WO2019117061A1 - Refrigerator and method for manufacturing same - Google Patents

Refrigerator and method for manufacturing same Download PDF

Info

Publication number
WO2019117061A1
WO2019117061A1 PCT/JP2018/045239 JP2018045239W WO2019117061A1 WO 2019117061 A1 WO2019117061 A1 WO 2019117061A1 JP 2018045239 W JP2018045239 W JP 2018045239W WO 2019117061 A1 WO2019117061 A1 WO 2019117061A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
vacuum heat
insulating material
disposed
vacuum
Prior art date
Application number
PCT/JP2018/045239
Other languages
French (fr)
Japanese (ja)
Inventor
智章 北野
平野 俊明
美桃子 井下
大河 政文
秀司 河原崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017241785A external-priority patent/JP2019105431A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019117061A1 publication Critical patent/WO2019117061A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials

Definitions

  • the present disclosure relates to a refrigerator and a method of manufacturing the same.
  • the refrigerator of patent document 1 is known as a conventional refrigerator.
  • a vacuum heat insulating material is provided between the outer case and the inner case.
  • the sealing material and the heat insulation member are arrange
  • the seal material and the heat insulating member are disposed in the space surrounded by the inner surface of the outer case, the inner surface of the inner case, and the side surface of the vacuum heat insulating material at the corner.
  • this heat insulating member is a molded foam polystyrene (EPS) or the like, the heat insulating performance is inferior to that of a vacuum heat insulating material.
  • the sealing material is 100% solid content based on a thermoplastic synthetic resin or rubber, and the heat insulating performance is further inferior to that of the heat insulating member.
  • the sealing material since the sealing material is disposed between the heat insulating member and the vacuum heat insulating material, heat may be transferred between the outer case and the inner case via the sealing material. Therefore, the heat insulation performance in the corner part of a refrigerator will fall.
  • the present disclosure provides a refrigerator that can reduce the decrease in heat insulation performance at the corners, and a method of manufacturing the same.
  • the refrigerator according to the present disclosure includes a box-shaped case having an outer case and an inner case and having an opening, a heat insulating area surrounded by the outer case and the inner case, and a case. It comprises two first vacuum heat insulating materials disposed in the heat insulating area across the corner of the body, and a second vacuum heat insulating material disposed in the heat insulating area and extending along the corner. The second vacuum heat insulating material is in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box.
  • the second vacuum heat insulating material is excellent in heat insulating performance, and is in a state of being overlapped and in contact with the first vacuum heat insulating material. For this reason, the heat transfer between the adjacent 1st vacuum heat insulating materials is interrupted
  • FIG. 1 is a perspective view of the refrigerator according to the first embodiment of the present disclosure as viewed from the front side.
  • FIG. 2 is a cross-sectional view of the refrigerator of FIG. 1 as viewed from the left side.
  • FIG. 3 is a cross-sectional view of the refrigerator of FIG. 2 taken along line III-III.
  • FIG. 4 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
  • FIG. 5 is an enlarged cross-sectional view of the periphery of the right side of the main body in FIG.
  • FIG. 6 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the first embodiment.
  • FIG. 1 is a perspective view of the refrigerator according to the first embodiment of the present disclosure as viewed from the front side.
  • FIG. 2 is a cross-sectional view of the refrigerator of FIG. 1 as viewed from the left side.
  • FIG. 7 is an exploded perspective view showing a second vacuum heat insulating material.
  • FIG. 8 is a perspective view showing a second vacuum heat insulating material.
  • FIG. 9A is a cross-sectional view of the case of the second vacuum heat insulating material as viewed from above.
  • FIG. 9B is an enlarged cross-sectional view of a portion of the case of the second vacuum heat insulating material in FIG. 9A.
  • FIG. 10 is a perspective view of the refrigerator according to the first embodiment as viewed from the rear side.
  • FIG. 11 is a view of the refrigerator according to the first embodiment as viewed from the rear side.
  • FIG. 12 is a rear view of the refrigerator according to the second embodiment of the present disclosure.
  • FIG. 10 is a perspective view of the refrigerator according to the first embodiment as viewed from the rear side.
  • FIG. 11 is a view of the refrigerator according to the first embodiment as viewed from the rear side.
  • FIG. 12 is a rear view of the refrigerator according to the second embodiment of
  • FIG. 13 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the second embodiment.
  • FIG. 14 is a rear view of the refrigerator according to the third embodiment of the present disclosure.
  • FIG. 15 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the third embodiment.
  • FIG. 16 is a perspective view schematically showing a first vacuum heat insulator, a second vacuum heat insulator, a third vacuum heat insulator, and a fourth vacuum heat insulator in a modification of the present disclosure.
  • FIG. 17 is a cross-sectional view of the refrigerator according to the fourth embodiment of the present disclosure, taken along line XVII-XVII in FIG.
  • FIG. 18 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
  • FIG. 19A is a cross-sectional view showing an example of a second vacuum heat insulating material according to another embodiment of the present disclosure.
  • FIG. 19B is a cross-sectional view showing another example of the second vacuum heat insulating material according to the other embodiment.
  • a refrigerator includes an outer case and an inner case, and a box-shaped case having an opening, a heat insulating area surrounded by the outer case and the inner case, and a case.
  • the first vacuum heat insulating material includes two first vacuum heat insulating materials disposed in the heat insulating area across the corner, and a second vacuum heat insulating material disposed in the heat insulating area and extending along the corner.
  • the second vacuum heat insulating material is disposed in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box.
  • the second vacuum heat insulating material is excellent in heat insulating performance, and is in a state of being overlapped with and in contact with the first vacuum heat insulating material. For this reason, the heat transfer between the adjacent 1st vacuum heat insulating materials is interrupted
  • the shape of the cross section orthogonal to the extending direction of the second vacuum heat insulating material may be an L shape, a triangle or a square.
  • the corner portion of the housing is reinforced by the second vacuum heat insulating material, so the rigidity of the housing is enhanced.
  • the second vacuum heat insulating material is disposed between the two first vacuum heat insulating materials, and further having a convex portion protruding toward the outer case. Good.
  • the convex portion of the second vacuum heat insulating material fills the space between the two adjacent first vacuum heat insulating materials. This further reduces the decrease in the heat insulation performance at the corner of the housing.
  • the refrigerator according to another aspect of the present disclosure further includes a third vacuum heat insulating material disposed in the heat insulating area, the housing has a peripheral portion surrounding the periphery of the opening, and the third vacuum heat insulating material is The first vacuum heat insulating material of one of the two first vacuum heat insulating materials may be disposed in contact with the second surface opposite to the peripheral portion.
  • the third vacuum heat insulating material reduces the reduction in the heat insulation around the opening in the housing.
  • the vicinity of the opening of the housing is reinforced by the third vacuum heat insulating material, the rigidity of the housing is enhanced.
  • the refrigerator according to another aspect of the present disclosure further includes a fourth vacuum heat insulating material disposed in the heat insulating region on the side opposite to the side where the opening is disposed, the fourth vacuum heat insulating material being the second vacuum heat insulating material It may be extended in the direction orthogonal to the material.
  • the second vacuum heat insulating material and the fourth vacuum heat insulating material are extended in the direction orthogonal to each other, whereby the rigidity of the housing is further enhanced.
  • the refrigerator according to another aspect of the present disclosure may further include a foam insulation disposed in the heat insulation area.
  • the heat insulating performance and the rigidity of the casing can be improved by arranging the heat insulating area with the foam heat insulating material.
  • the refrigerator according to another aspect of the present disclosure further includes an inlet provided in the outer case, into which the undiluted solution of the foamed insulation material is injected, and when the outer case is viewed from one side, the inlet has two inlets.
  • the first vacuum heat insulating material and the second vacuum heat insulating material may be arranged not to overlap with each other.
  • the undiluted solution of the foamed heat insulating material is appropriately injected from the injection port to the heat insulating region.
  • the inlet includes a plurality of inlets, and when the outer case is viewed from one side, the direction in which the second vacuum heat insulating material is extended among the plurality of inlets.
  • a first vacuum insulator and one second vacuum insulator of the two first vacuum insulators may be disposed between the two inlets adjacent to each other at.
  • the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port into the heat insulation space of the housing.
  • the inlet includes a plurality of inlets
  • the second vacuum heat insulating material includes two second vacuum heat insulating materials
  • the outer case is viewed from one side.
  • the first vacuum insulator of one of the two first vacuum insulators is disposed between two inlets adjacent to each other in the direction in which the second vacuum insulator extends in the inlets,
  • two inlets adjacent to each other in a direction perpendicular to the direction in which the second vacuum heat insulating material extends may be disposed between the two second vacuum heat insulating materials.
  • the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port to the heat insulation area of the housing.
  • the length of the second vacuum heat insulating material in the direction in which the first vacuum heat insulating material and the second vacuum heat insulating material are extended can be made longer than the length of the first vacuum heat insulating material, and the rigidity of the housing Can be enhanced.
  • the inlet includes a plurality of inlets, and when the outer case is viewed from one side, two adjacent ones in a direction in which the second vacuum heat insulating material extends. Between the two inlets, the second vacuum insulator is disposed between the inlets and adjacent to each other in a direction orthogonal to the direction in which the second vacuum insulator extends, two first vacuums A first vacuum insulation of one of the insulation may be arranged.
  • the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port to the heat insulation area of the housing. Further, since the length of the first vacuum heat insulating material in the direction in which the first vacuum heat insulating material and the second vacuum heat insulating material are extended can be made longer than the length of the second vacuum heat insulating material, Thermal insulation is enhanced.
  • a method of manufacturing a refrigerator including: a box-shaped case having an outer case and an inner case and having an opening, a heat insulating area surrounded by the outer case and the inner case; A second vacuum heat insulating material disposed in the heat insulating area and extended along the corner, the first vacuum heat insulating material disposed in the heat insulating area across the corner of the housing; [2] Manufacture of a refrigerator having a hollow pillar shaped case and being in contact with the first surface of each of the two first vacuum heat insulators facing the inner box The method includes the steps of forming the case by extrusion molding, inserting the core into the case, and covering the openings at both ends of the case with a lid.
  • the hollow columnar case is formed by extrusion molding to form a case of an arbitrary length.
  • the vacuum heat insulating material formed in this manner reduces the reduction in the heat insulating performance at the corner of the housing.
  • FIG. 1 is a perspective view of the refrigerator according to the first embodiment of the present disclosure as viewed from the front side.
  • the refrigerator 10 includes a main body 20 having an internal space 21 and a door 30 attached to the main body 20.
  • the door 30 side is called the front side rather than the main body 20, and the other side is called a rear side.
  • the direction orthogonal to the front-rear direction and the up-down direction is referred to as the left-right direction. In addition, these directions mean the thing of the direction seen from the refrigerator 10, respectively.
  • the refrigerator 10 further includes a refrigerant circuit 40 that cools the internal space 21 of the main body 20.
  • a compressor 41, a condenser (not shown), a pressure reducer (not shown) and an evaporator 42 are annularly connected by a refrigerant pipe, and the refrigerant is circulated in the refrigerant circuit 40.
  • the internal space 21 of the main body 20 may be referred to as the inside of the storage, and the space outside the main body 20 may be referred to as the outside of the storage.
  • the main body 20 is box-shaped and has an opening (first opening 22).
  • the front surface of the main body 20 is opened by the first opening 22.
  • the periphery of the first opening 22 is surrounded by the peripheral edge 24 of the main body 20.
  • the internal space 21 of the main body 20 is in communication with the outside via the first opening 22. Further, the internal space 21 is partitioned by the partition wall 23 into a plurality of (five in the present embodiment) spaces (partition spaces). The details of the main body 20 will be described later.
  • the refrigerator 10 of the present embodiment may have at least one or more doors 30, and may have, for example, a plurality of (five in the present embodiment) doors 30.
  • Each door 30 is provided on the front surface of the main body 20, and can open and close the first opening 22 in each partition space of the main body 20.
  • the form of the door 30 includes, for example, a rotatable type that can be rotated via a hinge 31 and a pull-out type that can be drawn out via a rail (not shown).
  • FIG. 2 is a cross-sectional view of the refrigerator of FIG. 1 as viewed from the left side.
  • the main body 20 has a housing 50 and a heat insulating material described later.
  • the housing 50 is formed of an outer case 60 and an inner case 70.
  • the housing 50 has a top surface 51, a bottom surface 52, a back surface 53, a right surface 54, and a left surface 55, which have a rectangular plate shape.
  • the back surface portion 53 is provided on the side opposite to the first opening 22 in the housing 50.
  • the top surface 51, the bottom surface 52, the right surface 54, and the left surface 55 cross each other (orthogonally in this embodiment) with the back surface 53.
  • the outer case 60 is made of, for example, a thin steel plate and forms a surface exposed to the outside (outside the case) of the housing 50.
  • the inner box 70 is formed of, for example, a resin, and forms a surface exposed to the internal space 21 (inside the cabinet) of the housing 50.
  • the inner case 70 is disposed in the outer case 60 and joined together to form the case 50.
  • a space which is a heat insulation area, is provided between the outer case 60 and the inner case 70 in the housing 50.
  • the heat insulating material is disposed in the heat insulating space 57.
  • the surface on the heat insulation space 57 side may be referred to as an inner surface, and the surface on the opposite side to the inner surface may be referred to as an outer surface.
  • the outer case 60 side is called outer side rather than the inner case 70, and the other side is called inner side.
  • FIG. 3 is a cross-sectional view of the refrigerator of FIG. 2 taken along line III-III.
  • an area where the back surface portion 53 and the left surface portion 55 are connected and a region where the back surface portion 53 and the right surface portion 54 are connected are each referred to as a corner portion 56.
  • the inner box 70 is formed to have a curved cross-sectional shape.
  • the curvature of the inner box 70 is smaller than the curvature of the outer box 60.
  • the inner box 70 curves more gently than the outer box 60. Therefore, the distance between the inner box 70 and the outer box 60 at the corner 56 (the dimension of the heat insulating space 57) is larger than the distance between the inner box 70 and the outer box 60 in the other part.
  • the cross section of the inner box 70 is curved. It may be formed.
  • FIG. 4 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
  • a part of the refrigerant pipe 45 of the refrigerant circuit 40 is disposed.
  • the flow path of the refrigerant pipe 45 from the compressor 41 to the condenser is disposed on the inner surface of the outer case 60. In this flow path, a high temperature refrigerant is circulated by the compressor 41 of the refrigerant circuit 40, whereby condensation is suppressed.
  • the heat insulating material has a vacuum heat insulating material, and a foam heat insulating material 110 filled in the heat insulating space 57.
  • the vacuum heat insulating material includes a first vacuum heat insulating material 80, a second vacuum heat insulating material 90, and a third vacuum heat insulating material 100.
  • two first vacuum heat insulating materials 80 are disposed adjacent to each other at the corner 56 of the housing 50.
  • the second vacuum heat insulating material 90 is disposed in the heat insulating space 57 at the corner 56 of the housing 50.
  • the third vacuum heat insulating material 100 is disposed in the heat insulating space 57 in the peripheral portion 24 of the housing 50.
  • FIG. 6 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the first embodiment.
  • the first vacuum heat insulating material 80 has a plate shape.
  • the first vacuum heat insulating material 80 is disposed on the inner surface of the outer case 60, and is attached to the outer case 60 with an adhesive or the like, for example. Further, the two first vacuum heat insulating materials 80 are disposed at an interval from each other at the corner 56 of the housing 50.
  • the first vacuum heat insulating material 80 has a plurality of (three in the present embodiment) first vacuum heat insulating materials 80 (rear side heat insulating material 81, left side heat insulating material 82, and right side heat insulating material 83). .
  • the back side heat insulating material 81 is disposed in the back surface part 53
  • the left side heat insulating material 82 is disposed in the left side part 55
  • the right surface side heat insulating material 83 is disposed in the right side part 54.
  • the back side heat insulating material 81 and the left side heat insulating material 82 are disposed adjacent to each other at the upper right corner 56 in FIG. 3. Further, the back side heat insulating material 81 and the right side heat insulating material 83 are disposed adjacent to each other at the upper left corner 56 in FIG. 3.
  • the first vacuum heat insulating material 80 may be disposed on the top surface 51 of the casing 50 or may be disposed on the bottom surface 52.
  • that the two first vacuum heat insulating materials 80 are arranged adjacent to each other means that each of the two first vacuum heat insulating materials 80 is arranged on two adjacent surface parts, and the corner parts 56 It says that they cross each other. In other words, the two first vacuum heat insulating materials 80 are disposed across the corner 56 of the housing 50.
  • the first vacuum heat insulating material 80 for example, a plate-like vacuum heat insulating material is used.
  • the first vacuum heat insulating material 80 includes a core material (first core material 84), an adsorbent (not shown), and a covering material 85.
  • the first core material 84 has a porous structure, and is formed of an inorganic fiber aggregate such as glass wool.
  • the adsorbent adsorbs moisture and gas.
  • the adsorbent may not be provided in the first vacuum heat insulating material 80.
  • the covering material 85 a laminate film is used as the covering material 85.
  • the laminate film is formed of a member including, for example, a heat-weldable resin layer, a moisture-proof layer of polyethylene terephthalate or the like, and a laminated portion on which a gas barrier layer of aluminum foil or the like is laminated.
  • the first core 84 and the adsorbent are disposed in the inside of the covering material 85, the inside is depressurized to a vacuum, and the end portions are heat-welded.
  • At least one second vacuum heat insulating material 90 is provided in the heat insulating space 57 of the housing 50.
  • two second vacuum heat insulating materials 90 are provided.
  • One of the second vacuum heat insulating materials 90 is disposed at the corner 56 in a region where the back surface 53 and the right surface 54 are connected.
  • the other second vacuum heat insulating material 90 is disposed at the corner 56 in a region where the back surface portion 53 and the left surface portion 55 are connected.
  • one second vacuum heat insulating material 90 will be described.
  • the other 2nd vacuum heat insulating material 90 is the same as that of the one 2nd vacuum heat insulating material 90, the description is abbreviate
  • the two first vacuum heat insulators 80 (the back surfaces in FIG. 4) are disposed so as to cross each other (orthogonally in the present embodiment) via the corner portions 56 of the housing 50. It arrange
  • the second vacuum heat insulating material 90 is an elongated member, and extends in the vertical direction along the corner 56 of the housing 50.
  • the second vacuum heat insulator 90 has the same or substantially the same size as the first vacuum heat insulator 80 in the vertical direction. Therefore, the upper end of the second vacuum heat insulating material 90 does not protrude above the upper end of the first vacuum heat insulating material 80, and the lower end of the second vacuum heat insulating material 90 is lower than the lower end of the first vacuum heat insulating material 80. It does not protrude to the side.
  • the second vacuum heat insulating material 90 is disposed to overlap the first vacuum heat insulating material 80 in the front-rear direction and the left-right direction.
  • the second vacuum heat insulating material 90 has an L-shaped cross section perpendicular to the direction in which the second vacuum heat insulating material 90 extends, and as shown in FIG. 4, two wall portions (a first wall portion 91 and a second wall portion Wall 92).
  • the first wall portion 91 and the second wall portion 92 are long plate shapes extending in the vertical direction, respectively, and intersect each other (orthogonally in the present embodiment).
  • the first wall 91 and the second wall 92 are integrally formed.
  • the first wall portion 91 of the second vacuum heat insulating material 90 is a flat plate extended in the vertical direction and the lateral direction, and is overlapped with the rear side heat insulating material 81.
  • it is the rear surface of the first wall 91 that faces the outer case 60 (rear surface) and the front surface of the rear heat insulating material 81.
  • the surface (the front side surface (first surface 81 b)) facing the inner box 70 is in contact with the surface.
  • an adhesive member 86 or the like is disposed on the contact surface, whereby the first wall portion 91 is fixed to the back side heat insulating material 81.
  • the second wall portion 92 of the second vacuum heat insulating material 90 is a flat plate extended in the vertical direction and the front-rear direction, and is overlapped with the right side heat insulating material 83.
  • it is the surface on the right side of the second wall portion 92 that faces the outer case 60 (right surface) and the surface on the left side of the right side heat insulating material 83.
  • the surface (left surface (first surface 83 b)) facing the inner case 70 is in contact with the inner case 70.
  • an adhesive member 86 or the like is disposed on the contact surface, whereby the second wall 92 is fixed to the right heat insulating material 83.
  • the second vacuum heat insulator 90 covers between the two adjacent first vacuum heat insulators 80 at the corner 56 of the housing 50. Thereby, the heat transfer between the outer case 60 and the inner case 70 is prevented by the second vacuum heat insulator 90 between the two first vacuum heat insulators 80. Therefore, the heat insulation performance at the corner 56 of the housing 50 can be enhanced.
  • the second vacuum heat insulating material 90 is disposed so as to be superimposed on each of the two first vacuum heat insulating materials 80, and the bonding member 86 or the like for the two first vacuum heat insulating materials 80. It is fixed by. Therefore, the integral thickness of the heat insulating material in the heat insulating space 57 is increased. Also, the second vacuum heat insulator 90 limits the movement of the two first vacuum heat insulators 80. Accordingly, the rigidity of the housing 50 is enhanced.
  • FIG. 7 is an exploded perspective view showing a second vacuum heat insulating material.
  • FIG. 8 is a perspective view showing a second vacuum heat insulating material.
  • FIG. 9A is a cross-sectional view of the case of the second vacuum heat insulating material as viewed from above.
  • FIG. 9B is sectional drawing to which a part of case of the 2nd vacuum heat insulating material in FIG. 9A was expanded.
  • the second vacuum heat insulating material 90 includes a case (first case 93), a lid (first lid 94), a core (second core 95), and an adsorbent (first adsorption). Agent 96).
  • the second core material 95 and the first adsorbent 96 are enclosed in the internal space formed by the first case 93 and the first lid 94, and the internal space is maintained in a state of being decompressed to a predetermined degree of vacuum. There is.
  • the first case 93 has a tubular shape.
  • the cylindrical shape refers to a columnar shape having a hollow inside, that is, a hollow pillar shape.
  • the first case 93 is, for example, long and has an L-shaped cross section orthogonal to the extending direction.
  • the first case 93 is a molded product having a desired shape.
  • the first case 93 has an opening (second opening 97) at each of both ends.
  • the first case 93 is formed of a laminated portion in which a gas barrier layer 93a, an adhesive layer 93b, and a water barrier layer 93c are laminated in this order.
  • the gas barrier layer 93a is disposed on the inner side of the water barrier layer 93c, and is formed of an organic resin.
  • the organic resin may be, for example, an ethylene-vinyl alcohol copolymer or a polyvinyl alcohol polymer.
  • the gas barrier layer 93a may be formed of an organic resin and a scale-like inorganic material, and examples of the scale-like inorganic material include montmorillonite which is a main component of natural clay mineral bentonite, and montmorillonite which has been subjected to ion exchange treatment.
  • the water barrier layer 93 c is formed of a resin such as polypropylene.
  • the adhesive layer 93 b is a layer for adhering the gas barrier layer 93 a and the water barrier layer 93 c, and is formed of a resin such as adhesive polyolefin (modified polyolefin).
  • the laminated portion is composed of two layers among the three layers of the gas barrier layer 93a, the water barrier layer 93c and the adhesive layer 93b (for example, the water barrier layer 93c and the adhesive layer 93b, the gas barrier layer 93a and the adhesive layer 93b) May be
  • the laminated portion may further include layers other than the three layers of the gas barrier layer 93a, the water barrier layer 93c, and the adhesive layer 93b.
  • Two first lids 94 are provided for one first case 93 so as to cover the second openings 97 at both ends of the first case 93.
  • the first lid 94 has, for example, a recess in which the end of the first case 93 is fitted.
  • the end of the first case 93 is fitted in the recess, and the second opening 97 provided at the end of the first case 93 is covered by the first lid 94.
  • the internal space formed by the first case 93 and the first cover 94 is sealed.
  • the first lid 94 may be a molded product formed of a member including a laminated portion of the gas barrier layer 93a, the adhesive layer 93b, and the water barrier layer 93c.
  • the first lid 94 may be formed of a laminate film of a thermoplastic resin.
  • the laminate film may have a metal layer such as aluminum or stainless steel.
  • the metal layer may be a metal foil such as an aluminum foil, or may be formed by vapor-depositing aluminum or the like on the surface of the laminate film.
  • the second core material 95 is formed by foam molding, and may be made of, for example, an open-celled urethane foam.
  • the open cell urethane foam may have, for example, the features disclosed in Patent Document 2.
  • the second core member 95 is formed in the same shape as the shape along the inner surface of the first case 93 (the shape of the internal space of the first case 93), and is elongated.
  • the second core material 95 for example, phenol foam, glass fiber, rock wool, alumina fiber, or polyethylene terephthalate fiber may be used as the second core material 95.
  • the first case 93 is formed by extrusion. Then, the second core material 95 and the first adsorbent 96 are inserted into the first case 93 from the second opening 97. After the pressure in the internal space of the first case 93 is reduced to a predetermined degree of vacuum, the second opening 97 is covered with the first lid 94. Thereby, the first case 93 can be formed to an arbitrary length. Therefore, different molds and the like do not need to be used for each of the second vacuum heat insulating materials 90 having different lengths, and an increase in manufacturing cost can be suppressed.
  • the refrigerator 10 has at least one third vacuum heat insulating material 100.
  • FIG. 5 is an enlarged cross-sectional view of the periphery of the right side of the main body in FIG.
  • two third vacuum heat insulating materials 100 are provided in the housing 50.
  • the two third vacuum heat insulating materials 100 are disposed at positions where the first openings 22 are sandwiched between each other in the left-right direction.
  • One third vacuum heat insulator 100 of the two third vacuum heat insulators 100 is disposed at the front end of the right side 54 and the other third vacuum insulator 100 is disposed at the front end of the left side 55 ing.
  • one third vacuum heat insulating material 100 will be described.
  • the other 3rd vacuum heat insulating material 100 is the same as that of the one 3rd vacuum heat insulating material 100, the description is abbreviate
  • the third vacuum heat insulating material 100 is a long member.
  • the third vacuum heat insulating material 100 extends in the vertical direction in parallel with the second vacuum heat insulating material 90.
  • the length in the vertical direction of the third vacuum heat insulating material 100 is longer than the length in the vertical direction of each of the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90. Therefore, the third vacuum heat insulating material 100 protrudes upward and downward relative to the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90. Thereby, the rigidity in the vertical direction of the main body 20 is enhanced.
  • the third vacuum heat insulating material 100 has an L-shaped cross section perpendicular to the direction in which the third vacuum heat insulating material 100 is extended.
  • the 3rd vacuum heat insulating material 100 has two wall parts (the 3rd wall part 101 and the 4th wall part 102).
  • the third wall portion 101 and the fourth wall portion 102 each have a long plate shape extending in the vertical direction, and cross each other (orthogonally in the present embodiment).
  • the third wall 101 and the fourth wall 102 are integrally formed.
  • the third wall portion 101 of the third vacuum heat insulating material 100 is extended in the vertical direction and the front-rear direction.
  • the third wall portion 101 is disposed to overlap the right side heat insulating material 83.
  • it is the right side surface of the third wall portion 101 that faces the outer case 60 (right side surface) and the left side surface of the right side heat insulating material 83
  • the surface (left side surface) opposite to the outer case 60 is in contact.
  • an adhesive member 86 or the like is disposed on this contact surface, whereby the third wall portion 101 is fixed to the right side heat insulating material 83.
  • the fourth wall portion 102 of the third vacuum heat insulating material 100 is extended in the vertical direction and the lateral direction.
  • the fourth wall portion 102 is disposed at a position sandwiched between the right side heat insulating material 83 and the peripheral portion 24.
  • the surface (rear surface) of the fourth wall 102 and the surface of the right side heat insulating material 83 that is the front surface facing the peripheral edge 24 It is in contact with the front side surface (second surface 83c).
  • an adhesive member 86 or the like is disposed on this contact surface, whereby the third wall portion 101 is fixed to the right side heat insulating material 83.
  • the third vacuum heat insulating material 100 is bonded to the front end of the right side heat insulating material 83. Further, the rear end of the right side heat insulating material 83 is bonded to the second vacuum heat insulating material 90. Thereby, the movement of the right side heat insulating material 83 is limited, and the rigidity of the housing 50 is further enhanced.
  • the third vacuum heat insulating material 100 is provided in contact with the peripheral portion 24 of the housing 50 surrounding the periphery of the first opening 22. Therefore, the peripheral portion 24 is reinforced by the third vacuum heat insulating material 100, and the rigidity of the housing 50 is enhanced. Furthermore, the thickness of the heat insulating material integrally fixed in the heat insulating space 57 is increased by overlapping and arranging the third vacuum heat insulating material 100 on the right side heat insulating material 83. Accordingly, the heat insulation at the peripheral portion 24 is enhanced.
  • the third vacuum heat insulating material 100 includes a case (second case 103), a lid (second lid, not shown), a core (third core 105) and an adsorbent (second adsorbent, not shown).
  • the second case 103 is similar to the first case 93
  • the second lid is similar to the first lid 94
  • the third core 105 is similar to the second core 95
  • the second adsorbent is the first. It is the same as the adsorbent 96. Therefore, these explanations are omitted.
  • the foamed heat insulating material 110 is disposed in the heat insulating space 57 between the first vacuum heat insulating material, the second vacuum heat insulating material, and the third vacuum heat insulating material, and the housing 50. ing.
  • the foam insulation material 110 is filled in the heat insulation space 57.
  • a rigid polyurethane foam is used for the foam insulation 110.
  • the rigid polyurethane foam is obtained by injecting a stock solution such as a polyol component, an isocyanate component, and a foaming agent into the housing 50 and reacting while the stock solution is foamed in the heat insulation space 57 of the housing 50.
  • FIG. 10 is a perspective view of the refrigerator according to the first embodiment as viewed from the rear side.
  • FIG. 11 is a view of the refrigerator according to the first embodiment viewed from the rear side.
  • the inlet 61 for the stock solution to be injected is disposed on the back surface of the back surface 53 of the case 50 (that is, the outer box 60 of the back surface 53). .
  • the inlet 61 is disposed above or below the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 disposed in the back surface portion 53.
  • the discharge port (not shown) in which the air of the heat insulation space 57 is discharged
  • the inlet 61 is located between the upper end of the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 and the upper end of the back portion 53 or the first vacuum heat insulating material 80 when the refrigerator 10 is viewed from the rear side. It is disposed between the lower end of the second vacuum heat insulating material 90 and the lower end of the back surface portion 53.
  • the inlet 61 does not overlap the first vacuum heat insulator 80 and the second vacuum heat insulator 90 in the vertical direction. Therefore, the injection port 61 is not blocked by the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90, and is communicated with the heat insulating space 57 in the back surface portion 53. Then, the heat insulating space 57 of the back surface portion 53 is in communication with all the heat insulating spaces 57 of the housing 50, whereby the injection port 61 is in communication with the heat insulating space 57 of the housing 50.
  • the housing 50 is provided with at least one inlet 61.
  • the at least one inlet 61 may be a plurality of (for example, four in the present embodiment) inlets 61.
  • the four inlets 61 are disposed at the upper right, the upper left, the lower right, and the lower left on the back side of the housing 50 so as to be in communication with each other through the heat insulating space 57.
  • the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 are arranged at positions sandwiched by the upper right inlet 61 and the lower right inlet 61 arranged in the vertical direction.
  • first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 are arranged in the vertical direction, and are disposed at positions sandwiched between the upper left inlet 61 and the lower left inlet 61.
  • the plurality of injection ports 61 are arranged in the housing 50 in a state of being spaced apart from one another.
  • the first vacuum heat insulating material 80 is fixed to the inner surface of the outer case 60 by the bonding member 86.
  • the second vacuum heat insulator 90 and the third vacuum heat insulator 100 are fixed to the first vacuum heat insulator 80 by the bonding member 86.
  • An inner case 70 is combined with the outer case 60 to form a case 50.
  • the housing 50 is heated to a predetermined temperature. Then, the peripheral portion 24 of the housing 50 is disposed downward, and the rear portion 53 is disposed upward. And the undiluted
  • the components of the stock solution react with each other while colliding with each other.
  • the undiluted solution is pressurized by the bubbling pressure and spreads to the heat insulating space 57 in the housing 50. Thereby, the foam heat insulating material 110 is more uniformly filled in the housing 50.
  • the injection port 61 at the upper right is disposed on the upper side of the right end of the back side heat insulating material 81, and the injection port 61 at the lower right is disposed below the right end of the back side heat insulating material 81. Therefore, even if the heat insulating space 57 (the heat insulating space 57 at the corner portion 56) between the second vacuum heat insulating material 90 and the outer case 60 on the right side of the back side heat insulating material 81 is narrow, the foam heat insulating material The 110 is properly filled in the adiabatic space 57.
  • the upper left and lower left inlets 61 are also similar to the upper right and lower right inlets 61, the description thereof is omitted.
  • the corner portion of the inner box 70 facing the second vacuum heat insulating material 90 is smoothly curved as described above.
  • the inner box 70 is extended from the corner to the back surface 53 and the right surface 54.
  • the undiluted solution injected from the upper side and the lower side of the second vacuum heat insulating material 90 passes through the heat insulating space 57 between the second vacuum heat insulating material 90 and the inner case 70 and along the inner case 70,
  • the heat insulating space 57 of the back surface portion 53 and the right surface portion 54 smoothly flows and is filled.
  • the foamed heat insulating material 110, the second vacuum heat insulating material 90, and the foamed heat insulating material 110 are arranged in this order between the outer case 60 and the inner case 70 in an overlapping manner. Thereby, the heat insulation performance in the corner 56 of the housing 50 is enhanced.
  • the housing 50 is reinforced, and the rigidity of the main body 20 is improved.
  • the dimension of the second vacuum heat insulating material 90 a and the position of the inlet 61 a are different from those of the second vacuum heat insulating material 90 and the inlet 61 of the refrigerator 10 according to the first embodiment.
  • the other configuration according to the second embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
  • FIG. 12 is a rear view of the refrigerator according to the second embodiment of the present disclosure.
  • FIG. 13 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the second embodiment.
  • the length in the vertical direction of the second vacuum heat insulating material 90 a is the same as or substantially the same as the length in the vertical direction of the third vacuum heat insulating material 100, and is longer than the length in the vertical direction of the first vacuum heat insulating material 80.
  • the position of the upper end of the second vacuum heat insulating material 90 a is equal to or substantially the same as the position of the upper end of the third vacuum heat insulating material 100, and is above the position of the upper end of the first vacuum heat insulating material 80.
  • the position of the lower end of the second vacuum heat insulating material 90 a is equal to or substantially the same as the position of the lower end of the third vacuum heat insulating material 100, and is disposed below the position of the lower end of the first vacuum heat insulating material 80. Therefore, the second vacuum heat insulating material 90a, together with the third vacuum heat insulating material 100, reinforces the casing 50 of the main body 20 in the vertical direction, and the rigidity of the main body 20 is enhanced.
  • the injection port 61a is between the two second vacuum heat insulating materials 90a, and between the upper end of the first vacuum heat insulating material 80 and the upper end of the back portion 53, Alternatively, it is disposed between the lower end of the first vacuum heat insulating material 80 and the lower end of the back surface portion 53.
  • the housing 50 is provided with at least one inlet 61a.
  • the at least one inlet 61a may be a plurality of (for example, four in the present embodiment) inlets 61a.
  • the first vacuum heat insulating material 80 is positioned between the upper right inlet 61a and the lower right inlet 61a and the upper left inlet 61a and the lower left inlet 61a in the vertical direction. It is arranged. Further, the four inlets 61a are disposed at positions sandwiched between the two second vacuum heat insulating materials 90a in the left-right direction.
  • the inlet 61 a is not blocked by the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 a, and is in communication with the heat insulating space 57 of the housing 50. Further, the four inlets 61 a are disposed in the housing 50 in a state where they are spaced from each other. Therefore, the undiluted
  • the decrease in the heat insulation performance at the corner portion 56 of the housing 50 is reduced by having the second vacuum heat insulating material 90 a.
  • the dimensions of the first vacuum heat insulating material 80a and the third vacuum heat insulating material 100a and the position of the inlet 61b are the first vacuum heat insulating material of the refrigerator 10 according to the first embodiment.
  • 80, the third vacuum heat insulating material 100 and the inlet 61 are different from each other.
  • the other configuration according to the third embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
  • FIG. 14 is a rear view of the refrigerator according to the third embodiment of the present disclosure.
  • FIG. 15 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the third embodiment.
  • the lengths in the vertical direction of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are shorter than the lengths in the vertical direction of the first vacuum heat insulator 80a.
  • the positions of the upper ends of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are respectively below the position of the upper end of the first vacuum heat insulator 80a.
  • the positions of the lower ends of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are respectively above the position of the lower end of the first vacuum heat insulator 80a.
  • the length in the vertical direction of the second vacuum heat insulating material 90 is the same as or substantially the same as the length of the third vacuum heat insulating material 100a.
  • the second vacuum heat insulating material 90 is fixed to the first vacuum heat insulating material 80a together with the third vacuum heat insulating material 100a, the movement of the first vacuum heat insulating material 80a is restricted.
  • the inlets 61 b are on both ends with respect to the first vacuum heat insulating material 80 a, and between the upper end of the second vacuum heat insulating material 90 and the upper end of the back portion 53, Alternatively, it is disposed between the lower end of the second vacuum heat insulating material 90 and the lower end of the back surface portion 53.
  • the housing 50 is provided with at least one inlet 61 b.
  • the at least one inlet 61 b may be a plurality of (for example, four in the present embodiment) inlets 61 b.
  • the second vacuum heat insulating material 90 is disposed at a position between the upper right inlet 61 b and the lower right inlet 61 b and between the upper left inlet 61 b and the lower left inlet 61 b arranged in the vertical direction. It is arranged.
  • the first vacuum heat insulating material 80a is disposed between the upper right inlet 61b and the upper left inlet 61b aligned in the left-right direction, and the lower right inlet 61b and the lower left inlet 61b aligned in the left-right direction. It is disposed at a position to be sandwiched between.
  • the inlet 61 b is not blocked by the first vacuum heat insulating material 80 a and the second vacuum heat insulating material 90, and is in communication with the heat insulating space 57 of the housing 50. Further, the four inlets 61 b are disposed in the housing 50 in a state of being spaced apart from one another. Therefore, the undiluted solution of the foamed heat insulating material 110 injected from the injection port 61 b flows into the heat insulating space 57, and the foamed heat insulating material 110 is more uniformly filled in the heat insulating space 57.
  • the outer case 60 of the housing 50 positions corresponding to the first vacuum heat insulating material 80a and the second vacuum heat insulating material 90, that is, the sides of the first vacuum heat insulating material 80a, and By providing the inlet 61b above or below the second vacuum heat insulating material 90, the dimension of the first vacuum heat insulating material 80a can be increased within the dimension in the vertical direction of the housing 50. Therefore, the heat insulation performance of the main body 20 is improved.
  • the decrease in the heat insulation performance at the corner portion 56 of the housing 50 is reduced by having the second vacuum heat insulator 90.
  • FIG. 16 is a perspective view schematically showing a first vacuum heat insulator, a second vacuum heat insulator, a third vacuum heat insulator, and a fourth vacuum heat insulator in a modification of the present disclosure.
  • the refrigerator 10 further includes a fourth vacuum heat insulating material 120.
  • the fourth vacuum heat insulating material 120 is provided in the heat insulating space 57 of the back surface portion 53, and extends in the left-right direction orthogonal to the second vacuum heat insulating material 90.
  • the fourth vacuum heat insulating material 120 includes a case (third case), a lid (third lid), a core material (fourth core material), and an adsorbent (third adsorbent).
  • the third case is similar to the first case 93
  • the third lid is similar to the first lid 94
  • the fourth core is similar to the second core 95
  • the third adsorbent is the first adsorbent. Similar to 96. Therefore, the description thereof is omitted.
  • the fourth vacuum heat insulating material 120 is a long member, and the shape of the cross section orthogonal to the extending direction is an L-shape.
  • the fourth vacuum heat insulating material 120 has two wall portions (fifth wall portion 121 and sixth wall portion 122).
  • the fifth wall portion 121 and the sixth wall portion 122 each have a long plate shape extended in the left-right direction, and cross each other (in this embodiment, at right angles).
  • the fifth wall 121 and the sixth wall 122 are integrally formed.
  • the refrigerator 10 has two fourth vacuum heat insulating materials 120.
  • One of the fourth vacuum heat insulators 120 is disposed above the first vacuum heat insulator 80a, and the other fourth vacuum heat insulator 120 is disposed below the first vacuum heat insulator 80a. There is.
  • the upper fourth vacuum heat insulating material 120 is disposed, for example, along a recess (upper mechanical chamber 25 (see FIG. 2)) provided at the rear upper corner of the main body 20.
  • the fifth wall 121 of the fourth vacuum heat insulating material 120 is bonded to the rear surface of the outer case 60 defining the upper mechanical chamber 25.
  • the sixth wall portion 122 is adhered to the upper surface of the outer case 60 which defines the upper mechanical chamber 25.
  • the lower fourth vacuum heat insulating material 120 is disposed, for example, along a recess (lower mechanical chamber 26 (see FIG. 2)) provided at the lower corner of the main body 20.
  • the fifth wall 121 of the fourth vacuum heat insulating material 120 is bonded to the rear surface of the outer case 60 above the lower machine room 26.
  • the sixth wall portion 122 is bonded to the lower surface of the outer case 60 which defines the lower mechanical chamber 26.
  • the second vacuum heat insulating material 90 and the fourth vacuum heat insulating material 120 are provided in the main body 20 (FIG. 1) orthogonal to each other. This suppresses the lowering of the door 30 due to the unbalance of the door 30 (FIG. 1) and the reduction of the slidability of the door 30 due to the unbalance of the main body 20.
  • the 4th vacuum heat insulating material 120 which concerns on this modification may be provided in the refrigerator 10 which concerns on Embodiment 1 and Embodiment 2.
  • FIG. Also in this case, the rigidity of the main body 20 in the refrigerator 10 is enhanced.
  • Embodiment 4 In the refrigerator 10 according to the fourth embodiment, the shape of the second vacuum heat insulating material 90 b is different from the shape of the second vacuum heat insulating material 90 of the refrigerator 10 according to the first embodiment.
  • the other configuration according to the fourth embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
  • FIG. 17 is a cross-sectional view of the refrigerator according to the fourth embodiment of the present disclosure, taken along line XVII-XVII in FIG.
  • FIG. 18 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
  • the second vacuum heat insulating material 90 b has a convex portion 98.
  • the first wall portion 91 and the second wall portion 92 and the convex portion 98 of the second vacuum heat insulating material 90 b are integrally formed.
  • the convex portion 98 has, for example, a rectangular parallelepiped shape, and is extended in the vertical direction at the corner portion 56 of the housing 50.
  • the convex portion 98 of the second vacuum heat insulating material 90 b is projected toward the outer case 60 and is disposed between the two first vacuum heat insulating materials 80 which are disposed to intersect with each other (in the present embodiment, orthogonally). It is arranged.
  • the convex portion 98 is the inner surface of the outer case 60 of the back surface portion 53, the inner surface of the outer case 60 of the right surface portion 54, and the rear surface side.
  • the right side of the heat insulator 81 and the rear side of the right side heat insulator 83 are in contact with each other.
  • the convex portion 98 is bonded at each of these contact surfaces by a bonding member 86 or the like.
  • the second vacuum heat insulating material 90b disposed in the left corner 56 is the same as the second vacuum heat insulating material 90b disposed in the right corner 56, and thus the description thereof will be omitted.
  • the 4th vacuum heat insulating material 120 shown in FIG. 16 may be provided. Also in this case, the rigidity of the main body 20 in the refrigerator 10 is enhanced.
  • the second vacuum heat insulators 90, 90a, 90b are L-shaped in cross section perpendicular to the extending direction, but the present invention is not limited to this shape.
  • FIG. 19A is a cross-sectional view showing an example of a second vacuum heat insulating material according to another embodiment of the present disclosure.
  • FIG. 19B is a cross-sectional view showing another example of the second vacuum heat insulating material according to the other embodiment.
  • the shape of the cross section orthogonal to the extending direction of the second vacuum heat insulating material 90c may be a triangle.
  • the second vacuum heat insulating material 90d may have a rectangular cross section orthogonal to the extending direction.
  • the third vacuum heat insulating material 100 and the fourth vacuum heat insulating material 120 have an L-shaped cross section perpendicular to the direction in which the third vacuum heat insulating material 100 and the fourth vacuum heat insulating material 120 extend. It is not limited.
  • the main body 20 is provided with the third vacuum heat insulating material 100 or 100a, but they may not be provided.
  • two third vacuum heat insulating materials 100 extended in the vertical direction are provided at positions where the first opening 22 is sandwiched between them in the horizontal direction.
  • two third vacuum heat insulating materials 100 extending in the left-right direction may be provided at positions where the first opening 22 is sandwiched between them in the vertical direction.
  • the length in the vertical direction of the third vacuum heat insulating material 100 is longer than the length in the vertical direction of the first vacuum heat insulating material 80, the vertical direction of the first vacuum heat insulating material 80 It may be the same as or shorter than the length in In the third embodiment and its modification, the length in the vertical direction of the third vacuum heat insulating material 100a is shorter than the length in the vertical direction of the first vacuum heat insulating material 80a, but in the vertical direction of the first vacuum heat insulating material 80a. It may be the same as or longer than the length.
  • the first vacuum heat insulating material 80, 80a is formed of a vacuum heat insulating material in which a film is used as a covering material, but other materials such as a vacuum heat insulating material in which a molded case is used It may be formed of a vacuum heat insulating material of
  • the second vacuum heat insulators 90, 90a, 90b, 90c, 90d, the third vacuum heat insulators 100, 100a, and the fourth vacuum heat insulator 120 are vacuum heat insulators in which a molded case is used. Although formed, it may be formed of another vacuum heat insulating material such as a vacuum heat insulating material in which a film is used as a covering material.
  • the refrigerator according to the present disclosure and the method for manufacturing the same can reduce the decrease in the heat insulation performance at the corner of the main body, and thus are useful for various refrigerators and the like.
  • refrigerator 20 main body 21 internal space 22 first opening (opening) 23 partition wall 24 peripheral portion 25 upper machine room 26 lower machine chamber 30 door 31 hinge 40 refrigerant circuit 41 compressor 42 evaporator 50 casing 51 top surface portion 52 bottom surface portion 53 back surface portion 54 right surface portion 55 left surface portion 56 corner portion 57 Heat insulation space (heat insulation area) 60 outer case 61, 61a, 61b inlet 70 inner case 80, 80a first vacuum heat insulating material 81, 81a rear side heat insulating material 81b first surface 82, 82a left side heat insulating material 83, 83a right surface side heat insulating material 83b first Surface 83c Second surface 84 First core material 85 Coating material 86 Bonding members 90, 90a, 90b, 90c, 90d Second vacuum heat insulating material 91 First wall 92 Second wall 93 First case 93a Gas barrier layer 93b Adhesive layer 93 c Water barrier layer 94 first lid (lid) 95 2nd core material (core material) 96 first a

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

This refrigerator is provided with: a box-shaped casing (50) having an outer box (60) and an inner box (70), and having an opening portion (22); a thermal insulation region (57) enclosed by the outer box (60) and the inner box (70); two first vacuum thermally insulating materials (80) disposed in the thermal insulation region (57) with a corner portion (56) of the casing (50) therebetween; and a second vacuum thermally insulating material (90) disposed in the thermal insulation region (57) and extending along the corner portion (56). The second vacuum thermally insulating material (90) is in contact with first surfaces of each of the two first vacuum thermally insulating materials (80) that face the inner box (70).

Description

冷蔵庫及びその製造方法Refrigerator and method of manufacturing the same
 本開示は、冷蔵庫及びその製造方法に関する。 The present disclosure relates to a refrigerator and a method of manufacturing the same.
 従来の冷蔵庫として、特許文献1の冷蔵庫が知られている。この冷蔵庫では、外箱と内箱との間に、真空断熱材が設けられている。また、外箱及び内箱の角部には、シール材及び断熱部材が配置されている。 The refrigerator of patent document 1 is known as a conventional refrigerator. In this refrigerator, a vacuum heat insulating material is provided between the outer case and the inner case. Moreover, the sealing material and the heat insulation member are arrange | positioned at the corner | angular part of an outer case and an inner case.
 上記特許文献1の冷蔵庫では、角部において、外箱の内面、内箱の内面及び真空断熱材の側面により囲まれた空間に、シール材及び断熱部材が配置されている。しかしながら、この断熱部材は、成型発泡スチロール(EPS)等であるため、真空断熱材よりも断熱性能が劣っている。また、シール材は、熱可塑性の合成樹脂、又は、ゴムをベースとした100%固形分であり、断熱部材よりも断熱性能がさらに劣っている。しかも、断熱部材と真空断熱材との間にシール材が配置されていることにより、このシール材を介して外箱と内箱との間で伝熱してしまうおそれがある。よって、冷蔵庫の角部における断熱性能が低くなってしまう。 In the refrigerator of Patent Document 1, the seal material and the heat insulating member are disposed in the space surrounded by the inner surface of the outer case, the inner surface of the inner case, and the side surface of the vacuum heat insulating material at the corner. However, since this heat insulating member is a molded foam polystyrene (EPS) or the like, the heat insulating performance is inferior to that of a vacuum heat insulating material. In addition, the sealing material is 100% solid content based on a thermoplastic synthetic resin or rubber, and the heat insulating performance is further inferior to that of the heat insulating member. In addition, since the sealing material is disposed between the heat insulating member and the vacuum heat insulating material, heat may be transferred between the outer case and the inner case via the sealing material. Therefore, the heat insulation performance in the corner part of a refrigerator will fall.
特開2014-126224号公報JP 2014-126224 特許第5310928号公報Patent No. 5310928 gazette
 本開示は、角部における断熱性能の低下を低減することができる冷蔵庫、及びその製造方法を提供する。 The present disclosure provides a refrigerator that can reduce the decrease in heat insulation performance at the corners, and a method of manufacturing the same.
 具体的には、本開示に係る冷蔵庫は、外箱及び内箱を有し、且つ、開口部を有する、箱形状の筐体と、外箱と内箱とにより囲まれた断熱領域と、筐体の角部を挟んで断熱領域に配置された2つの第1真空断熱材と、断熱領域に配置され、角部に沿って延設された、第2真空断熱材と、を備える。第2真空断熱材は、2つの第1真空断熱材それぞれの、内箱に対向する第1の面に接触している。 Specifically, the refrigerator according to the present disclosure includes a box-shaped case having an outer case and an inner case and having an opening, a heat insulating area surrounded by the outer case and the inner case, and a case. It comprises two first vacuum heat insulating materials disposed in the heat insulating area across the corner of the body, and a second vacuum heat insulating material disposed in the heat insulating area and extending along the corner. The second vacuum heat insulating material is in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box.
 この構成によれば、第2真空断熱材は、断熱性能に優れている上、1真空断熱材と重ねられて接触した状態である。このため、隣接する第1真空断熱材の間における伝熱が遮断される。従って、筐体の角部における断熱性能の低下を低減することができる。 According to this configuration, the second vacuum heat insulating material is excellent in heat insulating performance, and is in a state of being overlapped and in contact with the first vacuum heat insulating material. For this reason, the heat transfer between the adjacent 1st vacuum heat insulating materials is interrupted | blocked. Therefore, it is possible to reduce the decrease in the heat insulation performance at the corner of the housing.
図1は、本開示の実施の形態1に係る冷蔵庫を前側から視た斜視図である。FIG. 1 is a perspective view of the refrigerator according to the first embodiment of the present disclosure as viewed from the front side. 図2は、図1の冷蔵庫を左側から視た断面図である。FIG. 2 is a cross-sectional view of the refrigerator of FIG. 1 as viewed from the left side. 図3は、図2の冷蔵庫をIII-III線により切断した断面図である。FIG. 3 is a cross-sectional view of the refrigerator of FIG. 2 taken along line III-III. 図4は、図3における、本体の右側の角部を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG. 図5は、図3における、本体の右側の周縁部の周辺を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of the periphery of the right side of the main body in FIG. 図6は、実施の形態1に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。FIG. 6 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the first embodiment. 図7は、第2真空断熱材を示す分解斜視図である。FIG. 7 is an exploded perspective view showing a second vacuum heat insulating material. 図8は、第2真空断熱材を示す斜視図である。FIG. 8 is a perspective view showing a second vacuum heat insulating material. 図9Aは、第2真空断熱材のケースを上方から視た断面図である。FIG. 9A is a cross-sectional view of the case of the second vacuum heat insulating material as viewed from above. 図9Bは、図9Aにおける第2真空断熱材のケースの一部を拡大した断面図である。FIG. 9B is an enlarged cross-sectional view of a portion of the case of the second vacuum heat insulating material in FIG. 9A. 図10は、実施の形態1に係る冷蔵庫を後側から視た斜視図である。FIG. 10 is a perspective view of the refrigerator according to the first embodiment as viewed from the rear side. 図11は、実施の形態1に係る冷蔵庫を後側から視た図である。FIG. 11 is a view of the refrigerator according to the first embodiment as viewed from the rear side. 図12は、本開示の実施の形態2に係る冷蔵庫を後側から視た図である。FIG. 12 is a rear view of the refrigerator according to the second embodiment of the present disclosure. 図13は、同実施の形態2に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。FIG. 13 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the second embodiment. 図14は、本開示の実施の形態3に係る冷蔵庫を後側から視た図である。FIG. 14 is a rear view of the refrigerator according to the third embodiment of the present disclosure. 図15は、同実施の形態3に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。FIG. 15 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the third embodiment. 図16は、本開示の変形例における、第1真空断熱材、第2真空断熱材、第3真空断熱材及び第4真空断熱材を概略的に示す斜視図である。FIG. 16 is a perspective view schematically showing a first vacuum heat insulator, a second vacuum heat insulator, a third vacuum heat insulator, and a fourth vacuum heat insulator in a modification of the present disclosure. 図17は、本開示の実施の形態4に係る冷蔵庫について、図2のXVII-XVII線で切断した断面図である。FIG. 17 is a cross-sectional view of the refrigerator according to the fourth embodiment of the present disclosure, taken along line XVII-XVII in FIG. 図18は、図17における、本体の右側の角部を拡大した断面図である。FIG. 18 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG. 図19Aは、本開示のその他の実施の形態に係る第2真空断熱材の一例を示す断面図である。FIG. 19A is a cross-sectional view showing an example of a second vacuum heat insulating material according to another embodiment of the present disclosure. 図19Bは、同その他の実施の形態に係る第2真空断熱材の他の一例を示す断面図である。FIG. 19B is a cross-sectional view showing another example of the second vacuum heat insulating material according to the other embodiment.
 本開示の一態様に係る冷蔵庫は、外箱及び内箱を有し、且つ、開口部を有する、箱形状の筐体と、外箱と内箱とにより囲まれた断熱領域と、筐体の角部を挟んで断熱領域に配置された2つの第1真空断熱材と、断熱領域に配置され、角部に沿って延設された、第2真空断熱材と、を備える。第2真空断熱材は、2つの第1真空断熱材それぞれの、内箱に対向する第1の面に接触して配置されている。 A refrigerator according to one aspect of the present disclosure includes an outer case and an inner case, and a box-shaped case having an opening, a heat insulating area surrounded by the outer case and the inner case, and a case. The first vacuum heat insulating material includes two first vacuum heat insulating materials disposed in the heat insulating area across the corner, and a second vacuum heat insulating material disposed in the heat insulating area and extending along the corner. The second vacuum heat insulating material is disposed in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box.
 この構成によれば、第2真空断熱材は、断熱性能が優れている上、第1真空断熱材と重ねられて接触した状態である。このため、隣接する第1真空断熱材の間における伝熱が遮断される。従って、筐体の角部における断熱性能の低下を低減することができる。 According to this configuration, the second vacuum heat insulating material is excellent in heat insulating performance, and is in a state of being overlapped with and in contact with the first vacuum heat insulating material. For this reason, the heat transfer between the adjacent 1st vacuum heat insulating materials is interrupted | blocked. Therefore, it is possible to reduce the decrease in the heat insulation performance at the corner of the housing.
 本開示の他の一態様に係る冷蔵庫では、第2真空断熱材は、延設された方向に直交する断面の形状が、L字形、三角形又は四角形であってもよい。 In the refrigerator according to another aspect of the present disclosure, the shape of the cross section orthogonal to the extending direction of the second vacuum heat insulating material may be an L shape, a triangle or a square.
 この構成によれば、第2真空断熱材によって筐体の角部が補強されるため、筐体の剛性が高められる。 According to this configuration, the corner portion of the housing is reinforced by the second vacuum heat insulating material, so the rigidity of the housing is enhanced.
 本開示の他の一態様に係る冷蔵庫では、第2真空断熱材は、2つの第1真空断熱材の間に配置され、外箱に向けて突出された凸状部をさらに有していてもよい。 In the refrigerator according to another aspect of the present disclosure, the second vacuum heat insulating material is disposed between the two first vacuum heat insulating materials, and further having a convex portion protruding toward the outer case. Good.
 この構成によれば、第2真空断熱材の凸状部により、隣接する2つの第1真空断熱材の間が埋められる。これにより、筐体の角部における断熱性能の低下がさらに低減される。 According to this configuration, the convex portion of the second vacuum heat insulating material fills the space between the two adjacent first vacuum heat insulating materials. This further reduces the decrease in the heat insulation performance at the corner of the housing.
 本開示の他の一態様に係る冷蔵庫は、断熱領域に配置された第3真空断熱材をさらに備え、筐体は、開口部の周囲を取り囲む周縁部を有し、第3真空断熱材は、2つの第1真空断熱材のうちの1つの第1真空断熱材の、周縁部に対向する第2の面に接触して配置されていてもよい。 The refrigerator according to another aspect of the present disclosure further includes a third vacuum heat insulating material disposed in the heat insulating area, the housing has a peripheral portion surrounding the periphery of the opening, and the third vacuum heat insulating material is The first vacuum heat insulating material of one of the two first vacuum heat insulating materials may be disposed in contact with the second surface opposite to the peripheral portion.
 この構成によれば、第3真空断熱材によって、筐体における、開口部の周囲の断熱性の低下が低減される。また、第3真空断熱材によって、筐体の開口部近傍が補強されるため、筐体の剛性が高められる。 According to this configuration, the third vacuum heat insulating material reduces the reduction in the heat insulation around the opening in the housing. In addition, since the vicinity of the opening of the housing is reinforced by the third vacuum heat insulating material, the rigidity of the housing is enhanced.
 本開示の他の一態様に係る冷蔵庫は、開口部が配置された側と反対側における断熱領域に配置された、第4真空断熱材をさらに備え、第4真空断熱材が、第2真空断熱材に直交する方向に延設されていてもよい。 The refrigerator according to another aspect of the present disclosure further includes a fourth vacuum heat insulating material disposed in the heat insulating region on the side opposite to the side where the opening is disposed, the fourth vacuum heat insulating material being the second vacuum heat insulating material It may be extended in the direction orthogonal to the material.
 この構成によれば、第2真空断熱材及び第4真空断熱材は、互いに直交する方向に延設され、これにより、筐体の剛性がさらに高められる。 According to this configuration, the second vacuum heat insulating material and the fourth vacuum heat insulating material are extended in the direction orthogonal to each other, whereby the rigidity of the housing is further enhanced.
 本開示の他の一態様に係る冷蔵庫は、断熱領域に配置された発泡断熱材をさらに備えていてもよい。 The refrigerator according to another aspect of the present disclosure may further include a foam insulation disposed in the heat insulation area.
 この構成によれば、発泡断熱材により断熱領域が配置されることにより、筐体の、断熱性能及び剛性の向上が図られる。 According to this configuration, the heat insulating performance and the rigidity of the casing can be improved by arranging the heat insulating area with the foam heat insulating material.
 本開示の他の一態様に係る冷蔵庫は、外箱に設けられ、発泡断熱材の原液が注入される注入口をさらに備え、外箱を一面から視た場合において、注入口は、2つの第1真空断熱材、及び、第2真空断熱材と重ならない位置に配置されていてもよい。 The refrigerator according to another aspect of the present disclosure further includes an inlet provided in the outer case, into which the undiluted solution of the foamed insulation material is injected, and when the outer case is viewed from one side, the inlet has two inlets. The first vacuum heat insulating material and the second vacuum heat insulating material may be arranged not to overlap with each other.
 この構成によれば、注入口が、第1真空断熱材及び第2真空断熱材により塞がれないことにより、発泡断熱材の原液が注入口から断熱領域に適切に注入される。 According to this configuration, since the injection port is not blocked by the first vacuum heat insulating material and the second vacuum heat insulating material, the undiluted solution of the foamed heat insulating material is appropriately injected from the injection port to the heat insulating region.
 本開示の他の一態様に係る冷蔵庫では、注入口は複数の注入口を備え、外箱を一面から視た場合において、複数の注入口のうち、第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、2つの第1真空断熱材のうちの1つの第1真空断熱材、及び、第2真空断熱材が配置されていてもよい。 In the refrigerator according to another aspect of the present disclosure, the inlet includes a plurality of inlets, and when the outer case is viewed from one side, the direction in which the second vacuum heat insulating material is extended among the plurality of inlets. A first vacuum insulator and one second vacuum insulator of the two first vacuum insulators may be disposed between the two inlets adjacent to each other at.
 この構成によれば、筐体の外箱において、複数の注入口が互いに離れて配置されるため、発泡断熱材の原液が注入口から筐体の断熱空間に、より均一に注入される。 According to this configuration, in the outer case of the housing, since the plurality of injection ports are disposed apart from each other, the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port into the heat insulation space of the housing.
 本開示の他の一態様に係る冷蔵庫では、注入口は複数の注入口を備え、第2真空断熱材は2つの第2真空断熱材を備え、外箱を一面から視た場合において、複数の注入口のうち、第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、2つの第1真空断熱材のうちの1つの第1真空断熱材が配置され、且つ、2つの第2真空断熱材の間に、第2真空断熱材が延設された方向に直交する方向において互いに隣接する2つの注入口が配置されていてもよい。 In the refrigerator according to another aspect of the present disclosure, the inlet includes a plurality of inlets, the second vacuum heat insulating material includes two second vacuum heat insulating materials, and the outer case is viewed from one side. The first vacuum insulator of one of the two first vacuum insulators is disposed between two inlets adjacent to each other in the direction in which the second vacuum insulator extends in the inlets, In addition, two inlets adjacent to each other in a direction perpendicular to the direction in which the second vacuum heat insulating material extends may be disposed between the two second vacuum heat insulating materials.
 この構成によれば、筐体の外箱において、複数の注入口が互いに離れて配置されるため、発泡断熱材の原液が注入口から筐体の断熱領域に、より均一に注入される。また、第1真空断熱材及び第2真空断熱材がそれぞれ延設された方向における、第2真空断熱材の長さを第1真空断熱材の長さよりも長くすることができ、筐体の剛性を高めることができる。 According to this configuration, in the outer case of the housing, since the plurality of injection ports are disposed apart from each other, the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port to the heat insulation area of the housing. Further, the length of the second vacuum heat insulating material in the direction in which the first vacuum heat insulating material and the second vacuum heat insulating material are extended can be made longer than the length of the first vacuum heat insulating material, and the rigidity of the housing Can be enhanced.
 本開示の他の一態様に係る冷蔵庫では、注入口は複数の注入口を備え、外箱を一面から視た場合において、第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、第2真空断熱材が配置され、且つ、第2真空断熱材が延設された方向に直交する方向において互いに隣接する、2つの注入口の間に、2つの第1真空断熱材のうちの1つの第1真空断熱材が配置されていてもよい。 In the refrigerator according to another aspect of the present disclosure, the inlet includes a plurality of inlets, and when the outer case is viewed from one side, two adjacent ones in a direction in which the second vacuum heat insulating material extends. Between the two inlets, the second vacuum insulator is disposed between the inlets and adjacent to each other in a direction orthogonal to the direction in which the second vacuum insulator extends, two first vacuums A first vacuum insulation of one of the insulation may be arranged.
 この構成によれば、筐体の外箱において、複数の注入口が互いに離れて配置されるため、発泡断熱材の原液が注入口から筐体の断熱領域に、より均一に注入される。また、第1真空断熱材及び第2真空断熱材がそれぞれ延設された方向における、第1真空断熱材の長さを第2真空断熱材の長さよりも長くすることができるため、筐体の断熱性が高められる。 According to this configuration, in the outer case of the housing, since the plurality of injection ports are disposed apart from each other, the undiluted solution of the foamed heat insulating material is injected more uniformly from the injection port to the heat insulation area of the housing. Further, since the length of the first vacuum heat insulating material in the direction in which the first vacuum heat insulating material and the second vacuum heat insulating material are extended can be made longer than the length of the second vacuum heat insulating material, Thermal insulation is enhanced.
 本開示の一態様に係る冷蔵庫の製造方法は、外箱及び内箱を有し、且つ、開口部を有する、箱形状の筐体と、外箱と内箱とにより囲まれた断熱領域と、筐体の角部を挟んで断熱領域に配置された2つの第1真空断熱材と、断熱領域に配置され、角部に沿って延設された、第2真空断熱材と、を備え、第2真空断熱材は、中空柱状のケース(hollow pillar shaped case)を有し、且つ、2つの第1真空断熱材それぞれの、内箱に対向する第1の面に接触している、冷蔵庫の製造方法であって、ケースが押出成形により形成される工程と、ケースに芯材が挿入される工程と、ケースの両端の開口がそれぞれ蓋により覆われる工程と、を含む。 According to one aspect of the present disclosure, there is provided a method of manufacturing a refrigerator, including: a box-shaped case having an outer case and an inner case and having an opening, a heat insulating area surrounded by the outer case and the inner case; A second vacuum heat insulating material disposed in the heat insulating area and extended along the corner, the first vacuum heat insulating material disposed in the heat insulating area across the corner of the housing; [2] Manufacture of a refrigerator having a hollow pillar shaped case and being in contact with the first surface of each of the two first vacuum heat insulators facing the inner box The method includes the steps of forming the case by extrusion molding, inserting the core into the case, and covering the openings at both ends of the case with a lid.
 この製造方法によれば、中空柱状のケースが押出成形により形成されることにより、任意の長さのケースが形成される。これにより、長さが異なる真空断熱材ごとに、異なる金型等を用いる必要がなく、製造コストの上昇が抑えられる。また、このようにして形成された真空断熱材により、筐体の角部における断熱性能の低下が低減される。 According to this manufacturing method, the hollow columnar case is formed by extrusion molding to form a case of an arbitrary length. As a result, it is not necessary to use different molds and the like for different vacuum heat insulating materials having different lengths, and an increase in manufacturing cost can be suppressed. Further, the vacuum heat insulating material formed in this manner reduces the reduction in the heat insulating performance at the corner of the housing.
 本開示の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施の形態の詳細な説明から明らかにされる。 The above object, other objects, features and advantages of the present disclosure will be apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する場合がある。また、全ての図面において、本開示を説明するための構成要素を抜粋して図示しており、その他の構成要素については図示を省略する場合がある。さらに、以下の実施の形態によって本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In all the drawings, the same or corresponding parts will be denoted by the same reference symbols, and overlapping descriptions may be omitted. Further, in all the drawings, components for explaining the present disclosure are extracted and illustrated, and the other components may be omitted. Furthermore, the present disclosure is not limited by the following embodiments.
 (実施の形態1)
  <冷蔵庫の構成>
 図1は、本開示の実施の形態1に係る冷蔵庫を前側から視た斜視図である。
Embodiment 1
<Structure of refrigerator>
FIG. 1 is a perspective view of the refrigerator according to the first embodiment of the present disclosure as viewed from the front side.
 図1に示すように、冷蔵庫10は、内部空間21を有する本体20、及び、本体20に取り付けられた扉30を備えている。なお、本体20よりも扉30側を前側と称し、その反対側を後側と称する。また、この前後方向及び上下方向に直交する方向を左右方向と称する。なお、これらの方向は、それぞれ、冷蔵庫10から視た方向のことをいう。 As shown in FIG. 1, the refrigerator 10 includes a main body 20 having an internal space 21 and a door 30 attached to the main body 20. In addition, the door 30 side is called the front side rather than the main body 20, and the other side is called a rear side. Further, the direction orthogonal to the front-rear direction and the up-down direction is referred to as the left-right direction. In addition, these directions mean the thing of the direction seen from the refrigerator 10, respectively.
 冷蔵庫10は、本体20の内部空間21を冷却する冷媒回路40をさらに備えている。冷媒回路40は、圧縮機41、凝縮器(図示せず)、減圧器(図示せず)及び蒸発器42が冷媒管によって環状に接続されて構成されており、この冷媒回路40に冷媒が循環する。なお、本体20の内部空間21を庫内と称し、本体20よりも外側の空間を庫外と称することがある。 The refrigerator 10 further includes a refrigerant circuit 40 that cools the internal space 21 of the main body 20. In the refrigerant circuit 40, a compressor 41, a condenser (not shown), a pressure reducer (not shown) and an evaporator 42 are annularly connected by a refrigerant pipe, and the refrigerant is circulated in the refrigerant circuit 40. Do. The internal space 21 of the main body 20 may be referred to as the inside of the storage, and the space outside the main body 20 may be referred to as the outside of the storage.
 本体20は、箱形状であって、開口部(第1開口部22)を有する。本体20の前面は、第1開口部22によって開口している。第1開口部22の周りは、本体20の周縁部24により取り囲まれている。本体20の内部空間21は、第1開口部22を介して庫外と連通されている。また、内部空間21は、仕切り壁23によって複数(本実施の形態では、5つ)の空間(仕切り空間)に仕切られている。なお、本体20の詳細については後述する。 The main body 20 is box-shaped and has an opening (first opening 22). The front surface of the main body 20 is opened by the first opening 22. The periphery of the first opening 22 is surrounded by the peripheral edge 24 of the main body 20. The internal space 21 of the main body 20 is in communication with the outside via the first opening 22. Further, the internal space 21 is partitioned by the partition wall 23 into a plurality of (five in the present embodiment) spaces (partition spaces). The details of the main body 20 will be described later.
 本実施の形態の冷蔵庫10は、少なくとも1つ以上の扉30を有し、例えば、複数(本実施の形態では、5つ)の扉30を有していてもよい。各扉30は、本体20の前面に設けられており、本体20の各仕切り空間における第1開口部22を開閉することが可能である。扉30の形式としては、例えば、ヒンジ31を介して回転可能な回転式、及び、レール(図示せず)を介して引き出し可能な引き出し式の形式が挙げられる。 The refrigerator 10 of the present embodiment may have at least one or more doors 30, and may have, for example, a plurality of (five in the present embodiment) doors 30. Each door 30 is provided on the front surface of the main body 20, and can open and close the first opening 22 in each partition space of the main body 20. The form of the door 30 includes, for example, a rotatable type that can be rotated via a hinge 31 and a pull-out type that can be drawn out via a rail (not shown).
  <本体の構成>
 図2は、図1の冷蔵庫を左側から視た断面図である。
<Configuration of main unit>
FIG. 2 is a cross-sectional view of the refrigerator of FIG. 1 as viewed from the left side.
 図2に示すように、本体20は、筐体50及び、後述の断熱材を有する。筐体50は、外箱60及び内箱70により形成されている。 As shown in FIG. 2, the main body 20 has a housing 50 and a heat insulating material described later. The housing 50 is formed of an outer case 60 and an inner case 70.
 筐体50は、天面部51、底面部52、背面部53、右面部54及び左面部55を有しており、これらは矩形の板形状である。背面部53は、筐体50において、第1開口部22と反対側に設けられている。また、背面部53に対して、天面部51、底面部52、右面部54及び左面部55のそれぞれが交差(本実施の形態では、直交)して設けられている。 The housing 50 has a top surface 51, a bottom surface 52, a back surface 53, a right surface 54, and a left surface 55, which have a rectangular plate shape. The back surface portion 53 is provided on the side opposite to the first opening 22 in the housing 50. In addition, the top surface 51, the bottom surface 52, the right surface 54, and the left surface 55 cross each other (orthogonally in this embodiment) with the back surface 53.
 外箱60は、例えば、薄い板厚の鋼板製であって、筐体50の外部(庫外)に露出する面を形成する。内箱70は、例えば、樹脂により形成されており、筐体50の内部空間21(庫内)に露出する面を形成する。内箱70が外箱60内に配置され、これらが接合されることにより、筐体50が形成される。 The outer case 60 is made of, for example, a thin steel plate and forms a surface exposed to the outside (outside the case) of the housing 50. The inner box 70 is formed of, for example, a resin, and forms a surface exposed to the internal space 21 (inside the cabinet) of the housing 50. The inner case 70 is disposed in the outer case 60 and joined together to form the case 50.
 筐体50における、外箱60と内箱70との間には、断熱領域である空間(断熱空間57)が設けられている。断熱空間57に、断熱材が配置されている。なお、外箱60及び内箱70において、断熱空間57側の面を内面と称し、内面と反対側の面を外面と称することがある。また、断熱空間57において、内箱70よりも外箱60側を外側と称し、その反対側を内側と称する。 A space (heat insulation space 57), which is a heat insulation area, is provided between the outer case 60 and the inner case 70 in the housing 50. The heat insulating material is disposed in the heat insulating space 57. In the outer case 60 and the inner case 70, the surface on the heat insulation space 57 side may be referred to as an inner surface, and the surface on the opposite side to the inner surface may be referred to as an outer surface. Moreover, in the heat insulation space 57, the outer case 60 side is called outer side rather than the inner case 70, and the other side is called inner side.
 図3は、図2の冷蔵庫をIII-III線により切断した断面図である。 FIG. 3 is a cross-sectional view of the refrigerator of FIG. 2 taken along line III-III.
 図3に示すように、筐体50において、背面部53と左面部55とが接続される領域、及び、背面部53と右面部54とが接続される領域を、それぞれ、角部56という。これらの角部56において、内箱70は、その断面形状が湾曲されて形成されている。角部56において、内箱70の曲率は、外箱60の曲率よりも小さい。これにより、内箱70は、外箱60よりも穏やかにカーブする。このため、角部56における内箱70と外箱60との間隔(断熱空間57の寸法)は、他の部分における内箱70と外箱60との間隔よりも大きくなる。なお、背面部53と天面部51との間の角部56、及び、背面部53と底面部52との角部56の少なくともいずれか一方においても、内箱70は、その断面形状が湾曲されて形成されていてもよい。 As shown in FIG. 3, in the case 50, an area where the back surface portion 53 and the left surface portion 55 are connected and a region where the back surface portion 53 and the right surface portion 54 are connected are each referred to as a corner portion 56. At the corners 56, the inner box 70 is formed to have a curved cross-sectional shape. At the corner 56, the curvature of the inner box 70 is smaller than the curvature of the outer box 60. Thereby, the inner box 70 curves more gently than the outer box 60. Therefore, the distance between the inner box 70 and the outer box 60 at the corner 56 (the dimension of the heat insulating space 57) is larger than the distance between the inner box 70 and the outer box 60 in the other part. In addition, at least one of the corner 56 between the back face 53 and the top face 51 and the corner 56 between the back face 53 and the bottom face 52, the cross section of the inner box 70 is curved. It may be formed.
 図4は、図3における、本体の右側の角部を拡大した断面図である。 FIG. 4 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
 図4に示すように、断熱空間57には、例えば、冷媒回路40の冷媒管45の一部が配置されている。本実施の形態では、冷媒管45のうちの、圧縮機41から凝縮器に至る流路が、外箱60の内面上に配置されている。この流路には、冷媒回路40の圧縮機41によって高温の冷媒が流通され、これにより、結露が抑制される。 As shown in FIG. 4, in the heat insulation space 57, for example, a part of the refrigerant pipe 45 of the refrigerant circuit 40 is disposed. In the present embodiment, the flow path of the refrigerant pipe 45 from the compressor 41 to the condenser is disposed on the inner surface of the outer case 60. In this flow path, a high temperature refrigerant is circulated by the compressor 41 of the refrigerant circuit 40, whereby condensation is suppressed.
  <断熱材>
 断熱材は、真空断熱材、及び、断熱空間57に充填される発泡断熱材110を有している。図3に示すように、真空断熱材は、第1真空断熱材80、第2真空断熱材90及び第3真空断熱材100を含んでいる。本実施の形態では、後述のように、2つの第1真空断熱材80が、筐体50の角部56において、隣接して配置されている。第2真空断熱材90は、筐体50の角部56における断熱空間57に配置されている。また、第3真空断熱材100は、筐体50の周縁部24における断熱空間57に配置されている。
<Heat insulation material>
The heat insulating material has a vacuum heat insulating material, and a foam heat insulating material 110 filled in the heat insulating space 57. As shown in FIG. 3, the vacuum heat insulating material includes a first vacuum heat insulating material 80, a second vacuum heat insulating material 90, and a third vacuum heat insulating material 100. In the present embodiment, as described later, two first vacuum heat insulating materials 80 are disposed adjacent to each other at the corner 56 of the housing 50. The second vacuum heat insulating material 90 is disposed in the heat insulating space 57 at the corner 56 of the housing 50. Further, the third vacuum heat insulating material 100 is disposed in the heat insulating space 57 in the peripheral portion 24 of the housing 50.
  <第1真空断熱材>
 図6は、本実施の形態1に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。
<First vacuum insulation material>
FIG. 6 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the first embodiment.
 図3及び図6に示すように、第1真空断熱材80は、板形状である。第1真空断熱材80は、外箱60の内面上に配置されており、例えば、外箱60に接着剤等により貼り付けられている。また、2つの第1真空断熱材80は、筐体50の角部56において、互いに間隔を空けて配置されている。 As shown in FIGS. 3 and 6, the first vacuum heat insulating material 80 has a plate shape. The first vacuum heat insulating material 80 is disposed on the inner surface of the outer case 60, and is attached to the outer case 60 with an adhesive or the like, for example. Further, the two first vacuum heat insulating materials 80 are disposed at an interval from each other at the corner 56 of the housing 50.
 第1真空断熱材80は、複数(本実施の形態では、3枚)の第1真空断熱材80(背面側断熱材81、左面側断熱材82及び右面側断熱材83)を有している。背面側断熱材81は背面部53に配置され、左面側断熱材82は左面部55に配置され、右面側断熱材83は右面部54に配置されている。 The first vacuum heat insulating material 80 has a plurality of (three in the present embodiment) first vacuum heat insulating materials 80 (rear side heat insulating material 81, left side heat insulating material 82, and right side heat insulating material 83). . The back side heat insulating material 81 is disposed in the back surface part 53, the left side heat insulating material 82 is disposed in the left side part 55, and the right surface side heat insulating material 83 is disposed in the right side part 54.
 背面側断熱材81及び左面側断熱材82は、図3における右上の角部56において、互いに隣接して配置されている。また、背面側断熱材81及び右面側断熱材83は、図3における左上の角部56において、互いに隣接して配置されている。なお、第1真空断熱材80は、筐体50の天面部51に配置されていてもよいし、底面部52に配置されていてもよい。ここで、2つの第1真空断熱材80が互いに隣接して配置されているとは、2つの第1真空断熱材80のそれぞれが、隣り合う2つの面部に配置され、角部56を介して互いに交差していることをいう。言い換えると、2つの第1真空断熱材80は、筐体50の角部56を挟んで配置されている。 The back side heat insulating material 81 and the left side heat insulating material 82 are disposed adjacent to each other at the upper right corner 56 in FIG. 3. Further, the back side heat insulating material 81 and the right side heat insulating material 83 are disposed adjacent to each other at the upper left corner 56 in FIG. 3. The first vacuum heat insulating material 80 may be disposed on the top surface 51 of the casing 50 or may be disposed on the bottom surface 52. Here, that the two first vacuum heat insulating materials 80 are arranged adjacent to each other means that each of the two first vacuum heat insulating materials 80 is arranged on two adjacent surface parts, and the corner parts 56 It says that they cross each other. In other words, the two first vacuum heat insulating materials 80 are disposed across the corner 56 of the housing 50.
 第1真空断熱材80としては、例えば、板状体の真空断熱材が用いられる。この場合、第1真空断熱材80は、芯材(第1芯材84)、吸着剤(図示せず)及び被覆材85を有している。第1芯材84は、多孔質構造を有し、グラスウール等の無機繊維集合体により形成されている。吸着剤は、水分及びガスを吸着する。なお、吸着剤は、第1真空断熱材80に備えられていなくてもよい。 As the first vacuum heat insulating material 80, for example, a plate-like vacuum heat insulating material is used. In this case, the first vacuum heat insulating material 80 includes a core material (first core material 84), an adsorbent (not shown), and a covering material 85. The first core material 84 has a porous structure, and is formed of an inorganic fiber aggregate such as glass wool. The adsorbent adsorbs moisture and gas. The adsorbent may not be provided in the first vacuum heat insulating material 80.
 被覆材85としては、ラミネートフィルムが用いられる。ラミネートフィルムは、例えば、熱溶着可能な樹脂層、ポリエチレンテレフタレート等による防湿層、及び、アルミニウム箔等によるガスバリア層が積層された積層部を含む部材により形成されている。被覆材85の内部に、第1芯材84及び吸着剤が配置されており、内部が真空に減圧されて、端部が熱溶着されている。 As the covering material 85, a laminate film is used. The laminate film is formed of a member including, for example, a heat-weldable resin layer, a moisture-proof layer of polyethylene terephthalate or the like, and a laminated portion on which a gas barrier layer of aluminum foil or the like is laminated. The first core 84 and the adsorbent are disposed in the inside of the covering material 85, the inside is depressurized to a vacuum, and the end portions are heat-welded.
  <第2真空断熱材>
 図3、図4及び図6に示すように、本実施の形態では、筐体50の断熱空間57に、少なくとも1つの第2真空断熱材90が設けられている。本実施の形態においては、2つの第2真空断熱材90が設けられている。このうちの一方の第2真空断熱材90は、背面部53と右面部54とが接続される領域における、角部56に配置されている。他方の第2真空断熱材90は、背面部53と左面部55とが接続される領域における、角部56に配置されている。以下、一方の第2真空断熱材90について説明する。なお、他方の第2真空断熱材90は、一方の第2真空断熱材90と同様であるため、その説明を省略する。
<Second vacuum insulation material>
As shown in FIGS. 3, 4 and 6, in the present embodiment, at least one second vacuum heat insulating material 90 is provided in the heat insulating space 57 of the housing 50. In the present embodiment, two second vacuum heat insulating materials 90 are provided. One of the second vacuum heat insulating materials 90 is disposed at the corner 56 in a region where the back surface 53 and the right surface 54 are connected. The other second vacuum heat insulating material 90 is disposed at the corner 56 in a region where the back surface portion 53 and the left surface portion 55 are connected. Hereinafter, one second vacuum heat insulating material 90 will be described. In addition, since the other 2nd vacuum heat insulating material 90 is the same as that of the one 2nd vacuum heat insulating material 90, the description is abbreviate | omitted.
 第2真空断熱材90は、筐体50の角部56を介して互いに交差(本実施の形態では、直交)して配置されている、2つの第1真空断熱材80(図4では、背面側断熱材81及び右面側断熱材83)よりも、内側に配置されている。第2真空断熱材90は、長尺部材であって、筐体50の角部56に沿って上下方向に延設されている。 The two first vacuum heat insulators 80 (the back surfaces in FIG. 4) are disposed so as to cross each other (orthogonally in the present embodiment) via the corner portions 56 of the housing 50. It arrange | positions inside the side heat insulating material 81 and the right side heat insulating material 83). The second vacuum heat insulating material 90 is an elongated member, and extends in the vertical direction along the corner 56 of the housing 50.
 図6に示すように、第2真空断熱材90は、上下方向において、第1真空断熱材80と同じ又はほぼ同じ寸法である。このため、第2真空断熱材90の上端は、第1真空断熱材80の上端よりも上側へ突出しておらず、第2真空断熱材90の下端は第1真空断熱材80の下端よりも下側へ突出していない。また、第2真空断熱材90は、前後方向及び左右方向において、第1真空断熱材80に重ねられて配置されている。 As shown in FIG. 6, the second vacuum heat insulator 90 has the same or substantially the same size as the first vacuum heat insulator 80 in the vertical direction. Therefore, the upper end of the second vacuum heat insulating material 90 does not protrude above the upper end of the first vacuum heat insulating material 80, and the lower end of the second vacuum heat insulating material 90 is lower than the lower end of the first vacuum heat insulating material 80. It does not protrude to the side. In addition, the second vacuum heat insulating material 90 is disposed to overlap the first vacuum heat insulating material 80 in the front-rear direction and the left-right direction.
 第2真空断熱材90は、延設されている方向に対して直交する断面の形状がL字形状であって、図4に示すように、2つの壁部(第1壁部91及び第2壁部92)を有している。第1壁部91及び第2壁部92は、それぞれ上下方向に延設された長尺の板形状であって、互いに交差(本実施の形態では、直交)している。本実施の形態では、第1壁部91及び第2壁部92は、一体的に形成されている。 The second vacuum heat insulating material 90 has an L-shaped cross section perpendicular to the direction in which the second vacuum heat insulating material 90 extends, and as shown in FIG. 4, two wall portions (a first wall portion 91 and a second wall portion Wall 92). The first wall portion 91 and the second wall portion 92 are long plate shapes extending in the vertical direction, respectively, and intersect each other (orthogonally in the present embodiment). In the present embodiment, the first wall 91 and the second wall 92 are integrally formed.
 第2真空断熱材90の第1壁部91は、上下方向及び左右方向に延設された、平板状であり、背面側断熱材81と重ねられている。ここで、図4に示すように、第1壁部91のうちの後側の面であって外箱60に対向する面(後側面)と、背面側断熱材81のうちの前側の面であって内箱70に対向する面(前側面(第1の面81b))とは、接触している。また、この接触面上に接着部材86等が配置され、これにより第1壁部91は背面側断熱材81に固定されている。 The first wall portion 91 of the second vacuum heat insulating material 90 is a flat plate extended in the vertical direction and the lateral direction, and is overlapped with the rear side heat insulating material 81. Here, as shown in FIG. 4, it is the rear surface of the first wall 91 that faces the outer case 60 (rear surface) and the front surface of the rear heat insulating material 81. The surface (the front side surface (first surface 81 b)) facing the inner box 70 is in contact with the surface. Further, an adhesive member 86 or the like is disposed on the contact surface, whereby the first wall portion 91 is fixed to the back side heat insulating material 81.
 第2真空断熱材90の第2壁部92は、上下方向及び前後方向に延設された、平板状であり、右面側断熱材83と重ねられている。ここで、図4に示すように、第2壁部92のうちの右側の面であって外箱60に対向する面(右側面)と、右面側断熱材83のうちの左側の面であって内箱70に対向する面(左側面(第1の面83b))とは、接触している。また、この接触面上に接着部材86等が配置され、これにより第2壁部92は右面側断熱材83に固定されている。 The second wall portion 92 of the second vacuum heat insulating material 90 is a flat plate extended in the vertical direction and the front-rear direction, and is overlapped with the right side heat insulating material 83. Here, as shown in FIG. 4, it is the surface on the right side of the second wall portion 92 that faces the outer case 60 (right surface) and the surface on the left side of the right side heat insulating material 83. The surface (left surface (first surface 83 b)) facing the inner case 70 is in contact with the inner case 70. In addition, an adhesive member 86 or the like is disposed on the contact surface, whereby the second wall 92 is fixed to the right heat insulating material 83.
 このように、第2真空断熱材90は、筐体50の角部56において隣接する2つの第1真空断熱材80の間を覆う。これにより、2つの第1真空断熱材80の間において、外箱60と内箱70との間の伝熱が、第2真空断熱材90によって防止される。従って、筐体50の角部56における断熱性能を高めることができる。 Thus, the second vacuum heat insulator 90 covers between the two adjacent first vacuum heat insulators 80 at the corner 56 of the housing 50. Thereby, the heat transfer between the outer case 60 and the inner case 70 is prevented by the second vacuum heat insulator 90 between the two first vacuum heat insulators 80. Therefore, the heat insulation performance at the corner 56 of the housing 50 can be enhanced.
 また、第2真空断熱材90は、上述のように、2つの第1真空断熱材80のそれぞれに重ねられて配置されおり、且つ、2つの第1真空断熱材80に対して接着部材86等により固定されている。このため、断熱空間57における断熱材の、一体としての厚みが増加される。また、第2真空断熱材90が2つの第1真空断熱材80の動きを制限する。従って、筐体50の剛性が高められる。 Further, as described above, the second vacuum heat insulating material 90 is disposed so as to be superimposed on each of the two first vacuum heat insulating materials 80, and the bonding member 86 or the like for the two first vacuum heat insulating materials 80. It is fixed by. Therefore, the integral thickness of the heat insulating material in the heat insulating space 57 is increased. Also, the second vacuum heat insulator 90 limits the movement of the two first vacuum heat insulators 80. Accordingly, the rigidity of the housing 50 is enhanced.
 図7は、第2真空断熱材を示す分解斜視図である。図8は、第2真空断熱材を示す斜視図である。図9Aは、第2真空断熱材のケースを上方から視た断面図である。また、図9Bは、図9Aにおける第2真空断熱材のケースの一部を拡大した断面図である。 FIG. 7 is an exploded perspective view showing a second vacuum heat insulating material. FIG. 8 is a perspective view showing a second vacuum heat insulating material. FIG. 9A is a cross-sectional view of the case of the second vacuum heat insulating material as viewed from above. Moreover, FIG. 9B is sectional drawing to which a part of case of the 2nd vacuum heat insulating material in FIG. 9A was expanded.
 図7~図9Bに示すように、第2真空断熱材90は、ケース(第1ケース93)、蓋(第1蓋94)、芯材(第2芯材95)及び吸着剤(第1吸着剤96)を有する。第1ケース93及び第1蓋94により形成された内部空間に、第2芯材95及び第1吸着剤96が封入されて、この内部空間が所定の真空度に減圧された状態で維持されている。 As shown in FIGS. 7 to 9B, the second vacuum heat insulating material 90 includes a case (first case 93), a lid (first lid 94), a core (second core 95), and an adsorbent (first adsorption). Agent 96). The second core material 95 and the first adsorbent 96 are enclosed in the internal space formed by the first case 93 and the first lid 94, and the internal space is maintained in a state of being decompressed to a predetermined degree of vacuum. There is.
 第1ケース93は、筒形状を有する。なお、本開示において、筒形状とは、内部が中空である柱状の形状、すなわち、中空柱状の形状(hollow pillar shape)のことをいう。第1ケース93は、例えば、長尺であって、延設された方向に対して直交する断面の形状がL字形状である。第1ケース93は、所望の形状を有する成形品である。第1ケース93は、両端のそれぞれに、開口部(第2開口部97)を有している。 The first case 93 has a tubular shape. In the present disclosure, the cylindrical shape refers to a columnar shape having a hollow inside, that is, a hollow pillar shape. The first case 93 is, for example, long and has an L-shaped cross section orthogonal to the extending direction. The first case 93 is a molded product having a desired shape. The first case 93 has an opening (second opening 97) at each of both ends.
 第1ケース93は、ガスバリア層93a、接着層93b及び水バリア層93cがこの順で積層された積層部により成形されている。ガスバリア層93aは、水バリア層93cよりも内側に配置され、有機樹脂により形成されている。この有機樹脂としては、例えば、エチレン-ビニルアルコール共重合体又はポリビニルアルコール重合体であってもよい。また、ガスバリア層93aは、有機樹脂及び鱗片状無機材により形成されてもよく、この鱗片状無機材としては、例えば、天然の粘土鉱物ベントナイトの主成分であるモンモリロナイト、イオン交換処理がなされたモンモリロナイト、合成シリカ等であってもよい。水バリア層93cは、ポリプロプレン等の樹脂により形成されている。接着層93bは、ガスバリア層93aと水バリア層93cとを接着する層であって、接着性ポリオレフィン(変成ポリオレフィン)等の樹脂により形成されている。 The first case 93 is formed of a laminated portion in which a gas barrier layer 93a, an adhesive layer 93b, and a water barrier layer 93c are laminated in this order. The gas barrier layer 93a is disposed on the inner side of the water barrier layer 93c, and is formed of an organic resin. The organic resin may be, for example, an ethylene-vinyl alcohol copolymer or a polyvinyl alcohol polymer. Further, the gas barrier layer 93a may be formed of an organic resin and a scale-like inorganic material, and examples of the scale-like inorganic material include montmorillonite which is a main component of natural clay mineral bentonite, and montmorillonite which has been subjected to ion exchange treatment. Or synthetic silica. The water barrier layer 93 c is formed of a resin such as polypropylene. The adhesive layer 93 b is a layer for adhering the gas barrier layer 93 a and the water barrier layer 93 c, and is formed of a resin such as adhesive polyolefin (modified polyolefin).
 ただし、積層部は、ガスバリア層93a、水バリア層93c及び接着層93bの三層のうちの二層(例えば、水バリア層93c及び接着層93b、ガスバリア層93a及び接着層93b)により構成されていてもよい。また、積層部は、ガスバリア層93a、水バリア層93c及び接着層93bの三層以外の層をさらに含んでいてもよい。 However, the laminated portion is composed of two layers among the three layers of the gas barrier layer 93a, the water barrier layer 93c and the adhesive layer 93b (for example, the water barrier layer 93c and the adhesive layer 93b, the gas barrier layer 93a and the adhesive layer 93b) May be The laminated portion may further include layers other than the three layers of the gas barrier layer 93a, the water barrier layer 93c, and the adhesive layer 93b.
 第1蓋94は、第1ケース93の両端の第2開口部97を覆うように、1つの第1ケース93に対して2つ設けられている。第1蓋94は、例えば、第1ケース93の端部が嵌められる、凹部を有している。この凹部に第1ケース93の端部が嵌められ、第1ケース93の端に設けられた第2開口部97が、第1蓋94により覆われる。これにより、第1ケース93及び第1蓋94により形成される内部空間が、密閉される。 Two first lids 94 are provided for one first case 93 so as to cover the second openings 97 at both ends of the first case 93. The first lid 94 has, for example, a recess in which the end of the first case 93 is fitted. The end of the first case 93 is fitted in the recess, and the second opening 97 provided at the end of the first case 93 is covered by the first lid 94. Thereby, the internal space formed by the first case 93 and the first cover 94 is sealed.
 第1蓋94は、第1ケース93と同様に、ガスバリア層93a、接着層93b及び水バリア層93cの積層部を含む部材により形成された成形品であってもよい。なお、第1蓋94は、熱可塑性樹脂のラミネートフィルムにより形成されていてもよい。この場合、ラミネートフィルムは、アルミニウム又はステンレス等の金属層を有していてもよい。また、金属層は、アルミニウム箔等の金属箔であってもよく、アルミニウム等がラミネートフィルム表面に蒸着されて形成されてもよい。 Similarly to the first case 93, the first lid 94 may be a molded product formed of a member including a laminated portion of the gas barrier layer 93a, the adhesive layer 93b, and the water barrier layer 93c. The first lid 94 may be formed of a laminate film of a thermoplastic resin. In this case, the laminate film may have a metal layer such as aluminum or stainless steel. The metal layer may be a metal foil such as an aluminum foil, or may be formed by vapor-depositing aluminum or the like on the surface of the laminate film.
 第2芯材95は、発泡成形により形成され、例えば、連続気泡ウレタンフォームで構成されていてもよい。連続気泡ウレタンフォームは、例えば、特許文献2に開示されている特徴を有するものであってもよい。この場合、第2芯材95は、第1ケース93の内面に沿った形状(第1ケース93の内部空間の形状)と同一の形状に、長尺に形成されている。また、第2芯材95としては、例えば、フェノールフォーム、ガラス繊維、ロックウール、アルミナ繊維、又はポリエチレンテレフタレート繊維等が用いられてもよい。 The second core material 95 is formed by foam molding, and may be made of, for example, an open-celled urethane foam. The open cell urethane foam may have, for example, the features disclosed in Patent Document 2. In this case, the second core member 95 is formed in the same shape as the shape along the inner surface of the first case 93 (the shape of the internal space of the first case 93), and is elongated. In addition, as the second core material 95, for example, phenol foam, glass fiber, rock wool, alumina fiber, or polyethylene terephthalate fiber may be used.
 このような第2真空断熱材90において、第1ケース93は押出成形により形成される。そして、第2芯材95及び第1吸着剤96が、第2開口部97から第1ケース93に挿入される。この第1ケース93の内部空間の圧力が所定の真空度にまで減圧されてから、第2開口部97が第1蓋94で覆われる。これにより、第1ケース93を任意の長さに形成することができる。従って、長さが異なる第2真空断熱材90ごとに、異なる金型等が用いられる必要がなく、製造コストの上昇を抑えることができる。 In such a second vacuum heat insulating material 90, the first case 93 is formed by extrusion. Then, the second core material 95 and the first adsorbent 96 are inserted into the first case 93 from the second opening 97. After the pressure in the internal space of the first case 93 is reduced to a predetermined degree of vacuum, the second opening 97 is covered with the first lid 94. Thereby, the first case 93 can be formed to an arbitrary length. Therefore, different molds and the like do not need to be used for each of the second vacuum heat insulating materials 90 having different lengths, and an increase in manufacturing cost can be suppressed.
  <第3真空断熱材>
 冷蔵庫10では、少なくとも1つの第3真空断熱材100を有する。
<Third vacuum insulation material>
The refrigerator 10 has at least one third vacuum heat insulating material 100.
 図5は、図3における、本体の右側の周縁部の周辺を拡大した断面図である。 FIG. 5 is an enlarged cross-sectional view of the periphery of the right side of the main body in FIG.
 本実施の形態では、図3、図5及び図6に示すように、2つの第3真空断熱材100が筐体50に設けられている。2つの第3真空断熱材100は、左右方向において互いの間に第1開口部22が挟まれる位置に配置されている。2つの第3真空断熱材100のうちの一方の第3真空断熱材100は、右面部54の前側端に配置され、他方の第3真空断熱材100は、左面部55の前側端に配置されている。以下、一方の第3真空断熱材100について説明する。なお、他方の第3真空断熱材100は、一方の第3真空断熱材100と同様であるため、その説明を省略する。 In the present embodiment, as shown in FIGS. 3, 5 and 6, two third vacuum heat insulating materials 100 are provided in the housing 50. The two third vacuum heat insulating materials 100 are disposed at positions where the first openings 22 are sandwiched between each other in the left-right direction. One third vacuum heat insulator 100 of the two third vacuum heat insulators 100 is disposed at the front end of the right side 54 and the other third vacuum insulator 100 is disposed at the front end of the left side 55 ing. Hereinafter, one third vacuum heat insulating material 100 will be described. In addition, since the other 3rd vacuum heat insulating material 100 is the same as that of the one 3rd vacuum heat insulating material 100, the description is abbreviate | omitted.
 図6に示すように、第3真空断熱材100は、長尺部材である。第3真空断熱材100は、第2真空断熱材90と平行に、上下方向に延設されている。第3真空断熱材100の上下方向の長さは、第1真空断熱材80及び第2真空断熱材90のそれぞれの上下方向の長さよりも長い。従って、第3真空断熱材100は、第1真空断熱材80及び第2真空断熱材90よりも、上方及び下方に突出している。これにより、本体20の上下方向における剛性が高められる。 As shown in FIG. 6, the third vacuum heat insulating material 100 is a long member. The third vacuum heat insulating material 100 extends in the vertical direction in parallel with the second vacuum heat insulating material 90. The length in the vertical direction of the third vacuum heat insulating material 100 is longer than the length in the vertical direction of each of the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90. Therefore, the third vacuum heat insulating material 100 protrudes upward and downward relative to the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90. Thereby, the rigidity in the vertical direction of the main body 20 is enhanced.
 第3真空断熱材100は、その延設された方向に対して直交する断面の形状がL字形状である。第3真空断熱材100は、2つの壁部(第3壁部101及び第4壁部102)を有している。第3壁部101及び第4壁部102は、それぞれ上下方向に延設された長尺の板形状であり、互いに交差(本実施の形態では、直交)している。第3壁部101及び第4壁部102は、一体的に形成されている。 The third vacuum heat insulating material 100 has an L-shaped cross section perpendicular to the direction in which the third vacuum heat insulating material 100 is extended. The 3rd vacuum heat insulating material 100 has two wall parts (the 3rd wall part 101 and the 4th wall part 102). The third wall portion 101 and the fourth wall portion 102 each have a long plate shape extending in the vertical direction, and cross each other (orthogonally in the present embodiment). The third wall 101 and the fourth wall 102 are integrally formed.
 第3真空断熱材100の第3壁部101は、上下方向及び前後方向に延設されている。第3壁部101は、右面側断熱材83と重ねられて配置されている。ここで、図5に示すように、第3壁部101のうちの右側面であって外箱60に対向する面(右側面)と、右面側断熱材83のうちの左側の面であって外箱60に対向する面(左側面)とは、接触している。また、この接触面上に接着部材86等が配置され、これにより第3壁部101は右面側断熱材83に固定されている。 The third wall portion 101 of the third vacuum heat insulating material 100 is extended in the vertical direction and the front-rear direction. The third wall portion 101 is disposed to overlap the right side heat insulating material 83. Here, as shown in FIG. 5, it is the right side surface of the third wall portion 101 that faces the outer case 60 (right side surface) and the left side surface of the right side heat insulating material 83 The surface (left side surface) opposite to the outer case 60 is in contact. In addition, an adhesive member 86 or the like is disposed on this contact surface, whereby the third wall portion 101 is fixed to the right side heat insulating material 83.
 第3真空断熱材100の第4壁部102は、上下方向及び左右方向に延設されている。第4壁部102は、右面側断熱材83と周縁部24との間に挟まれる位置に配置されている。ここで、図5に示すように、第4壁部102のうちの後側の面(後側面)と、右面側断熱材83のうちの前側の面であって周縁部24に対向する面(前側面(第2の面83c))とは接触している。また、この接触面上に接着部材86等が配置され、これにより第3壁部101は右面側断熱材83に固定されている。 The fourth wall portion 102 of the third vacuum heat insulating material 100 is extended in the vertical direction and the lateral direction. The fourth wall portion 102 is disposed at a position sandwiched between the right side heat insulating material 83 and the peripheral portion 24. Here, as shown in FIG. 5, the surface (rear surface) of the fourth wall 102 and the surface of the right side heat insulating material 83 that is the front surface facing the peripheral edge 24 ( It is in contact with the front side surface (second surface 83c). In addition, an adhesive member 86 or the like is disposed on this contact surface, whereby the third wall portion 101 is fixed to the right side heat insulating material 83.
 このように、第3真空断熱材100は、右面側断熱材83の前側端に接着されている。また、右面側断熱材83の後側端は第2真空断熱材90に接着されている。これにより、右面側断熱材83の動きが制限され、筐体50の剛性がさらに高められる。 Thus, the third vacuum heat insulating material 100 is bonded to the front end of the right side heat insulating material 83. Further, the rear end of the right side heat insulating material 83 is bonded to the second vacuum heat insulating material 90. Thereby, the movement of the right side heat insulating material 83 is limited, and the rigidity of the housing 50 is further enhanced.
 また、第3真空断熱材100は、第1開口部22の周囲を取り囲む、筐体50の周縁部24に接して設けられている。従って、第3真空断熱材100により周縁部24が補強され、筐体50の剛性が高められる。さらに、第3真空断熱材100が、右面側断熱材83に重ねられて配置されていることにより、断熱空間57において、一体的に固定された断熱材の厚みが増加される。従って、周縁部24における断熱性が高められる。 Further, the third vacuum heat insulating material 100 is provided in contact with the peripheral portion 24 of the housing 50 surrounding the periphery of the first opening 22. Therefore, the peripheral portion 24 is reinforced by the third vacuum heat insulating material 100, and the rigidity of the housing 50 is enhanced. Furthermore, the thickness of the heat insulating material integrally fixed in the heat insulating space 57 is increased by overlapping and arranging the third vacuum heat insulating material 100 on the right side heat insulating material 83. Accordingly, the heat insulation at the peripheral portion 24 is enhanced.
 第3真空断熱材100は、ケース(第2ケース103)、蓋(第2蓋、図示せず)、芯材(第3芯材105)及び吸着剤(第2吸着剤、図示せず)を備えている。第2ケース103は第1ケース93と同様であり、第2蓋は第1蓋94と同様であり、第3芯材105は第2芯材95と同様であり、第2吸着剤は第1吸着剤96と同様である。従って、これらの説明は省略する。 The third vacuum heat insulating material 100 includes a case (second case 103), a lid (second lid, not shown), a core (third core 105) and an adsorbent (second adsorbent, not shown). Have. The second case 103 is similar to the first case 93, the second lid is similar to the first lid 94, the third core 105 is similar to the second core 95, and the second adsorbent is the first. It is the same as the adsorbent 96. Therefore, these explanations are omitted.
  <発泡断熱材>
 図1~図5に示すように、発泡断熱材110は、第1真空断熱材、第2真空断熱材及び第3真空断熱材のそれぞれと、筐体50との間の断熱空間57に配置されている。本実施の形態では、発泡断熱材110が、断熱空間57に充填されている。発泡断熱材110には、例えば、硬質ポリウレタンフォームが用いられる。この硬質ポリウレタンフォームは、ポリオール成分、イソシアネート成分及び発泡剤等の原液が、筐体50内に注入され、筐体50の断熱空間57において原液が発泡しながら反応することにより得られる。
<Foam insulation>
As shown in FIGS. 1 to 5, the foamed heat insulating material 110 is disposed in the heat insulating space 57 between the first vacuum heat insulating material, the second vacuum heat insulating material, and the third vacuum heat insulating material, and the housing 50. ing. In the present embodiment, the foam insulation material 110 is filled in the heat insulation space 57. For example, a rigid polyurethane foam is used for the foam insulation 110. The rigid polyurethane foam is obtained by injecting a stock solution such as a polyol component, an isocyanate component, and a foaming agent into the housing 50 and reacting while the stock solution is foamed in the heat insulation space 57 of the housing 50.
 図10は、本実施の形態1に係る冷蔵庫を後側から視た斜視図である。図11は、同本実施の形態1に係る冷蔵庫を後側から視た図である。 FIG. 10 is a perspective view of the refrigerator according to the first embodiment as viewed from the rear side. FIG. 11 is a view of the refrigerator according to the first embodiment viewed from the rear side.
 図2、図10及び図11に示すように、筐体50の背面部53の後面(つまり、背面部53の外箱60)に、原液が注入されるための注入口61が配置されている。注入口61は、背面部53に配置されている第1真空断熱材80及び第2真空断熱材90よりも、上側又は下側に配置されている。なお、原液が筐体50の断熱空間57に注入されるのに対して、断熱空間57の空気が排出される排出口(図示せず)が筐体50に設けられていてもよい。 As shown in FIG. 2, FIG. 10 and FIG. 11, the inlet 61 for the stock solution to be injected is disposed on the back surface of the back surface 53 of the case 50 (that is, the outer box 60 of the back surface 53). . The inlet 61 is disposed above or below the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 disposed in the back surface portion 53. In addition, while the undiluted | stock solution is inject | poured into the heat insulation space 57 of the housing | casing 50, the discharge port (not shown) in which the air of the heat insulation space 57 is discharged | emitted may be provided in the housing | casing 50.
 注入口61は、冷蔵庫10を後側から視た場合において、第1真空断熱材80及び第2真空断熱材90の上端と背面部53の上端との間、又は、第1真空断熱材80及び第2真空断熱材90の下端と背面部53の下端との間に配置されている。これにより、注入口61は、第1真空断熱材80及び第2真空断熱材90と、上下方向において重ならない。従って、注入口61は、第1真空断熱材80及び第2真空断熱材90により塞がれず、背面部53における断熱空間57に連通されている。そして、背面部53の断熱空間57が筐体50の全ての断熱空間57と連通されて構成されることにより、注入口61は、筐体50の断熱空間57と連通される。 The inlet 61 is located between the upper end of the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 and the upper end of the back portion 53 or the first vacuum heat insulating material 80 when the refrigerator 10 is viewed from the rear side. It is disposed between the lower end of the second vacuum heat insulating material 90 and the lower end of the back surface portion 53. Thus, the inlet 61 does not overlap the first vacuum heat insulator 80 and the second vacuum heat insulator 90 in the vertical direction. Therefore, the injection port 61 is not blocked by the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90, and is communicated with the heat insulating space 57 in the back surface portion 53. Then, the heat insulating space 57 of the back surface portion 53 is in communication with all the heat insulating spaces 57 of the housing 50, whereby the injection port 61 is in communication with the heat insulating space 57 of the housing 50.
 筐体50には、注入口61が少なくとも1つ設けられる。少なくとも1つの注入口61は、複数(例えば、本実施の形態では、4つ)の注入口61であってもよい。4つの注入口61は、断熱空間57を介して互いに連通されるように、筐体50の背面側の、右上、左上、右下及び左下に配置されている。第1真空断熱材80及び第2真空断熱材90は、上下方向に並ぶ、右上の注入口61と右下の注入口61とによって挟まれる位置に配置されている。また、第1真空断熱材80及び第2真空断熱材90は、上下方向に並ぶ、左上の注入口61と左下の注入口61との間に挟まれる位置に配置されている。これにより、複数の注入口61は、互いに間隔を空けた状態で筐体50に配置される。 The housing 50 is provided with at least one inlet 61. The at least one inlet 61 may be a plurality of (for example, four in the present embodiment) inlets 61. The four inlets 61 are disposed at the upper right, the upper left, the lower right, and the lower left on the back side of the housing 50 so as to be in communication with each other through the heat insulating space 57. The first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 are arranged at positions sandwiched by the upper right inlet 61 and the lower right inlet 61 arranged in the vertical direction. Further, the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 are arranged in the vertical direction, and are disposed at positions sandwiched between the upper left inlet 61 and the lower left inlet 61. As a result, the plurality of injection ports 61 are arranged in the housing 50 in a state of being spaced apart from one another.
 次に、発泡断熱材110の充填について、説明する。 Next, the filling of the foamed heat insulating material 110 will be described.
 まず、外箱60の内面に対して、第1真空断熱材80が、接着部材86により固定される。第1真空断熱材80に対して、第2真空断熱材90及び第3真空断熱材100が、接着部材86により固定される。この外箱60に、内箱70が組み合わされて、筐体50が形成される。また、筐体50が所定の温度に加熱される。それから、筐体50の周縁部24が下向きに、背面部53が上向きになるように配置される。そして、背面部53の注入口61から断熱空間57に、発泡断熱材110の原液が注入される。 First, the first vacuum heat insulating material 80 is fixed to the inner surface of the outer case 60 by the bonding member 86. The second vacuum heat insulator 90 and the third vacuum heat insulator 100 are fixed to the first vacuum heat insulator 80 by the bonding member 86. An inner case 70 is combined with the outer case 60 to form a case 50. In addition, the housing 50 is heated to a predetermined temperature. Then, the peripheral portion 24 of the housing 50 is disposed downward, and the rear portion 53 is disposed upward. And the undiluted | stock solution of the foaming heat insulating material 110 is inject | poured into the heat insulation space 57 from the injection port 61 of the back surface part 53. As shown in FIG.
 4つの注入口61から同時に原液が注入されると、原液の各成分が互いに衝突しながら化学反応する。また、原液は、発泡圧力により加圧されて、筐体50内の断熱空間57に広げられる。これにより、発泡断熱材110が筐体50内に、より均一に充填される。 When the stock solution is injected simultaneously from the four inlets 61, the components of the stock solution react with each other while colliding with each other. In addition, the undiluted solution is pressurized by the bubbling pressure and spreads to the heat insulating space 57 in the housing 50. Thereby, the foam heat insulating material 110 is more uniformly filled in the housing 50.
 ここで、右上の注入口61は、背面側断熱材81の右端の上側に配置され、右下の注入口61は、背面側断熱材81の右端の下側に配置されている。このため、背面側断熱材81よりも右側における、第2真空断熱材90と外箱60との間の断熱空間57(角部56における断熱空間57)が狭い場合であっても、発泡断熱材110が、この断熱空間57に適切に充填される。なお、左上及び左下の注入口61も、右上及び右下の注入口61と同様であるため、その説明を省略する。 Here, the injection port 61 at the upper right is disposed on the upper side of the right end of the back side heat insulating material 81, and the injection port 61 at the lower right is disposed below the right end of the back side heat insulating material 81. Therefore, even if the heat insulating space 57 (the heat insulating space 57 at the corner portion 56) between the second vacuum heat insulating material 90 and the outer case 60 on the right side of the back side heat insulating material 81 is narrow, the foam heat insulating material The 110 is properly filled in the adiabatic space 57. In addition, since the upper left and lower left inlets 61 are also similar to the upper right and lower right inlets 61, the description thereof is omitted.
 また、第2真空断熱材90に対向する内箱70の角部分は、前述のように、滑らかに湾曲している。そして、内箱70は、この角部分から、背面部53及び右面部54へ延設されている。これにより、第2真空断熱材90よりも、上側及び下側から注入された原液は、第2真空断熱材90と内箱70との間の断熱空間57を通り、内箱70に沿って、背面部53及び右面部54の断熱空間57にスムーズに流れて充填される。 Also, the corner portion of the inner box 70 facing the second vacuum heat insulating material 90 is smoothly curved as described above. The inner box 70 is extended from the corner to the back surface 53 and the right surface 54. Thereby, the undiluted solution injected from the upper side and the lower side of the second vacuum heat insulating material 90 passes through the heat insulating space 57 between the second vacuum heat insulating material 90 and the inner case 70 and along the inner case 70, The heat insulating space 57 of the back surface portion 53 and the right surface portion 54 smoothly flows and is filled.
 筐体50の角部56では、発泡断熱材110、第2真空断熱材90及び発泡断熱材110が、外箱60と内箱70との間において、この順で重ねられて配置されている。これにより、筐体50の角部56における断熱性能が高められる。また、筐体50が補強されることになり、本体20の剛性が向上される。 At the corner portion 56 of the housing 50, the foamed heat insulating material 110, the second vacuum heat insulating material 90, and the foamed heat insulating material 110 are arranged in this order between the outer case 60 and the inner case 70 in an overlapping manner. Thereby, the heat insulation performance in the corner 56 of the housing 50 is enhanced. In addition, the housing 50 is reinforced, and the rigidity of the main body 20 is improved.
 (実施の形態2)
 実施の形態2に係る冷蔵庫10では、第2真空断熱材90aの寸法、及び、注入口61aの位置が、実施の形態1に係る冷蔵庫10の、第2真空断熱材90及び注入口61と異なる。これ以外の実施の形態2に係る構成、並びにその作用及び効果は、実施の形態1と同様であるため、その説明は省略する。
Second Embodiment
In the refrigerator 10 according to the second embodiment, the dimension of the second vacuum heat insulating material 90 a and the position of the inlet 61 a are different from those of the second vacuum heat insulating material 90 and the inlet 61 of the refrigerator 10 according to the first embodiment. . The other configuration according to the second embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
 図12は、本開示の実施の形態2に係る冷蔵庫を後側から視た図である。図13は、同実施の形態2に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。 FIG. 12 is a rear view of the refrigerator according to the second embodiment of the present disclosure. FIG. 13 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the second embodiment.
 第2真空断熱材90aの上下方向の長さは、第3真空断熱材100の上下方向の長さと同じ又はほぼ同じであって、第1真空断熱材80の上下方向の長さよりも長い。この第2真空断熱材90aの上端の位置は、第3真空断熱材100の上端の位置と等しい又はほぼ等しく、第1真空断熱材80の上端の位置よりも上方にある。また、第2真空断熱材90aの下端の位置は、第3真空断熱材100の下端の位置と等しい又はほぼ等しく、第1真空断熱材80の下端の位置よりも下方に配置されている。このため、第2真空断熱材90aは、第3真空断熱材100と共に、上下方向において本体20の筐体50を補強する構造となり、本体20の剛性が高められる。 The length in the vertical direction of the second vacuum heat insulating material 90 a is the same as or substantially the same as the length in the vertical direction of the third vacuum heat insulating material 100, and is longer than the length in the vertical direction of the first vacuum heat insulating material 80. The position of the upper end of the second vacuum heat insulating material 90 a is equal to or substantially the same as the position of the upper end of the third vacuum heat insulating material 100, and is above the position of the upper end of the first vacuum heat insulating material 80. Further, the position of the lower end of the second vacuum heat insulating material 90 a is equal to or substantially the same as the position of the lower end of the third vacuum heat insulating material 100, and is disposed below the position of the lower end of the first vacuum heat insulating material 80. Therefore, the second vacuum heat insulating material 90a, together with the third vacuum heat insulating material 100, reinforces the casing 50 of the main body 20 in the vertical direction, and the rigidity of the main body 20 is enhanced.
 本実施の形態では、図12に示すように、注入口61aは、2つの第2真空断熱材90aの間であって、第1真空断熱材80の上端と背面部53の上端との間、又は、第1真空断熱材80の下端と背面部53の下端との間に配置されている。 In the present embodiment, as shown in FIG. 12, the injection port 61a is between the two second vacuum heat insulating materials 90a, and between the upper end of the first vacuum heat insulating material 80 and the upper end of the back portion 53, Alternatively, it is disposed between the lower end of the first vacuum heat insulating material 80 and the lower end of the back surface portion 53.
 筐体50には、注入口61aが少なくとも1つ設けられる。少なくとも1つの注入口61aは、複数(例えば、本実施の形態では、4つ)の注入口61aであってもよい。第1真空断熱材80は、上下方向に並ぶ、右上の注入口61aと右下の注入口61aとの間、及び、左上の注入口61aと左下の注入口61aとの間に挟まれる位置に配置されている。また、4つの注入口61aは、左右方向において、2つの第2真空断熱材90aの間に挟まれる位置に配置されている。 The housing 50 is provided with at least one inlet 61a. The at least one inlet 61a may be a plurality of (for example, four in the present embodiment) inlets 61a. The first vacuum heat insulating material 80 is positioned between the upper right inlet 61a and the lower right inlet 61a and the upper left inlet 61a and the lower left inlet 61a in the vertical direction. It is arranged. Further, the four inlets 61a are disposed at positions sandwiched between the two second vacuum heat insulating materials 90a in the left-right direction.
 これにより、注入口61aは、第1真空断熱材80及び第2真空断熱材90aにより塞がれず、筐体50の断熱空間57と連通されている。また、4つの注入口61aは、互いに間隔を空けた状態で筐体50に配置される。よって、注入口61aから注入された発泡断熱材110の原液は、断熱空間57に流入され、発泡断熱材110が断熱空間57に均一に充填される。 Thus, the inlet 61 a is not blocked by the first vacuum heat insulating material 80 and the second vacuum heat insulating material 90 a, and is in communication with the heat insulating space 57 of the housing 50. Further, the four inlets 61 a are disposed in the housing 50 in a state where they are spaced from each other. Therefore, the undiluted | stock solution of the foaming heat insulating material 110 inject | poured from the injection port 61a flows in into the heat insulation space 57, and the foam heat insulation material 110 is uniformly filled in the heat insulation space 57. FIG.
 本実施の形態に係る冷蔵庫10においても、第2真空断熱材90aを有することにより、筐体50の角部56における断熱性能の低下が低減される。 Also in the refrigerator 10 according to the present embodiment, the decrease in the heat insulation performance at the corner portion 56 of the housing 50 is reduced by having the second vacuum heat insulating material 90 a.
 (実施の形態3)
 実施の形態3に係る冷蔵庫10では、第1真空断熱材80a及び第3真空断熱材100aの寸法、並びに、注入口61bの位置が、実施の形態1に係る冷蔵庫10の、第1真空断熱材80、第3真空断熱材100及び注入口61とそれぞれと異なる。これ以外の実施の形態3に係る構成、並びにその作用及び効果は、実施の形態1と同様であるため、その説明は省略する。
Third Embodiment
In the refrigerator 10 according to the third embodiment, the dimensions of the first vacuum heat insulating material 80a and the third vacuum heat insulating material 100a and the position of the inlet 61b are the first vacuum heat insulating material of the refrigerator 10 according to the first embodiment. 80, the third vacuum heat insulating material 100 and the inlet 61 are different from each other. The other configuration according to the third embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
 図14は、本開示の実施の形態3に係る冷蔵庫を後側から視た図である。図15は、同実施の形態3に係る冷蔵庫の、第1真空断熱材、第2真空断熱材及び第3真空断熱材を概略的に示す斜視図である。 FIG. 14 is a rear view of the refrigerator according to the third embodiment of the present disclosure. FIG. 15 is a perspective view schematically showing a first vacuum heat insulating material, a second vacuum heat insulating material, and a third vacuum heat insulating material of the refrigerator according to the third embodiment.
 第2真空断熱材90及び第3真空断熱材100aの上下方向の長さは、第1真空断熱材80aの上下方向の長さよりも短い。第2真空断熱材90及び第3真空断熱材100aの上端の位置はそれぞれ、第1真空断熱材80aの上端の位置よりも下側にある。また、第2真空断熱材90及び第3真空断熱材100aの下端の位置はそれぞれ、第1真空断熱材80aの下端の位置よりも上側にある。また、第2真空断熱材90の上下方向の長さは、第3真空断熱材100aの長さと同じ又はほぼ同じである。この場合も、第2真空断熱材90が、第3真空断熱材100aと共に、第1真空断熱材80aに固定されていることにより、第1真空断熱材80aの動きが制限されるため、本体20の剛性が高められる。 The lengths in the vertical direction of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are shorter than the lengths in the vertical direction of the first vacuum heat insulator 80a. The positions of the upper ends of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are respectively below the position of the upper end of the first vacuum heat insulator 80a. Further, the positions of the lower ends of the second vacuum heat insulator 90 and the third vacuum heat insulator 100a are respectively above the position of the lower end of the first vacuum heat insulator 80a. In addition, the length in the vertical direction of the second vacuum heat insulating material 90 is the same as or substantially the same as the length of the third vacuum heat insulating material 100a. Also in this case, since the second vacuum heat insulating material 90 is fixed to the first vacuum heat insulating material 80a together with the third vacuum heat insulating material 100a, the movement of the first vacuum heat insulating material 80a is restricted. The rigidity of the
 本実施の形態では、図14に示すように、注入口61bは、第1真空断熱材80aよりも両端側であって、第2真空断熱材90の上端と背面部53の上端との間、又は、第2真空断熱材90の下端と背面部53の下端との間に配置されている。 In the present embodiment, as shown in FIG. 14, the inlets 61 b are on both ends with respect to the first vacuum heat insulating material 80 a, and between the upper end of the second vacuum heat insulating material 90 and the upper end of the back portion 53, Alternatively, it is disposed between the lower end of the second vacuum heat insulating material 90 and the lower end of the back surface portion 53.
 筐体50には、注入口61bが少なくとも1つ設けられる。少なくとも1つの注入口61bは、複数(例えば、本実施の形態では、4つ)の注入口61bであってもよい。第2真空断熱材90は、上下方向に並ぶ、右上の注入口61bと右下の注入口61bとの間、及び、左上の注入口61bと左下の注入口61bとの間に挟まれる位置に配置されている。また、第1真空断熱材80aは、左右方向に並ぶ右上の注入口61bと左上の注入口61bとの間、及び、左右方向に並ぶ、右下の注入口61bと左下の注入口61bとの間に挟まれる位置に配置されている。 The housing 50 is provided with at least one inlet 61 b. The at least one inlet 61 b may be a plurality of (for example, four in the present embodiment) inlets 61 b. The second vacuum heat insulating material 90 is disposed at a position between the upper right inlet 61 b and the lower right inlet 61 b and between the upper left inlet 61 b and the lower left inlet 61 b arranged in the vertical direction. It is arranged. Further, the first vacuum heat insulating material 80a is disposed between the upper right inlet 61b and the upper left inlet 61b aligned in the left-right direction, and the lower right inlet 61b and the lower left inlet 61b aligned in the left-right direction. It is disposed at a position to be sandwiched between.
 これにより、注入口61bは、第1真空断熱材80a及び第2真空断熱材90により塞がれず、筐体50の断熱空間57と連通されている。また、4つの注入口61bは、互いに間隔を空けた状態で筐体50に配置される。従って、注入口61bから注入された発泡断熱材110の原液は、断熱空間57に流入され、発泡断熱材110が断熱空間57に、より均一に充填される。 Thus, the inlet 61 b is not blocked by the first vacuum heat insulating material 80 a and the second vacuum heat insulating material 90, and is in communication with the heat insulating space 57 of the housing 50. Further, the four inlets 61 b are disposed in the housing 50 in a state of being spaced apart from one another. Therefore, the undiluted solution of the foamed heat insulating material 110 injected from the injection port 61 b flows into the heat insulating space 57, and the foamed heat insulating material 110 is more uniformly filled in the heat insulating space 57.
 また、本実施の形態のように、筐体50の外箱60において、第1真空断熱材80a及び第2真空断熱材90に対応する位置、すなわち、第1真空断熱材80aの側方、且つ、第2真空断熱材90の上方又は下方に、注入口61bが設けられることにより、筐体50の上下方向における寸法内において、第1真空断熱材80aの寸法を大きくすることができる。よって、本体20の断熱性能が向上される。 Further, as in the present embodiment, in the outer case 60 of the housing 50, positions corresponding to the first vacuum heat insulating material 80a and the second vacuum heat insulating material 90, that is, the sides of the first vacuum heat insulating material 80a, and By providing the inlet 61b above or below the second vacuum heat insulating material 90, the dimension of the first vacuum heat insulating material 80a can be increased within the dimension in the vertical direction of the housing 50. Therefore, the heat insulation performance of the main body 20 is improved.
 本実施の形態に係る冷蔵庫10においても、第2真空断熱材90を有することにより、筐体50の角部56における断熱性能の低下が低減される。 Also in the refrigerator 10 according to the present embodiment, the decrease in the heat insulation performance at the corner portion 56 of the housing 50 is reduced by having the second vacuum heat insulator 90.
 (変形例)
 図16は、本開示の変形例における、第1真空断熱材、第2真空断熱材、第3真空断熱材及び第4真空断熱材を概略的に示す斜視図である。
(Modification)
FIG. 16 is a perspective view schematically showing a first vacuum heat insulator, a second vacuum heat insulator, a third vacuum heat insulator, and a fourth vacuum heat insulator in a modification of the present disclosure.
 図2及び図16に示すように、実施の形態3の変形例に係る冷蔵庫10は、第4真空断熱材120をさらに備えている。第4真空断熱材120は、背面部53の断熱空間57に設けられ、第2真空断熱材90に対して直交する左右方向に延設されている。第4真空断熱材120は、ケース(第3ケース)、蓋(第3蓋)、芯材(第4芯材)及び吸着剤(第3吸着剤)を備えている。第3ケースは第1ケース93と同様であり、第3蓋は第1蓋94と同様であり、第4芯材は第2芯材95と同様であり、第3吸着剤は第1吸着剤96と同様である。このため、これらの説明は省略する。 As shown in FIGS. 2 and 16, the refrigerator 10 according to the modification of the third embodiment further includes a fourth vacuum heat insulating material 120. The fourth vacuum heat insulating material 120 is provided in the heat insulating space 57 of the back surface portion 53, and extends in the left-right direction orthogonal to the second vacuum heat insulating material 90. The fourth vacuum heat insulating material 120 includes a case (third case), a lid (third lid), a core material (fourth core material), and an adsorbent (third adsorbent). The third case is similar to the first case 93, the third lid is similar to the first lid 94, the fourth core is similar to the second core 95, and the third adsorbent is the first adsorbent. Similar to 96. Therefore, the description thereof is omitted.
 第4真空断熱材120は、長尺部材であって、延設された方向に直交する断面の形状はL字形状である。第4真空断熱材120は、2つの壁部(第5壁部121及び第6壁部122)を有している。第5壁部121及び第6壁部122は、それぞれ左右方向に延設された長尺の板形状であって、互いに交差(この実施の形態では、直交)している。本実施の形態では、第5壁部121及び第6壁部122は、一体的に形成されている。 The fourth vacuum heat insulating material 120 is a long member, and the shape of the cross section orthogonal to the extending direction is an L-shape. The fourth vacuum heat insulating material 120 has two wall portions (fifth wall portion 121 and sixth wall portion 122). The fifth wall portion 121 and the sixth wall portion 122 each have a long plate shape extended in the left-right direction, and cross each other (in this embodiment, at right angles). In the present embodiment, the fifth wall 121 and the sixth wall 122 are integrally formed.
 本実施の形態では、冷蔵庫10は、2つの第4真空断熱材120を有している。このうちの一方の第4真空断熱材120は、第1真空断熱材80aよりも上側に配置され、他方の第4真空断熱材120は、第1真空断熱材80aよりも下側に配置されている。 In the present embodiment, the refrigerator 10 has two fourth vacuum heat insulating materials 120. One of the fourth vacuum heat insulators 120 is disposed above the first vacuum heat insulator 80a, and the other fourth vacuum heat insulator 120 is disposed below the first vacuum heat insulator 80a. There is.
 上側の第4真空断熱材120は、例えば、本体20の後方上側の角に設けられた窪み(上側機械室25(図2参照))に沿って配置される。第4真空断熱材120の第5壁部121は、上側機械室25を画定する外箱60の後面に接着されている。また、第6壁部122は、上側機械室25を画定する外箱60の上面に接着されている。これにより、筐体50の上部が上側の第4真空断熱材120により補強されることになり、本体20の剛性が高められる。 The upper fourth vacuum heat insulating material 120 is disposed, for example, along a recess (upper mechanical chamber 25 (see FIG. 2)) provided at the rear upper corner of the main body 20. The fifth wall 121 of the fourth vacuum heat insulating material 120 is bonded to the rear surface of the outer case 60 defining the upper mechanical chamber 25. Further, the sixth wall portion 122 is adhered to the upper surface of the outer case 60 which defines the upper mechanical chamber 25. Thereby, the upper part of the housing 50 is reinforced by the upper fourth vacuum heat insulating material 120, and the rigidity of the main body 20 is enhanced.
 下側の第4真空断熱材120は、例えば、本体20の下側角に設けられた窪み(下側機械室26(図2参照))に沿って配置される。第4真空断熱材120の第5壁部121は、下側機械室26よりも上側において外箱60の後面に接着されている。また、第6壁部122は、下側機械室26を画定する外箱60の下面に接着されている。これにより、筐体50の下部が下側の第4真空断熱材120により補強されることになり、本体20の剛性がさらに高められる。 The lower fourth vacuum heat insulating material 120 is disposed, for example, along a recess (lower mechanical chamber 26 (see FIG. 2)) provided at the lower corner of the main body 20. The fifth wall 121 of the fourth vacuum heat insulating material 120 is bonded to the rear surface of the outer case 60 above the lower machine room 26. Further, the sixth wall portion 122 is bonded to the lower surface of the outer case 60 which defines the lower mechanical chamber 26. Thereby, the lower part of the housing 50 is reinforced by the lower fourth vacuum heat insulating material 120, and the rigidity of the main body 20 is further enhanced.
 このように、本体20(図1)には、互いに直交する、第2真空断熱材90及び第4真空断熱材120が設けられている。これによって、扉30(図1)の不平衡による扉30の降下、及び、本体20の不平衡による扉30の摺動性の低下が抑制される。 Thus, the second vacuum heat insulating material 90 and the fourth vacuum heat insulating material 120 are provided in the main body 20 (FIG. 1) orthogonal to each other. This suppresses the lowering of the door 30 due to the unbalance of the door 30 (FIG. 1) and the reduction of the slidability of the door 30 due to the unbalance of the main body 20.
 なお、この変形例に係る第4真空断熱材120は、実施の形態1及び実施の形態2に係る冷蔵庫10に設けられていてもよい。この場合も、冷蔵庫10における本体20の剛性が高められる。 In addition, the 4th vacuum heat insulating material 120 which concerns on this modification may be provided in the refrigerator 10 which concerns on Embodiment 1 and Embodiment 2. FIG. Also in this case, the rigidity of the main body 20 in the refrigerator 10 is enhanced.
 (実施の形態4)
 実施の形態4に係る冷蔵庫10では、第2真空断熱材90bの形状が、実施の形態1に係る冷蔵庫10の第2真空断熱材90の形状と異なる。これ以外の実施の形態4に係る構成、並びにその作用及び効果は実施の形態1と同様であるため、その説明は省略する。
Embodiment 4
In the refrigerator 10 according to the fourth embodiment, the shape of the second vacuum heat insulating material 90 b is different from the shape of the second vacuum heat insulating material 90 of the refrigerator 10 according to the first embodiment. The other configuration according to the fourth embodiment and the operation and effects thereof are the same as those of the first embodiment, and thus the description thereof is omitted.
 図17は、本開示の実施の形態4に係る冷蔵庫について、図2のXVII-XVII線で切断した断面図である。図18は、図17における、本体の右側の角部を拡大した断面図である。 FIG. 17 is a cross-sectional view of the refrigerator according to the fourth embodiment of the present disclosure, taken along line XVII-XVII in FIG. FIG. 18 is an enlarged cross-sectional view of the corner on the right side of the main body in FIG.
 図17及び図18に示すように、第2真空断熱材90bは、凸状部98を有する。第2真空断熱材90bの、第1壁部91及び第2壁部92、並びに凸状部98は、一体的に形成されている。凸状部98は、例えば、直方体形状であって、筐体50の角部56において上下方向に延設されている。 As shown in FIGS. 17 and 18, the second vacuum heat insulating material 90 b has a convex portion 98. The first wall portion 91 and the second wall portion 92 and the convex portion 98 of the second vacuum heat insulating material 90 b are integrally formed. The convex portion 98 has, for example, a rectangular parallelepiped shape, and is extended in the vertical direction at the corner portion 56 of the housing 50.
 第2真空断熱材90bの凸状部98は、外箱60に向けて突出され、互いに交差(本実施の形態では、直交)して配置されている2つの第1真空断熱材80の間に配置されている。右側の角部56に配置された第2真空断熱材90bにおいては、凸状部98は、背面部53の外箱60の内面、及び、右面部54の外箱60の内面、並びに、背面側断熱材81の右面、及び、右面側断熱材83の後面にそれぞれ接する。凸状部98は、接着部材86等により、これらの各接触面において接着されている。これにより、右側の角部56の断熱空間57が凸状部98で充填され、角部56における本体20の、剛性及び断熱性能が向上される。なお、左側の角部56に配置された第2真空断熱材90bは、右側の角部56に配置された第2真空断熱材90bと同様であるため、その説明は省略する。 The convex portion 98 of the second vacuum heat insulating material 90 b is projected toward the outer case 60 and is disposed between the two first vacuum heat insulating materials 80 which are disposed to intersect with each other (in the present embodiment, orthogonally). It is arranged. In the second vacuum heat insulating material 90b disposed at the corner 56 on the right side, the convex portion 98 is the inner surface of the outer case 60 of the back surface portion 53, the inner surface of the outer case 60 of the right surface portion 54, and the rear surface side. The right side of the heat insulator 81 and the rear side of the right side heat insulator 83 are in contact with each other. The convex portion 98 is bonded at each of these contact surfaces by a bonding member 86 or the like. Thereby, the heat insulation space 57 of the corner part 56 on the right side is filled with the convex part 98, and the rigidity and the heat insulation performance of the main body 20 at the corner part 56 are improved. The second vacuum heat insulating material 90b disposed in the left corner 56 is the same as the second vacuum heat insulating material 90b disposed in the right corner 56, and thus the description thereof will be omitted.
 なお、本実施の形態に係る冷蔵庫10においても、図16に示す第4真空断熱材120が設けられていてもよい。この場合も、冷蔵庫10における本体20の剛性が高められる。 In addition, also in the refrigerator 10 which concerns on this Embodiment, the 4th vacuum heat insulating material 120 shown in FIG. 16 may be provided. Also in this case, the rigidity of the main body 20 in the refrigerator 10 is enhanced.
 (その他の実施の形態)
 上記全実施の形態では、第2真空断熱材90,90a,90bは、延設された方向に直交する断面の形状がL字形状であったが、この形状に限定されない。
(Other embodiments)
In the above embodiments, the second vacuum heat insulators 90, 90a, 90b are L-shaped in cross section perpendicular to the extending direction, but the present invention is not limited to this shape.
 図19Aは、本開示のその他の実施の形態に係る第2真空断熱材の一例を示す断面図である。図19Bは、同その他の実施の形態に係る第2真空断熱材の他の一例を示す断面図である。 FIG. 19A is a cross-sectional view showing an example of a second vacuum heat insulating material according to another embodiment of the present disclosure. FIG. 19B is a cross-sectional view showing another example of the second vacuum heat insulating material according to the other embodiment.
 図19Aに示すように、第2真空断熱材90cは、例えば、延設された方向に直交する断面の形状が三角形であってもよい。また、図19Bに示すように、第2真空断熱材90dは、延設された方向に直交する断面の形状が四角形であってもよい。 As shown in FIG. 19A, for example, the shape of the cross section orthogonal to the extending direction of the second vacuum heat insulating material 90c may be a triangle. In addition, as shown in FIG. 19B, the second vacuum heat insulating material 90d may have a rectangular cross section orthogonal to the extending direction.
 また、同様に、上記全実施の形態では、第3真空断熱材100及び第4真空断熱材120は、延設された方向に直交する断面の形状がL字形状であったが、この形状に限定されない。 Similarly, in all the above embodiments, the third vacuum heat insulating material 100 and the fourth vacuum heat insulating material 120 have an L-shaped cross section perpendicular to the direction in which the third vacuum heat insulating material 100 and the fourth vacuum heat insulating material 120 extend. It is not limited.
 上記全実施の形態では、本体20には、第3真空断熱材100,又は100aが備えられていたが、これらが備えられていなくてもよい。 In the above embodiments, the main body 20 is provided with the third vacuum heat insulating material 100 or 100a, but they may not be provided.
 また、上記全実施の形態では、上下方向に延設された2つの第3真空断熱材100が、左右方向において互いの間に第1開口部22が挟まれる位置に設けられている。これに対して、左右方向に延設された2つの第3真空断熱材100が、上下方向における互いの間に第1開口部22が挟まれる位置に設けられていてもよい。 Further, in all the embodiments described above, two third vacuum heat insulating materials 100 extended in the vertical direction are provided at positions where the first opening 22 is sandwiched between them in the horizontal direction. On the other hand, two third vacuum heat insulating materials 100 extending in the left-right direction may be provided at positions where the first opening 22 is sandwiched between them in the vertical direction.
 実施の形態1及び実施の形態2では、第3真空断熱材100の上下方向における長さが、第1真空断熱材80の上下方向における長さよりも長いが、第1真空断熱材80の上下方向における長さと同じ又は短くてもよい。実施の形態3及びその変形例では、第3真空断熱材100aの上下方向における長さが、第1真空断熱材80aの上下方向における長さよりも短いが、第1真空断熱材80aの上下方向における長さと同じ又は長くてもよい。 In the first embodiment and the second embodiment, although the length in the vertical direction of the third vacuum heat insulating material 100 is longer than the length in the vertical direction of the first vacuum heat insulating material 80, the vertical direction of the first vacuum heat insulating material 80 It may be the same as or shorter than the length in In the third embodiment and its modification, the length in the vertical direction of the third vacuum heat insulating material 100a is shorter than the length in the vertical direction of the first vacuum heat insulating material 80a, but in the vertical direction of the first vacuum heat insulating material 80a. It may be the same as or longer than the length.
 上記全実施の形態では、第1真空断熱材80,80aは、被覆材としてフィルムが用いられた真空断熱材で形成されているが、成形されたケースが用いられた真空断熱材等の、他の真空断熱材により形成されていてもよい。また、第2真空断熱材90,90a,90b,90c,90d、及び、第3真空断熱材100,100a、並びに、第4真空断熱材120は、成形されたケースが用いられた真空断熱材で形成されているが、被覆材としてフィルムが用いられた真空断熱材等の他の真空断熱材により形成されていてもよい。 In the above embodiments, the first vacuum heat insulating material 80, 80a is formed of a vacuum heat insulating material in which a film is used as a covering material, but other materials such as a vacuum heat insulating material in which a molded case is used It may be formed of a vacuum heat insulating material of In addition, the second vacuum heat insulators 90, 90a, 90b, 90c, 90d, the third vacuum heat insulators 100, 100a, and the fourth vacuum heat insulator 120 are vacuum heat insulators in which a molded case is used. Although formed, it may be formed of another vacuum heat insulating material such as a vacuum heat insulating material in which a film is used as a covering material.
 上記説明から、当業者にとっては、本開示の多くの改良及び他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の要旨を逸脱することなく、その構造及び機能の少なくともいずれか一方の詳細を実質的に変更できる。また、上記実施の形態に開示されている複数の構成要素の、適宜な組合せにより、種々の開示を形成できる。 From the above description, many modifications and other embodiments of the present disclosure will be apparent to those skilled in the art. Accordingly, the above description should be taken as exemplary only, and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the present disclosure. The details of at least one of the structure and function may be substantially changed without departing from the scope of the present disclosure. In addition, various disclosures can be formed by appropriate combinations of the plurality of components disclosed in the above-described embodiments.
 本開示に係る冷蔵庫及びその製造方法では、本体の角部における断熱性能の低下を低減することができるため、種々の冷蔵庫等に有用である。 The refrigerator according to the present disclosure and the method for manufacturing the same can reduce the decrease in the heat insulation performance at the corner of the main body, and thus are useful for various refrigerators and the like.
10 冷蔵庫
20 本体
21 内部空間
22 第1開口部(開口部)
23 仕切り壁
24 周縁部
25 上側機械室
26 下側機械室
30 扉
31 ヒンジ
40 冷媒回路
41 圧縮機
42 蒸発器
50 筐体
51 天面部
52 底面部
53 背面部
54 右面部
55 左面部
56 角部
57 断熱空間(断熱領域)
60 外箱
61,61a,61b 注入口
70 内箱
80,80a 第1真空断熱材
81,81a 背面側断熱材
81b 第1の面
82,82a 左面側断熱材
83,83a 右面側断熱材
83b 第1の面
83c 第2の面
84 第1芯材
85 被覆材
86 接着部材
90,90a,90b,90c,90d 第2真空断熱材
91 第1壁部
92 第2壁部
93 第1ケース
93a ガスバリア層
93b 接着層
93c 水バリア層
94 第1蓋(蓋)
95 第2芯材(芯材)
96 第1吸着剤
97 開口部(第2開口部)
98 凸状部
100,100a 第3真空断熱材
101 第3壁部
102 第4壁部
103 第2ケース
105 第3芯材
110 発泡断熱材
120 第4真空断熱材
10 refrigerator 20 main body 21 internal space 22 first opening (opening)
23 partition wall 24 peripheral portion 25 upper machine room 26 lower machine chamber 30 door 31 hinge 40 refrigerant circuit 41 compressor 42 evaporator 50 casing 51 top surface portion 52 bottom surface portion 53 back surface portion 54 right surface portion 55 left surface portion 56 corner portion 57 Heat insulation space (heat insulation area)
60 outer case 61, 61a, 61b inlet 70 inner case 80, 80a first vacuum heat insulating material 81, 81a rear side heat insulating material 81b first surface 82, 82a left side heat insulating material 83, 83a right surface side heat insulating material 83b first Surface 83c Second surface 84 First core material 85 Coating material 86 Bonding members 90, 90a, 90b, 90c, 90d Second vacuum heat insulating material 91 First wall 92 Second wall 93 First case 93a Gas barrier layer 93b Adhesive layer 93 c Water barrier layer 94 first lid (lid)
95 2nd core material (core material)
96 first adsorbent 97 opening (second opening)
98 convex part 100, 100a third vacuum heat insulating material 101 third wall part 102 fourth wall part 103 second case 105 third core material 110 foam heat insulating material 120 fourth vacuum heat insulating material

Claims (11)

  1.  外箱及び内箱を有し、且つ、開口部を有する、箱形状の筐体と、
     前記外箱と前記内箱とにより囲まれた断熱領域と、
     前記筐体の角部を挟んで前記断熱領域に配置された2つの第1真空断熱材と、
     前記断熱領域に配置され、前記角部に沿って延設された、第2真空断熱材と、を備え、
     前記第2真空断熱材は、前記2つの第1真空断熱材それぞれの、前記内箱に対向する第1の面に接触している、
    冷蔵庫。
    A box-shaped case having an outer case and an inner case and having an opening;
    A heat insulating area surrounded by the outer case and the inner case;
    Two first vacuum heat insulating materials disposed in the heat insulating area across the corner of the housing;
    And a second vacuum heat insulating material disposed in the heat insulating area and extended along the corner.
    The second vacuum heat insulating material is in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box.
    refrigerator.
  2.  前記第2真空断熱材は、延設された方向に直交する断面の形状が、L字形、三角形又は四角形である、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the second vacuum heat insulating material has an L-shaped, triangular or rectangular cross-sectional shape perpendicular to the extending direction.
  3.  前記第2真空断熱材は、
    前記2つの第1真空断熱材の間に配置され、前記外箱に向けて突出された凸状部をさらに有している、請求項1又は2に記載の冷蔵庫。
    The second vacuum heat insulating material is
    The refrigerator according to claim 1, further comprising a convex portion disposed between the two first vacuum heat insulating materials and protruding toward the outer case.
  4.  前記断熱領域に配置された第3真空断熱材をさらに備え、
     前記筐体は、前記開口部の周囲を取り囲む周縁部を有し、
     前記第3真空断熱材は、前記2つの第1真空断熱材のうちの1つの第1真空断熱材の、前記周縁部に対向する第2の面に接触している、請求項1~3のいずれか一項に記載の冷蔵庫。
    It further comprises a third vacuum heat insulating material disposed in the heat insulating area,
    The housing has a peripheral portion surrounding the periphery of the opening,
    The third vacuum heat insulating material is in contact with a second surface of the first vacuum heat insulating material of one of the two first vacuum heat insulating materials facing the peripheral portion. The refrigerator as described in any one.
  5.  前記開口部が配置された側と反対側における前記断熱領域に配置された、第4真空断熱材をさらに備え、
     前記第4真空断熱材は、前記第2真空断熱材に直交する方向に延設されている、請求項1~4のいずれか一項に記載の冷蔵庫。
    It further comprises a fourth vacuum heat insulating material disposed in the heat insulating area opposite to the side where the opening is disposed,
    The refrigerator according to any one of claims 1 to 4, wherein the fourth vacuum heat insulating material is extended in a direction orthogonal to the second vacuum heat insulating material.
  6.  前記断熱領域に配置された発泡断熱材をさらに備えている、請求項1~5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, further comprising a foam insulation disposed in the heat insulation area.
  7.  前記外箱に設けられ、前記発泡断熱材の原液が注入される注入口をさらに備え、
     前記外箱を一面から視た場合において、前記注入口は、前記2つの第1真空断熱材、及び、前記第2真空断熱材と重ならない位置に配置されている、請求項6に記載の冷蔵庫。
    It further comprises an inlet provided in the outer case and into which the undiluted solution of the foam insulation material is injected,
    The refrigerator according to claim 6, wherein the inlet is disposed at a position not overlapping the two first vacuum heat insulating materials and the second vacuum heat insulating material when the outer case is viewed from one side. .
  8.  前記注入口は複数の注入口を備え、
     前記外箱を前記一面から視た場合において、前記複数の注入口のうち、前記第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、前記2つの第1真空断熱材のうちの1つの第1真空断熱材、及び、前記第2真空断熱材が配置されている、請求項7に記載の冷蔵庫。
    The inlet comprises a plurality of inlets,
    In the case where the outer case is viewed from the one side, the first two of the plurality of injection ports are adjacent to each other in a direction in which the second vacuum heat insulating material extends. The refrigerator according to claim 7, wherein one of the vacuum heat insulating materials and the second vacuum heat insulating material are disposed.
  9.  前記注入口は複数の注入口を備え、
     前記第2真空断熱材は2つの第2真空断熱材を備え、
     前記外箱を前記一面から視た場合において、
      前記複数の注入口のうち、前記第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、前記2つの第1真空断熱材のうちの1つの第1真空断熱材が配置され、且つ、
      前記2つの第2真空断熱材の間に、前記第2真空断熱材が延設された方向に直交する方向において互いに隣接する2つの注入口が配置されている、請求項7に記載の冷蔵庫。
    The inlet comprises a plurality of inlets,
    The second vacuum heat insulating material comprises two second vacuum heat insulating materials,
    When the outer case is viewed from the one side,
    The first vacuum insulation of one of the two first vacuum insulations between two injections adjacent to each other in the direction in which the second vacuum insulation extends among the plurality of injections Materials are placed, and
    The refrigerator according to claim 7, wherein two inlets adjacent to each other in a direction orthogonal to a direction in which the second vacuum heat insulating material extends are disposed between the two second vacuum heat insulating materials.
  10.  前記注入口は複数の注入口を備え、
     前記外箱を前記一面から視た場合において、
      前記第2真空断熱材が延設された方向において互いに隣接する、2つの注入口の間に、前記第2真空断熱材が配置され、且つ、
      前記第2真空断熱材が延設された方向に直交する方向において互いに隣接する、2つの注入口の間に、前記2つの第1真空断熱材のうちの1つの第1真空断熱材が配置されている、請求項7に記載の冷蔵庫。
    The inlet comprises a plurality of inlets,
    When the outer case is viewed from the one side,
    The second vacuum heat insulating material is disposed between two inlets adjacent to each other in a direction in which the second vacuum heat insulating material extends.
    A first vacuum insulator of one of the two first vacuum insulators is disposed between two inlets adjacent to each other in a direction orthogonal to the direction in which the second vacuum insulator extends. The refrigerator according to claim 7.
  11.  外箱及び内箱を有し、且つ、開口部を有する、箱形状の筐体と、
     前記外箱と前記内箱とにより囲まれた断熱領域と、
     前記筐体の角部を挟んで前記断熱領域に配置された2つの第1真空断熱材と、
     前記断熱領域に配置され、前記角部に沿って延設された、第2真空断熱材と、を備え、
     前記第2真空断熱材は、中空柱状のケースを有し、且つ、前記2つの第1真空断熱材それぞれの、前記内箱に対向する第1の面に接触している、冷蔵庫の製造方法であって、
     前記ケースが押出成形により形成される工程と、
     前記ケースに芯材が挿入される工程と、
     前記ケースの両端の開口がそれぞれ蓋により覆われる工程と、を含む冷蔵庫の製造方法。
    A box-shaped case having an outer case and an inner case and having an opening;
    A heat insulating area surrounded by the outer case and the inner case;
    Two first vacuum heat insulating materials disposed in the heat insulating area across the corner of the housing;
    And a second vacuum heat insulating material disposed in the heat insulating area and extended along the corner.
    The second vacuum heat insulating material has a hollow columnar case, and is in contact with the first surface of each of the two first vacuum heat insulating materials facing the inner box. There,
    Forming the case by extrusion;
    Inserting a core into the case;
    And a step in which the openings at both ends of the case are respectively covered by a lid.
PCT/JP2018/045239 2017-12-13 2018-12-10 Refrigerator and method for manufacturing same WO2019117061A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-238780 2017-12-13
JP2017238780 2017-12-13
JP2017241785A JP2019105431A (en) 2017-12-13 2017-12-18 Refrigerator and method for manufacturing the same
JP2017-241785 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019117061A1 true WO2019117061A1 (en) 2019-06-20

Family

ID=66820039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045239 WO2019117061A1 (en) 2017-12-13 2018-12-10 Refrigerator and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019117061A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056974A (en) * 2005-08-24 2007-03-08 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011149501A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011153631A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using this
JP2014142159A (en) * 2012-12-26 2014-08-07 Toshiba Corp Heat insulation wall of heat insulation box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056974A (en) * 2005-08-24 2007-03-08 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011149501A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011153631A (en) * 2010-01-26 2011-08-11 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using this
JP2014142159A (en) * 2012-12-26 2014-08-07 Toshiba Corp Heat insulation wall of heat insulation box

Similar Documents

Publication Publication Date Title
KR101597554B1 (en) Vacuum insulation panel and refrigerator with vacuum insulation panel
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
EP2622292B1 (en) Vacuum insulation panel and a refrigerator with a vacuum insulation panel
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
WO2013140816A1 (en) Vacuum insulation material and insulated housing using same
WO2013190845A1 (en) Insulating wall, insulating box, and manufacturing method therefor
WO2014024601A1 (en) Heat insulating box, and refrigerator with heat insulating box
TWI401404B (en) Refrigerator
KR200471021Y1 (en) Box-type packaging which can control the internal temperature
JP2013249973A (en) Refrigerator
JP2016080281A (en) Heat insulation box body and heat insulation door
JP2011247535A (en) Heat insulation box for refrigerator
JP2012102894A (en) Insulated box, and insulated wall
EP2789952A1 (en) Refrigerator
JP5503478B2 (en) refrigerator
JP6117544B2 (en) refrigerator
WO2019117061A1 (en) Refrigerator and method for manufacturing same
JPH11159950A (en) Heat insulating box body for refrigerator
JP6811374B2 (en) Vacuum heat insulating material and refrigerator
JP2013024440A (en) Refrigerator
JP2019105431A (en) Refrigerator and method for manufacturing the same
JP6918462B2 (en) Vacuum heat insulating material and refrigerator
KR101832324B1 (en) refrigerator
KR20150000671U (en) Box-type packaging which can control the internal temperature
JP2015200361A (en) Vacuum heat insulation material and refrigerator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888345

Country of ref document: EP

Kind code of ref document: A1