JP5548025B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP5548025B2
JP5548025B2 JP2010107902A JP2010107902A JP5548025B2 JP 5548025 B2 JP5548025 B2 JP 5548025B2 JP 2010107902 A JP2010107902 A JP 2010107902A JP 2010107902 A JP2010107902 A JP 2010107902A JP 5548025 B2 JP5548025 B2 JP 5548025B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
core material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010107902A
Other languages
Japanese (ja)
Other versions
JP2011236953A (en
JP2011236953A5 (en
Inventor
崇 井関
恒 越後屋
邦成 荒木
祐志 新井
大五郎 嘉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010107902A priority Critical patent/JP5548025B2/en
Publication of JP2011236953A publication Critical patent/JP2011236953A/en
Publication of JP2011236953A5 publication Critical patent/JP2011236953A5/en
Application granted granted Critical
Publication of JP5548025B2 publication Critical patent/JP5548025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は、断熱性能を向上させた真空断熱材およびこれを用いた冷蔵庫に関する。 The present invention relates to a vacuum heat insulating material and refrigerator using the same with improved insulation performance.

地球温暖化防止に対する社会の取り組みとして、CO2の排出抑制を図るため、様々な分野で省エネ化が推進されている。近年の電気製品、特に冷熱関連の家電製品においては消費電力量低減の観点から、断熱性に優れる真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギ消費量を抑制するため、原材料についてはリサイクル化の推進、製造工程においては燃料代や電気代の抑制等、省エネ化が推進されている。   As a social effort to prevent global warming, energy conservation is being promoted in various fields in order to control CO2 emissions. 2. Description of the Related Art In recent electrical products, particularly home appliances related to cooling and heating, those in which the heat insulating performance is enhanced by adopting a vacuum heat insulating material excellent in heat insulating properties have become mainstream from the viewpoint of reducing power consumption. In addition, in order to reduce energy consumption from various raw materials to product manufacturing processes, energy saving is promoted by promoting recycling of raw materials and reducing fuel and electricity costs in the manufacturing process. .

現在市場に流通している省エネ製品に採用されている真空断熱材の従来例としては特許文献1に開示されたものがあるが、この真空断熱材は、ガラス繊維であるグラスウールを芯材とし、ガスバリヤ性の外被材で覆って、内部を減圧して真空状態としたものである。芯材であるグラスウールは一定の厚みになるように、ガラス繊維が熱変形し始める高温で加圧プレスを実施して成形するものであり、芯材にバインダを含まないため、余計な物質が発生することなく断熱性能が良好な真空断熱材が得られるものである。この真空断熱材の適用例として、冷蔵庫等でウレタン発泡断熱材と共に使用される例が記載されている。   As a conventional example of a vacuum heat insulating material employed in energy-saving products currently distributed in the market, there is one disclosed in Patent Document 1, but this vacuum heat insulating material uses glass wool, which is glass fiber, as a core material, It is covered with a gas barrier outer covering material, and the inside is depressurized to be in a vacuum state. Glass wool, the core material, is molded by pressing at a high temperature at which the glass fiber begins to thermally deform so that it has a constant thickness. Since the core material does not contain a binder, extra substances are generated. Thus, a vacuum heat insulating material having good heat insulating performance can be obtained. As an application example of this vacuum heat insulating material, an example in which it is used together with a urethane foam heat insulating material in a refrigerator or the like is described.

真空断熱材の断熱性能を向上させるにあたり、真空断熱材に使用する材料について多々検討されている。例えば、真空断熱材の芯材に用いる材料としては、無機系の粉末材料を圧縮成形したもの(特許文献2)や、孔が連通化したウレタンフォームパネルを用いた例(特許文献3)、或いは有機系や無機系の繊維積層体の例(特許文献4)が挙げられる。また、外包(外被)材については、金属容器(特許文献5)をはじめとし、プラスチック材料のラミネートフィルムや、アルミ箔をはじめとする金属層を持つもの、アルミ蒸着のような蒸着層を設けるもの(特許文献6)等、材料選択やラミネート層数選択を含めると数多くの種類の構成が検討され適用されてきている。さらには、真空中での水分やガスを低減させるための吸着材も物理吸着剤、化学吸着剤含め数多く検討されてきている。   In order to improve the heat insulation performance of the vacuum heat insulating material, many studies have been made on materials used for the vacuum heat insulating material. For example, as a material used for the core material of the vacuum heat insulating material, an example in which an inorganic powder material is compression-molded (Patent Document 2), a urethane foam panel in which holes are connected (Patent Document 3), or Examples of organic and inorganic fiber laminates (Patent Document 4) are mentioned. In addition, with regard to the outer packaging material, a metal container (Patent Document 5), a plastic film laminate film, a material having a metal layer such as aluminum foil, and a vapor deposition layer such as aluminum vapor deposition are provided. Many types of configurations have been studied and applied, including material selection and laminate layer number selection, such as those (Patent Document 6). Further, many adsorbents for reducing moisture and gas in vacuum have been studied including physical adsorbents and chemical adsorbents.

特開2005−220954号公報Japanese Patent Laid-Open No. 2005-220954 特開昭61−144492号公報JP 61-144492 A 特開平10−169889号公報JP-A-10-169889 特許第4012903号公報Japanese Patent No. 4012903 特開昭61−66069号公報JP-A-61-66069 特開2008−256125号公報JP 2008-256125 A

前記の経緯を経て、現在高性能真空断熱パネルとして幅広く適用されている構成としては、芯材としてグラスウールの積層体、外包材としてアルミ箔やアルミ蒸着層を配置した3〜4層のプラスチックラミネートフィルム、吸着剤としては、生石灰やモレキュラーシーブ13Xなどが汎用的に使用されている。
このような状況のなかで、真空断熱材の断熱性能である熱伝導率の低下は頭打ちになっている状況にあるが、冷蔵庫等の省エネ競争は厳しく、真空断熱材の高性能化は必要不可欠の技術となっている。
Through the above-mentioned background, as a structure widely applied as a high performance vacuum insulation panel at present, a plastic laminate film of 3 to 4 layers in which a laminated body of glass wool as a core material and an aluminum foil or an aluminum vapor deposition layer as an outer packaging material is arranged. As the adsorbent, quick lime, molecular sieve 13X and the like are generally used.
Under such circumstances, the decline in thermal conductivity, which is the heat insulation performance of vacuum insulation materials, has reached its peak, but energy-saving competition for refrigerators, etc. is severe, and high performance of vacuum insulation materials is indispensable Technology.

本発明は上記実状に鑑み、断熱性能が高く低コストの真空断熱材およびこれを用いた冷蔵庫の提供を目的とする。 In view of the above circumstances, and an object thereof is to provide a refrigerator using the same heat insulating performance higher cost of the vacuum heat insulating material and.

上記目的を達成すべく、第1の本発明に関わる真空断熱材は、無機系或いは有機系の繊維積層体の繊維径が平均3μm以上8μm以下であるとともに繊維長が平均2mm以上10mm以下に形成され、バインダを用いない芯材と、前記芯材を覆うガスバリヤ性フィルムとを有する真空断熱材であって、前記真空断熱材は、その広がる方向である延在方向断面の空隙率が80%以上85%以下であり、かつ、その断熱方向である厚さ方向断面の空隙率が85%以上100%未満であり、前記芯材として用いられている前記繊維積層体を形成する繊維のヤング率は、75MPa以上85MPa以下であり、前記芯材として用いられている前記繊維積層体を形成する繊維の原材料にホウ素を含まず、熱伝導率が1.0〜1.1mW/mKであるIn order to achieve the above object, the vacuum heat insulating material according to the first aspect of the present invention is formed so that the fiber diameter of the inorganic or organic fiber laminate is 3 μm or more and 8 μm or less on average and the fiber length is 2 mm or more and 10 mm or less on average. A vacuum heat insulating material having a core material that does not use a binder and a gas barrier film that covers the core material, wherein the vacuum heat insulating material has a porosity of 80% or more in its extending direction cross section. and 85% or less, and the less than 100% der porosity is 85% or more of the cross section in the thickness direction is adiabatic direction is, Young's modulus of the fibers forming the fiber layer which is used as the core material Is 75 MPa or more and 85 MPa or less, the raw material of the fiber forming the fiber laminate used as the core material does not contain boron, and the thermal conductivity is 1.0 to 1.1 mW / mK .

第2の本発明に関わる冷蔵庫は、外装を成す外箱と貯蔵物を収容する内箱との間に形成される空間に、第1の本発明の真空断熱材を少なくとも設置した断熱箱体を備えている。 The refrigerator according to the second aspect of the present invention includes a heat insulating box body in which at least the vacuum heat insulating material according to the first aspect of the present invention is installed in a space formed between an outer box that forms an exterior and an inner box that accommodates stored items . It is provided.

本発明によれば、断熱性能が高く低コストの真空断熱材およびこれを用いた冷蔵庫を実現できる。 According to the present invention, the refrigerator can be realized using the same heat insulating performance higher cost of the vacuum heat insulating material and.

本実施形態に係る冷蔵庫を示す正面図である。It is a front view which shows the refrigerator which concerns on this embodiment. (a)は図1のA−A線断面図であり、(b)は(a)のB部拡大図である。(a) is the sectional view on the AA line of FIG. 1, (b) is the B section enlarged view of (a). (a)は真空断熱材を示す斜視図であり、(b)は(a)のC−C線断面図である。(a) is a perspective view which shows a vacuum heat insulating material, (b) is CC sectional view taken on the line of (a). 真空断熱材を水平面上に置いた場合の真空断熱材の空隙率を測定する際に裁断する位置を示した図である。It is the figure which showed the position cut | disconnected when measuring the porosity of a vacuum heat insulating material at the time of placing a vacuum heat insulating material on a horizontal surface.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は実施形態に係る冷蔵庫1を示す正面図である。図2(a)は図1のA−A線断面図であり、図2(b)は図2(a)のB部拡大図である。
実施形態の冷蔵庫1は、上から冷蔵温度で冷却する冷蔵室2、製氷した氷を貯蔵する製氷(貯氷)室3a、冷凍温度で冷却する上段冷凍室(切替え室)3bおよび下段冷凍室4、野菜を入れる野菜室5を有している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a front view showing a refrigerator 1 according to the embodiment. 2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is an enlarged view of a portion B in FIG. 2A.
The refrigerator 1 according to the embodiment includes a refrigerator compartment 2 that cools at a refrigerator temperature from above, an ice making (ice storage) chamber 3a for storing ice-formed ice, an upper freezer compartment (switching chamber) 3b that cools at a freezing temperature, and a lower freezer compartment 4, It has a vegetable compartment 5 for storing vegetables.

冷蔵室扉6a、6b、製氷(貯氷)室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9は、それぞれ冷蔵室2、製氷室3a、上段冷凍室3b、下段冷凍室4、野菜室5の各室の手前側の前面開口部を開閉する。
図1に示す冷蔵室扉6a、6bは、ヒンジ10等を中心に回動する扉であり、これ以外の製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9は、全て引き出し式の扉である。
The refrigerator compartment doors 6a and 6b, the ice making (ice storage) compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are the refrigerator compartment 2, the ice making compartment 3a, the upper freezer compartment 3b and the lower freezer compartment, respectively. 4. Open and close the front opening on the front side of each room of the vegetable room 5.
Refrigeration room doors 6a and 6b shown in FIG. 1 are doors that rotate around a hinge 10 or the like. Other ice making room doors 7a, upper freezing room doors 7b, lower freezing room doors 8 and vegetable room doors 9 include All are drawer type doors.

引き出し式の製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を引き出すと、各室を構成する容器が扉と共に引き出されてくる。
各冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9には、冷蔵庫本体1H(図2(a)参照)との間を密閉するためのパッキン(図示せず)が、冷蔵庫本体1H側の外周縁部に取り付けられている。
冷蔵温度の冷蔵室2と冷凍温度の製氷(貯氷)室3a及び上段冷凍室3bとの間には、それぞれを区画して断熱するための仕切断熱壁12を配置している。仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)、真空断熱材等、それぞれを単独使用したり、或いは、これらの複数の断熱材を組み合わせて形成されている。
When the drawer-type ice making room door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are pulled out, the containers constituting each room are drawn out together with the doors.
Each of the refrigerator compartment doors 6a and 6b, the ice making compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 is sealed to the refrigerator body 1H (see FIG. 2 (a)). The packing (not shown) is attached to the outer peripheral edge of the refrigerator main body 1H side.
A partition heat insulation wall 12 is provided between the refrigerating room 2 for refrigerating temperature and the ice making (ice storage) room 3a and the upper freezing room 3b for refrigerating temperature to partition and insulate them. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and each of them may be used alone or in combination with a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material, etc. Is formed.

製氷室3a及び上段冷凍室3bと下段冷凍室4との間は、同じ冷凍の温度帯であり温度差が同じまたは小さいため、区画して断熱する仕切り断熱壁ではなく、パッキン受面を形成した仕切り部材13を設けている。
冷凍温度の下段冷凍室4と野菜保存温度の野菜室5の間には、それぞれを区画して断熱するための仕切断熱壁14を設けている。仕切断熱壁14は、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、同様に、スチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム)、真空断熱材等で作られている。このように、基本的に冷蔵温度と冷凍温度との貯蔵温度帯が異なる室の仕切りには断熱性がある仕切断熱壁12、14を設置している。
仕切断熱壁12、14は、図2(a)に示すように、発泡ポリスチレン33と真空断熱材50bとを用いて構成してもよく、特に限定されない。
The ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4 are in the same freezing temperature zone and the temperature difference is the same or small, so a packing receiving surface is formed instead of a partition heat insulating wall that partitions and insulates. A partition member 13 is provided.
A partition heat insulation wall 14 is provided between the lower freezing room 4 at the freezing temperature and the vegetable room 5 at the vegetable storage temperature to partition and insulate each. The partition heat insulation wall 14 is a heat insulation wall of about 30 to 50 mm similarly to the partition heat insulation wall 12, and is similarly made of styrofoam, foam heat insulation (hard urethane foam), vacuum heat insulation or the like. Thus, the partition heat insulation walls 12 and 14 which have heat insulation are installed in the partition of the room from which the storage temperature zone | band of refrigeration temperature and freezing temperature differs fundamentally.
As shown in FIG. 2A, the partition heat insulating walls 12 and 14 may be configured using a foamed polystyrene 33 and a vacuum heat insulating material 50b, and are not particularly limited.

なお、冷蔵庫本体1Hの内部は、図1に示すように、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等、特に限定されない。   In addition, as shown in FIG. 1, the inside of the refrigerator main body 1H partitions and forms the storage room of the refrigerator compartment 2, the ice making room 3a, the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 from the top, respectively. The arrangement of the storage chambers is not particularly limited to this. Also, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer door 7b, the lower freezer door 8, and the vegetable door 9 are not particularly limited, such as opening / closing by rotation, opening / closing by drawer, and the number of divided doors.

図2(a)に示す冷蔵庫本体1Hは、PCM(Pre-Coated-Metal)鋼板等の鋼板製の外箱21と、ABS(Acrylonitrile Butadiene Styrene)樹脂等の樹脂製の内箱22とを備えている。内箱22は、冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5を形成している。
外箱21と内箱22との間に形成される空間は、断熱空間1sとして断熱部を設け、冷蔵庫本体1H内の各貯蔵室と外部空間とを断熱している。
この外箱21と内箱22との間の断熱空間1sに、真空断熱材50を配置し、真空断熱材50以外の断熱空間1sには硬質ウレタンフォーム等の発泡断熱材23を充填している。真空断熱材50については後記するが、図示しない固定部材、支持部材等で外箱21または内箱22に固定支持されるか、接着剤で外箱21または内箱22に固定されている。
A refrigerator main body 1H shown in FIG. 2A includes an outer box 21 made of a steel plate such as a PCM (Pre-Coated-Metal) steel plate and an inner box 22 made of a resin such as ABS (Acrylonitrile Butadiene Styrene) resin. Yes. The inner box 22 forms a refrigerator compartment 2, an ice making compartment 3a, an upper freezer compartment 3b, a lower freezer compartment 4, and a vegetable compartment 5.
The space formed between the outer box 21 and the inner box 22 is provided with a heat insulating portion as the heat insulating space 1s to insulate each storage room and the external space in the refrigerator main body 1H.
A vacuum heat insulating material 50 is disposed in the heat insulating space 1s between the outer box 21 and the inner box 22, and the heat insulating space 1s other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. . As will be described later, the vacuum heat insulating material 50 is fixedly supported on the outer box 21 or the inner box 22 by a fixing member, a supporting member or the like (not shown), or fixed to the outer box 21 or the inner box 22 by an adhesive.

また、冷蔵室2、製氷室3a、上段冷凍室3b、下段冷凍室4、野菜室5等の各室を所定の温度に冷却するために製氷室3a、下段冷凍4の背側には冷却器28(図2(a)参照)が備えられている。
この冷却器28と、圧縮機30と、凝縮機31と、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。
冷却器28の上方には、冷却器28にて冷却された冷気を冷蔵庫1の内部を循環させて所定の低温温度に保持する送風機27が配設されている。
In addition, in order to cool each room such as the refrigerator compartment 2, the ice making room 3a, the upper freezing room 3b, the lower freezing room 4 and the vegetable room 5 to a predetermined temperature, a cooler is provided on the back side of the ice making room 3a and the lower freezing room 4. 28 (see FIG. 2A).
The cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) are connected to constitute a refrigeration cycle.
Above the cooler 28, a blower 27 that circulates the cold air cooled by the cooler 28 through the inside of the refrigerator 1 and holds it at a predetermined low temperature is disposed.

また、図2(a)に示す冷蔵庫本体1Hの天面1H1の後方部には冷蔵庫1の運転を制御するための電気部品41が実装される電源基板等を収納するための凹部40が形成されており、電気部品41を覆うカバー42(図2(b)参照)が設けられている。カバー42の高さは外観意匠性と冷蔵庫1の内容積確保を考慮して、冷蔵庫本体1Hの天面1H1とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが冷蔵庫本体1Hの天面1H1よりも外側に突き出る場合は10mm以内の範囲に収めることが望ましい。   Moreover, the recessed part 40 for accommodating the power supply board etc. in which the electrical component 41 for controlling the operation | movement of the refrigerator 1 is mounted is formed in the rear part of the top | upper surface 1H1 of the refrigerator main body 1H shown to Fig.2 (a). A cover 42 (see FIG. 2B) covering the electrical component 41 is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface 1H1 of the refrigerator main body 1H in consideration of appearance design and securing the internal volume of the refrigerator 1. Although it does not specifically limit, when the height of the cover 42 protrudes outside from the top | upper surface 1H1 of the refrigerator main body 1H, it is desirable to set it in the range within 10 mm.

これに伴って、凹部40は発泡断熱材23側(庫内側)に電気部品41を収納する空間の凹部40だけ窪んだ状態で配置されるため、断熱厚さを確保しようとする場合、庫内側に突き出し、必然的に冷蔵庫1の内容積が犠牲になってしまう。一方、冷蔵庫1の内容積をより大きくとる場合には凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまう。このため、図2(b)に示すように、凹部40に対向する発泡断熱材23の中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを図示しない庫内灯のケースと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。なお、カバー42は、耐火性を有する鋼板製として、外部からのもらい火や何らかの原因での発火を防止している。   Accordingly, the recess 40 is arranged in a state where only the recess 40 of the space for storing the electrical component 41 is recessed on the foam insulation 23 side (inside of the warehouse). The internal volume of the refrigerator 1 is inevitably sacrificed. On the other hand, when the internal volume of the refrigerator 1 is increased, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 is reduced. For this reason, as shown in FIG.2 (b), the vacuum heat insulating material 50a is arrange | positioned in the foam heat insulating material 23 which opposes the recessed part 40, and the heat insulation performance is ensured and strengthened. In this embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the interior lamp case (not shown) and the electrical component 41. In addition, the cover 42 is made of a steel plate having fire resistance, and prevents igniting from the outside and ignition for some reason.

また、図2(a)に示す冷蔵庫本体1Hの背面下部(図2(a)の冷蔵庫本体1Hの右下)に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内の内箱22への熱侵入を防止するため、圧縮機30や凝縮機31の内箱22側への投影面に真空断熱材50cを配置している。   Moreover, since the compressor 30 and the condenser 31 which are arrange | positioned at the back lower part of the refrigerator main body 1H shown to Fig.2 (a) (lower right of the refrigerator main body 1H of Fig.2 (a)) are components with big heat_generation | fever, In order to prevent heat from entering the inner box 22, a vacuum heat insulating material 50 c is arranged on the projection surface of the compressor 30 and the condenser 31 toward the inner box 22.

<真空断熱材50>
次に、真空断熱材50(50a、50b、50c)の構成について、図3を用いて説明する。図3(a)は、真空断熱材50の斜視図であり、図3(b)は、図3(a)のC−C線断面図である。なお、図3(b)において吸着剤54を強調して示している。
真空断熱材50は、真空のスペースを形成するための芯材51と、該芯材51を圧縮状態に保持するための内包材52と、水分やガス等を吸着する吸着剤54と、内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53とを有し構成している。
<Vacuum insulation 50>
Next, the structure of the vacuum heat insulating material 50 (50a, 50b, 50c) is demonstrated using FIG. Fig.3 (a) is a perspective view of the vacuum heat insulating material 50, FIG.3 (b) is CC sectional view taken on the line of Fig.3 (a). Note that the adsorbent 54 is highlighted in FIG.
The vacuum heat insulating material 50 includes a core material 51 for forming a vacuum space, an inner packaging material 52 for holding the core material 51 in a compressed state, an adsorbent 54 that adsorbs moisture, gas, and the like, and an inner packaging material And an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state at 52.

外被材53は真空断熱材50の両面外側に配置され、同じ大きさのラミネートフィルムの外縁から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。なお、貼り合わせ箇所50hは、中央側に折り返して熱ブリッジを形成するのを防止している。
真空断熱材50の芯材51については、バインダ等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いている。
芯材51については、無機系繊維材料の積層体を使用することによりアウトガス(ガスの発生)が少なくなるため、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維等でもよい。芯材51の種類によっては内包材52が不要の場合もある。
The outer covering material 53 is disposed on both outer sides of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the outer edge of a laminate film of the same size. In addition, the bonding location 50h prevents folding back to the center side to form a thermal bridge.
For the core material 51 of the vacuum heat insulating material 50, glass wool having an average fiber diameter of 4 μm is used as a laminate of inorganic fibers that are not bonded or bound by a binder or the like.
About the core material 51, since outgas (gas generation) decreases by using the laminated body of an inorganic fiber material, it is advantageous in terms of heat insulation performance. Or inorganic fibers such as glass fibers other than rock wool and glass wool may be used. Depending on the type of the core material 51, the inner packaging material 52 may be unnecessary.

また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等の芯材51としての性能をクリヤしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で1〜30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に限定されない。
外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面(保護)層、ガスバリヤ層1、ガスバリヤ層2、熱溶着層の4層構成からなるラミネートフィルムとする。
Moreover, about the core material 51, an organic resin fiber material other than an inorganic fiber material can be used. In the case of organic resin fibers, there are no particular restrictions on the use as long as the performance as the core material 51 such as the heat resistant temperature is cleared. Specifically, it is common to fiberize polystyrene, polyethylene terephthalate, polypropylene, etc. to a fiber diameter of about 1 to 30 μm by a melt blown method or a spunbond method, If it is a fiberization method, it will not specifically limit.
The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In this embodiment, the surface (protective) layer, the gas barrier layer 1, the gas barrier layer 2, the heat A laminate film having a four-layer structure of welding layers is used.

表面層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層1は樹脂フィルムに金属蒸着層を設け、ガスバリヤ層2は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層1とガスバリヤ層2は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。
具体的には、外被材53は、表面層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、ガスバリヤ層1をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、ガスバリヤ層2をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。
The surface layer is a resin film serving as a protective material, the gas barrier layer 1 is provided with a metal vapor deposition layer on the resin film, the gas barrier layer 2 is provided with a metal vapor deposition layer on a resin film having a high oxygen barrier property, and the gas barrier layer 1 and the gas barrier layer. 2 is bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.
Specifically, the covering material 53 includes a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, etc. as a surface layer, a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition as a gas barrier layer 1, and an aluminum as a gas barrier layer 2. A biaxially stretched ethylene vinyl alcohol copolymer resin film with vapor deposition, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was a film of unstretched polyethylene, polypropylene, or the like.

この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えばガスバリヤ層1、2として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面層についてはガスバリヤ層1の保護材であるが、真空断熱材50の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。   The layer structure and material of the four-layer laminate film are not particularly limited to these. For example, as gas barrier layers 1 and 2, a metal foil or a resin film provided with a gas barrier film made of an inorganic layered compound, a resin gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), or the like, or heat-sealed For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer. The surface layer is a protective material for the gas barrier layer 1, but in order to improve the evacuation efficiency in the manufacturing process of the vacuum heat insulating material 50, it is preferable to dispose a resin having a low hygroscopic property.

また、通常、ガスバリヤ層2に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながる。
なお、各フィルムのラミネート(貼り合せ)は、二液の反応熱で硬化させる二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法は特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも良い。
In addition, since the resin barrier film other than the metal foil used for the gas barrier layer 2 generally deteriorates the gas barrier property when it absorbs moisture, the gas barrier can be obtained by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the deterioration of the property and suppresses the moisture absorption amount of the entire laminate film. Thereby, also in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought in by the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved and the heat insulation performance is improved.
In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive that is cured by two-component reaction heat. The alignment method is not particularly limited to this, and other methods such as a wet lamination method and a thermal lamination method may be used.

また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルムを用い、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良い。
吸着剤54については、水分やガスを吸着するものであり、物理吸着、化学反応型吸着のどちらでも良い。
In the present embodiment, a heat-weldable polyethylene film is used for the encapsulating material 52, and a physical adsorption type synthetic zeolite is used for the adsorbent 54. However, the material is not limited to these materials. The inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like that has low hygroscopicity and can be heat-welded and has little outgas.
The adsorbent 54 adsorbs moisture and gas and may be either physical adsorption or chemical reaction type adsorption.

<真空断熱材50の空隙率測定方法>
前記のように作製された真空断熱材50において、真空断熱材50の断面における内包材52の内部の芯材51と芯材51以外の真空状態となるスペースのうち当該スペースが占める割合である空隙率の測定方法を以下に示す。
まず、所定の繊維径、繊維長に調製したグラスウール繊維を作製し、それらをコア材(芯材51)として用いた空隙率測定用の真空断熱材50(コア材サイズ 20×20×10t(mm))を作製する。次に、内部を観察する際に真空断熱材50の形状変形を防止するため、エポキシ樹脂中に真空断熱材を埋め、その後切断して、研磨を行い空隙率測定用試料を作製する。
<Method for measuring porosity of vacuum heat insulating material 50>
In the vacuum heat insulating material 50 manufactured as described above, the space that is the proportion of the space in the vacuum state other than the core material 51 and the core material 51 inside the inner packaging material 52 in the cross section of the vacuum heat insulating material 50 occupies the space. The method for measuring the rate is shown below.
First, glass wool fibers prepared to have a predetermined fiber diameter and fiber length are prepared, and a vacuum heat insulating material 50 (core material size 20 × 20 × 10 t (mm) for porosity measurement using them as a core material (core material 51). )). Next, in order to prevent the shape deformation of the vacuum heat insulating material 50 when observing the inside, the vacuum heat insulating material is buried in the epoxy resin, and then cut and polished to prepare a sample for measuring the porosity.

作製した試料について、走査型電子顕微鏡(日立製 型式S-4200)を用いて二次電子像撮影を実施し、撮影した二次電子像について画像解析を行い、内包材52の内部における一定面積中においてグラスウール繊維が存在しない面積(スペース面積)を百分率で算出し空隙率とした。
真空断熱材50の切断位置については、図4に示す。図4は、真空断熱材50の空隙率を測定する際に裁断する位置を示した図である。なお、図4において吸着剤54を強調して示している。
図4において、真空断熱材50のD−D断面、すなわち真空断熱材50が広がる方向である延在方向の断面を“水平方向”と称し、真空断熱材50の熱を遮断する断熱方向である厚さ方向の断面のE−E断面を“断面方向”として以下表記する。
The prepared sample was subjected to secondary electron image photographing using a scanning electron microscope (Hitachi model S-4200), and the obtained secondary electron image was subjected to image analysis, so that the inside of the inner packaging material 52 was in a certain area. The area (space area) where no glass wool fiber was present was calculated as a percentage and used as the porosity.
The cutting position of the vacuum heat insulating material 50 is shown in FIG. FIG. 4 is a diagram showing a position to be cut when measuring the porosity of the vacuum heat insulating material 50. In FIG. 4, the adsorbent 54 is highlighted.
In FIG. 4, the DD cross section of the vacuum heat insulating material 50, that is, the cross section in the extending direction, which is the direction in which the vacuum heat insulating material 50 spreads, is referred to as “horizontal direction” and is the heat insulating direction that blocks the heat of the vacuum heat insulating material 50. The EE cross section in the thickness direction is referred to as “cross section direction” below.

また、コア材(芯材51)を形成するガラス繊維のヤング率測定については以下の手段にて実施する。各実施形態1〜6、比較例1〜3において、グラスウールを粉砕し、白金製坩堝に入れ1700℃で溶融したのち黒鉛製の鋳型に流し込み、ガラスブロックを作製する。作製したブロックはひずみを除去するため、再度550℃まで加熱したのち300℃まで毎分4℃で冷却を行い、その後室温まで炉内で冷却した。ひずみを除去したガラスブロックを、切断機を用いて4×3×40mmの大きさに切断したのち、表面を研磨(JIS B 0601 0.8S以下)しヤング率測定用試料とした。ヤング率の測定は、RITEC社製 バースト波音速測定装置(型式:RAM-5000型)を用いて超音波法にて行った。超音波法は固体中に伝わる超音波の横波と縦波の速度から、固体のヤング率を求める方法である。
また、それぞれの真空断熱材の熱伝導率を測定した。測定に使用したのは英弘精機製オートラムダHC-074-630であり、中央部のセンサによる測定値において比較することとした。
The Young's modulus of the glass fiber forming the core material (core material 51) is measured by the following means. In each of Embodiments 1 to 6 and Comparative Examples 1 to 3, glass wool is pulverized, put in a platinum crucible and melted at 1700 ° C., and then poured into a graphite mold to produce a glass block. In order to remove distortion, the produced block was heated again to 550 ° C., then cooled to 300 ° C. at 4 ° C. per minute, and then cooled to room temperature in the furnace. The glass block from which the strain was removed was cut into a size of 4 × 3 × 40 mm using a cutting machine, and then the surface was polished (JIS B 0601 0.8S or less) to obtain a sample for Young's modulus measurement. The Young's modulus was measured by an ultrasonic method using a burst wave sound velocity measuring device (model: RAM-5000 type) manufactured by RITEC. The ultrasonic method is a method for obtaining the Young's modulus of a solid from the velocity of the transverse wave and longitudinal wave of the ultrasonic wave transmitted in the solid.
Moreover, the thermal conductivity of each vacuum heat insulating material was measured. Eihiro Seiki's auto lambda HC-074-630 was used for the measurement, and it was decided to compare the measured values with the sensor in the center.

以下、実施形態1〜6、比較例1〜3の上述の方法で測定した測定結果について、説明する。
表1に、上述の方法で測定した実施形態1〜6、比較例1〜3の測定値を示す。

Figure 0005548025
Hereinafter, the measurement result measured by the above-mentioned method of Embodiments 1-6 and Comparative Examples 1-3 is demonstrated.
In Table 1, the measured value of Embodiments 1-6 measured by the above-mentioned method and Comparative Examples 1-3 is shown.
Figure 0005548025

(実施形態1)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、真空断熱材50の水平方向(延在方向断面)の空隙率が85%、断面方向(厚さ方向断面)の空隙率が86%であった。また、芯材51の強度、反発力を示すヤング率は77MPa(メガパスカル)であった。
この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ,1.1m(ミリ)W/m・Kと熱伝導率が低い良好な値となった。
(Embodiment 1)
The physical properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-described method. As a result, the porosity of the vacuum heat insulating material 50 in the horizontal direction (extending direction cross section) was 85% and the cross section direction (thickness direction cross section). The porosity was 86%. The Young's modulus indicating the strength and repulsive force of the core material 51 was 77 MPa (megapascal).
With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was 1.1 m (mm) W / m · K, which was a low value.

実施形態1によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が85%、断面方向(厚さ方向断面)の空隙率が86%、芯材51のヤング率が77MPaの条件で、高い断熱性能をもつ真空断熱材50が得られた。   According to the first embodiment, the vacuum heat insulating material 50 has a horizontal porosity (cross section in the extending direction) of 85%, a cross sectional direction (cross section in the thickness direction) of 86%, and the Young's modulus of the core material 51 is 77 MPa. Thus, a vacuum heat insulating material 50 having high heat insulating performance was obtained.

(実施形態2)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材50の水平方向(延在方向断面)の空隙率が83%、断面方向(厚さ方向断面)の空隙率が91%であった。また、芯材51のヤング率は78MPaであった。この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.0mW/m・Kと熱伝導率が低い良好な値となった。
(Embodiment 2)
The various properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-mentioned method. As shown in Table 1, the horizontal direction (extending direction cross section) porosity of the vacuum heat insulating material 50 was 83%, the cross-sectional direction. The porosity of (thickness direction cross section) was 91%. The Young's modulus of the core material 51 was 78 MPa. With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was as low as 1.0 mW / m · K, which was a favorable value.

実施形態2によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が83%、断面方向(厚さ方向断面)の空隙率が91%、芯材51のヤング率が78MPaの条件で、高い断熱性能の真空断熱材50が得られた。   According to the second embodiment, the vacuum heat insulating material 50 has a horizontal porosity (cross section in the extending direction) of 83%, a cross sectional direction (thickness direction cross section) of 91%, and the core 51 has a Young's modulus of 78 MPa. Thus, the vacuum heat insulating material 50 having high heat insulating performance was obtained.

(実施形態3)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材50の水平方向の空隙率が80%、断面方向の空隙率が85%であった。また、芯材51のヤング率は75MPaであった。この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.0mW/m・Kと熱伝導率が低い良好な値となった。
(Embodiment 3)
When various properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-described methods, as shown in Table 1, the horizontal porosity of the vacuum heat insulating material 50 was 80%, and the porosity in the cross-sectional direction was 85%. Met. Moreover, the Young's modulus of the core material 51 was 75 MPa. With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was as low as 1.0 mW / m · K, which was a favorable value.

実施形態3によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が80%、断面方向(厚さ方向断面)の空隙率が85%、芯材51のヤング率が75MPaの条件で、高い断熱性能の真空断熱材50が得られた。   According to the third embodiment, the vacuum heat insulating material 50 has a porosity in the horizontal direction (cross section in the extending direction) of 80%, a porosity in the cross section direction (cross section in the thickness direction) of 85%, and a Young's modulus of the core material 51 of 75 MPa. Thus, the vacuum heat insulating material 50 having high heat insulating performance was obtained.

(実施形態4)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材50の水平方向の空隙率が82%、断面方向の空隙率が92%であった。また、芯材51のヤング率は80MPaであった。この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.0mW/m・Kと熱伝導率が低い良好な値となった。
実施形態4によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が82%、断面方向(厚さ方向断面)の空隙率が92%、芯材51のヤング率が80MPaの条件で、高い断熱性能の真空断熱材50が得られた。
(Embodiment 4)
When various properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-described method, as shown in Table 1, the horizontal porosity of the vacuum heat insulating material 50 was 82%, and the porosity in the cross-sectional direction was 92%. Met. The Young's modulus of the core material 51 was 80 MPa. With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was as low as 1.0 mW / m · K, which was a favorable value.
According to the fourth embodiment, the vacuum heat insulating material 50 has a horizontal porosity (cross section in the extending direction) of 82%, a cross sectional direction (thickness direction cross section) of 92%, and the core 51 has a Young's modulus of 80 MPa. Thus, the vacuum heat insulating material 50 having high heat insulating performance was obtained.

(実施形態5)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材50の水平方向の空隙率が84%、断面方向の空隙率が90%であった。また、芯材51のヤング率は79MPaであった。この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.0mW/m・Kと熱伝導率が低い良好な値となった。
(Embodiment 5)
The physical properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-described methods. As shown in Table 1, the vacuum heat insulating material 50 had a horizontal porosity of 84% and a cross-sectional porosity of 90%. Met. The Young's modulus of the core material 51 was 79 MPa. With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was as low as 1.0 mW / m · K, which was a favorable value.

実施形態5によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が84%、断面方向(厚さ方向断面)の空隙率が90%、芯材51のヤング率が79MPaの条件で、高い断熱性能の真空断熱材50が得られた。   According to the fifth embodiment, the vacuum heat insulating material 50 has a horizontal porosity (cross section in the extending direction) of 84%, a cross sectional direction (thickness direction cross section) of 90%, and the core material 51 has a Young's modulus of 79 MPa. Thus, the vacuum heat insulating material 50 having high heat insulating performance was obtained.

(実施形態6)
真空断熱材50の芯材51の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材50の水平方向の空隙率が81%、断面方向の空隙率が88%であった。また、芯材51のヤング率は77MPaであった。この真空断熱材50について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.0mW/m・Kと熱伝導率が低い良好な値となった。
実施形態6によれば、真空断熱材50の水平方向(延在方向断面)の空隙率が81%、断面方向(厚さ方向断面)の空隙率が88%、芯材51のヤング率が77MPaの条件で、高い断熱性能の真空断熱材50が得られた。
(Embodiment 6)
When various properties of the core material 51 of the vacuum heat insulating material 50 were measured by the above-described method, as shown in Table 1, the horizontal porosity of the vacuum heat insulating material 50 was 81%, and the porosity in the cross-sectional direction was 88%. Met. The Young's modulus of the core material 51 was 77 MPa. With respect to the vacuum heat insulating material 50, when the thermal conductivity of the central portion was measured for a size of 500 × 1500 × 10 mm, the thermal conductivity was as low as 1.0 mW / m · K, which was a favorable value.
According to the sixth embodiment, the vacuum heat insulating material 50 has a horizontal porosity (cross section in the extending direction) of 81%, a cross sectional direction (cross section in the thickness direction) of 88%, and a Young's modulus of the core material 51 of 77 MPa. Thus, the vacuum heat insulating material 50 having high heat insulating performance was obtained.

なお、前記の実施形態1〜6については、何れもリサイクルガラス100%のガラス原材料を用いて、ホウ酸成分を含まないように調製し、平均繊維径が3μm以上8μm以下、平均繊維長が2mm以上10mm以下となるように調整した。なお、繊維径については、JIS A 9504;人造鉱物繊維保温材による繊維の平均太さ測定方法による。ここで、リサイクルガラス100%が低コスト化、資源保護の観点から最も望ましいが、リサイクルガラス95〜99%でも良い。
繊維長分布の測定については、ガラス繊維を400〜500℃程度の温度で熱し、不純物を焼き飛ばす。その後、液体中に均一分散させ一部を取り出し、ガラス繊維の全数について繊維長を測定することとした。
In addition, about the said Embodiments 1-6, all are prepared so that a boric acid component may not be contained using the glass raw material of 100% of recycled glass, an average fiber diameter is 3 micrometers or more and 8 micrometers or less, and an average fiber length is 2 mm. It adjusted so that it might become 10 mm or less above. In addition, about a fiber diameter, it is based on the measuring method of the average thickness of the fiber by JIS A 9504; artificial mineral fiber heat insulating material. Here, 100% recycled glass is most desirable from the viewpoint of cost reduction and resource protection, but 95 to 99% recycled glass may be used.
About the measurement of fiber length distribution, a glass fiber is heated at the temperature of about 400-500 degreeC, and an impurity is burned off. Thereafter, a part of the glass fiber was uniformly dispersed in the liquid, and the fiber length was measured for the total number of glass fibers.

実施形態1〜6、後記の比較例1〜3の結果から、真空断熱材50の水平方向(延在方向断面)の空隙率が80%以上85%以下であり、かつ真空断熱材50の断面方向(厚さ方向断面)の空隙率が85%以上100%未満であることが、真空断熱材50の断熱性能を向上させる上で、好ましい。また、真空断熱材50の芯材51として用いられている無機系或いは有機系の繊維積層体を形成する繊維のヤング率は、75MPa以上85MPa以下であることが、真空断熱材50の断熱性能を向上させる上で、好ましい。   From the results of Embodiments 1 to 6 and Comparative Examples 1 to 3 to be described later, the porosity of the vacuum heat insulating material 50 in the horizontal direction (cross section in the extending direction) is 80% or more and 85% or less, and the cross section of the vacuum heat insulating material 50 In order to improve the heat insulation performance of the vacuum heat insulating material 50, the porosity in the direction (cross section in the thickness direction) is preferably 85% or more and less than 100%. Further, the Young's modulus of the fibers forming the inorganic or organic fiber laminate used as the core material 51 of the vacuum heat insulating material 50 is 75 MPa or more and 85 MPa or less, so that the heat insulating performance of the vacuum heat insulating material 50 is improved. It is preferable in terms of improvement.

<実施形態1〜6の効果>
実施形態1〜6によれば、繊維長が2mm以上10mm以下の最適範囲のため、繊維の配向性が向上する。例えば、説明した実施形態1〜6と異なり、繊維長が短いと繊維が立ち易くなり、真空断熱材50の厚み方向(図4の真空断熱材50の上下方向)に対して平行な繊維の割合が大きくなる。その場合、真空断熱材50の表面50oからの熱を裏面50uに伝える経路または真空断熱材50の裏面50uからの熱を表面50oに伝える経路、すなわち厚み方向に対して平行な繊維が増えることから、断熱性能が悪くなる。
<Effects of Embodiments 1 to 6>
According to Embodiments 1 to 6, since the fiber length is in the optimum range of 2 mm or more and 10 mm or less, the fiber orientation is improved. For example, unlike the first to sixth embodiments described above, if the fiber length is short, the fibers tend to stand up, and the ratio of fibers parallel to the thickness direction of the vacuum heat insulating material 50 (the vertical direction of the vacuum heat insulating material 50 in FIG. 4). Becomes larger. In that case, a path for transferring heat from the front surface 50o of the vacuum heat insulating material 50 to the back surface 50u or a path for transferring heat from the back surface 50u of the vacuum heat insulating material 50 to the front surface 50o, that is, fibers parallel to the thickness direction increase. , The heat insulation performance deteriorates.

また、繊維径を細く最適化することにより、内包材52の内部における繊維が占める容積が減少して真空断熱材50における空隙率(断熱性が高い真空が占める容積の割合)が向上する。これにより、真空断熱材50の熱伝導率の低減が可能となり、真空断熱材50の断熱性能が向上する。
また、通常、廃ガラスのカレット(粉砕物)を使用する際は、ホウ酸等の添加剤を加えて調製し、紡糸時の繊維の延伸性等を確保し、繊維の細径化や配向性を向上する。これに対し、本実施形態1〜6のような繊維長や空隙率を確保することにより、リサイクルガラス等の廃ガラス95〜100%での繊維化が可能となり、材料費用の低減の効果も併せて得ることが出来る。また、少資源化が可能である。
In addition, by optimizing the fiber diameter to be thin, the volume occupied by the fibers in the inner packaging material 52 is reduced, and the porosity in the vacuum heat insulating material 50 (ratio of the volume occupied by the vacuum with high heat insulating properties) is improved. Thereby, the thermal conductivity of the vacuum heat insulating material 50 can be reduced, and the heat insulating performance of the vacuum heat insulating material 50 is improved.
Also, when using waste glass cullet (pulverized product), it is usually prepared by adding additives such as boric acid, ensuring fiber stretchability during spinning, fiber diameter reduction and orientation To improve. On the other hand, by securing the fiber length and porosity as in the first to sixth embodiments, it becomes possible to fiberize the waste glass such as recycled glass by 95 to 100%, which also has the effect of reducing the material cost. Can be obtained. In addition, resources can be reduced.

また、芯材51の繊維の配向を整え、空隙率を前記の所定値にすることにより、ホウ酸等の添加剤がいらなくなり、コストの低減が可能である。
また、内箱22または外箱21に真空断熱材50を接着剤、固定部材を用いて設置することにより、冷蔵庫8の断熱性能が向上し、省電力化が図れる。
以上より、真空断熱材50を用いた冷蔵庫8の断熱性能が改善され、断熱性能に優れた消費電力量の少ない低コストの真空断熱材50、これを用いた冷蔵庫本体(断熱箱体)1H及び冷蔵庫1を提供できる。
Further, by adjusting the orientation of the fibers of the core material 51 and setting the porosity to the above-described predetermined value, an additive such as boric acid is not necessary, and the cost can be reduced.
Moreover, by installing the vacuum heat insulating material 50 in the inner box 22 or the outer box 21 using an adhesive and a fixing member, the heat insulating performance of the refrigerator 8 is improved, and power saving can be achieved.
As described above, the heat insulating performance of the refrigerator 8 using the vacuum heat insulating material 50 is improved, the heat insulating performance is excellent, and the low cost vacuum heat insulating material 50 with less power consumption, the refrigerator main body (heat insulating box) 1H using the same, and The refrigerator 1 can be provided.

なお、ここでの廃ガラスとは、真空断熱材50の芯材51として使用されていたガラス繊維をはじめとし、びん等の一般的に使用されているガラス材料の廃棄品も含める。
また、真空断熱材50の芯材51として用いられている無機系或いは有機系の繊維積層体を形成する繊維の原材料にホウ素を含まないことにより、アウトガス(ガスの発生)や水分の発生が抑制できる。そのため、真空断熱材50の真空状態の維持が可能で、真空断熱材50の断熱性能の劣化を抑制できる。
なお、前記実施形態1〜6においては、断熱材として発砲断熱材23を例示して説明したが、発砲断熱材以外の適宜選択した断熱材を用いてもよい。
Here, the waste glass includes glass fiber used as the core material 51 of the vacuum heat insulating material 50, and also includes generally used glass material waste such as bottles.
In addition, by not containing boron in the raw material of the fiber forming the inorganic or organic fiber laminate used as the core material 51 of the vacuum heat insulating material 50, outgas (gas generation) and generation of moisture are suppressed. it can. Therefore, the vacuum state of the vacuum heat insulating material 50 can be maintained, and deterioration of the heat insulating performance of the vacuum heat insulating material 50 can be suppressed.
In the first to sixth embodiments, the fired heat insulating material 23 has been described as an example of the heat insulating material, but an appropriately selected heat insulating material other than the fired heat insulating material may be used.

次に、比較例1〜3について、前記の方法で測定した結果を、実施形態1〜6と比較して説明する。
(比較例1)
比較例1の真空断熱材の芯材の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材の水平方向(真空断熱材の延在方向断面)の空隙率が75%、断面方向(真空断熱材の厚さ方向断面)の空隙率が80%であった。また、芯材のヤング率は90MPaであった。この真空断熱材について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.7mW/m・Kであり、実施形態1〜6の真空断熱材50の熱伝導率1.0〜1.1mW/m・Kに比較し、悪い値となった。すなわち、比較例1の真空断熱材は、実施形態1〜6の真空断熱材50より熱伝導率が高いため、真空断熱材の断熱性能が劣る。
Next, about Comparative Examples 1-3, the result measured by the said method is demonstrated compared with Embodiment 1-6.
(Comparative Example 1)
The various properties of the core material of the vacuum heat insulating material of Comparative Example 1 were measured by the above method. As shown in Table 1, the porosity of the vacuum heat insulating material in the horizontal direction (cross section in the extending direction of the vacuum heat insulating material) was The porosity in the cross-sectional direction (the cross section in the thickness direction of the vacuum heat insulating material) was 75%. The Young's modulus of the core material was 90 MPa. About this vacuum heat insulating material, when the heat conductivity of the center part was measured about the size of 500x1500x10mm, it is 1.7 mW / m * K and the heat conductivity 1 of the vacuum heat insulating material 50 of Embodiment 1-6 is 1. Compared to 0.0 to 1.1 mW / m · K, the value was bad. That is, since the vacuum heat insulating material of Comparative Example 1 has higher thermal conductivity than the vacuum heat insulating materials 50 of Embodiments 1 to 6, the heat insulating performance of the vacuum heat insulating material is inferior.

これの原因については、まず水平方向の空隙率が低すぎることから、繊維方向が水平でなく、真空断熱材の厚み方向に立っている繊維が多いことが推測される。よって、真空断熱材の厚み方向に繊維を伝わる熱が多く厚み方向の熱伝導が大きくなり、断熱性能が劣るものと考えられる。
また、芯材のヤング率が90MPaと実施形態1〜6のヤング率75〜80MPaに比べ、比較的大きいことから、比較例1の真空断熱材の芯材は硬い繊維状態になっていると推測される。そのため、比較例1の真空断熱材の作製時の減圧から大気圧負荷に至る過程の圧力に、芯材の繊維自体が持ち堪えられず折れてしまい、繊維の配向性が悪くなる傾向にあると推察される。
Regarding the cause of this, first, since the void ratio in the horizontal direction is too low, it is presumed that the fiber direction is not horizontal and there are many fibers standing in the thickness direction of the vacuum heat insulating material. Therefore, it is considered that heat transmitted through the fibers in the thickness direction of the vacuum heat insulating material is large and heat conduction in the thickness direction is increased, resulting in poor heat insulation performance.
Moreover, since the Young's modulus of a core material is comparatively large compared with 90 MPa and Young's modulus 75-80 MPa of Embodiments 1-6, it is estimated that the core material of the vacuum heat insulating material of Comparative Example 1 is in a hard fiber state. Is done. Therefore, it is inferred that the fibers of the core material are not able to withstand the pressure in the process from the reduced pressure during the production of the vacuum heat insulating material of Comparative Example 1 to the atmospheric pressure load, and the orientation of the fibers tends to deteriorate. Is done.

(比較例2)
比較例2の真空断熱材の芯材の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材の水平方向(真空断熱材の延在方向断面)の空隙率が79%、断面方向(真空断熱材の厚さ方向断面)の空隙率が83%であった。また、芯材のヤング率は73MPaであった。この真空断熱材について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.4mW/m・Kであり、後記の比較例3と同様な従来並みの値であった。
(Comparative Example 2)
About various physical properties of the core material of the vacuum heat insulating material of the comparative example 2, when measured by the above method, as shown in Table 1, the porosity of the vacuum heat insulating material in the horizontal direction (cross section in the extending direction of the vacuum heat insulating material) is The porosity in the cross-sectional direction (cross section in the thickness direction of the vacuum heat insulating material) was 79% and 83%. The Young's modulus of the core material was 73 MPa. About this vacuum heat insulating material, when the heat conductivity of the center part was measured about the size of 500x1500x10mm, it was 1.4mW / m * K and was the same value as the past like the comparative example 3 of the postscript. .

比較例2の真空断熱材の熱伝導率1.4mW/m・Kは、実施形態1〜6の真空断熱材50の熱伝導率1.0〜1.1mW/m・Kに比較し、熱伝導率が高い。従って、比較例2の真空断熱材は、実施形態1〜6の真空断熱材50に比べ、断熱性能が劣る。
比較例2の熱伝導率が高い原因は、まず水平方向(真空断熱材の延在方向断面)の空隙率が低く繊維方向が水平でなく、厚み方向(断熱方向)に立っている繊維が多いことが推測される。よって、熱が真空断熱材の厚み方向に立つ繊維を伝わり厚み方向の熱伝導が大きくなり、断熱性能が劣っていると推測される。
The heat conductivity of 1.4 mW / m · K of the vacuum heat insulating material of Comparative Example 2 is higher than the heat conductivity of 1.0 to 1.1 mW / m · K of the vacuum heat insulating material 50 of Embodiments 1 to 6. High conductivity. Therefore, the heat insulating performance of the vacuum heat insulating material of Comparative Example 2 is inferior to that of the vacuum heat insulating materials 50 of the first to sixth embodiments.
The reason why the thermal conductivity of Comparative Example 2 is high is that the porosity in the horizontal direction (cross section in the extending direction of the vacuum heat insulating material) is low and the fiber direction is not horizontal, and many fibers are standing in the thickness direction (insulating direction). I guess that. Therefore, heat is transmitted through the fibers standing in the thickness direction of the vacuum heat insulating material, heat conduction in the thickness direction is increased, and it is estimated that the heat insulating performance is inferior.

(比較例3)
比較例3の従来の真空断熱材の芯材の諸物性について、前記の方法で測定したところ、表1に示すように、真空断熱材の水平方向(真空断熱材の延在方向断面)の空隙率が90%、断面方向(真空断熱材の厚さ方向断面)の空隙率が90%であった。また、芯材のヤング率は70MPaであった。この真空断熱材について、500×1500×10mmのサイズについて中央部の熱伝導率を測定したところ、1.5mW/m・Kであった。
(Comparative Example 3)
The physical properties of the core material of the conventional vacuum heat insulating material of Comparative Example 3 were measured by the above method. As shown in Table 1, the horizontal space of the vacuum heat insulating material (cross section in the extending direction of the vacuum heat insulating material) The porosity was 90%, and the porosity in the cross-sectional direction (cross section in the thickness direction of the vacuum heat insulating material) was 90%. The Young's modulus of the core material was 70 MPa. About this vacuum heat insulating material, when the heat conductivity of the center part was measured about the size of 500x1500x10mm, it was 1.5 mW / m * K.

比較例3の真空断熱材の熱伝導率1.5mW/m・Kは、実施形態1〜6の真空断熱材50の熱伝導率1.0〜1.1mW/m・Kに比べて熱伝導率が高く、熱が伝わり易い。従って、比較例3の真空断熱材は、実施形態1〜6の真空断熱材50に比べ、断熱性能が劣ることが分る。   The heat conductivity of the vacuum heat insulating material of Comparative Example 3 is 1.5 mW / m · K, which is higher than the heat conductivity of 1.0 to 1.1 mW / m · K of the vacuum heat insulating material 50 of Embodiments 1 to 6. The rate is high and heat is easily transmitted. Therefore, it can be seen that the heat insulating performance of the vacuum heat insulating material of Comparative Example 3 is inferior to that of the vacuum heat insulating materials 50 of the first to sixth embodiments.

1 冷蔵庫
1H 冷蔵庫本体(断熱箱体)
2 冷蔵室
3a 製氷室(冷凍室)
3b 上段冷凍室(冷凍室)
4 下段冷凍室(冷凍室)
5 野菜室
12 仕切断熱壁(第1仕切り部材)
14 仕切断熱壁(第2仕切り部材)
21 外箱
22 内箱
23 発泡断熱材(断熱材)
50、50a、50b、50c 真空断熱材
51 芯材
53 外被材(ガスバリヤ性部材)
1 refrigerator 1H refrigerator body (insulation box)
2 Cold room 3a Ice making room (freezer room)
3b Upper freezer room (freezer room)
4 Lower freezer compartment (freezer compartment)
5 Vegetable room 12 Partition insulation wall (first partition member)
14 Partition insulation wall (second partition member)
21 Outer box 22 Inner box 23 Foam insulation (insulation)
50, 50a, 50b, 50c Vacuum heat insulating material 51 Core material 53 Jacket material (gas barrier member)

Claims (3)

無機系或いは有機系の繊維積層体の繊維径が平均3μm以上8μm以下であるとともに繊維長が平均2mm以上10mm以下に形成され、バインダを用いない芯材と、前記芯材を覆うガスバリヤ性フィルムとを有する真空断熱材であって、
前記真空断熱材は、その広がる方向である延在方向断面の空隙率が80%以上85%以下であり、かつ、その断熱方向である厚さ方向断面の空隙率が85%以上100%未満であり、
前記芯材として用いられている前記繊維積層体を形成する繊維のヤング率は、75MPa以上85MPa以下であり、
前記芯材として用いられている前記繊維積層体を形成する繊維の原材料にホウ素を含まず、
熱伝導率が1.0〜1.1mW/mKである
ことを特徴とする真空断熱材。
An inorganic or organic fiber laminate having an average fiber diameter of 3 μm or more and 8 μm or less and a fiber length of 2 mm or more and 10 mm or less on average; a core material that does not use a binder; and a gas barrier film that covers the core material; A vacuum insulation material having
The vacuum heat insulating material has a void ratio in the extending direction cross section that is the spreading direction of 80% or more and 85% or less, and a void ratio of the thickness direction cross section that is the heat insulating direction is 85% or more and less than 100%. Oh it is,
The Young's modulus of the fibers forming the fiber laminate used as the core material is 75 MPa or more and 85 MPa or less,
It does not contain boron in the raw material of the fiber forming the fiber laminate used as the core material,
A vacuum heat insulating material having a thermal conductivity of 1.0 to 1.1 mW / mK .
前記芯材として用いられている前記繊維積層体を形成する繊維の原材料は、廃ガラスのカレットが95%以上100%以下であることを特徴とする請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 , wherein the raw material of the fiber forming the fiber laminate used as the core material has a waste glass cullet of 95% or more and 100% or less. 外装を成す外箱と貯蔵物を収容する内箱との間に形成される空間に、請求項1または請求項2に記載の真空断熱材を少なくとも設置した断熱箱体を備えたことを特徴とする冷蔵庫。 A space formed between an outer box that forms an exterior and an inner box that stores a stored item is provided with a heat insulating box body in which at least the vacuum heat insulating material according to claim 1 or 2 is installed. Refrigerator.
JP2010107902A 2010-05-10 2010-05-10 Vacuum heat insulating material and refrigerator using the same Expired - Fee Related JP5548025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107902A JP5548025B2 (en) 2010-05-10 2010-05-10 Vacuum heat insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107902A JP5548025B2 (en) 2010-05-10 2010-05-10 Vacuum heat insulating material and refrigerator using the same

Publications (3)

Publication Number Publication Date
JP2011236953A JP2011236953A (en) 2011-11-24
JP2011236953A5 JP2011236953A5 (en) 2012-10-11
JP5548025B2 true JP5548025B2 (en) 2014-07-16

Family

ID=45325162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107902A Expired - Fee Related JP5548025B2 (en) 2010-05-10 2010-05-10 Vacuum heat insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP5548025B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953159B2 (en) * 2012-07-27 2016-07-20 日立アプライアンス株式会社 Vacuum insulation and refrigerator
JP2015086918A (en) * 2013-10-29 2015-05-07 株式会社クラレ Heat insulation material and manufacturing method thereof
JP6192554B2 (en) * 2014-02-03 2017-09-06 三菱電機株式会社 Manufacturing method of vacuum insulation
JPWO2018047261A1 (en) * 2016-09-08 2019-04-11 三菱電機株式会社 Vacuum insulation and insulation box

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513142B2 (en) * 2002-06-05 2004-03-31 松下冷機株式会社 Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
JP2007153649A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Glass composition, glass fiber, and vacuum heat insulating material
JP4976047B2 (en) * 2006-04-25 2012-07-18 国立大学法人東北大学 Heating device
JP2008057745A (en) * 2006-09-04 2008-03-13 Matsushita Electric Ind Co Ltd Vacuum heat insulation material and glass composition
JP4713566B2 (en) * 2007-12-28 2011-06-29 シャープ株式会社 Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011236953A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5798942B2 (en) Vacuum heat insulating material and refrigerator and equipment using the same
US7278279B2 (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
KR101560355B1 (en) Vacuum insulation material, refrigerator, equipment using vacuum insulation material
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP3478792B2 (en) refrigerator
JP2011153721A (en) Refrigerator
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP5779555B2 (en) Vacuum insulation and refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP5953159B2 (en) Vacuum insulation and refrigerator
JP5982211B2 (en) Vacuum insulation, refrigerator, equipment using vacuum insulation
JP2013024440A (en) Refrigerator
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP2012026622A (en) Vacuum heat insulation material and refrigerator using the same
JP5810054B2 (en) Vacuum insulation and refrigerator
JP2015200361A (en) Vacuum heat insulation material and refrigerator using the same
JP2016080063A (en) Process of manufacture of vacuum heat insulation material and refrigerator using this vacuum heat insulation material
JP2014206225A (en) Vacuum heat insulation material and refrigerator using the same
JP2018204711A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5548025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees