JP5455673B2 - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP5455673B2
JP5455673B2 JP2010011559A JP2010011559A JP5455673B2 JP 5455673 B2 JP5455673 B2 JP 5455673B2 JP 2010011559 A JP2010011559 A JP 2010011559A JP 2010011559 A JP2010011559 A JP 2010011559A JP 5455673 B2 JP5455673 B2 JP 5455673B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
fiber layer
vacuum heat
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010011559A
Other languages
Japanese (ja)
Other versions
JP2011149501A (en
Inventor
祐志 新井
邦成 荒木
恒 越後屋
崇 井関
大五郎 嘉本
俊光 鶴賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010011559A priority Critical patent/JP5455673B2/en
Publication of JP2011149501A publication Critical patent/JP2011149501A/en
Application granted granted Critical
Publication of JP5455673B2 publication Critical patent/JP5455673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本発明は真空断熱材及び真空断熱材を適用した冷蔵庫に関するものである。   The present invention relates to a vacuum heat insulating material and a refrigerator to which the vacuum heat insulating material is applied.

近年の電気製品、特に冷熱関連の家電製品においては、消費電力量低減及びCO2排出量抑制の観点から、真空断熱材を採用して断熱性能を強化したものが主流になっている。また、各種原材料から製品の製造工程に至るまでのあらゆるエネルギー消費量を抑制するため、原材料についてはリサイクル化の推進,製造工程においては燃料代や電気代の抑制等、省エネルギー化が推進されている。 2. Description of the Related Art In recent years, electrical appliances, particularly household appliances related to cooling and heating, mainly use vacuum heat insulating materials to enhance heat insulating performance from the viewpoint of reducing power consumption and CO 2 emission. In addition, in order to suppress all energy consumption from various raw materials to the product manufacturing process, energy saving is promoted by promoting recycling of raw materials and reducing fuel costs and electricity costs in the manufacturing process. .

また、真空断熱材の貼付け面積を増加して断熱性能を向上させるために、真空断熱材を用いる箇所が平面とは限らない場合がある。すなわち、貼付け部の凹凸や、角部を有する面に真空断熱材を貼付ける場合、貼付け部に沿った形の溝加工や曲げ加工をする必要がある。   Moreover, in order to increase the sticking area of a vacuum heat insulating material and to improve heat insulation performance, the location using a vacuum heat insulating material may not necessarily be a plane. That is, when a vacuum heat insulating material is pasted on the surface having the irregularities or corners of the pasting portion, it is necessary to perform groove processing or bending processing along the pasting portion.

特許文献1記載の真空断熱材は、繊維集合体から成る芯材に形状を保持可能なフィルム状の変形保持部材を配置することで、貼付け部の形状に保持するものである。   The vacuum heat insulating material described in Patent Document 1 is held in the shape of the pasting portion by disposing a film-like deformation holding member capable of holding the shape on a core material made of a fiber assembly.

また、特許文献2記載の真空断熱材は、無機又は有機繊維からなる芯材に連続気泡合成樹脂フォームを用い、真空断熱材とした後に外表面から凹凸加工を施すことで、貼付け部の形状に保持するものである。   Moreover, the vacuum heat insulating material of patent document 2 uses the open cell synthetic resin foam for the core material which consists of an inorganic or organic fiber, and after making it into a vacuum heat insulating material, it performs uneven | corrugated processing from the outer surface, and becomes the shape of a sticking part. It is to hold.

特開2007−56972号公報JP 2007-56972 A 特開2004−207306号公報JP 2004-207306 A

しかし、真空断熱材に溝や曲げ加工を行っても、復元力により元の形状に戻ろうとするスプリングバックのため、貼付け部への貼付け時に隙間が生じて断熱性能低下する。また、貼付力が弱くなり、位置ずれが生じるおそれがある。   However, even if a groove or a bending process is performed on the vacuum heat insulating material, because of the springback that tries to return to the original shape by the restoring force, a gap is generated when the heat is applied to the application portion, and the heat insulation performance is deteriorated. Moreover, there exists a possibility that a sticking force may become weak and position shift may arise.

特許文献1記載の真空断熱材では、変形保持部材がアルミニウム等の金属やポリエチレンテレフタレート樹脂等の合成樹脂製のフィルムである。このため、芯材に用いられる繊維集合体よりも熱伝導して、断熱性能が低下する、という課題があった。   In the vacuum heat insulating material described in Patent Document 1, the deformation holding member is a film made of a metal such as aluminum or a synthetic resin such as polyethylene terephthalate resin. For this reason, there existed a subject that heat conduction was carried out rather than the fiber assembly used for a core material, and heat insulation performance fell.

また、変形保持部材を用いて形状を保持するために、層間に設ける必要があり、作業性が悪く、コストが上昇する、という課題があった。   Moreover, in order to hold | maintain a shape using a deformation | transformation holding member, it was necessary to provide between layers, and there existed a subject that workability | operativity was bad and cost raised.

次に、特許文献2記載の真空断熱材では、凹凸形状が大きくなるほど芯材に用いる連続気泡合成樹脂フォームから成る板状材料を厚くしなくてはならず、断熱性能が低下する、という課題があった。   Next, in the vacuum heat insulating material described in Patent Document 2, the larger the uneven shape, the thicker the plate-like material made of the open cell synthetic resin foam used for the core material, and there is a problem that the heat insulating performance decreases. there were.

また、真空包装するときに連続気泡合成樹脂フォームがあると連続気泡合成樹脂フォームに含まれる空気層から空気が抜けにくく、真空包装に時間がかかる、という課題があった。   In addition, if there is an open cell synthetic resin foam when vacuum packaging, there is a problem that it is difficult for air to escape from the air layer contained in the open cell synthetic resin foam, and it takes a long time for vacuum packaging.

そこで、上記課題に鑑みて、本発明は、表面平滑性を向上して高い断熱性能を有する真空断熱材及びこれを用いた冷蔵庫を提供することを目的とする。   Then, in view of the said subject, an object of this invention is to provide the vacuum heat insulating material which improves surface smoothness, and has high heat insulation performance, and a refrigerator using the same.

上記課題を解決するために、本発明の真空断熱材は、繊維集合体の芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備え、曲げ部又は溝部を有する真空断熱材において、前記芯材は前記曲げ部又は前記溝部に樹脂繊維層を有し、且つ該樹脂繊維層を熱処理して曲げ形状又は溝形状を保持し、前記芯材は前記樹脂繊維層と無機繊維層との複層であり、前記芯材は前記曲げ部又は前記溝部を前記樹脂繊維層とし、直線部を無機繊維層としたことを特徴とする。 In order to solve the above problems, a vacuum heat insulating material of the present invention includes a core material of a fiber assembly, an inner bag that stores the core material, and an outer jacket material that stores the inner bag, and a bent portion or In the vacuum heat insulating material having a groove portion, the core material has a resin fiber layer in the bent portion or the groove portion, and the resin fiber layer is heat-treated to maintain a bent shape or a groove shape, and the core material is the resin It is a multilayer of a fiber layer and an inorganic fiber layer, and the core material is characterized in that the bent portion or the groove portion is the resin fiber layer, and the straight portion is an inorganic fiber layer .

また、本発明の冷蔵庫は、内箱と外箱との間に真空断熱材と発泡断熱材とを備えた冷蔵庫において、前記真空断熱材は、繊維集合体の芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備え、且つ曲げ部又は溝部を有し、前記芯材は前記曲げ部又は前記溝部に樹脂繊維層を有し、且つ該樹脂繊維層を熱処理して曲げ形状又は溝形状を保持し、前記内箱面又は前記外箱面に配置し、前記芯材は、前記樹脂繊維層と無機繊維層との複層であり、前記芯材は前記曲げ部又は前記溝部を前記樹脂繊維層とし、直線部を無機繊維層としたことを特徴とする。 Further, the refrigerator of the present invention is a refrigerator including a vacuum heat insulating material and a foam heat insulating material between an inner box and an outer box, wherein the vacuum heat insulating material stores a core material of a fiber assembly and the core material. An inner bag and an outer jacket material that accommodates the inner bag, and has a bent portion or a groove portion, and the core material has a resin fiber layer in the bent portion or the groove portion, and the resin fiber layer. The bent shape or groove shape is maintained by heat treatment and disposed on the inner box surface or the outer box surface, the core material is a multilayer of the resin fiber layer and the inorganic fiber layer, and the core material is The bent portion or the groove portion is the resin fiber layer, and the straight portion is an inorganic fiber layer .

本発明によれば、表面平滑性を向上して高い断熱性能を有する真空断熱材及びこれを用いた冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum heat insulating material which improves surface smoothness and has high heat insulation performance, and a refrigerator using the same can be provided.

本発明の一実施形態に係る真空断熱材を示す図である。It is a figure which shows the vacuum heat insulating material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る真空断熱材を曲げた状態を示す図である。It is a figure which shows the state which bent the vacuum heat insulating material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る真空断熱材の曲げ部に融着樹脂繊維を用いた図である。It is the figure which used the fused resin fiber for the bending part of the vacuum heat insulating material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る真空断熱材の使用例を示す図である。It is a figure which shows the usage example of the vacuum heat insulating material which concerns on one Embodiment of this invention. 本発明の一実施形態に係る真空断熱材を適用した冷蔵庫の正面図である。It is a front view of the refrigerator to which the vacuum heat insulating material which concerns on one Embodiment of this invention is applied. 図5のA−A線断面図である。It is the sectional view on the AA line of FIG.

以下本発明の実施の形態について、図1から図5を用いて説明する。図1は、本発明の一実施形態に係る真空断熱材を示す図である。図2は、本発明の一実施形態に係る真空断熱材を曲げた状態を示す図である。図3は、本発明の一実施形態に係る真空断熱材の曲げ部に融着樹脂繊維を用いた図である。図4は、本発明の一実施形態に係る真空断熱材の使用例を示す図である。図5は、本発明の一実施形態に係る真空断熱材を適用した冷蔵庫の正面図である。図6は、図5のA−A線断面図である。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a view showing a vacuum heat insulating material according to an embodiment of the present invention. FIG. 2 is a diagram showing a state where the vacuum heat insulating material according to the embodiment of the present invention is bent. FIG. 3 is a diagram in which a fused resin fiber is used for a bent portion of a vacuum heat insulating material according to an embodiment of the present invention. FIG. 4 is a diagram illustrating a usage example of the vacuum heat insulating material according to the embodiment of the present invention. FIG. 5 is a front view of a refrigerator to which a vacuum heat insulating material according to an embodiment of the present invention is applied. 6 is a cross-sectional view taken along line AA in FIG.

真空断熱材50の構成は、芯材51となる有機繊維集合体である樹脂繊維層52aと無機繊維集合体であるグラスウール層52bと吸着剤(図示無し)を内袋材53で包み、ガスバリヤ性を有する外被材54で真空包装されている。本実施例においては、芯材51の樹脂繊維層52aとしてポリスチレン繊維を用いたが、ポリプロピレンやポリエチレンテレフタレート等の樹脂繊維を用いることもできる。   The structure of the vacuum heat insulating material 50 is such that a resin fiber layer 52a which is an organic fiber aggregate serving as a core material 51, a glass wool layer 52b which is an inorganic fiber aggregate and an adsorbent (not shown) are wrapped in an inner bag material 53, and gas barrier properties are obtained. It is vacuum-packed with a jacket material 54 having In this embodiment, polystyrene fibers are used as the resin fiber layer 52a of the core material 51. However, resin fibers such as polypropylene and polyethylene terephthalate can also be used.

内袋材53については、ポリエチレンフィルムを用いたが、ポリプロピレンフィルム,ポリエチレンテレフタレートフィルム,ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものを用いることもできる。吸着剤には物理吸着タイプの合成ゼオライトを用いたが、水分やガスを吸着するものであれば良く、シリカゲルや酸化カルシウム,塩化カルシウム,酸化ストロンチウム等の化学反応型吸着剤を用いることもできる。   For the inner bag material 53, a polyethylene film is used, but a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film, or the like that has low hygroscopicity and can be heat-welded and has little outgas can also be used. As the adsorbent, a physical adsorption type synthetic zeolite is used, but any adsorbent that adsorbs moisture or gas may be used, and a chemical reaction type adsorbent such as silica gel, calcium oxide, calcium chloride, strontium oxide or the like can also be used.

外被材54については、表面層として吸湿性が低いポリプロピレンフィルムを、防湿層としてポリエチレンテレフタレートフィルムにアルミ蒸着層を設け、ガスバリヤ層はエチレンビニルアルコール共重合体フィルムにアルミ蒸着層を設けて、防湿層のアルミ蒸着層と向かい合わせるように貼合わせた。外被材54のラミネート構成については、前記材質の4層構成としたが、同等のガスバリヤ性,耐熱,突き刺し強度を有したポリアミドフィルムやポリエチレンテレフタレートフィルム等であれば前記構成に限定するものではない。   For the jacket material 54, a polypropylene film having low hygroscopicity is provided as a surface layer, an aluminum vapor deposition layer is provided on a polyethylene terephthalate film as a moisture barrier layer, and a gas barrier layer is provided with an aluminum vapor deposition layer on an ethylene vinyl alcohol copolymer film. The layers were laminated so as to face the aluminum vapor deposition layer. The laminate structure of the jacket material 54 is a four-layer structure of the above material, but is not limited to the above structure as long as it is a polyamide film or a polyethylene terephthalate film having equivalent gas barrier properties, heat resistance, and piercing strength. .

真空断熱材50は、芯材51となる樹脂繊維層52aの繊維に融着部を設けたものである。樹脂繊維層52aは、ポリスチレン樹脂を290℃で溶融してメルトブローン法にて繊維化したものである。繊維径は5〜15μmとすることが好ましい。さらに、繊維径を8〜10μmとすることで、性能やハンドリング性に優れた芯材として使用することができる。   The vacuum heat insulating material 50 is obtained by providing a fused portion on the fiber of the resin fiber layer 52 a that becomes the core material 51. The resin fiber layer 52a is obtained by melting polystyrene resin at 290 ° C. and fiberizing it by a melt blown method. The fiber diameter is preferably 5 to 15 μm. Furthermore, it can use as a core material excellent in performance and handling property because a fiber diameter shall be 8-10 micrometers.

(実施例1)
図2は本発明の実施形態の真空断熱材50の外観図である。真空断熱材50の芯材51となる樹脂繊維層52aを曲げ加工と熱処理をして曲げ形状を保持したものである。また、ポリスチレン樹脂を290℃で溶融してメルトブローン法にて繊維化し、繊維径8〜10μmの繊維を用いた。
Example 1
FIG. 2 is an external view of the vacuum heat insulating material 50 according to the embodiment of the present invention. The resin fiber layer 52a which becomes the core material 51 of the vacuum heat insulating material 50 is bent and heat-treated to maintain the bent shape. In addition, polystyrene resin was melted at 290 ° C. and fiberized by a melt blown method, and fibers having a fiber diameter of 8 to 10 μm were used.

これらの構成で芯材51となる樹脂繊維層52aとグラスウール層52b(無機繊維層)と吸着剤を内袋材53で包み、ガスバリヤ性を有する外被材54で真空包装機にセットして、真空度2.2Paに減圧し、真空度2.2Pa以下で一定時間保持後外被材54を封止して真空断熱材とした。   In these configurations, the resin fiber layer 52a, the glass wool layer 52b (inorganic fiber layer) and the adsorbent that are the core material 51 are wrapped in the inner bag material 53, and set in a vacuum packaging machine with the outer jacket material 54 having gas barrier properties. The vacuum was reduced to 2.2 Pa, and after holding for a certain period of time at a vacuum of 2.2 Pa or less, the envelope material 54 was sealed to obtain a vacuum heat insulating material.

これにより得られた真空断熱材50を曲げ加工を行うと同時に、熱処理を行い、樹脂繊維層52aの内箱22側または外箱21側の表面の繊維同士を融着させることで、曲げ形状を保持した真空断熱材を得ることができる。   The vacuum heat insulating material 50 thus obtained is bent and simultaneously heat-treated to fuse the fibers on the surface of the resin fiber layer 52a on the inner box 22 side or the outer box 21 side, thereby forming a bent shape. The retained vacuum heat insulating material can be obtained.

熱処理については、曲げ加工治具を100℃に過熱し、曲げ形状を成形時に熱処理をして樹脂繊維層52aの内箱22側または外箱21側のどちらか、若しくは両方の表面の繊維どうしを融着させた。熱処理温度については、樹脂繊維層52aに用いる繊維種類や繊維径、外被材の耐熱温度により変える必要があるが、本実施例においては、ポリスチレン樹脂の樹脂繊維層52a,外被材54の耐熱温度から100℃とした。   As for the heat treatment, the bending jig is heated to 100 ° C., and the bending shape is heat-treated at the time of molding, so that the fibers on the inner box 22 side or the outer box 21 side of the resin fiber layer 52a, or the fibers on both surfaces are arranged. Fused. The heat treatment temperature needs to be changed according to the fiber type and fiber diameter used in the resin fiber layer 52a and the heat resistance temperature of the jacket material. In this embodiment, the heat resistance of the resin fiber layer 52a of polystyrene resin and the jacket material 54 is as follows. The temperature was adjusted to 100 ° C.

これにより得られた真空断熱材50の熱伝導率を、英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、2.1〜2.4mw/m・kであり、曲げ形状を維持した良好な値が得られた。   The heat conductivity of the vacuum heat insulating material 50 obtained in this way was measured with a heat conductivity measuring machine Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd. and found to be 2.1 to 2.4 mw / m · k, and the bending shape was Good values maintained were obtained.

(実施例2)
次に、実施例2について、図3を参照して説明する。実施例2は、実施例1と同様に、真空断熱材50の芯材51の曲げ部に、曲げ加工と熱処理をして曲げ形状を保持した樹脂繊維層を用い、直線部をグラスウール層52b(無機繊維層)を用いたものである。また、ポリスチレン樹脂を290℃で溶融してメルトブローン法にて繊維化し、繊維径8〜10μmの繊維とした樹脂繊維層を曲げ形状に曲げ加工を行うと同時に、熱処理を行ったものである。
(Example 2)
Next, Example 2 will be described with reference to FIG. In the second embodiment, as in the first embodiment, a resin fiber layer that has been bent and heat-treated is used for the bent portion of the core material 51 of the vacuum heat insulating material 50, and the straight portion is a glass wool layer 52b ( Inorganic fiber layer). In addition, a polystyrene resin was melted at 290 ° C. to be fiberized by a melt blown method, and a resin fiber layer having a fiber diameter of 8 to 10 μm was bent into a bent shape and simultaneously heat-treated.

これにより曲げ形状を保持した融着樹脂繊維層52cを得ることができる。実施例1と比較すると、曲げ形状を保持した融着樹脂繊維層52cとグラスウール層52b(無機繊維層)を組み合わせる手間がかかるものの、真空断熱材を得た後に熱加工を行わないため、性能を低下することが少ない。また、真空断熱材を得た後に熱加工を行う場合、外被材54の耐熱温度以下でしか熱加工を行うことができないことから、樹脂繊維層52aに用いた種類によっては融着温度が外被材54の耐熱温度より高いと融着することができない。これらの構成で芯材51となる融着樹脂繊維層52cとグラスウール層52b(無機繊維層)と吸着剤を内袋材53で包み、ガスバリヤ性を有する外被材54で真空包装機にセットして真空度2.2Paに減圧し、真空度2.2Pa以下で一定時間保持後外被材54を封止して真空断熱材とした。これにより得られた真空断熱材の熱伝導率を英弘精機社製熱伝導率測定機オートλHC−074で測定したところ、1.9〜2.1mw/m・kであり、曲げ形状を維持した良好な値が得られた。   Thereby, the fused resin fiber layer 52c having a bent shape can be obtained. Compared with Example 1, although it takes time and effort to combine the fused resin fiber layer 52c and the glass wool layer 52b (inorganic fiber layer) that maintain the bent shape, it does not perform heat processing after obtaining the vacuum heat insulating material. Less likely to decline. In addition, when heat processing is performed after obtaining the vacuum heat insulating material, since heat processing can be performed only at a temperature lower than the heat resistant temperature of the covering material 54, the fusion temperature may be increased depending on the type used for the resin fiber layer 52a. If the temperature is higher than the heat resistance temperature of the workpiece 54, it cannot be fused. With these configurations, the fused resin fiber layer 52c, the glass wool layer 52b (inorganic fiber layer), and the adsorbent, which become the core material 51, are wrapped in the inner bag material 53, and set in the vacuum packaging machine with the outer cover material 54 having gas barrier properties. The vacuum was reduced to 2.2 Pa, and after holding for a certain period of time at a vacuum of 2.2 Pa or less, the jacket material 54 was sealed to obtain a vacuum heat insulating material. The heat conductivity of the vacuum heat insulating material obtained in this way was measured with a heat conductivity measuring device Auto λHC-074 manufactured by Eihiro Seiki Co., Ltd. and found to be 1.9 to 2.1 mw / m · k, and the bending shape was maintained. Good values were obtained.

(適用例)
次に、本発明の実施形態に係る真空断熱材を、冷蔵庫に適用した適用例について、図4,図5及び図6を参照して説明する。なお、図4から図6では、実施例1の形態の真空断熱材を適用した例を示す。
(Application example)
Next, an application example in which the vacuum heat insulating material according to the embodiment of the present invention is applied to a refrigerator will be described with reference to FIGS. 4, 5, and 6. 4 to 6 show examples in which the vacuum heat insulating material in the form of Example 1 is applied.

図4に示すように、鋼板製の外箱21に真空断熱材50を貼付け、冷蔵庫の内箱22との間に硬質ウレタンフォームの断熱材23を充填して真空断熱材50が設置されている。   As shown in FIG. 4, the vacuum heat insulating material 50 is stuck on the outer box 21 made of steel plate, and the vacuum heat insulating material 50 is installed by filling the heat insulating material 23 of hard urethane foam between the inner box 22 of the refrigerator. .

図5に示す冷蔵庫1は、図6に示すように、上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5を有している。なお、以下の説明中、製氷室3a,上段冷凍室3b及び下段冷凍室4を、総称して冷凍温度帯室3という場合がある。   As shown in FIG. 6, the refrigerator 1 shown in FIG. 5 includes a refrigerator room 2, an ice making room 3 a, an upper freezer room 3 b, a lower freezer room 4, and a vegetable room 5 from the top. In the following description, the ice making chamber 3 a, the upper freezing chamber 3 b, and the lower freezing chamber 4 may be collectively referred to as the freezing temperature zone 3.

図5において、各貯蔵室は前面開口を有し、この前面開口を閉塞する扉がそれぞれ設けられている。冷蔵室2には、ヒンジ10等を中心に回動する冷蔵室扉6a,6bが設けられている。冷蔵室扉6a,6b以外は引き出し式の扉であり、製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9を配置している。これらの引き出し式扉を引き出すと、各貯蔵室に設けた貯蔵容器が共に引き出される。また、冷蔵庫本体と密着して前面開口を密閉するためのパッキン11が、各扉の室内側外周縁に取り付けられている。   In FIG. 5, each storage chamber has a front opening, and a door for closing the front opening is provided. The refrigerator compartment 2 is provided with refrigerator compartment doors 6a and 6b that rotate around the hinge 10 and the like. Except for the refrigerator compartment doors 6a and 6b, they are drawer type doors, and an ice making compartment door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, and a vegetable compartment door 9 are arranged. When these drawer doors are pulled out, the storage containers provided in the respective storage chambers are pulled out together. Moreover, the packing 11 for closely adhering to a refrigerator main body and sealing a front opening is attached to the indoor side outer periphery of each door.

また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために、断熱仕切り12を配置している。この断熱仕切り12は、厚さ30〜50mm程度の断熱壁で、発泡ポリスチレン,発泡断熱材(発泡ウレタン),真空断熱材等で構成されており、それぞれを単独使用又は複数の断熱材を組み合わせて設けられている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため、区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には、区画断熱するための断熱仕切り14を設けており、断熱仕切り12と同様に30〜50mm程度の断熱壁で、同様に発泡ポリスチレン、或いは発泡断熱材(発泡ウレタン),真空断熱材等で構成されている。すなわち、冷蔵,冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。   In addition, a heat insulating partition 12 is disposed to insulate the compartment between the refrigerator compartment 2, the ice making chamber 3a, and the upper freezer compartment 3b. This heat insulating partition 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of foamed polystyrene, foam heat insulating material (foamed urethane), vacuum heat insulating material, etc., each of which is used alone or in combination with a plurality of heat insulating materials. Is provided. Since the temperature zones are the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation. Between the lower freezer compartment 4 and the vegetable compartment 5, a heat insulating partition 14 is provided to insulate the compartment, and similarly to the heat insulating partition 12, a heat insulating wall of about 30 to 50 mm, and similarly foamed polystyrene or foam heat insulating material. (Urethane foam), vacuum insulation, etc. That is, the partition heat insulation wall is installed in the partition of rooms with different storage temperature zones, such as refrigeration and freezing.

なお、箱体20内には上から冷蔵室2,製氷室3a及び上段冷凍室3b,下段冷凍室4,野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b,製氷室扉7a,上段冷凍室扉7b,下段冷凍室扉8,野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等について、特に限定するものではない。   In addition, although the storage room of the refrigerator compartment 2, the ice-making room 3a, the upper stage freezer compartment 3b, the lower stage freezer compartment 4, and the vegetable compartment 5 is each dividedly formed in the box 20, the arrangement | positioning of each storage room is carried out. The invention is not particularly limited to this. Further, the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. It is not a thing.

次に、箱体20は、外箱21と内箱22とを備える。外箱21と内箱22とによって形成される空間には、断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間に真空断熱材50を配置し、真空断熱材50以外の空間には、断熱材23を充填する。真空断熱材50は、樹脂繊維層52aが外箱21又は内箱22への貼付け面側に位置するように配置する。これにより、平面平滑性が高い面が外箱21又は内箱22と接するので、外観意匠性を向上することができる。また、貼付け性が向上して、信頼性を向上することができる。   Next, the box 20 includes an outer box 21 and an inner box 22. In a space formed by the outer box 21 and the inner box 22, a heat insulating portion is provided to insulate each storage chamber in the box 20 from the outside. A vacuum heat insulating material 50 is disposed between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with the heat insulating material 23. The vacuum heat insulating material 50 is arrange | positioned so that the resin fiber layer 52a may be located in the sticking surface side to the outer box 21 or the inner box 22. FIG. Thereby, since a surface with high planar smoothness contacts outer box 21 or inner box 22, appearance design nature can be improved. Moreover, sticking property improves and it can improve reliability.

また、実施例2の真空断熱材を適用する場合、融着樹脂繊維層52cが芯材の曲げ部に位置する。これにより、曲げ部の平面平滑性が高く、滑らから曲面を描いて外箱21又は内箱22と接するので、外観意匠性を向上することができる。また、外箱21又は内箱22の角部や凹凸部への貼付け性が向上して、信頼性を向上することができる。   Moreover, when applying the vacuum heat insulating material of Example 2, the fused resin fiber layer 52c is located in the bending part of a core material. Thereby, since the planar smoothness of a bending part is high and it draws a curved surface smoothly and touches the outer box 21 or the inner box 22, it can improve external appearance design property. Moreover, the sticking property to the corner | angular part or uneven | corrugated | grooved part of the outer box 21 or the inner box 22 improves, and it can improve reliability.

また、冷蔵庫1の冷蔵室2,冷凍温度帯室3,野菜室5等の各室を所定の温度に冷却するために、冷凍温度帯室3の背側には冷却器28が備えられている。冷却器28,圧縮機30,凝縮機31、及び図示しないキャピラリーチューブを接続し、冷凍サイクルを構成している。冷却器28の上方には、この冷却器28にて冷却された冷気を冷蔵庫1内に循環して所定の低温温度を保持する送風機27が配設されている。また、冷蔵庫1の冷蔵室2と冷凍温度帯室3、冷凍温度帯室3と野菜室5とを夫々区画する断熱材として、断熱仕切り12,14を夫々配置する。断熱仕切り12,14は、発泡ポリスチレン33と、その内部に真空断熱材50が配置される構成である。この断熱仕切り12,14については、所望の断熱性能を発揮するものであれば、発泡ウレタンの断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50に限定するものではない。   In addition, a cooler 28 is provided on the back side of the freezing temperature zone 3 in order to cool each room such as the refrigerator compartment 2, the freezing temperature zone 3, and the vegetable room 5 of the refrigerator 1 to a predetermined temperature. . A refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator 1 and maintains a predetermined low temperature is disposed. Moreover, the heat insulation partitions 12 and 14 are each arrange | positioned as a heat insulating material which partitions the refrigerator compartment 2 and the freezing temperature zone room 3 of the refrigerator 1, and the freezing temperature zone room 3 and the vegetable compartment 5, respectively. The heat insulation partitions 12 and 14 are the structures by which the expanded polystyrene 33 and the vacuum heat insulating material 50 are arrange | positioned inside. The heat insulating partitions 12 and 14 may be filled with a urethane foam heat insulating material 23 as long as the desired heat insulating performance is exhibited, and is not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50.

また、内箱22の天面の一部に、断熱材23側に突き出したケース45aを有する庫内灯45を配置し、冷蔵庫の扉を開けたときの庫内を明るく、見えやすくしたものである。庫内灯45については、電球,蛍光灯,キセノンランプ等、特に限定するものではない。庫内灯45の配置により、ケース45aと外箱21との間の断熱材23の厚さが薄くなってしまうため、真空断熱材50を配置して断熱性能を確保している。この庫内灯45については特に図示位置に配置することを規定したものではない。   In addition, an interior lamp 45 having a case 45a protruding toward the heat insulating material 23 is arranged on a part of the top surface of the inner box 22 so that the interior when the refrigerator door is opened is bright and easy to see. is there. The interior lamp 45 is not particularly limited, such as a light bulb, a fluorescent lamp, or a xenon lamp. Since the thickness of the heat insulating material 23 between the case 45a and the outer box 21 becomes thin due to the arrangement of the interior lamp 45, the vacuum heat insulating material 50 is arranged to ensure the heat insulating performance. It is not specified that the interior lamp 45 is arranged in the illustrated position.

さらに、図4には不図示であるが、箱体20の天面側にある外箱21下面には放熱パイプが取り付けられている。そうすると、上述した庫内灯ケース45aによる占有スペースと天面側外箱21下面に配設される放熱パイプによる占有スペース及び熱放出影響とを考慮して、ケース45aと外箱21天面側との間に真空断熱材を配置して断熱性能を確保する。   Further, although not shown in FIG. 4, a heat radiating pipe is attached to the lower surface of the outer box 21 on the top surface side of the box 20. Then, in consideration of the occupied space by the interior lamp case 45a and the occupied space by the heat radiating pipe disposed on the lower surface of the top surface side outer box 21 and the effect of heat release, the case 45a and the top surface side of the outer box 21 A heat insulating performance is secured by placing a vacuum heat insulating material between them.

また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。このため、凹部40の断熱材23側の面に真空断熱材50を配置して断熱性能を確保,強化している。   In addition, a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41. Is provided. The height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top | upper surface of an outer box, it is desirable to keep in the range within 10 mm. Along with this, the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced. For this reason, the vacuum heat insulating material 50 is arrange | positioned in the surface at the side of the heat insulating material 23 of the recessed part 40, and the heat insulation performance is ensured and strengthened.

図6に示す適用例では、真空断熱材50を前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50とした。尚、カバー42は耐熱性を考慮し鋼板製としている。   In the application example shown in FIG. 6, the vacuum heat insulating material 50 is a single vacuum heat insulating material 50 formed in a substantially Z shape so as to straddle the case 45 a of the interior lamp 45 and the electrical component 41. The cover 42 is made of a steel plate in consideration of heat resistance.

また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50を配置している。   In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side. The material 50 is arranged.

本適用例における真空断熱材50については、先に述べた実施例1の真空断熱材50を用いた。本適用例では、上述した不図示の放熱パイプや電気部品41を配置した凹部40等の高温部側とウレタン断熱側に樹脂繊維層52aが配置されるようにして、熱影響を受けないようにした。   As the vacuum heat insulating material 50 in this application example, the vacuum heat insulating material 50 of Example 1 described above was used. In this application example, the resin fiber layer 52a is disposed on the high-temperature portion side such as the concave portion 40 in which the heat-dissipating pipe (not shown) and the electrical component 41 are disposed and the urethane heat insulating side so as not to be affected by heat. did.

配置部位については特にこれに限定するものではなく、圧縮機30や凝縮機31から発生する熱が庫内に侵入するのを抑制するため、圧縮機30や凝縮機31の内箱22側への投影面に真空断熱材50を配置することもできる。真空断熱材50の被覆面積を大きくするため、内箱22の底面から圧縮機30と冷却器28の間まで一体に成形した立体形状にすることも可能である。尚、圧縮機30と冷却器28の間に位置する真空断熱材50の形状については図示しないドレンパイプを逃げるための切欠きを設けたものとした。切欠きの有無、或いはその形状については特に限定するものではない。   The arrangement portion is not particularly limited to this, and in order to suppress the heat generated from the compressor 30 and the condenser 31 from entering the inside of the warehouse, the compressor 30 and the condenser 31 toward the inner box 22 side. A vacuum heat insulating material 50 can also be disposed on the projection surface. In order to increase the covering area of the vacuum heat insulating material 50, it is possible to form a three-dimensional shape integrally formed from the bottom surface of the inner box 22 to between the compressor 30 and the cooler 28. In addition, about the shape of the vacuum heat insulating material 50 located between the compressor 30 and the cooler 28, the notch for escaping the drain pipe which is not shown in figure was provided. The presence or absence of a notch or its shape is not particularly limited.

本適用例における真空断熱材50は、芯材51の全体厚みを10mm、密度を約250(kg/m3)に設定したものを使用した。天面部の真空断熱材50の配置により、電気部品41及び放熱パイプによる庫内への熱侵入を低減でき、更には放熱パイプの放熱特性を向上でき、また、底面の真空断熱材50の配置により、圧縮機30及び凝縮機31から発生する熱の庫内への侵入を抑制できるため、壁厚を増やすことなく断熱性能を改善することができた。 As the vacuum heat insulating material 50 in this application example, the core material 51 having an overall thickness of 10 mm and a density of about 250 (kg / m 3 ) was used. By arranging the vacuum heat insulating material 50 on the top surface portion, it is possible to reduce the heat intrusion into the cabinet by the electric component 41 and the heat radiating pipe, further improve the heat radiation characteristics of the heat radiating pipe, and by arranging the vacuum heat insulating material 50 on the bottom surface. Since the heat generated from the compressor 30 and the condenser 31 can be prevented from entering the cabinet, the heat insulation performance can be improved without increasing the wall thickness.

本発明の実施形態の概要について纏めると、次のとおりである。   The outline of the embodiment of the present invention is summarized as follows.

従来、グラスウール等の無機繊維の芯材を用いた真空断熱材は、断熱性能面では優れているが、真空断熱材としたときに表面に凹凸が発生し貼付け部材との間に隙間が生じそこから熱漏洩するという課題があった。表面性を向上するためにバインダや加熱プレスにより成形した芯材を用いることで上記課題はある程度解決できるが、製造工程において消費されるエネルギーが増加し、製造面においても環境配慮性が不足しているという課題があった。   Conventionally, vacuum heat insulating materials using a core material of inorganic fibers such as glass wool are superior in terms of heat insulating performance, but when used as a vacuum heat insulating material, irregularities are generated on the surface, and gaps are created between them and pasting members. There was a problem of heat leaking from. The above problem can be solved to some extent by using a core material formed with a binder or hot press to improve the surface properties, but the energy consumed in the manufacturing process increases, and environmental considerations are insufficient in terms of manufacturing. There was a problem of being.

この課題を解決すべく、本実施形態では、以上説明した如き構成を有するものであり、次の如き効果を有する物である。即ち、有機繊維集合体に繊維融着部を設けることで、真空断熱材としたときに繊維の剛性が増し、表面の凹凸を少なくし、表面平滑性を向上させることで、貼付け面に真空断熱材を張り合わせたときに、真空断熱材と貼付け部材との隙間を低減することで熱漏洩が少なく、高い断熱性能を有した冷凍冷蔵庫を提供することができる。   In order to solve this problem, the present embodiment has the configuration as described above and has the following effects. That is, by providing a fiber fusion part in the organic fiber assembly, the rigidity of the fiber is increased when it is used as a vacuum heat insulating material, surface irregularities are reduced, and surface smoothness is improved. When the materials are pasted together, it is possible to provide a refrigerator-freezer having high heat insulation performance with less heat leakage by reducing the gap between the vacuum heat insulating material and the pasting member.

以上より、真空断熱材において、有機繊維に溝又は曲げ加工を用いて、前記有機繊維集合体を熱処理により形状を保持することで、反発や元の形状に戻ろうとする力(スプリングバック力)が働いても、溝又は曲げ形状を維持でき、貼付け部の凹凸や、角部を有する2面に貼付けたときに隙間を少なくすことで、熱漏洩が少なくなり、高い断熱性能を有した冷蔵庫を提供することができる。   As described above, in the vacuum heat insulating material, by using a groove or a bending process on the organic fiber, the organic fiber aggregate is held in a shape by heat treatment, so that a force to repel or return to the original shape (spring back force) is obtained. Even if it works, the groove or bending shape can be maintained, and by reducing the gap when pasted on the two sides with the unevenness and corners of the pasting part, the heat leak decreases and the refrigerator with high heat insulation performance Can be provided.

1 冷蔵庫
2 冷蔵室
3a 製氷室
3b 上段冷凍室
4 下段冷凍室
5 野菜室
12,14 断熱仕切り
13 仕切り部材
20 箱体
21 外箱
22 内箱
23 断熱材
50 真空断熱材
51 芯材
52a 樹脂繊維層
52b グラスウール層
52c 融着樹脂繊維層
53 内袋材
54 外被材
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerated room 3a Ice making room 3b Upper stage freezer room 4 Lower stage freezer room 5 Vegetable room 12, 14 Heat insulation partition 13 Partition member 20 Box body 21 Outer box 22 Inner box 23 Heat insulation material 50 Vacuum heat insulation material 51 Core material 52a Resin fiber layer 52b Glass wool layer 52c Fusion resin fiber layer 53 Inner bag material 54 Jacket material

Claims (2)

繊維集合体の芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備え、曲げ部又は溝部を有する真空断熱材において、
前記芯材は前記曲げ部又は前記溝部に樹脂繊維層を有し、且つ該樹脂繊維層を熱処理して曲げ形状又は溝形状を保持し
前記芯材は前記樹脂繊維層と無機繊維層との複層であり、
前記芯材は前記曲げ部又は前記溝部を前記樹脂繊維層とし、直線部を無機繊維層としたことを特徴とする真空断熱材。
In a vacuum heat insulating material comprising a core material of a fiber assembly, an inner bag for storing the core material, and an outer jacket material for storing the inner bag, and having a bent portion or a groove portion,
The core material has a resin fiber layer in the bent portion or the groove portion, and heat-treats the resin fiber layer to maintain a bent shape or a groove shape ,
The core material is a multilayer of the resin fiber layer and the inorganic fiber layer,
The vacuum heat insulating material, wherein the core material has the bent portion or the groove portion as the resin fiber layer and the straight portion as an inorganic fiber layer .
内箱と外箱との間に真空断熱材と発泡断熱材とを備えた冷蔵庫において、
前記真空断熱材は、繊維集合体の芯材と、該芯材を収納する内袋と、該内袋を収納する外被材とを備え、且つ曲げ部又は溝部を有し、
前記芯材は前記曲げ部又は前記溝部に樹脂繊維層を有し、且つ該樹脂繊維層を熱処理して曲げ形状又は溝形状を保持し、前記内箱面又は前記外箱面に配置し
前記芯材は、前記樹脂繊維層と無機繊維層との複層であり、
前記芯材は前記曲げ部又は前記溝部を前記樹脂繊維層とし、直線部を無機繊維層としたことを特徴とする冷蔵庫。
In the refrigerator provided with a vacuum heat insulating material and a foam heat insulating material between the inner box and the outer box,
The vacuum heat insulating material includes a core material of a fiber assembly, an inner bag that stores the core material, and an outer jacket material that stores the inner bag, and has a bent portion or a groove portion,
The core material has a resin fiber layer in the bent portion or the groove portion, and heat-treats the resin fiber layer to hold a bent shape or a groove shape, and is disposed on the inner box surface or the outer box surface ,
The core material is a multilayer of the resin fiber layer and the inorganic fiber layer,
The refrigerator is characterized in that the core material has the bent part or the groove part as the resin fiber layer and the straight part as an inorganic fiber layer .
JP2010011559A 2010-01-22 2010-01-22 Vacuum heat insulating material and refrigerator using the same Expired - Fee Related JP5455673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011559A JP5455673B2 (en) 2010-01-22 2010-01-22 Vacuum heat insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011559A JP5455673B2 (en) 2010-01-22 2010-01-22 Vacuum heat insulating material and refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2011149501A JP2011149501A (en) 2011-08-04
JP5455673B2 true JP5455673B2 (en) 2014-03-26

Family

ID=44536658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011559A Expired - Fee Related JP5455673B2 (en) 2010-01-22 2010-01-22 Vacuum heat insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP5455673B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818663B2 (en) * 2011-12-06 2015-11-18 株式会社東芝 refrigerator
JP2015055284A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Vacuum heat insulation material
JP2015118418A (en) * 2013-12-17 2015-06-25 株式会社クボタ vending machine
DE212015000148U1 (en) 2014-06-04 2017-01-23 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat-insulating body and Wärmedämmbehälter and thermal insulation wall, use the same
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
JP6196269B2 (en) * 2015-09-17 2017-09-13 東芝ライフスタイル株式会社 refrigerator
JP6585671B2 (en) * 2017-08-04 2019-10-02 東芝ライフスタイル株式会社 refrigerator
WO2019117061A1 (en) * 2017-12-13 2019-06-20 パナソニックIpマネジメント株式会社 Refrigerator and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162914A (en) * 2002-10-24 2004-06-10 Nisshinbo Ind Inc Vacuum insulation material and its manufacturing method
JP2005106311A (en) * 2003-09-29 2005-04-21 Hitachi Home & Life Solutions Inc Refrigerator and its manufacturing method
JP2009063064A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same

Also Published As

Publication number Publication date
JP2011149501A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
KR100980175B1 (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5798942B2 (en) Vacuum heat insulating material and refrigerator and equipment using the same
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP2012063029A (en) Vacuum heat insulating material and refrigerator using the same
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
CN104696669A (en) Vacuum insulation panel
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP5401258B2 (en) refrigerator
JP2009024921A (en) Refrigerator
JP2011153721A (en) Refrigerator
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2011237087A (en) Refrigerator
JP2013002485A (en) Vacuum thermal insulation material, and refrigerator using the same
JP2012026583A (en) Refrigerator
JP2013024440A (en) Refrigerator
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees