用いて、再度、作用効果を含めて詳述する。
Therefore, in the present invention, as described above, after setting the density range (B) on the glass wool 51a forming the core material 51, the glass wool 51a is cut to have a predetermined outer dimension of the core material 51.
Here, an example of the process from the core material compression process 104 to the inner bag packaging process 106 shown in FIG.

図6(a)において、芯材圧縮工程104において、圧縮装置104a、104bにて積層されたグラスウール51aを密度範囲(A)になるように圧縮する。この際、真空断熱材50の最終厚さの70%程度まで圧縮するので、密度範囲(A)になるように圧縮することで、芯材51を構成するグラスウール51aの部分的な偏り(真空断熱材50内のガラス繊維密度のばらつき)が是正され、最終的な真空断熱材50の状態において、外面の平坦性を向上することができる。   6A, in the core material compression step 104, the glass wool 51a laminated by the compression devices 104a and 104b is compressed so as to be in the density range (A). At this time, since it compresses to about 70% of the final thickness of the vacuum heat insulating material 50, the partial displacement of the glass wool 51a constituting the core material 51 (vacuum heat insulating) Variation of the glass fiber density in the material 50) is corrected, and in the final state of the vacuum heat insulating material 50, the flatness of the outer surface can be improved.

その後、図6(b)に示すように、芯材51が、密度範囲(A)より低い密度範囲(B)になるようにコンベア105a、105b、105cで搬送し、図5(a)の第2の芯材切断工程105において、密度範囲(A)より低い密度範囲(B)の状態で、芯材51の外形サイズを真空断熱材50の完成品形状になるように切断刃105d、105e、105fで切断する。
そして、図6(c)に示すように、図5(a)の内袋包装工程106において、内袋用フィルム52aが供給され、芯材51の密度範囲(B)を保つようにコンベア106a、106bで搬送されるとともに、熱溶着装置106c、106dで熱溶着され密封状態となる。
Thereafter, as shown in FIG. 6B, the core material 51 is conveyed by the conveyors 105a, 105b, and 105c so that the density range (B) is lower than the density range (A). In the core material cutting step 105 of FIG. 2, the cutting blades 105d, 105e, so that the outer size of the core material 51 becomes the finished product shape of the vacuum heat insulating material 50 in the state of the density range (B) lower than the density range (A). Cut at 105f.
Then, as shown in FIG. 6 (c), in the inner bag packaging step 106 of FIG. 5 (a), the inner bag film 52a is supplied, and the conveyor 106a, so as to keep the density range (B) of the core material 51, While being transported by 106b, it is thermally welded by the thermal welding devices 106c and 106d to be in a sealed state.

ここで、密度範囲(A)より低い密度範囲(B)の状態で、芯材51の外形サイズを真空断熱材50の完成品形状になるように切断し、その後の工程も、密度範囲(A)より低い密度範囲(B)の状態で行うことにより、最終製品の真空断熱材50の外形寸法の精度が高くなると考えられる。   Here, in the state of the density range (B) lower than the density range (A), the outer size of the core material 51 is cut so as to be the finished product shape of the vacuum heat insulating material 50, and the subsequent steps are also performed in the density range (A ) It is considered that the accuracy of the external dimensions of the vacuum heat insulating material 50 of the final product is increased by carrying out in the state of the lower density range (B).

なお、本実施形態1では工程の一例としてコンベア方式を例示したが、芯材51の密度範囲(A)及び密度範囲(B)をそれぞれ満足でき、所望のサイズに切断できる手段であれば特に限定するものではない。例えば専用の治具を使用して行ってもよい。
しかしながら、コンベア方式を採用した場合、図6に示すように、作業工程が流れ作業で行えるので、作業が容易かつ効率がよいので、コンベア方式が望ましい。
In addition, although the conveyor system was illustrated as an example of the process in the first embodiment, the method is particularly limited as long as it can satisfy the density range (A) and the density range (B) of the core material 51 and can be cut into a desired size. Not what you want. For example, a dedicated jig may be used.
However, when the conveyor system is adopted, as shown in FIG. 6, the work process can be performed by a flow operation, and therefore the work is easy and efficient, so the conveyor system is desirable.

<内袋開口工程108から真空包装工程110の詳細>
内袋開口工程108から真空包装工程110までの工程の詳細を、作用効果を含め説明する。
真空排気前に芯材51を内部に密封した内袋52の一端を開口させる必要があるが、従来工程のように、内袋52を一旦引き出して、はさみやカッター等で内袋52の一端を切断して開口させた場合、通常は内袋52の切断部分に近い部分が密着した状態(バルブ効果)を保持するように作業する。
<Details from inner bag opening process 108 to vacuum packaging process 110>
Details of the process from the inner bag opening process 108 to the vacuum packaging process 110 will be described including the effects.
Before evacuation, it is necessary to open one end of the inner bag 52 in which the core material 51 is sealed. However, as in the conventional process, the inner bag 52 is once pulled out, and one end of the inner bag 52 is removed with scissors or a cutter. When it is cut and opened, the work is usually performed so that a portion close to the cut portion of the inner bag 52 is kept in close contact (valve effect).

図8は、真空包装工程を説明するための図であり、図8(a)は従来の真空排気前に芯材51が膨張して復元してしまった状態を示す側断面図であり、図8(b)は実施形態1の芯材51を内部に密封した内袋52の一端を開口する作業を示す側断面図である。
ところが、作業の仕方によっては密着が解除され、真空排気を始める前に、従来例の図8(a)に示すように、芯材51が膨張して復元してしまう場合がある。この状態になると、前記したように、芯材51の側端面51a1にズレ(図7(b)の寸法X1、X2参照)が生じてしまう。
FIG. 8 is a view for explaining the vacuum packaging process, and FIG. 8 (a) is a side sectional view showing a state in which the core material 51 has expanded and restored before the conventional evacuation. FIG. 8B is a side sectional view showing an operation of opening one end of the inner bag 52 in which the core material 51 of the first embodiment is sealed.
However, the close contact is released depending on the way of work, and the core material 51 may expand and be restored as shown in FIG. In this state, as described above, the side end surface 51a1 of the core member 51 is displaced (see dimensions X1 and X2 in FIG. 7B).

一方、本発明では、図5(a)の袋詰め工程107において、芯材51を真空包装機内に投入した時点で、芯材51が既に内袋52で密封されているので、密度範囲(A)より低い密度範囲(B)に保持されている状態にある。
そして、図5(a)の内袋開口工程108において、内袋52の溶着部の一端を開口する。この際、芯材51が復元しないように、図8(b)の矢印α3に示すように、押え板108a、108bで芯材51を、密度範囲(A)より低い密度範囲(B)に保持している。
On the other hand, in the present invention, since the core material 51 is already sealed with the inner bag 52 when the core material 51 is put into the vacuum packaging machine in the bag filling step 107 of FIG. 5A, the density range (A ) It is held in a lower density range (B).
5A, one end of the welded portion of the inner bag 52 is opened. At this time, the core material 51 is held in the density range (B) lower than the density range (A) by the holding plates 108a and 108b as shown by an arrow α3 in FIG. 8B so that the core material 51 is not restored. doing.

図9(a)は、真空断熱材50の芯材51の外包材である内袋52の切欠き部52bを示す内袋52の平面図であり、図9(b)、(c)、(d)は、それぞれ内袋52の切欠き部52b等の易密封解除手段の例を拡大して示す図9(a)のA部拡大図である。
図9において、芯材51が内袋52の内部に収納され、内袋52の周囲が溶着部52cで溶着され封止されているものとする。
FIG. 9A is a plan view of the inner bag 52 showing a cutout portion 52b of the inner bag 52 that is an outer packaging material of the core material 51 of the vacuum heat insulating material 50. FIGS. FIG. 9D is an enlarged view of part A of FIG. 9A, showing an example of easy-seal release means such as a notch 52b of the inner bag 52 in an enlarged manner.
In FIG. 9, it is assumed that the core material 51 is accommodated in the inner bag 52, and the periphery of the inner bag 52 is welded and sealed by a welding portion 52c.

内袋開口工程108において、内袋52の一端を開口させ易いように、本発明では、図9(a)に示すように、内袋52の一部(溶着部52c)に切欠き52b等を設けて、図8(b)に示す52H部を、矢印α4のように、引っ張っただけで切れる(開口する)ようにしている。   In the inner bag opening step 108, in order to easily open one end of the inner bag 52, in the present invention, as shown in FIG. 9A, a notch 52 b or the like is formed in a part of the inner bag 52 (welded portion 52 c). It is provided so that the 52H portion shown in FIG. 8B can be cut (opened) just by being pulled as indicated by an arrow α4.

切欠き52bの形状については、図9(b)に示すようなノッチ52b1や図9 (c)に示すようなVカット52b2等の易密封解除手段があるが、特にこれらの形状に限定するものではない。すなわち、内袋52が切れる契機となる切欠き等の易密封解除手段であればよく、U字カットや鋸刃カットやその他同様の効果が得られるものであればよい。52H部を矢印α4の方向に引っ張ったときに、引っ張り方向に直交する方向に、図9に示すC線の如く、直線的に切断されるのが望ましい。   As for the shape of the notch 52b, there are easy-seal releasing means such as a notch 52b1 as shown in FIG. 9B and a V-cut 52b2 as shown in FIG. 9C. However, the shape is not limited to these shapes. is not. That is, any easy sealing releasing means such as a notch that triggers the inner bag 52 to be cut may be used, as long as a U-shaped cut, a saw blade cut, and other similar effects can be obtained. When the portion 52H is pulled in the direction of the arrow α4, it is desirable that the portion be cut linearly in a direction orthogonal to the pulling direction as indicated by line C in FIG.

内袋52の素材については、一軸延伸タイプのポリエチレンフィルムやポリプロピレンフィルムで熱溶着可能なものであれば特に限定されない。例えば、直線カット性フィルムである三井化学製のハイブロン(商品名)等が使用できる。   The material of the inner bag 52 is not particularly limited as long as it can be heat-welded with a uniaxially stretched polyethylene film or polypropylene film. For example, Hybron (trade name) manufactured by Mitsui Chemicals, which is a straight-cut film, can be used.

また、内袋52の素材に易開封性素材を選べば切欠きを無くしたノッチレスとしても、内袋52に同様の易開封性を持たせることができる。例えば、フィルム全面に、逆円錐状の非貫通の孔型を多数(例えば1,500〜2,000個/cm)加工したものや、図9(d)に示すように、フィルムの端部(シール部)に微細な穴加工(細孔)や摩擦傷加工52b3を施したもの等の易密封解除手段がある。 Further, if an easily openable material is selected as the material of the inner bag 52, the inner bag 52 can be provided with the same easy opening property even if the notchless is eliminated. For example, a large number (for example, 1,500 to 2,000 holes / cm 2 ) of reverse cone-shaped non-through holes are processed on the entire surface of the film, or an end portion of the film as shown in FIG. There are easy-sealing releasing means such as those in which fine holes (pores) or friction scratches 52b3 are applied to the (seal part).

その他同様の易開封性のものであれば特に限定されるものではない。例えば易開封性素材としては、旭化成パックス社製のマジックカットやマジックカットストレート加工(何れも商品名)を施したフィルムがある。本実施形態1では一軸延伸タイプの高密度ポリエチレンフィルムの端部にVカット52b2(図9(c)参照)を設けたものを用いている。なお、図9における一軸延伸タイプの高密度ポリエチレンフィルムの一軸延伸方向はC線方向である。
これにより、図8(b)の52H部を矢印α4方向に引っ張ることにより、図9に示すC線で円滑に切断することが可能である。
その後、真空排気工程109を経て、真空包装工程110において、外被材53の縁部が熱溶着部110a、110bにより熱溶着され外被材53が封止される。
Others are not particularly limited as long as they are easily openable. For example, as an easily openable material, there is a film subjected to magic cut or magic cut straight processing (both trade names) manufactured by Asahi Kasei Packs. In the first embodiment, a uniaxially stretched high-density polyethylene film provided with a V-cut 52b2 (see FIG. 9C) is used. In addition, the uniaxial stretching direction of the uniaxial stretching type high-density polyethylene film in FIG. 9 is the C-line direction.
Thereby, it is possible to smoothly cut along the line C shown in FIG. 9 by pulling the 52H portion of FIG. 8B in the direction of the arrow α4.
Thereafter, after the evacuation step 109, in the vacuum packaging step 110, the edge portion of the outer covering material 53 is thermally welded by the heat welding portions 110a and 110b, and the outer covering material 53 is sealed.

実施形態1では、図5(a)の芯材圧縮工程104での芯材51の密度範囲(A)を280kg/mに、第2の芯材切断工程105の芯材51の密度範囲(B)を140kg/mにそれぞれ設定した。実施形態1の製造方法で芯材51の外形寸法を幅500mm、長さ1500mm、厚さ15mmを目指して(設計値として)製作したところ、幅、長さ共に±1mm以内、厚さは±0.5mmの寸法誤差範囲内に収まり、真空断熱材50の表面に大きな凹凸は見られず平坦性が確保された。 In the first embodiment, the density range (A) of the core material 51 in the core material compression step 104 of FIG. 5A is 280 kg / m 3 , and the density range of the core material 51 in the second core material cutting step 105 ( B) was set to 140 kg / m 3 respectively. With the manufacturing method of the first embodiment, the core material 51 is manufactured with a width of 500 mm, a length of 1500 mm, and a thickness of 15 mm (as design values). The width and length are both within ± 1 mm, and the thickness is ± 0. It was within a dimensional error range of 0.5 mm, and no large irregularities were seen on the surface of the vacuum heat insulating material 50, and flatness was ensured.

また、実施形態1で得られた真空断熱材50の熱伝導率を測定したところ、0.82(mW/m・K)を表示した。なお、この熱伝導率の測定は英弘精機製の熱伝導率測定装置HC−074を使用し、熱板の平均温度24℃として行ったものである。
図10に、実施形態1、2の真空断熱材50と比較例1〜4の真空断熱材の測定結果をまとめた図を示す。
Moreover, when the thermal conductivity of the vacuum heat insulating material 50 obtained in Embodiment 1 was measured, 0.82 (mW / m · K) was displayed. The measurement of the thermal conductivity was carried out using a thermal conductivity measuring device HC-074 manufactured by Eihiro Seiki with an average temperature of the hot plate of 24 ° C.
In FIG. 10, the figure which put together the measurement result of the vacuum heat insulating material 50 of Embodiment 1, 2 and the vacuum heat insulating material of Comparative Examples 1-4 is shown.

実施形態1によれば、真空断熱材50において、繊維材料を厚さ方向に結合剤(バインダ)を用いることなく積層した繊維集合体を単層或いは複数層に重ね合わされてなる芯材51を一時的に所定の密度範囲(A)になるように非加熱状態で圧縮することで、繊維材料積層体に特有である目付量(ガラス繊維密度)の大きい部分と小さい部分からなるばらつきを平均化することができる。
そのため、真空排気して真空断熱材50にしたときの表面凹凸を少なくすることができる。
According to the first embodiment, in the vacuum heat insulating material 50, the core material 51 formed by superimposing a fiber assembly in which fiber materials are laminated in the thickness direction without using a binder (binder) on a single layer or a plurality of layers is temporarily provided. Thus, by compressing in a non-heated state so as to be in a predetermined density range (A), the variation consisting of a portion having a large basis weight (glass fiber density) and a portion having a small basis weight (glass fiber density), which is peculiar to the fiber material laminate, is averaged. be able to.
Therefore, the surface unevenness | corrugation when evacuating and using the vacuum heat insulating material 50 can be decreased.

また、密度範囲(A)より低い密度範囲(B)に保持した状態で所定寸法に切断し、その切断時の密度範囲(B)を保持しながら芯材51を内袋52で密封することで、切断面を直線或いは切断した状態を保持できるため、外形寸法精度のよい芯材51が得られ、この芯材51の密度範囲を保持したまま真空包装することで外形寸法精度のよい真空断熱材50を提供することができる。   Further, by cutting into a predetermined dimension while being held in a density range (B) lower than the density range (A), the core material 51 is sealed with the inner bag 52 while maintaining the density range (B) at the time of cutting. Since the cut surface can be kept straight or cut, a core material 51 with good external dimension accuracy can be obtained, and vacuum packaging with high external dimension accuracy can be achieved by vacuum packaging while maintaining the density range of the core material 51. 50 can be provided.

また、内袋52が、真空排気前に一旦密封を解除するために溶着部52cの一部に切り込み(ノッチ)等の易密封解除手段を設けて切断し易くしている。芯材51の圧縮状態を保持したまま真空包装するため、内袋52の溶着部52cの一部に切り込み(ノッチ)等の易密封解除手段をつけることで密封の解除をし易くできる。   Further, the inner bag 52 is provided with an easy-seal releasing means such as a notch in a part of the welded portion 52c in order to release the seal once before evacuation so that the inner bag 52 is easily cut. Since the core material 51 is vacuum-packed while maintaining the compressed state, the sealing can be easily released by attaching easy-seal releasing means such as a notch to a part of the welded portion 52c of the inner bag 52.

さらに、内袋52が、真空排気方向の引張りに対して切れ易いようにした易開封性素材としている。これにより、芯材51の圧縮状態を保持したまま真空包装するため、内袋52に易開封性の素材を用いて密封を解除し易くしている。更にこの素材に方向性を持たせることで引き裂き部分に直線性を持たせることが可能である。   Furthermore, the inner bag 52 is made of an easily openable material that can be easily cut by pulling in the vacuum exhaust direction. As a result, vacuum packaging is performed while maintaining the compressed state of the core material 51, so that the inner bag 52 is easily opened using a material that is easy to open. Furthermore, it is possible to give the tearing portion linearity by giving directionality to this material.

加えて、芯材51の加工の際、加熱プレス等のように膨大な熱エネルギを消費するような工程を経ないため、製造工程においても地球環境保護に資することが可能である。また、芯材51に結合剤(バインダ)を用いていないため、無機繊維集合体において真空排気時の抵抗や熱架橋の要因となる固体成分が残ることがない。
したがって、真空排気効率が向上し、高い断熱性能を実現した真空断熱材50を提供できる。
In addition, when the core material 51 is processed, a process that consumes enormous heat energy such as a heating press is not performed, and thus it is possible to contribute to protection of the global environment in the manufacturing process. Further, since no binder (binder) is used for the core material 51, the inorganic fiber aggregates do not leave solid components that cause resistance during vacuum evacuation or thermal crosslinking.
Accordingly, it is possible to provide the vacuum heat insulating material 50 with improved evacuation efficiency and high heat insulation performance.

このように、真空断熱材50は外形寸法精度、表面平坦性が良好である。そのため、例えば図2に示す冷蔵庫1や冷凍庫等の外箱21(21a、21b)の鋼板の内面に接着しても、真空断熱材50の表面の凹凸に起因する鋼板の凹凸、波打ち減少が起こりにくく、高い断熱性能とともに、外観品質(意匠性)の高い製品を提供することができる。   Thus, the vacuum heat insulating material 50 has good dimensional accuracy and surface flatness. Therefore, even if it adheres to the inner surface of the steel plate of the outer box 21 (21a, 21b) such as the refrigerator 1 or the freezer shown in FIG. It is difficult to provide a product with high appearance quality (design) with high heat insulation performance.

(実施形態2)
実施形態2では、図5(a)の芯材圧縮工程104での芯材51の密度範囲(A)を370kg/mに、第2の芯材切断工程105(図5(a)参照)の芯材51の密度範囲(B)を260kg/mにそれぞれ設定した以外は実施形態1と同じ製造工程で同じ外形寸法の真空断熱材50を製作した。
(Embodiment 2)
In the second embodiment, the density range (A) of the core material 51 in the core material compression step 104 in FIG. 5A is set to 370 kg / m 3 , and the second core material cutting step 105 (see FIG. 5A). Except for setting the density range (B) of the core material 51 to 260 kg / m 3 , a vacuum heat insulating material 50 having the same outer dimensions was manufactured in the same manufacturing process as in the first embodiment.

その結果、幅、長さ共に±0.5mm以内、厚さは±0.5mmの寸法誤差範囲内に収まり、実施形態1と同様に真空断熱材50の表面に大きな凹凸は見られず平坦性が確保された。実施形態2で得られた真空断熱材50の熱伝導率は0.84(mW/m・K)を表示した。なお、熱伝導率の測定は、実施形態1と同条件行ったものである。
なお、実施形態2においても、実施形態1と同様な作用効果を奏する。
As a result, both the width and length are within ± 0.5 mm and the thickness is within the dimensional error range of ± 0.5 mm, and flatness is not observed on the surface of the vacuum heat insulating material 50 as in the first embodiment. Was secured. The thermal conductivity of the vacuum heat insulating material 50 obtained in the second embodiment is 0.84 (mW / m · K). The measurement of the thermal conductivity was performed under the same conditions as in the first embodiment.
In the second embodiment, the same effects as those in the first embodiment are obtained.

(比較例1)
比較例1では、図5(a)の芯材圧縮工程104での芯材51の密度範囲(A)を260kg/mに、第2の芯材切断工程105(図5(a)参照)の芯材51の密度範囲(B)を100kg/mにそれぞれ設定した以外は実施形態1と同じ製造工程で同じ外形寸法の真空断熱材を製作した。
(Comparative Example 1)
In Comparative Example 1, the density range (A) of the core material 51 in the core material compression step 104 in FIG. 5A is set to 260 kg / m 3 , and the second core material cutting step 105 (see FIG. 5A). Except that the density range (B) of the core material 51 was set to 100 kg / m 3 , vacuum heat insulating materials having the same outer dimensions were manufactured in the same manufacturing process as in the first embodiment.

その結果、幅寸法誤差が±2.5mm、長さ寸法誤差は±3.2mmとばらついた。厚さ寸法誤差については±1.5mmとなり、真空断熱材50の表面には小さい凹凸が多く見られた。比較例1で得られた真空断熱材50の熱伝導率は0.87(mW/m・K)を表示した。なお、熱伝導率の測定については、実施形態1と同条件で行ったものである。   As a result, the width dimension error varied ± 2.5 mm, and the length dimension error varied ± 3.2 mm. The thickness dimension error was ± 1.5 mm, and many small irregularities were observed on the surface of the vacuum heat insulating material 50. The heat conductivity of the vacuum heat insulating material 50 obtained in Comparative Example 1 is 0.87 (mW / m · K). The measurement of thermal conductivity was performed under the same conditions as in the first embodiment.

比較例1の真空断熱材の幅寸法誤差±2.5mmは、実施形態1、2の真空断熱材50の幅寸法誤差±0.5〜1mmに比較して大きく、また、比較例1の真空断熱材の長さ寸法誤差±3.2は、実施形態1、2の真空断熱材50の長さ寸法誤差±0.5〜1mmに比較して大きい。また、比較例1の真空断熱材の厚さ寸法誤差±1.5mmは、実施形態1、2の真空断熱材50の厚さ寸法誤差±0.5mmに比較して大きい。したがって、比較例1の真空断熱材は、外形寸法精度が実施形態1に比較して劣っている。   The width dimension error ± 2.5 mm of the vacuum heat insulating material of Comparative Example 1 is larger than the width dimension error ± 0.5 to 1 mm of the vacuum heat insulating material 50 of Embodiments 1 and 2, and the vacuum of Comparative Example 1 The length dimensional error ± 3.2 of the heat insulating material is larger than the length dimensional error ± 0.5 to 1 mm of the vacuum heat insulating material 50 of the first and second embodiments. Further, the thickness dimensional error ± 1.5 mm of the vacuum heat insulating material of Comparative Example 1 is larger than the thickness dimensional error ± 0.5 mm of the vacuum heat insulating material 50 of the first and second embodiments. Therefore, the vacuum heat insulating material of Comparative Example 1 is inferior in outer dimensional accuracy compared to the first embodiment.

比較例1の真空断熱材は、表面に小さい凹凸が多く見られ、実施形態1、2の表面平坦性が良好な真空断熱材50に比較しては表面平坦性の点でも劣っている。
また、比較例1の真空断熱材の熱伝導率0.87(mW/m・K)と、実施形態1、2の真空断熱材50の熱伝導率は0.82〜0.84(mW/m・K)に比較し大きく、比較例1の真空断熱材は、断熱性の点でも実施形態1、2の真空断熱材50に劣る。
The vacuum heat insulating material of Comparative Example 1 has many small irregularities on the surface, and is inferior in surface flatness as compared with the vacuum heat insulating material 50 having good surface flatness of Embodiments 1 and 2.
Moreover, the heat conductivity of the vacuum heat insulating material of Comparative Example 1 is 0.87 (mW / m · K), and the heat conductivity of the vacuum heat insulating material 50 of Embodiments 1 and 2 is 0.82 to 0.84 (mW / m). The vacuum heat insulating material of Comparative Example 1 is inferior to the vacuum heat insulating material 50 of Embodiments 1 and 2 in terms of heat insulating properties.

(比較例2)
比較例2では、図5(a)の芯材圧縮工程104での芯材51の密度範囲(A)を390kg/mに、第2の芯材切断工程105(図5(a)参照)の芯材51の密度範囲(B)を100kg/mにそれぞれ設定した以外は実施形態1と同じ製造工程で同じ外形寸法の真空断熱材を製作した。
(Comparative Example 2)
In Comparative Example 2, the density range (A) of the core material 51 in the core material compression step 104 in FIG. 5A is set to 390 kg / m 3 , and the second core material cutting step 105 (see FIG. 5A). Except that the density range (B) of the core material 51 was set to 100 kg / m 3 , vacuum heat insulating materials having the same outer dimensions were manufactured in the same manufacturing process as in the first embodiment.

その結果、比較例2の真空断熱材は、幅寸法誤差が±2.2mm、長さ寸法誤差は±2.9mmとばらついた。厚さについては寸法誤差±0.5mmとなり、真空断熱材の表面に凹凸は見られなかった。
比較例2で得られた真空断熱材の熱伝導率は1.2(mW/m・K)を表示した。なお、熱伝導率の測定については、実施形態1と同条件で行ったものである。
As a result, the vacuum heat insulating material of Comparative Example 2 had a width dimensional error of ± 2.2 mm and a length dimensional error of ± 2.9 mm. The thickness error was ± 0.5 mm, and no irregularities were found on the surface of the vacuum heat insulating material.
The heat conductivity of the vacuum heat insulating material obtained in Comparative Example 2 was 1.2 (mW / m · K). The measurement of thermal conductivity was performed under the same conditions as in the first embodiment.

図10に示すように、比較例2の真空断熱材は、厚さ寸法誤差が±0.5mmであり、実施形態1、2の真空断熱材50と同等であり、表面平坦性で実施形態1、2の真空断熱材50と同等である。
しかし、比較例2の真空断熱材は、幅寸法誤差(±2.2mm)、長さ法誤差(±2.9mm)であり、実施形態1、2の真空断熱材50の幅・長さ寸法誤差(±0.5〜1mm)に比較し劣ることが判明した。
さらに、比較例2の真空断熱材の熱伝導率は1.2(mW/m・K)であり、実施形態1、2の真空断熱材50の熱伝導率は0.82〜0.84(mW/m・K)より高く、断熱性で実施形態1、2の真空断熱材50に劣っている。
As shown in FIG. 10, the vacuum heat insulating material of Comparative Example 2 has a thickness dimension error of ± 0.5 mm, which is equivalent to the vacuum heat insulating material 50 of Embodiments 1 and 2, and has surface flatness according to Embodiment 1. 2 is equivalent to the vacuum heat insulating material 50.
However, the vacuum heat insulating material of Comparative Example 2 has a width dimension error (± 2.2 mm) and a length method error (± 2.9 mm), and the width and length dimensions of the vacuum heat insulating material 50 of the first and second embodiments. It was found to be inferior to the error (± 0.5 to 1 mm).
Furthermore, the heat conductivity of the vacuum heat insulating material of Comparative Example 2 is 1.2 (mW / m · K), and the heat conductivity of the vacuum heat insulating material 50 of Embodiments 1 and 2 is 0.82 to 0.84 ( mW / m · K), which is insulative and inferior to the vacuum heat insulating material 50 of the first and second embodiments.

(比較例3)
比較例3では、図5(a)の芯材圧縮工程104では芯材51を圧縮せず、第2の芯材切断工程105(図5(a)参照)の芯材51の密度範囲(B)のみ260kg/mに設定した以外は実施形態1と同じ製造工程で同じ外形寸法の真空断熱材50を製作した。
(Comparative Example 3)
In Comparative Example 3, the core material 51 is not compressed in the core material compression step 104 in FIG. 5A, and the density range of the core material 51 in the second core material cutting step 105 (see FIG. 5A) (B The vacuum heat insulating material 50 having the same outer dimensions was manufactured in the same manufacturing process as in the first embodiment except that only 260 kg / m 3 was set.

その結果、図10に示すように、幅、長さの幅寸法誤差はともに±0.5mm以内に収まったが、厚さ寸法誤差はついては±1.3mmとなり、真空断熱材の表面に小さい凹凸が多く見られた。
比較例3の真空断熱材の熱伝導率は0.88(mW/m・K)を表示した。なお、熱伝導率の測定については、実施形態1と同条件として行ったものである。
As a result, as shown in FIG. 10, both width and length width dimension errors were within ± 0.5 mm, but thickness dimension error was ± 1.3 mm, and small irregularities on the surface of the vacuum heat insulating material. Many were seen.
The thermal conductivity of the vacuum heat insulating material of Comparative Example 3 was 0.88 (mW / m · K). In addition, about the measurement of heat conductivity, it carried out on the same conditions as Embodiment 1. FIG.

比較例3の真空断熱材は、実施形態1、2の真空断熱材50と比較し、図10に示すように、幅、長さの幅寸法誤差は同等であったものの、厚さ寸法誤差(±1.3mm)と表面平坦性で、実施形態1、2の真空断熱材50の厚さ寸法誤差(±0.5mm)と表面平坦性に劣ることが判明した。
さらに、比較例3の真空断熱材の熱伝導率は0.88(mW/m・K)であり、実施形態1、2の真空断熱材50の熱伝導率0.82〜0.84(mW/m・K)より高く、断熱性で実施形態1、2の真空断熱材50に劣っている。
The vacuum heat insulating material of Comparative Example 3 was compared with the vacuum heat insulating material 50 of Embodiments 1 and 2, and as shown in FIG. It was found that the surface flatness was inferior to the thickness dimensional error (± 0.5 mm) and surface flatness of the vacuum heat insulating material 50 of Embodiments 1 and 2 in terms of surface flatness.
Furthermore, the heat conductivity of the vacuum heat insulating material of Comparative Example 3 is 0.88 (mW / m · K), and the heat conductivity of the vacuum heat insulating material 50 of Embodiments 1 and 2 is 0.82 to 0.84 (mW). / M · K), which is insulative and inferior to the vacuum heat insulating material 50 of the first and second embodiments.

(比較例4)
比較例4として、従来の製造方法で真空断熱材50を製作した。
比較例4の従来の製造方法については図5(b)を用いて説明する。
まず、芯材切断工程201において、芯材51の材料であり所定の目付量としたグラスウール51aを供給し、製作しようとしている真空断熱材50の芯材51の外形サイズに切断する。その後、芯材積層工程202において、真空断熱材50の必要厚さに応じてグラスウール51aを複数層に積層する。そして、芯材乾燥工程203において、積層した芯材51の水分を除去し、芯材51の持込み水分量を低減させる。ここまでの工程は、実施形態1、2と同様である。
(Comparative Example 4)
As Comparative Example 4, a vacuum heat insulating material 50 was manufactured by a conventional manufacturing method.
The conventional manufacturing method of Comparative Example 4 will be described with reference to FIG.
First, in the core material cutting step 201, glass wool 51a which is a material of the core material 51 and has a predetermined basis weight is supplied and cut into the outer size of the core material 51 of the vacuum heat insulating material 50 to be manufactured. Thereafter, in the core material lamination step 202, the glass wool 51a is laminated in a plurality of layers according to the required thickness of the vacuum heat insulating material 50. Then, in the core material drying step 203, the moisture of the laminated core material 51 is removed, and the amount of moisture brought into the core material 51 is reduced. The steps up to here are the same as those in the first and second embodiments.

その後、図示しない吸着剤投入工程により芯材51の内部に吸着剤54を投入し、その後、内袋包装工程204において、芯材51の厚さが20mm程度になるようにした状態で内袋52のフィルムを供給し、芯材51を覆って密封する。これにより、厚さ20〜30mm程度の芯材51が得られる。   Thereafter, the adsorbent 54 is introduced into the core material 51 by an adsorbent injection process (not shown), and then the inner bag 52 in a state where the thickness of the core material 51 is about 20 mm in the inner bag packaging process 204. The film is supplied and the core material 51 is covered and sealed. Thereby, the core material 51 about 20-30 mm in thickness is obtained.

この芯材51を、袋詰め工程205にて外被材53に挿入し、外被材53の内部を真空状態にするため真空チャンバを有する真空包装機内に投入する。このとき、真空包装機に投入する前に、外被材53や芯材51の内部の真空排気を効率よくする目的で、内袋52で圧縮状態にした芯材51を挿入した状態の外被材53を100℃程度に十分に温めてもよい。   This core material 51 is inserted into the jacket material 53 in the bagging process 205, and put into a vacuum packaging machine having a vacuum chamber in order to make the inside of the jacket material 53 in a vacuum state. At this time, in order to efficiently evacuate the inside of the jacket material 53 and the core material 51 before putting into the vacuum packaging machine, the jacket in a state where the core material 51 compressed by the inner bag 52 is inserted. The material 53 may be sufficiently warmed to about 100 ° C.

そして、内袋開口工程206にて、図8(a)に示すように、芯材51の内部まで真空引きされるように内袋52の一端を開口させ、真空排気工程207にて真空チャンバ内を真空排気する。
所定の真空度に到達後に、真空包装工程208にて、外被材53の開口部を熱溶着して真空断熱材50が完成する。
Then, in the inner bag opening step 206, as shown in FIG. 8A, one end of the inner bag 52 is opened so as to be evacuated to the inside of the core material 51, and in the vacuum chamber 207 Is evacuated.
After reaching a predetermined degree of vacuum, the vacuum insulating material 50 is completed by thermally welding the opening of the jacket material 53 in the vacuum packaging step 208.

これらの工程において、図5(a)と比較対照すると分るように、内袋包装工程204の芯材52に密度範囲を保持するような拘束はしていない。また、袋詰め工程205で外被材53に投入した芯材51は、真空包装機内に投入した後、特に密度範囲を保持するような拘束はしていない。加えて、実施形態1の図5(a)の第2の芯材切断工程105のような密度範囲を保持するような拘束した状態での芯材51の切断工程は行っていない。   In these steps, as shown in comparison with FIG. 5A, the core material 52 in the inner bag packaging step 204 is not constrained to maintain the density range. Further, the core material 51 put into the jacket material 53 in the bagging process 205 is not restricted so as to keep the density range in particular after being put into the vacuum packaging machine. In addition, the cutting process of the core material 51 in a constrained state that maintains the density range as in the second core material cutting process 105 in FIG. 5A of the first embodiment is not performed.

比較例4の製造方法で、芯材51の外形寸法を幅500mm、長さ1500mm、厚さ15mmを目標に製作したところ、図10に示すように、幅寸法誤差(ズレ)は±3mm、長さ寸法誤差は±5mmと大きくばらついていた。厚さ寸法誤差については±1.2mmとなったが、真空断熱材50の表面に比較的凹凸が見られた。比較例4で得られた真空断熱材50の熱伝導率は0.84(mW/m・K)を表示した。なお、熱伝導率の測定は、実施形態1と同条件で行ったものである。   In the manufacturing method of Comparative Example 4, when the outer dimensions of the core material 51 were manufactured with the target width of 500 mm, length of 1500 mm, and thickness of 15 mm, as shown in FIG. 10, the width dimension error (deviation) was ± 3 mm, long The dimensional error varied widely as ± 5 mm. The thickness dimension error was ± 1.2 mm, but relatively unevenness was observed on the surface of the vacuum heat insulating material 50. The thermal conductivity of the vacuum heat insulating material 50 obtained in Comparative Example 4 was 0.84 (mW / m · K). Note that the measurement of thermal conductivity was performed under the same conditions as in the first embodiment.

図10に示すように、比較例4の真空断熱材50は、幅・長さ・厚さ寸法誤差(ズレ)で実施形態1、2の真空断熱材50に大きく劣る。
また、比較例4の真空断熱材50は、表面平坦性で、 実施形態1、2の真空断熱材50に劣ることが判明した。
しかし、比較例4の真空断熱材50は、熱伝導率が0.84(mW/m・K)で実施形態1、2の真空断熱材50とほぼ同等であり、断熱性に関しては、実施形態1、2の真空断熱材50と同じ性能を示した。
As shown in FIG. 10, the vacuum heat insulating material 50 of Comparative Example 4 is greatly inferior to the vacuum heat insulating materials 50 of Embodiments 1 and 2 in terms of width, length, and thickness dimensional errors (deviations).
Moreover, it turned out that the vacuum heat insulating material 50 of the comparative example 4 is inferior to the vacuum heat insulating material 50 of Embodiment 1, 2 by surface flatness.
However, the vacuum heat insulating material 50 of Comparative Example 4 has a thermal conductivity of 0.84 (mW / m · K) and is substantially equivalent to the vacuum heat insulating material 50 of the first and second embodiments. The same performance as the vacuum heat insulating materials 50 of 1 and 2 was shown.

(実施形態3)
実施形態1の真空断熱材50を冷蔵庫1の外箱21の側面内面に図示しないホットメルト接着剤を真空断熱材50の貼り付け面全面に塗布して貼り付けて冷蔵庫1を20台作製したところ、冷蔵庫1の外箱21の側面表面は平坦であり、凹凸による波打ち等の不良は発生しなかった。なお、真空断熱材50による波打ちが発生し易いように貼り付け時に通常よりも高い圧力で真空断熱材50を外箱21に対して押圧した。
実施形態3によれば、冷蔵庫1の断熱性能が確保できるとともに、冷蔵庫1の外面の平面平坦性が保時され、意匠性が良好な商品性が高い冷蔵庫1を実現できる。
(Embodiment 3)
When the vacuum heat insulating material 50 of Embodiment 1 was apply | coated to the side surface inner surface of the outer case 21 of the refrigerator 1, and the hot-melt-adhesive agent which is not shown in figure was apply | coated and stuck on the whole bonding surface of the vacuum heat insulating material 50, 20 refrigerators 1 were produced. The side surface of the outer box 21 of the refrigerator 1 was flat, and no defects such as undulations due to unevenness occurred. In addition, the vacuum heat insulating material 50 was pressed with respect to the outer box 21 by the pressure higher than usual at the time of affixing so that the corrugation by the vacuum heat insulating material 50 may generate | occur | produce easily.
According to the third embodiment, the heat insulating performance of the refrigerator 1 can be ensured, the flatness of the outer surface of the refrigerator 1 is maintained, and the refrigerator 1 having a good design property and high merchantability can be realized.

(比較例5)
比較例4の真空断熱材50を冷蔵庫1の外箱21の側面内面に図示しないホットメルト接着剤を真空断熱材50の貼り付け面全面に塗布して貼り付けて実施形態3と同様に冷蔵庫を20台製作したところ、冷蔵庫1の外箱21の側面表面に小さな凹凸からなる波打ち模様が1台発生した。なお、実施形態3と同様に、真空断熱材50による波打ちが発生し易いように貼り付け時に通常よりも高い圧力で真空断熱材50を外箱21に対して押圧した。
したがって、比較例5の冷蔵庫1は、外面の平面平坦性が保証できず、意匠性の点で問題がある。
(Comparative Example 5)
The vacuum heat insulating material 50 of Comparative Example 4 is applied to the inner surface of the side surface of the outer box 21 of the refrigerator 1 and a hot melt adhesive (not shown) is applied to the entire attachment surface of the vacuum heat insulating material 50 and pasted. When 20 units were manufactured, one wavy pattern consisting of small irregularities was generated on the side surface of the outer box 21 of the refrigerator 1. As in the third embodiment, the vacuum heat insulating material 50 was pressed against the outer box 21 at a pressure higher than usual at the time of pasting so that the waving due to the vacuum heat insulating material 50 was easily generated.
Therefore, the refrigerator 1 of the comparative example 5 cannot guarantee the flatness of the outer surface, and has a problem in terms of design.

なお、前記実施形態では、内袋52に芯材51を収納後に密封したものを、外被材53に挿入する場合を例示したが、芯材51の成形体の形状が維持できれば、必ずしも内袋52に芯材51を収納後に密封することなく外被材53に挿入しても構わない。この場合、図5(a)の袋詰め工程107において、内袋52に収納した芯材51を密度範囲(B)の状態に保つことが望ましい。   In addition, in the said embodiment, although what sealed after sealing the core material 51 in the inner bag 52 was illustrated in the outer covering material 53, if the shape of the molded body of the core material 51 can be maintained, it will not necessarily be an inner bag. The core material 51 may be inserted into the jacket material 53 without being sealed after being stored in the core 52. In this case, it is desirable to keep the core material 51 accommodated in the inner bag 52 in the density range (B) in the bag filling step 107 of FIG.

1 冷蔵庫
50 真空断熱材
51 芯材
52 内袋
52b 切り欠き(易密封解除手段)
52b1 ノッチ(易密封解除手段)
52b2 Vカット(易密封解除手段)
52b3 穴加工や摩擦傷加工(易密封解除手段)
52c 溶着部(密封)
53 外被材(外袋)
54 吸着剤
104 芯材圧縮工程(圧縮工程)
104a、104b 圧縮装置
105 第2の芯材切断工程(切断工程)
106 内袋包装工程
106c、106d 熱溶着装置
107 袋詰め工程
108 内袋開口工程(密封解除工程)
108a、108b 押え板
109 真空排気工程
110 真空包装工程
A 密度範囲(第1密度範囲)
B 密度範囲(第2密度範囲)
1 Refrigerator 50 Vacuum heat insulating material 51 Core material 52 Inner bag 52b Notch (easy-sealing release means)
52b1 notch (easy seal release means)
52b2 V-cut (easy seal release means)
52b3 Hole processing and friction scratch processing (easy seal release means)
52c Welded part (sealed)
53 Jacket material (outer bag)
54 Adsorbent 104 Core material compression process (compression process)
104a, 104b Compressor 105 Second core material cutting step (cutting step)
106 Inner bag packaging process 106c, 106d Thermal welding device 107 Bag filling process 108 Inner bag opening process (sealing release process)
108a, 108b Holding plate 109 Vacuum exhausting process 110 Vacuum packaging process A Density range (first density range)
B density range (second density range)

Claims (6)

繊維材料を厚さ方向に結合剤を用いることなく積層した繊維集合体を単層或いは複数層に重ね合わてなる芯材と、前記芯材の水分およびガス成分を吸着する吸着剤と、前記芯材と前記吸着剤とを収納する内袋と、該内袋を内部に収納する外袋とを備える真空断熱材の製造方法であって、
前記芯材を所定の第1密度範囲になるように圧縮する圧縮工程と、
前記第1密度範囲よりも低い第2密度範囲に保持した状態で前記芯材を所定の外形寸法に切断する切断工程と、
前記切断工程における前記第2密度範囲を保持したまま前記芯材を前記内袋で密封する内袋包装工程と、
前記外袋に前記内袋で密封した芯材を挿入する袋詰め工程と、
前記内袋の密封が解除された前記芯材を前記第2密度範囲に保持した状態で真空排気して前記外袋で封止する真空包装工程とを
含んで成る真空断熱材の製造方法。
A core formed by a laminated fiber aggregate superimposed single layer or plural layers without using a binder fiber material in the thickness direction, an adsorbent which adsorbs moisture and gas components of the core material, the core A vacuum heat insulating material manufacturing method comprising an inner bag for storing a material and the adsorbent, and an outer bag for storing the inner bag therein,
A compression step of compressing the core material to a predetermined first density range;
A cutting step of cutting the core material into a predetermined outer dimension in a state of being held in a second density range lower than the first density range;
An inner bag packaging step for sealing the core material with the inner bag while maintaining the second density range in the cutting step;
A bagging step of inserting a core material sealed with the inner bag into the outer bag;
A vacuum packaging step of evacuating and sealing the outer core with the outer bag after the core material released from the sealing of the inner bag is held in the second density range.
前記内袋は、前記密封をなす溶着部の一部に、前記密封を解除し易い易密封解除手段が設けられ、
前記袋詰め工程と真空包装工程との間に、前記内袋の密封を解除する密封解除工程を含む
ことを特徴とする請求項1に記載の真空断熱材の製造方法。
The inner bag is provided with easy-seal release means that is easy to release the seal in a part of the welded portion that forms the seal,
The method for producing a vacuum heat insulating material according to claim 1, further comprising: a seal release step for releasing the seal of the inner bag between the bag filling step and the vacuum packaging step.
繊維材料を厚さ方向に結合剤を用いることなく積層した繊維集合体を単層或いは複数層に重ね合わてなる芯材と、前記芯材の水分およびガス成分を吸着する吸着剤と、前記芯材と前記吸着剤とを収納する内袋と、該内袋を内部に収納する外袋とを備える真空断熱材であって、
前記芯材を所定の第1密度範囲になるように圧縮し、前記第1密度範囲よりも低い第2密度範囲に保持した状態で所定の外形寸法に切断し、その切断時の前記第2密度範囲を保持しながら前記芯材を前記内袋で密封したものを、前記外袋に挿入して前記第2密度範囲を保持したまま前記内袋の密封を解除するとともに、真空排気して前記外袋で封止した
ことを特徴とする真空断熱材。
A core formed by a laminated fiber aggregate superimposed single layer or plural layers without using a binder fiber material in the thickness direction, an adsorbent which adsorbs moisture and gas components of the core material, the core A vacuum heat insulating material comprising an inner bag for storing the material and the adsorbent, and an outer bag for storing the inner bag therein,
And compressed so that the first density range of Jo Tokoro the core material, cut into a predetermined outer dimensions while maintaining the lower second density range than the first density range, the first at the time of cutting 2 The core material sealed with the inner bag while maintaining the density range is inserted into the outer bag to release the sealing of the inner bag while maintaining the second density range, and evacuated. A vacuum heat insulating material characterized by being sealed with the outer bag.
前記内袋の前記密封をなす溶着部の一部に、前記密封を解除する際に切断し易いような易密封解除手段を設けた
ことを特徴とする請求項に記載の真空断熱材。
4. The vacuum heat insulating material according to claim 3 , wherein easy sealing release means is provided in a part of the welded portion of the inner bag, which is easy to cut when the seal is released.
前記第1密度範囲が280〜370kg/mであり、第2密度範囲が140〜260kg/mである
ことを特徴とする請求項3または請求項4に記載の真空断熱材。
Wherein the first density range is 280~370kg / m 3, the vacuum heat insulating material according to claim 3 or claim 4 second density range is characterized by a 140~260kg / m 3.
請求項から請求項のうちの何れか一項に記載の真空断熱材を備えた冷蔵庫。 Refrigerator having a vacuum heat insulating material according to claims 3 to any one of claims 5.
JP2011092097A 2011-04-18 2011-04-18 Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same Expired - Fee Related JP5571610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092097A JP5571610B2 (en) 2011-04-18 2011-04-18 Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092097A JP5571610B2 (en) 2011-04-18 2011-04-18 Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same

Publications (3)

Publication Number Publication Date
JP2012225389A JP2012225389A (en) 2012-11-15
JP2012225389A5 JP2012225389A5 (en) 2013-09-26
JP5571610B2 true JP5571610B2 (en) 2014-08-13

Family

ID=47275788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092097A Expired - Fee Related JP5571610B2 (en) 2011-04-18 2011-04-18 Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same

Country Status (1)

Country Link
JP (1) JP5571610B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126098A (en) * 2012-12-26 2014-07-07 Nippon Synthetic Chem Ind Co Ltd:The Vacuum insulation structure and outer package bag for vacuum insulation structure
JP2014214856A (en) * 2013-04-30 2014-11-17 大日本印刷株式会社 Method of manufacturing vacuum heat insulating material, and outer packaging material for vacuum heat insulating material
JP2014228135A (en) * 2013-05-27 2014-12-08 大日本印刷株式会社 Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
KR101470565B1 (en) * 2014-03-07 2014-12-10 주식회사 에스앤피 Method for manufacturing vacuum insulation panel, and vacuum insulation panel made thereby
WO2016163026A1 (en) * 2015-04-10 2016-10-13 三菱電機株式会社 Refrigerator
CN112610807A (en) * 2020-12-18 2021-04-06 四川迈科隆真空新材料有限公司 Manufacturing and cutting method of multi-section strip-shaped vacuum heat-insulating plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796563A (en) * 1993-09-29 1995-04-11 Sanyo Electric Co Ltd Vacuum heat-insulating material
JPH09318238A (en) * 1996-05-27 1997-12-12 Sanyo Electric Co Ltd Manufacture of vacuum heat insulating material
KR100359056B1 (en) * 2000-05-12 2002-11-07 한국과학기술연구원 Vacuum insulator using glass white wool and its fabrication method
JP2004308691A (en) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc Vacuum heat insulating material and manufacturing method thereof
JP4576195B2 (en) * 2004-10-12 2010-11-04 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material.
JP2007009928A (en) * 2005-06-28 2007-01-18 Hitachi Appliances Inc Vacuum heat insulating material, its manufacturing method, and refrigerator

Also Published As

Publication number Publication date
JP2012225389A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP3544653B2 (en) refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5544338B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2009024922A (en) Refrigerator
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
JP2009228917A (en) Refrigerator
JP2013050242A (en) Refrigerator, method of manufacturing the same, and freezer
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2008185220A (en) Vacuum heat insulation material
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2011153721A (en) Refrigerator
JP2009024921A (en) Refrigerator
JP3549453B2 (en) refrigerator
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2019113078A (en) Vacuum heat insulation material and refrigerator disposed with the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2019138531A (en) refrigerator
JP2012229849A (en) Refrigerator and freezer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees