JP2018204711A - Vacuum heat insulation material and refrigerator using the same - Google Patents

Vacuum heat insulation material and refrigerator using the same Download PDF

Info

Publication number
JP2018204711A
JP2018204711A JP2017111269A JP2017111269A JP2018204711A JP 2018204711 A JP2018204711 A JP 2018204711A JP 2017111269 A JP2017111269 A JP 2017111269A JP 2017111269 A JP2017111269 A JP 2017111269A JP 2018204711 A JP2018204711 A JP 2018204711A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
core material
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017111269A
Other languages
Japanese (ja)
Inventor
祐志 新井
Yushi Arai
祐志 新井
越後屋 恒
Hisashi Echigoya
恒 越後屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2017111269A priority Critical patent/JP2018204711A/en
Publication of JP2018204711A publication Critical patent/JP2018204711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

To provide a vacuum heat insulation material having a low-thermal conductivity, and to provide a refrigerator using the vacuum heat insulation material.SOLUTION: A vacuum heat insulation material includes: a glass wool core material constituted of a fiber assembly; an adsorbent for adsorbing a gas; and an outer shell material for storing the core material. The core material is formed by being subject to a second heating treatment of heating it while compressing it after being subject to a first heating treatment of heating it with atmospheric pressure.SELECTED DRAWING: Figure 8

Description

本発明は真空断熱材及び真空断熱材を用いた冷蔵庫に関するものである。 The present invention relates to a vacuum heat insulating material and a refrigerator using the vacuum heat insulating material.

地球温暖化防止に対する社会の取り組みとして、COの排出抑制を図るため、様々な分野で省エネ化が推進されている。近年の電気製品、特に冷熱関連の家電製品においては消費電力量低減の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進、製造工程においては燃料代や電気代の抑制等、省エネ化が推進されている。そのため、より断熱性能の高い断熱材が求められる他、製品に組込んだ真空断熱材が長期にわたって性能を維持する長期寿命が求められる。真空断熱材の構成は主に芯材となるグラスウールと、それを覆う外被材にて構成されている。芯材に用いられるグラスウールはガラスの繊維から成るため、嵩が大きく外被材に挿入するにはグラスウールを加工する必要がある。 As a social effort to prevent global warming, energy conservation is being promoted in various fields in order to control CO 2 emissions. In recent years, electric appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption. In addition, in order to reduce energy consumption from various raw materials to product manufacturing processes, energy saving is promoted by promoting recycling of raw materials and reducing fuel and electricity costs in the manufacturing process. . For this reason, a heat insulating material with higher heat insulating performance is required, and a long life in which the vacuum heat insulating material incorporated in the product maintains the performance for a long time is required. The vacuum heat insulating material is mainly composed of glass wool as a core material and a jacket material covering the glass wool. The glass wool used for the core material is made of glass fibers, and therefore has a large volume and needs to be processed to be inserted into the jacket material.

近年、真空断熱材の断熱性能を向上させることを目的とした研究開発が精力的に進められている。例えば、特許文献1には、「ガラス繊維を厚み方向に積層したガラス繊維の積層体からなる芯材と、前記芯材を被覆するガスバリア性を有する外包材とを備え、前記外包材の内部が減圧して密閉された真空断熱材において、前記芯材は、ガラス繊維の自重で繊維が僅かに変形を始める温度、またはプレス時の上下方向からの加重によりガラス繊維が変形可能となる温度であって、ガラス繊維の断面形状が大きく変化しない程度の温度で、加圧成形されてガラス繊維の熱変形により繊維が延伸されており、かつ、繊維相互の結着でなく、ガラス繊維の一部が繊維相互間で絡み合って形状を保持している真空断熱材」が開示されている。   In recent years, research and development aimed at improving the heat insulating performance of vacuum heat insulating materials has been vigorously advanced. For example, Patent Document 1 includes "a core material made of a glass fiber laminate in which glass fibers are laminated in the thickness direction, and an outer packaging material having a gas barrier property that covers the core material, and the interior of the outer packaging material is In the vacuum heat insulating material sealed under reduced pressure, the core material has a temperature at which the fiber starts to slightly deform due to its own weight, or a temperature at which the glass fiber can be deformed by a load from above and below during pressing. The glass fiber is pressed and molded at a temperature at which the cross-sectional shape of the glass fiber is not greatly changed, and the fiber is stretched by thermal deformation of the glass fiber, and a part of the glass fiber is not bonded to each other. A "vacuum heat insulating material that is intertwined between fibers and maintains the shape" is disclosed.

特許第3580315号公報Japanese Patent No. 3580315

特許文献1に記載の発明では、芯材を常温から一気に温度上昇させながら加圧しているので、ガラス繊維が相互に接触する部分における熱膨張率と、接触しない部分における熱膨張率が異なり、この熱膨張率の相違に起因して、接触する部分に大きな応力が加わる。このように大きな応力が加わると、ガラス繊維にクラックが発生し、特に曲げ加工を行ったときにはガラス繊維が破損しやすくなる。そして、ガラス繊維が破損すると、ガラス繊維が短くなり、繊維間の熱伝導が多くなるため、真空断熱材としての熱伝導率が増大してしまう。   In the invention described in Patent Document 1, since the core material is pressurized while raising the temperature from room temperature at a stretch, the thermal expansion coefficient at the part where the glass fibers are in contact with each other is different from the thermal expansion coefficient at the part where the glass fiber is not in contact. Due to the difference in thermal expansion coefficient, a large stress is applied to the contacted portion. When such a large stress is applied, a crack is generated in the glass fiber, and the glass fiber is likely to be damaged particularly when bending is performed. When the glass fiber is broken, the glass fiber is shortened and the heat conduction between the fibers is increased, so that the thermal conductivity as the vacuum heat insulating material is increased.

本発明は、上記の課題に鑑みてなされたものであり、熱伝導率の低い真空断熱材及びこの真空断熱材を用いた冷蔵庫を提供することを目的とする。   This invention is made | formed in view of said subject, and it aims at providing the refrigerator which used the vacuum heat insulating material with low heat conductivity, and this vacuum heat insulating material.

上記目的を達成するため、本発明は、繊維集合体から成るグラスウールの芯材と、ガスを吸着する吸着剤と、前記芯材を収納する外被材と、を備える真空断熱材において、前記芯材を、大気圧で加熱する第一の加熱処理の後に、加圧しつつ加熱する第二の加熱処理を行うことで成形した。 To achieve the above object, the present invention provides a vacuum heat insulating material comprising: a glass wool core material comprising a fiber assembly; an adsorbent that adsorbs a gas; and a jacket material that houses the core material. The material was molded by performing a second heat treatment in which the material was heated while being pressurized after the first heat treatment in which the material was heated at atmospheric pressure.

本発明によれば、熱伝導率の低い真空断熱材及びこの真空断熱材を用いた冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a vacuum heat insulating material having a low thermal conductivity and a refrigerator using the vacuum heat insulating material.

本発明の実施例及び比較例における冷蔵庫の正面図である。It is a front view of the refrigerator in the Example and comparative example of this invention. 本発明の実施例を示す冷蔵庫の縦断面図(図1のA−A断面図)である。It is a longitudinal cross-sectional view (AA sectional drawing of FIG. 1) of the refrigerator which shows the Example of this invention. 本発明の実施例を示す真空断熱材の概略断面図である。It is a schematic sectional drawing of the vacuum heat insulating material which shows the Example of this invention. 本発明の実施例を示す芯材の繊維拡大図である。It is a fiber enlarged view of the core material which shows the Example of this invention. 本発明の比較例を示す芯材の繊維拡大図である。It is a fiber enlarged view of the core material which shows the comparative example of this invention. 本発明の実施例に示す真空断熱材に曲げ加工を行った状態を示す図である。It is a figure which shows the state which performed the bending process on the vacuum heat insulating material shown in the Example of this invention. 加熱温度と水分脱離の関係を示す図である。It is a figure which shows the relationship between heating temperature and moisture desorption. 本発明の実施例と比較例で得られた真空断熱材の性能を示す図である。It is a figure which shows the performance of the vacuum heat insulating material obtained by the Example and comparative example of this invention.

以下、本発明の実施形態について、図1〜図3を用いて説明する。図1は本実施形態を示す冷蔵庫の正面図であり、図2は図1のA−A断面図を示している。
図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2、貯氷室3(と切替え室)、冷凍室4、野菜室5を有している。図1の符号は、上記各室の前面開口部を閉塞する扉であり、上からヒンジ10等を中心に回動する冷蔵室扉6a、6b、冷蔵室扉6a、6b以外は全て引き出し式の扉であり、貯氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を配置する。これらの引き出し式扉6〜9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6〜9には冷蔵庫本体1と密閉するためのパッキン11を備え、各扉6〜9の室内側外周縁に取り付けられている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a refrigerator showing the present embodiment, and FIG. 2 is a cross-sectional view taken along the line AA of FIG.
The refrigerator 1 provided with this embodiment shown in FIG. 1 has the refrigerator compartment 2, the ice storage compartment 3 (and switching room), the freezer compartment 4, and the vegetable compartment 5 from the top, as shown in FIG. The code | symbol of FIG. 1 is a door which obstruct | occludes the front-surface opening part of each said chamber, All are drawer-type except the refrigerator compartment doors 6a and 6b and the refrigerator compartment doors 6a and 6b which rotate centering on hinges 10 grade | etc., From the top. The ice storage room door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are arranged. When these drawer-type doors 6 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors. Each door 6-9 is provided with packing 11 for sealing with the refrigerator main body 1, and is attached to the indoor side outer periphery of each door 6-9.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(硬質ウレタンフォーム)、真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30〜50mm程度の断熱壁で、これまたスチロフォーム、或いは発泡断熱材(硬質ウレタンフォーム)、真空断熱材等で作られている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。尚、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等、特に限定するものではない。   Moreover, the partition heat insulation wall 12 is arrange | positioned in order to carry out the partition heat insulation between the refrigerator compartment 2, the ice-making room 3a, and the upper stage freezer compartment 3b. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (hard urethane foam), vacuum heat insulating material and the like. . Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. A partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the partition. Like the partition heat insulation wall 12, it is a heat insulation wall of about 30 to 50 mm, and this is also a styrofoam or foam heat insulation. Made of material (rigid urethane foam), vacuum insulation, etc. Basically, partition heat insulation walls are installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing. In the box 20, storage compartments for the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 are formed from above, respectively. The invention is not particularly limited to this. The refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. is not.

箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填してある。真空断熱材50については図3で説明するが、後述する固定部材70、支持部材80等で固定支持されている。
また、冷蔵庫の冷蔵室2、冷凍室3a、4、野菜室5等の各室を所定の温度に冷却するために冷凍室3a、4の背側には冷却器28が備えられており、この冷却器28と圧縮機30と凝縮機30a、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。
The box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside. Yes. A vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as rigid urethane foam. Although the vacuum heat insulating material 50 is demonstrated in FIG. 3, it is fixedly supported by the fixing member 70, the supporting member 80, etc. which are mentioned later.
A refrigerator 28 is provided on the back side of the freezer compartments 3a and 4 in order to cool the refrigerator compartment 2, the freezer compartments 3a and 4 and the vegetable compartment 5 to a predetermined temperature. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 30a, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ断熱仕切り12、14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この断熱仕切り12、14については硬質ウレタンフォーム等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。   Insulation partitions 12 and 14 are disposed as the heat insulating materials for partitioning the refrigerator compartment 2, ice making chamber 3a, upper freezer compartment 3b, freezer compartment 4 and vegetable compartment 5, respectively. It is configured. The heat insulating partitions 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、前記カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to set it in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the vacuum heat insulating material 50a is arrange | positioned in the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened. In the present embodiment, the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a and the electrical component 41 of the interior lamp 45 described above. The cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason. In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50d is arranged.

ここで、真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と芯材51を被覆するガスバリヤ層を有する外被材53から構成してある。外被材53は真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。なお、外被材53のラミネート構成については、ガスバリヤ性を有し熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層、ガスバリヤ層1、ガスバリヤ層2、熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、ガスバリヤ層1は樹脂フィルムに金属蒸着層を設け、ガスバリヤ層2は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、ガスバリヤ層1とガスバリヤ層2は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。   Here, the configuration of the vacuum heat insulating material 50 will be described with reference to FIG. The vacuum heat insulating material 50 is composed of a core material 51 and a jacket material 53 having a gas barrier layer covering the core material 51. The jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the laminate film having the same size. The laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded. In the present embodiment, the surface protective layer, the gas barrier layer 1, the gas barrier layer 2, the heat It is a laminate film composed of four layers of welding layers, the surface layer is a resin film serving as a protective material, the gas barrier layer 1 is provided with a metal vapor deposition layer on the resin film, and the gas barrier layer 2 is a resin film having a high oxygen barrier property. A metal vapor deposition layer is provided, and the gas barrier layer 1 and the gas barrier layer 2 are bonded so that the metal vapor deposition layers face each other. For the heat-welded layer, a film having low hygroscopicity was used as in the surface layer.

具体的には、表面層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、ガスバリヤ層1をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、ガスバリヤ層2をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。   Specifically, the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate, the gas barrier layer 1 is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition, and the gas barrier layer 2 is biaxially stretched with aluminum vapor deposition. An ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum vapor deposition, or an aluminum foil was used, and the heat-welded layer was a film of unstretched polyethylene, polypropylene, or the like. The layer structure and material of the four-layer laminate film are not particularly limited to these.

例えばガスバリヤ層1や2として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。表面層についてはガスバリヤ層1の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常ガスバリヤ層2に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも何ら構わない。   For example, as a gas barrier layer 1 or 2, a metal foil or a resin film provided with a gas barrier film made of an inorganic layer compound, a resin gas barrier coating material such as polyacrylic acid, DLC (diamond-like carbon), or the like, or heat-sealed For example, a polybutylene terephthalate film having a high oxygen barrier property may be used for the layer. The surface layer is a protective material for the gas barrier layer 1, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property. Further, since the resin-based film other than the metal foil normally used for the gas barrier layer 2 deteriorates the gas barrier property by absorbing moisture, the gas barrier property can be obtained by arranging a resin having a low hygroscopic property for the heat-welded layer. This suppresses the moisture absorption of the entire laminate film. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. . In addition, the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It is not necessary to use any other method such as a wet laminating method or a thermal laminating method.

(実施例1)
実施例1について図3、図4を参照しながら説明する。
図3は本発明の実施形態の冷蔵庫1設けた真空断熱材50の断面図である。真空断熱材50の構成は、芯材51を形成する繊維集合体のグラスウール繊維層と、芯材51の中間に配置された、吸着剤(芯材の中間層に配置しているが図示なし)を包む外被材52に収納された構成から成っている。上記構成からなるものを真空包装機によって芯材51を真空引きした状態のままで、外被材52をヒートシールすることで真空断熱材50とすることができる。芯材51は加熱した後に加熱加圧することで熱成形されたシート状の芯材51を得ることができる。
Example 1
Example 1 will be described with reference to FIGS.
FIG. 3 is a cross-sectional view of the vacuum heat insulating material 50 provided in the refrigerator 1 according to the embodiment of the present invention. The structure of the vacuum heat insulating material 50 is an adsorbent (disposed in the intermediate layer of the core material but not shown) disposed between the glass wool fiber layer of the fiber aggregate forming the core material 51 and the core material 51. It consists of the structure accommodated in the jacket material 52 which wraps. A vacuum heat insulating material 50 can be obtained by heat-sealing the outer covering material 52 in a state where the core material 51 is evacuated by a vacuum packaging machine. The core material 51 can be heated and pressed after heating to obtain a thermoformed sheet-like core material 51.

なお、無機繊維の集合体とは、任意の製造方法で製造された無数の無機繊維が絡み合って一体的に形成された原綿をいう。原綿の形状は、例えば、所定の厚みを有するシート状とするのが好ましいが、これに限定されない。無機繊維の集合体は、製造方法の都合上、原綿を一つのみを用いてもよいし、複数個用いてもよい。つまり、上述のようにシート状の原綿である場合は、一層のみとしてもよいし、複数層重ねてもよい。無機繊維は、例えば、平均繊維径2〜6μmのものを好適に用いることができるが、この範囲外のものも問題なく用いることができる。このような無機繊維は、例えば、遠心法によって得ることができる。   In addition, the aggregate | assembly of an inorganic fiber means the raw cotton integrally formed by the innumerable innumerable inorganic fiber manufactured by arbitrary manufacturing methods. The shape of the raw cotton is preferably a sheet having a predetermined thickness, for example, but is not limited thereto. As the aggregate of inorganic fibers, only one raw cotton or a plurality of raw cottons may be used for the convenience of the production method. That is, when it is a sheet-like raw cotton as described above, it may be a single layer or a plurality of layers. For example, inorganic fibers having an average fiber diameter of 2 to 6 μm can be suitably used, but those outside this range can also be used without any problem. Such inorganic fibers can be obtained, for example, by a centrifugal method.

次に、このシート状の芯材51を得る工程について説明する。本実施例においては、大気圧で加熱する第一の加熱処理を400℃で5分間した後に、加圧しつつ加熱する第二の加熱処理を10分間行うことで、嵩の小さいシート状の芯材51を成形することができる。なお、本実施例における温度は、芯材51の表面(最高)温度のことを意味する。   Next, a process for obtaining the sheet-like core material 51 will be described. In this embodiment, the first heat treatment heated at atmospheric pressure is performed at 400 ° C. for 5 minutes, and then the second heat treatment is performed while applying pressure for 10 minutes, so that the sheet-like core material having a small bulk is obtained. 51 can be molded. In addition, the temperature in a present Example means the surface (maximum) temperature of the core material 51. FIG.

まず、第一の加熱処理において、芯材51を常温から温度を上昇させていくと、ガラス繊維60が熱膨張するが、大気圧(14〜21kg/m3)に維持された状況下では、ガラス繊維60が相互に接触する部分もそうでない部分も、加熱時の熱膨張率の差が小さいため、局所的な高い応力が発生しない。つまり、加圧しない第一の加熱処理により、ガラス繊維60を、局所的な高い応力を生じさせずに熱膨張させることが可能となる。したがって、その後に加圧する第二の加熱処理を行っても、新たな熱膨張は少ないため、加圧による応力も抑制され、ガラス繊維60のクラック発生を防止できる。その結果、本実施例で成形した芯材51を用いて真空断熱材50とすれば、曲げ加工や凹凸を施しても破損し難く、ガラス繊維60の短縮による熱伝導を抑制でき、断熱性能を向上させることが可能となる。なお、ガラス繊維60にクラックが発生すると、真空引きする際、クラックに付着した水分が徐々に揮発することになり、真空度が高くなり難く、真空断熱材50としての熱伝導率が増大しやすいが、本実施例によれば、クラックの発生を防止できるので、熱伝導率も良好に保たれる。   First, in the first heat treatment, when the temperature of the core material 51 is increased from room temperature, the glass fiber 60 is thermally expanded. However, under the condition where the pressure is maintained at atmospheric pressure (14 to 21 kg / m 3), the glass fiber 60 is heated. A portion where the fibers 60 are in contact with each other and a portion where the fibers 60 are not in contact with each other have a small difference in coefficient of thermal expansion during heating, so that a local high stress is not generated. That is, the first heat treatment without pressurization allows the glass fiber 60 to be thermally expanded without causing local high stress. Therefore, even if it performs the 2nd heat processing pressurized after that, since there is little new thermal expansion, the stress by pressurization is also suppressed and the crack generation of the glass fiber 60 can be prevented. As a result, if the core material 51 formed in this embodiment is used as the vacuum heat insulating material 50, it is difficult to break even if subjected to bending or unevenness, heat conduction due to shortening of the glass fiber 60 can be suppressed, and heat insulating performance can be achieved. It becomes possible to improve. In addition, when a crack occurs in the glass fiber 60, when vacuuming, moisture attached to the crack gradually volatilizes, the degree of vacuum is hardly increased, and the thermal conductivity as the vacuum heat insulating material 50 is likely to increase. However, according to this embodiment, since the generation of cracks can be prevented, the thermal conductivity is also kept good.

本実施例では、第一の加熱処理は400℃×5分としているが、150℃以上でガラス繊維60の歪点以下の温度で5分以上とするのが好ましい。なお、本実施例で用いるグラスウールは、Bを約5重量%含んでおり、歪点は約500℃であるが、Bの濃度の高いグラスウールを用いた場合は、歪点もこれより高くなる。 In the present embodiment, the first heat treatment is 400 ° C. × 5 minutes, but it is preferable that the temperature is 150 ° C. or more and not more than the strain point of the glass fiber 60 for 5 minutes or more. Incidentally, glass wool used in this embodiment, a B 2 O 3 contains about 5 wt%, but the strain point is about 500 ° C., in the case of using a high concentration of B 2 O 3 glass wool, the strain point Will be higher than this.

まず、150℃以上の温度とする理由について説明する。ガラス繊維60に水分が含まれると、ガラス繊維60の膨張率が異なり繊維にクラックが発生しやすくなる。ここで、ガラス繊維60の表面に付着している水分は、一般に100℃以上で蒸発させることができるが、ガラス繊維60の表面のOH基と結びついている水分は、100℃よりも高い温度としなければ除去することが難しい。しかし、本実施例のように150℃以上で加熱すると、OH基とH2O基が結びついていても、図7のように、ガラス繊維60の水分が殆ど除去される。図7においては、ガラス繊維60の昇温脱離試験をしたときの水分ピークを示している。ガラス繊維60を徐々に加熱することでガラス繊維60から脱離した水分をイオン電流で表し、加熱温度が115℃と150℃において水分が脱離するピークを示している通り、加熱温度を150℃以上とすることが有効であると言える。   First, the reason why the temperature is set to 150 ° C. or higher will be described. When moisture is contained in the glass fiber 60, the expansion rate of the glass fiber 60 is different and cracks are likely to occur in the fiber. Here, the moisture adhering to the surface of the glass fiber 60 can generally be evaporated at 100 ° C. or more, but the moisture associated with the OH group on the surface of the glass fiber 60 is set to a temperature higher than 100 ° C. Otherwise it is difficult to remove. However, when heated at 150 ° C. or higher as in this embodiment, even if the OH group and the H 2 O group are combined, the moisture in the glass fiber 60 is almost removed as shown in FIG. In FIG. 7, the water | moisture-content peak when the temperature rising desorption test of the glass fiber 60 is shown is shown. Moisture desorbed from the glass fiber 60 by gradually heating the glass fiber 60 is represented by an ionic current, and the heating temperature is 150 ° C. as shown by the peaks at which the water desorbs at 115 ° C. and 150 ° C. It can be said that the above is effective.

次に、加熱温度を歪点以下とする理由は、ガラス繊維60が歪点を超えると、常圧でも繊維と繊維の接触している部分が融着して結合してしまい、真空断熱材50としたときの熱伝導率が増大してしまうためである。なお、第一の加熱処理では、後述する第二の加熱処理と異なり、加圧しないため、第二の加熱処理と比べて高い温度で処理しても良く、歪点を多少超えた温度も許容される。   Next, the reason for setting the heating temperature below the strain point is that when the glass fiber 60 exceeds the strain point, the portion where the fiber and the fiber are in contact with each other is fused and bonded even under normal pressure, and the vacuum heat insulating material 50 This is because the thermal conductivity increases. In the first heat treatment, unlike the second heat treatment described later, since no pressurization is performed, the heat treatment may be performed at a higher temperature than the second heat treatment, and a temperature slightly exceeding the strain point is allowed. Is done.

また、本実施例では、第二の加熱処理は400℃で10分間しているが、この限りではなく、300℃以上でガラス繊維60の歪点以下の温度、より好ましくは400℃以上500℃以下の温度で10分以上とするのが好ましい。なお、第二の加熱処理の時間は、第一の加熱処理の時間よりも長くなっている。   In this embodiment, the second heat treatment is performed at 400 ° C. for 10 minutes, but is not limited to this, and the temperature is not lower than 300 ° C. and not higher than the strain point of the glass fiber 60, more preferably 400 ° C. or higher and 500 ° C. It is preferable to be 10 minutes or more at the following temperature. Note that the second heat treatment time is longer than the first heat treatment time.

ここで、第二の加熱処理における圧力については、芯材51の密度が115kg/m3以上460kg/m3以下の範囲とすることが好ましい。本実施例においては、大気圧状態で17.5kg/m3の密度のガラス繊維60を、230kg/m3まで加圧している。   Here, regarding the pressure in the second heat treatment, it is preferable that the density of the core material 51 is in a range of 115 kg / m 3 or more and 460 kg / m 3 or less. In the present embodiment, glass fiber 60 having a density of 17.5 kg / m3 is pressurized to 230 kg / m3 in an atmospheric pressure state.

本実施例により得られた芯材51は、加熱加圧後の厚みが50mm、密度が84kg/m3と嵩が小さく、復元率が低いので、寸法精度の高い真空断熱材50が得られる。しかも、ガラス繊維60のクラックを抑制できるので、真空断熱材50の強度が向上し、ハンドリング性も良くなる。そして、熱伝導率が2.0mW/m・Kと良好な値を得ることができた。   The core material 51 obtained in this example has a thickness after heating and pressurization of 50 mm, a density of 84 kg / m 3 and a low bulk and a low restoration rate, so that the vacuum heat insulating material 50 with high dimensional accuracy can be obtained. And since the crack of the glass fiber 60 can be suppressed, the intensity | strength of the vacuum heat insulating material 50 improves and handling property also improves. The thermal conductivity was as good as 2.0 mW / m · K.

本実施例によって得られた真空断熱材50は、曲げ加工をしても、曲げ時にかかる圧力で繊維が砕け難い。これにより、真空断熱材50とした後に、図6のように曲げ部70や凹凸を設けても、断熱性能の低下を抑制した立体形状の真空断熱材50とすることが可能である。   Even if the vacuum heat insulating material 50 obtained by the present Example is bent, it is hard to break a fiber with the pressure applied at the time of bending. Thereby, even if it provides the bending part 70 and an unevenness | corrugation like FIG. 6 after setting it as the vacuum heat insulating material 50, it can be set as the three-dimensional-shaped vacuum heat insulating material 50 which suppressed the heat insulation performance fall.

(実施例2)
実施例2においては、第一の加熱処理で400℃×5分間加熱し、第二の加熱処理で400℃×10分間で芯材密度460kg/m3で加熱加圧したものである。本実施例では、加圧力を実施例1より大きくすることで、加圧後の厚みが35mmとなり、より厚みの小さい芯材51を得ることができる。また、ガラス繊維60に発生するクラックは少なく、真空断熱材50としたときの熱伝導率も2.1mW/m・Kと良好な値を得ることができた。
(Example 2)
In Example 2, the first heat treatment is performed at 400 ° C. for 5 minutes, and the second heat treatment is performed at 400 ° C. for 10 minutes at a core material density of 460 kg / m 3. In the present embodiment, by increasing the applied pressure from that in the first embodiment, the thickness after pressurization becomes 35 mm, and the core material 51 having a smaller thickness can be obtained. Moreover, there were few cracks which generate | occur | produced in the glass fiber 60, and the heat conductivity when it was set as the vacuum heat insulating material 50 was able to obtain a favorable value with 2.1 mW / m * K.

(実施例3)
実施例3においては、第一の加熱処理で400℃×5分間加熱し、第二の加熱処理で400℃×10分間で芯材密度115kg/m3で加熱加圧したものである。本実施例では、加圧力を実施例1より小さくすることで、加圧後の厚みが60mmとなり、加圧後の厚みは若干大きくなるが、ガラス繊維60に発生するクラックは少なく、真空断熱材50としたときの熱伝導率も1.9mW/m・Kと最も良好な値を得ることができた。
Example 3
In Example 3, the first heat treatment was performed at 400 ° C. for 5 minutes, and the second heat treatment was performed at 400 ° C. for 10 minutes at a core material density of 115 kg / m 3. In this example, the pressure after pressurization is made smaller than that of Example 1, so that the thickness after pressurization becomes 60 mm and the thickness after pressurization becomes slightly larger, but there are few cracks generated in the glass fiber 60 and the vacuum heat insulating material. When the thermal conductivity was 50, the best value of 1.9 mW / m · K could be obtained.

(実施例4)
実施例4においては、第一の加熱処理で450℃×5分間加熱し、第二の加熱処理で400℃×10分間で芯材密度230kg/m3で加熱加圧したものである。本実施例では、第一の加熱処理における温度を実施例1より高くすることで、加圧後の厚みが45mmとなり、ガラス繊維60に発生するクラックは少なく、真空断熱材50としたときの熱伝導率も2.0mW/m・Kと良好な値を得ることができた。
(Example 4)
In Example 4, the first heat treatment is performed at 450 ° C. for 5 minutes, and the second heat treatment is performed at 400 ° C. for 10 minutes at a core material density of 230 kg / m 3. In this example, the temperature in the first heat treatment is higher than that in Example 1, so that the thickness after pressurization becomes 45 mm, the glass fiber 60 has few cracks, and the heat when the vacuum heat insulating material 50 is obtained. The conductivity was as good as 2.0 mW / m · K.

(実施例5)
実施例5においては、第一の加熱処理で150℃×5分間加熱し、第二の加熱処理で400℃×10分間で芯材密度230kg/m3で加熱加圧したものである。本実施例では、第一の加熱処理における温度を実施例1より低くすることで、加圧後の厚みが65mmとなり、加圧後の厚みは若干大きくなるが、ガラス繊維60に発生するクラックは少なく、真空断熱材50としたときの熱伝導率も1.9mW/m・Kと最も良好な値を得ることができた。
(Example 5)
In Example 5, the first heat treatment is performed at 150 ° C. for 5 minutes, and the second heat treatment is performed at 400 ° C. for 10 minutes at a core material density of 230 kg / m 3. In this example, by lowering the temperature in the first heat treatment from that in Example 1, the thickness after pressurization becomes 65 mm, and the thickness after pressurization is slightly larger, but the cracks generated in the glass fiber 60 are The heat conductivity when the vacuum heat insulating material 50 was small was 1.9 mW / m · K, which was the best value.

(実施例6)
実施例6においては、第一の加熱処理で400℃×5分間加熱し、第二の加熱処理で500℃×10分間で芯材密度230kg/m3で加熱加圧したものである。本実施例では、第二の加熱処理における温度を実施例1より高くすることで、加圧後の厚みが45mmとなり、ガラス繊維60に発生するクラックは少なく、真空断熱材50としたときの熱伝導率も2.1mW/m・Kと良好な値を得ることができた。
(Example 6)
In Example 6, the first heat treatment is performed at 400 ° C. for 5 minutes, and the second heat treatment is performed at 500 ° C. for 10 minutes at a core material density of 230 kg / m 3. In this example, the temperature in the second heat treatment is higher than that in Example 1, so that the thickness after pressurization is 45 mm, the glass fiber 60 has few cracks, and the heat when the vacuum heat insulating material 50 is obtained. The conductivity was as good as 2.1 mW / m · K.

(比較例1)
比較例として、第一の加熱処理を設けず、第二の加熱処理により、すぐに加熱加圧した場合にについて説明する。この場合、加熱加圧を500℃で10分間、ガラス繊維60の密度を230kg/m3まで加圧することで加熱加圧後の厚みを25mmまで小さくすることができるが、図5に示すように、ガラス繊維60の表面に、強度的に弱い変形跡61が発生してしまい、真空断熱材50としたときの断熱性能が低下してしまう。また、このような真空断熱材50に曲げ加工を行うと、この変形跡61を起点として曲げ部の繊維が砕け易くなることがわかった。
(Comparative Example 1)
As a comparative example, the case where the first heat treatment is not provided and the second heat treatment is immediately heated and pressurized will be described. In this case, the thickness after heating and pressurization can be reduced to 25 mm by pressurizing the glass fiber 60 to 230 kg / m3 at 500 ° C. for 10 minutes, as shown in FIG. Deformation marks 61 that are weak in strength are generated on the surface of the glass fiber 60, and the heat insulation performance when the vacuum heat insulating material 50 is used is lowered. Further, it was found that when bending was performed on such a vacuum heat insulating material 50, the fiber in the bent portion was easily broken starting from the deformation trace 61.

上述の実施例1〜6及び比較例1では、Bが約5重量%のグラスウールを用いた場合のみ示したが、Bが例えば8重量%の場合であっても、歪点が510℃に変わるものの、加熱処理に適した条件については、上述の各実施例とほぼ同様の結果となった。実施例1〜6で得られた芯材51の繊維を拡大した図である。 In Examples 1 to 6 and Comparative Example 1 described above, only glass wool having about 5% by weight of B 2 O 3 was used. However, even when B 2 O 3 is, for example, 8% by weight, strain Although the point changed to 510 ° C., the conditions suitable for the heat treatment were almost the same as those in the above-described examples. It is the figure which expanded the fiber of the core material 51 obtained in Examples 1-6.

1 冷蔵庫、2 冷蔵室、3a 製氷室、3b 上段冷凍室、4 下段冷凍室、5 野菜室、6a 冷蔵室扉、6b 冷蔵室扉、7a 製氷室扉、7b 上段冷凍室扉、8 下段冷凍室扉、9 野菜室扉、10 扉用ヒンジ、11 パッキン、12,14 断熱仕切り、13 仕切り部材、20 箱体、21 外箱、21a天板、21b 後板、21d 底板、21e 側面、21f 前面、22 内箱、23 断熱材、23a 注入方向、23b 発泡方向、25 注入孔、27送風機、28 冷却器、30 圧縮機、31 凝縮機、33 発泡ポリスチレン、40 凹部、41 電気部品、42 カバー、50 真空断熱材、51 芯材、52 外被材、60 ガラス繊維、61 変形跡、70 曲げ部 DESCRIPTION OF SYMBOLS 1 Refrigerator, 2 Cold storage room, 3a Ice making room, 3b Upper freezing room, 4 Lower freezing room, 5 Vegetable room, 6a Refrigerating room door, 6b Refrigerating room door, 7a Ice making room door, 7b Upper freezing room door, 8 Lower freezing room Door, 9 Vegetable room door, 10 Door hinge, 11 Packing, 12, 14 Heat insulation partition, 13 Partition member, 20 Box body, 21 Outer box, 21a Top plate, 21b Rear plate, 21d Bottom plate, 21e Side, 21f Front, 22 Inner box, 23 Heat insulating material, 23a Injection direction, 23b Foaming direction, 25 Injection hole, 27 Blower, 28 Cooler, 30 Compressor, 31 Condenser, 33 Expanded polystyrene, 40 Recess, 41 Electrical component, 42 Cover, 50 Vacuum insulation material, 51 core material, 52 jacket material, 60 glass fiber, 1 modified trace, 70 bend

Claims (5)

繊維集合体から成るグラスウールの芯材と、ガスを吸着する吸着剤と、前記芯材を収納する外被材と、を備える真空断熱材において、前記芯材が、大気圧で加熱する第一の加熱処理の後に、加圧しつつ加熱する第二の加熱処理を行うことで成形されることを特徴とした真空断熱材。 In a vacuum heat insulating material comprising a glass wool core material composed of a fiber assembly, an adsorbent that adsorbs gas, and a jacket material that houses the core material, the core material is heated at atmospheric pressure. A vacuum heat insulating material, characterized by being formed by performing a second heat treatment that heats while applying pressure after the heat treatment. 請求項1記載の真空断熱材において、前記第一の加熱処理の温度が150℃以上であり、前記第二の加熱処理の温度が前記芯材の歪点以下であることを特徴とした真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the temperature of the first heat treatment is 150 ° C. or higher, and the temperature of the second heat treatment is lower than a strain point of the core material. Wood. 請求項1記載の真空断熱材において、前記第一の加熱処理の温度が前記第二の加熱処理の温度よりも高いことを特徴とした真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the temperature of the first heat treatment is higher than the temperature of the second heat treatment. 請求項1記載の真空断熱材において、前記第二の加熱処理は、前記芯材の密度が115kg/m3以上460kg/m3以下の範囲となる圧力で行うことを特徴とした真空断熱材。 2. The vacuum heat insulating material according to claim 1, wherein the second heat treatment is performed at a pressure at which the density of the core material is in a range of 115 kg / m 3 or more and 460 kg / m 3 or less. 請求項1乃至4のいずれかに記載の真空断熱材を用いた冷蔵庫において、前記真空断熱材が凹凸あるいは曲げ部を有することを特徴とした冷蔵庫。 The refrigerator using the vacuum heat insulating material according to any one of claims 1 to 4, wherein the vacuum heat insulating material has unevenness or a bent portion.
JP2017111269A 2017-06-06 2017-06-06 Vacuum heat insulation material and refrigerator using the same Pending JP2018204711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111269A JP2018204711A (en) 2017-06-06 2017-06-06 Vacuum heat insulation material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111269A JP2018204711A (en) 2017-06-06 2017-06-06 Vacuum heat insulation material and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2018204711A true JP2018204711A (en) 2018-12-27

Family

ID=64956964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111269A Pending JP2018204711A (en) 2017-06-06 2017-06-06 Vacuum heat insulation material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2018204711A (en)

Similar Documents

Publication Publication Date Title
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100980175B1 (en) Refrigerator
JP2001165557A (en) Refrigerator
WO2003076855A1 (en) Refrigerator
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2011153721A (en) Refrigerator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP3478792B2 (en) refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2009024921A (en) Refrigerator
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP5548025B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2013024440A (en) Refrigerator
JP2012026583A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2018204711A (en) Vacuum heat insulation material and refrigerator using the same
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2019113078A (en) Vacuum heat insulation material and refrigerator disposed with the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210112