JP2009063064A - Vacuum heat insulating material and refrigerator using the same - Google Patents

Vacuum heat insulating material and refrigerator using the same Download PDF

Info

Publication number
JP2009063064A
JP2009063064A JP2007230910A JP2007230910A JP2009063064A JP 2009063064 A JP2009063064 A JP 2009063064A JP 2007230910 A JP2007230910 A JP 2007230910A JP 2007230910 A JP2007230910 A JP 2007230910A JP 2009063064 A JP2009063064 A JP 2009063064A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
core material
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007230910A
Other languages
Japanese (ja)
Inventor
Toshimitsu Tsuruga
俊光 鶴賀
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Takeshi Kubota
剛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007230910A priority Critical patent/JP2009063064A/en
Priority to CN200810129765XA priority patent/CN101382377B/en
Priority to KR1020080080890A priority patent/KR101017776B1/en
Publication of JP2009063064A publication Critical patent/JP2009063064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/064Walls defining a cabinet formed by moulding, e.g. moulding in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/126Insulation with respect to heat using an insulating packing material of cellular type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulating material easily manufactured, achieving reduced loss, and formed to match the shapes of various components and a heat insulating portion, and to improve energy saving for a product to which the vacuum heat insulating material is applied. <P>SOLUTION: In this vacuum heat insulating material 1 including a core material 4 formed of material having at least permeability and gas-barrier external covering materials 2, the core material 4 is molded into a solid shape and retained in advance by an inner wrapper 3 having a ventilation part or a binding agent, or the core material 4 formed of foaming material is molded into the solid shape and retained by foaming or the like in a metal mold. In the product to which the vacuum heat insulating material 1 is applied, the solid shape of the vacuum insulating material 1 is formed to match the shape of the product or the shape of the component inside of the product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真空断熱材及びこれが適用された冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material and a refrigerator to which the vacuum heat insulating material is applied.

近年、冷蔵庫などの家電製品や業務用冷凍庫などの業務用電気製品において、断熱性能をより一層高めるために真空断熱材が適用され始め、消費電力量の低減に一役買っている。芯材をガスバリア性フィルムからなる外被材で覆って内部を減圧封止することで作製される真空断熱材は、従来の断熱材である発泡ポリウレタンや発泡ポリスチレンを凌駕する高い断熱性能と、断熱厚(断熱材の厚さ)を小さくできることが特徴的であり、冷蔵庫の省エネを推進するためには欠かせないアイテムの一つとなっている。   In recent years, vacuum heat insulating materials have begun to be applied to household appliances such as refrigerators and commercial electrical products such as commercial freezers in order to further improve the thermal insulation performance, thereby helping to reduce power consumption. The vacuum heat insulating material produced by covering the core material with an outer cover material made of a gas barrier film and sealing the inside under reduced pressure has high heat insulating performance that surpasses conventional polyurethane foam and polystyrene foam, and heat insulation. It is characteristic that the thickness (thickness of the heat insulating material) can be reduced, and is one of the items indispensable for promoting energy saving of the refrigerator.

真空断熱材は主に作製方法や信頼性の都合から、その多くがパネル状(平面)の形状をしており、その形状のまま冷蔵庫をはじめとした製品に適用されるケースが大半である。しかし、断熱されるべき部位が必ずしも平面形状であるとは限らない。断熱部位において突起や段差がある場合、パネル状(平面)の真空断熱材をそのまま適用するのは難しい。そこで、真空断熱材に対して曲げ,穴あけ等の加工を施したり、あらかじめ外装材の形状を成形しておくことで、真空断熱材の形状を断熱部位の形状に対応させた方法が知られている。   Most of the vacuum heat insulating materials are panel-shaped (planar) due to the manufacturing method and the convenience of reliability, and most of them are applied to products such as refrigerators as they are. However, the part to be insulated is not necessarily a planar shape. When there are protrusions or steps in the heat insulating part, it is difficult to apply the panel-shaped (planar) vacuum heat insulating material as it is. Therefore, a method is known in which the shape of the vacuum heat insulating material is made to correspond to the shape of the heat insulating part by processing the vacuum heat insulating material such as bending and drilling, or by shaping the shape of the exterior material in advance. Yes.

立体形状を持つ真空断熱材の例では、特開平4−9582号公報(特許文献1)に示されたものがある。これは、耐圧容器の中に治具で成形された中空の外殻材を設置し、耐圧容器内部と外殻材内部を排気して、断熱性を有する充填材を充填すると共に、前記耐圧容器内部が外殻材内部と同等の圧力となるように前記耐圧容器内部へ空気を流入させ、前記外殻体内部及び前記耐圧容器内部を再排気して前記外殻体の排気口を封止することによって板状または箱状の真空断熱壁体を得ることを狙ったものである。   As an example of the vacuum heat insulating material having a three-dimensional shape, there is one disclosed in Japanese Patent Laid-Open No. 4-9582 (Patent Document 1). This is because a hollow shell material molded with a jig is installed in a pressure vessel, the inside of the pressure vessel and the inside of the shell material are evacuated and filled with a heat-insulating filler, and the pressure vessel Air is allowed to flow into the pressure vessel so that the inside has the same pressure as the inside of the outer shell material, and the inside of the outer shell body and the inside of the pressure vessel are re-evacuated to seal the exhaust port of the outer shell body. It aims at obtaining the plate-shaped or box-shaped vacuum heat insulation wall body by this.

また、特開昭61−168772号公報(特許文献2)に示されたものがある。これは、袋状外殻材に粉状あるいは粒状の充填物を収納し、凸部を持った型を用いて外殻材の上下を圧縮して、外殻材内部を真空排気することで作製される真空断熱パネルであって、その表面に凹部が形成されることを特徴とする。   Another example is disclosed in Japanese Patent Application Laid-Open No. 61-168772 (Patent Document 2). This is made by storing a powdery or granular filler in a bag-like shell material, compressing the top and bottom of the shell material using a mold with a convex part, and evacuating the inside of the shell material A vacuum heat insulation panel is characterized in that a recess is formed on the surface thereof.

また、特開昭63−163764号公報(特許文献3)に示されたものがある。これは、断熱材が充填されたフィルム容器内部を減圧し、ヒートシールによって密封して作製されるパネル状の真空断熱板を真空容器中に入れて減圧した状態で型によって成形し、これを保持した状態で常圧に戻すことを特徴とした真空断熱板の製造方法である。   Further, there is one disclosed in Japanese Patent Laid-Open No. 63-163764 (Patent Document 3). This is because the inside of the film container filled with heat insulating material is depressurized, and a panel-shaped vacuum heat insulating plate produced by sealing with heat sealing is put into the vacuum container and molded by a mold and held. It is the manufacturing method of the vacuum heat insulating board characterized by returning to a normal pressure in the state which carried out.

特開平4−9582号公報Japanese Patent Laid-Open No. 4-9582 特開昭61−168772号公報JP 61-168772 A 特開昭63−163764号公報Japanese Patent Laid-Open No. 63-163764

しかし、特許文献1に記載の真空断熱壁体では、外殻材が圧力差で変形しないようにするため、耐圧容器の内部と外殻材の内部との圧力差が生じないように厳しく圧力管理をしなければならず、さらに、作製工程が多いため、効率的な生産が難しいという問題点があった。   However, in the vacuum heat insulating wall described in Patent Document 1, the pressure is strictly controlled so that the pressure difference between the inside of the pressure vessel and the inside of the outer shell material does not occur in order to prevent the outer shell material from being deformed by the pressure difference. In addition, there are problems that efficient production is difficult due to many manufacturing processes.

また、特許文献2に記載の真空断熱パネルでは、真空断熱パネルを作製する際、真空チャンバ内に成形型を設置するか、または成形型そのものを真空排気装置としなければならず、装置が大掛かりなものと成ってしまうという課題があった。また、外殻材を直接型に当てているため、皺が発生しやすくなり、真空断熱パネルの信頼性が低下するという問題点があった。   Moreover, in the vacuum heat insulation panel described in Patent Document 2, when producing a vacuum heat insulation panel, a mold must be installed in the vacuum chamber or the mold itself must be a vacuum exhaust device, which is a large-scale device. There was a problem of becoming a product. Further, since the outer shell material is directly applied to the mold, there is a problem that wrinkles are easily generated and the reliability of the vacuum heat insulating panel is lowered.

また、特許文献3に記載の真空断熱板では、フィルム容器をヒートシールして密封しているために、フィルム容器の伸縮に制限が生じ、形状によっては成形後常圧に戻したときに成形部周辺等において、大気圧によって局所的に大きな応力が掛かってしまう可能性があり、フィルムへのストレスが大きくなってしまうことで真空断熱板の信頼性が低下するという問題点があった。   In addition, in the vacuum heat insulating plate described in Patent Document 3, since the film container is heat-sealed and sealed, the expansion and contraction of the film container is limited, and depending on the shape, the molded part is returned to normal pressure after molding. There is a possibility that a large stress is locally applied by the atmospheric pressure in the surroundings and the like, and there is a problem that the reliability of the vacuum heat insulating plate is lowered by increasing the stress on the film.

以上を鑑みて本発明は、より簡便な手法によって、さまざまな部品や断熱部位の形状に合わせた信頼性に足る真空断熱材を提供するものである。   In view of the above, the present invention provides a vacuum heat insulating material having sufficient reliability according to the shape of various parts and heat insulating parts by a simpler method.

前記目的を達成するために、本発明の真空断熱材は、少なくとも通気性を有する材料からなる芯材と、ガスバリア性を有する外被材とからなる真空断熱材において、前記芯材が予め立体形状に成形保持されていることを特徴とするものである。   To achieve the above object, the vacuum heat insulating material of the present invention is a vacuum heat insulating material comprising at least a core material made of a gas permeable material and a jacket material having a gas barrier property. It is characterized in that it is molded and held.

本発明によれば、さまざまな部品や断熱部位の形状に合わせた各種立体形状の真空断熱材を得ることができる。本発明の真空断熱材を冷蔵庫等の製品に適用することによって、製品の断熱効果が上がり、消費電力の低減等による省エネ効果が得られる。   According to the present invention, it is possible to obtain various three-dimensional vacuum heat insulating materials that match the shapes of various parts and heat insulating portions. By applying the vacuum heat insulating material of the present invention to a product such as a refrigerator, the heat insulating effect of the product is improved, and an energy saving effect by reducing power consumption or the like is obtained.

以下、本発明の一実施例の真空断熱材及びこれを適用した冷蔵庫を、図1から図5を用いて説明する。   Hereinafter, the vacuum heat insulating material of one Example of this invention and the refrigerator which applied this are demonstrated using FIGS. 1-5.

まず、本実施例の真空断熱材の構成に関して、図1(a),図2及び図6を参照しながら説明する。図1(a)は本発明の一実施例を示す真空断熱材の模式図である。図2は本発明の一実施例を示す芯材の成形方法の一例である。図6は本発明の一実施例を示す外被材と内包材の模式図である。   First, the structure of the vacuum heat insulating material of the present embodiment will be described with reference to FIGS. 1 (a), 2 and 6. FIG. Fig.1 (a) is a schematic diagram of the vacuum heat insulating material which shows one Example of this invention. FIG. 2 shows an example of a method for forming a core material according to an embodiment of the present invention. FIG. 6 is a schematic view of an outer covering material and an inner packaging material showing an embodiment of the present invention.

図1(a)で示す形状の真空断熱材を形成する手順の一例を以下に記述する。図1で示す真空断熱材1は中央に凹凸を含む形状をしている。まず、芯材4となるガラス繊維材やポリエステル繊維等の柔軟性を有する繊維系材料を内包材3に収納し、図2で示すように、成形型11を用いて加圧成形,加熱成形,真空成形等の手法によって圧縮並びに成形を行い、内包材3の開口部及び周縁部を熱溶着や接着等により封止することで芯材4を立体形状に保持する。内包材3は初めから袋状になっていなくてもよい。例えば、2枚の板状の内包材3で芯材4を挟み込み、成形型11を用いて成形した後、開口部及び周縁部を熱溶着等して封止することで立体形状に保持することも可能である。1枚の板状の内包材3をU字にして芯材4を挟み込んでも同じように成形できる。また、芯材4を立体形状に保持するために、硼酸,フェノール等の結着剤(バインダ)を用いることも可能である。芯材4にポリウレタン,ポリスチレン,ポリエチレン,ポリプロピレン等の発泡材料を用いる場合は、所望の形状をした金型を用いて発泡するか、または発泡体を形成した後に切削等して芯材4の立体形状を保持する。続いて、三方が熱溶着等で接合された袋状の外被材2へ立体形状に保持された芯材4を収納して真空排気し、外被材2の開口部を熱溶着等によって封止することで、外被材2の形状が芯材4の立体形状に追従し、芯材4が外被材2によって密着被包され、所望の立体形状をした真空断熱材1が作製できる。   An example of a procedure for forming the vacuum heat insulating material having the shape shown in FIG. The vacuum heat insulating material 1 shown in FIG. 1 has a shape including irregularities in the center. First, a flexible fiber-based material such as a glass fiber material or a polyester fiber to be the core material 4 is accommodated in the inner packaging material 3 and, as shown in FIG. The core material 4 is held in a three-dimensional shape by performing compression and molding by a technique such as vacuum forming and sealing the opening and the peripheral edge of the inner packaging material 3 by heat welding, adhesion, or the like. The inner packaging material 3 may not be formed into a bag shape from the beginning. For example, the core material 4 is sandwiched between two plate-shaped inner packaging materials 3 and molded using the molding die 11, and then the opening and the peripheral portion are sealed by heat welding or the like to be held in a three-dimensional shape. Is also possible. Even if the single plate-shaped inner packaging material 3 is formed into a U shape and the core material 4 is sandwiched, the same molding can be performed. Moreover, in order to hold the core material 4 in a three-dimensional shape, a binder (binder) such as boric acid or phenol can be used. When a foam material such as polyurethane, polystyrene, polyethylene, or polypropylene is used for the core material 4, foaming is performed using a mold having a desired shape, or the foam material is formed and then cut or the like to form a three-dimensional structure of the core material 4. Keep shape. Subsequently, the core material 4 held in a three-dimensional shape is accommodated in the bag-shaped outer covering material 2 joined on the three sides by heat welding or the like, and evacuated, and the opening of the outer covering material 2 is sealed by heat welding or the like. By stopping, the shape of the jacket material 2 follows the three-dimensional shape of the core material 4, the core material 4 is tightly encapsulated by the jacket material 2, and the vacuum heat insulating material 1 having a desired three-dimensional shape can be produced.

内包材3には一箇所以上の通気口を設けておき、真空成形や真空排気の際に減圧を効率よく行えるようにする。   The inner packaging material 3 is provided with one or more vent holes so that the pressure can be reduced efficiently during vacuum forming or evacuation.

真空排気を行う際には、治具等を用いて真空断熱材の固定を行っても良い。   When evacuating, the vacuum heat insulating material may be fixed using a jig or the like.

立体形状は図1(a)で示す形状に限ることはなく、例えば、折り曲げ,湾曲,凹,凸等を部分的または全体的な構造として持った形状であり、略Z形状,略U形状,麦藁帽子形状等の平面以外の形状が挙げられる。また、一枚の真空断熱材に対して立体形状が二箇所以上あっても良く、凹凸と曲げ等、複数の形状が組み合わされていても良い。   The three-dimensional shape is not limited to the shape shown in FIG. 1A. For example, the three-dimensional shape is a shape having a partial or overall structure such as bending, bending, concave, convex, etc., and has a substantially Z shape, a substantially U shape, Shapes other than planes, such as a straw hat shape, are mentioned. Further, two or more three-dimensional shapes may be provided for a single vacuum heat insulating material, and a plurality of shapes such as unevenness and bending may be combined.

立体形状は特に限定されるわけではないが、芯材4の立体形状に外被材2の形状を追従させ、密着被包するために特に好ましい形状としては、図3で示すような略Z形状や、図1で示すような凹凸を含む板形状等が挙げられる。   Although the three-dimensional shape is not particularly limited, a particularly preferable shape for causing the three-dimensional shape of the core material 4 to follow the shape of the outer cover material 2 and encapsulating it closely is a substantially Z shape as shown in FIG. Alternatively, a plate shape including irregularities as shown in FIG.

立体形状の形成の際は、折り曲げ等の成形される部分における芯材4や内包材3の厚さを部分的に厚くしても良く、加工のし易さや断熱性能、外被材2の芯材4に対する追従性の向上に寄与できる。   When forming the three-dimensional shape, the thickness of the core material 4 and the inner packaging material 3 in the part to be molded such as bending may be partially increased, and the ease of processing and heat insulation performance, the core of the jacket material 2 may be increased. This can contribute to the improvement of the followability to the material 4.

立体形状に成形した真空断熱材1の作製後、必要に応じて芯材4が含まれない外被材2の余剰部分(耳)を折り曲げて固定しても良い(耳折り)。その際、外被材2の余剰部分が真空断熱材1のどちら側の面に折り曲げられるかは特に限定されない。   After production of the vacuum heat insulating material 1 formed into a three-dimensional shape, if necessary, an excessive portion (ear) of the jacket material 2 that does not include the core material 4 may be bent and fixed (ear fold). At that time, it is not particularly limited to which side of the vacuum heat insulating material 1 the surplus portion of the jacket material 2 is bent.

芯材4としては、ガラス短繊維材等の無機繊維や、ポリエステル繊維等の有機繊維,ポリウレタン,ポリスチレン,ポリエチレン,ポリプロピレン等の樹脂発泡体,シリカ等の無機粉末のいずれか又はこれら複数の組み合わせを用いることができる。   As the core material 4, inorganic fibers such as short glass fiber materials, organic fibers such as polyester fibers, resin foams such as polyurethane, polystyrene, polyethylene, and polypropylene, inorganic powders such as silica, or a combination thereof are used. Can be used.

外被材2の余剰部分はテープ,両面テープ,接着剤などで固定することができる。また、マジックテープ((株)クラレの登録商標)に代表される面ファスナーやボタンのような着脱可能な固定手段を用いたり、ゴムバンドやPPバンド等で固定してもよいが、止め具は真空断熱材1を破損させないために、突起物のないものが推奨される。   The surplus portion of the jacket material 2 can be fixed with a tape, a double-sided tape, an adhesive or the like. In addition, it is possible to use a detachable fixing means such as a hook-and-loop fastener or a button represented by Velcro (registered trademark of Kuraray Co., Ltd.), or a rubber band or a PP band. In order not to damage the vacuum heat insulating material 1, one having no protrusion is recommended.

本発明の真空断熱材では、内包材3によって芯材4を立体形状に圧縮保持させることで、真空排気時において外被材2が芯材形状に追従し、これを封止したときに外被材2が芯材4に密着した状態で被包され、立体形状に形成された真空断熱材1を得ることができるので、板状の真空断熱材を後から所望の形状に加工する場合と比べ、外被材2における局所的な皺の発生やフィルムへの深刻なダメージを抑制でき、ガスバリア性の低下が抑制されるため、立体形状を持った真空断熱材1における断熱性能が向上する。   In the vacuum heat insulating material of the present invention, the core material 4 is compressed and held in a three-dimensional shape by the inner packaging material 3, so that the outer shell material 2 follows the core material shape during vacuum evacuation and is sealed when the outer shell material 2 is sealed. Since the vacuum heat insulating material 1 encapsulated in a state in which the material 2 is in close contact with the core material 4 and formed into a three-dimensional shape can be obtained, compared with the case where the plate-shaped vacuum heat insulating material is processed into a desired shape later. Since the generation of local wrinkles and serious damage to the film in the jacket material 2 can be suppressed and the gas barrier property is prevented from being lowered, the heat insulating performance of the vacuum heat insulating material 1 having a three-dimensional shape is improved.

また、平板状の真空断熱材は図6(a)で示すように、外被材2と内包材3が密着しており、外被材2に形成される皺を内包材3によって埋めることができる。本発明の真空断熱材1においても、外被材2が芯材4の形状に追従し密着被包する際に、外被材2の一部が凹凸部6や段曲げ部7に引き寄せられることで外被材2に皺が発生するが、図6(b)で示すように、内包材3は外被材2の耳部分も含めて外被材2に密着しているため、内包材3が外被材2に形成される皺を埋めることで、真空破壊の原因となりうる外被材2へのフィルムダメージを抑制し、高い断熱性を得ることができる。また、図6(c)で示すように、内包材3の耳部が外被材2の耳部に位置しているため、外被材2同士が直接接触している場合に対して、耳部における熱伝導を抑制することができる(ヒートブリッジの抑制)。このような真空断熱材1を形成することで、いろいろな形状を持った高い断熱性能を持つ真空断熱材を容易に得ることができる。   In addition, as shown in FIG. 6A, the flat vacuum heat insulating material is such that the jacket material 2 and the inner packaging material 3 are in close contact with each other, and the ridges formed on the outer jacket material 2 can be filled with the inner packaging material 3. it can. Also in the vacuum heat insulating material 1 of the present invention, when the outer cover material 2 follows the shape of the core material 4 and encloses it tightly, a part of the outer cover material 2 is attracted to the concavo-convex portion 6 and the step bending portion 7. However, as shown in FIG. 6B, the inner packaging material 3 is in close contact with the outer jacket material 2 including the ear portion of the outer jacket material 2 as shown in FIG. By filling the wrinkles formed in the jacket material 2, film damage to the jacket material 2 that can cause vacuum breakage can be suppressed, and high heat insulation can be obtained. In addition, as shown in FIG. 6C, the ear part of the inner packaging material 3 is located at the ear part of the outer cover material 2, so that the ear member 2 is in direct contact with the case where the outer cover materials 2 are in direct contact with each other. Heat conduction in the part can be suppressed (suppression of heat bridge). By forming such a vacuum heat insulating material 1, vacuum heat insulating materials having various shapes and high heat insulating performance can be easily obtained.

また、外被材2が破損するなどして真空断熱材1が真空破壊されたとしても、内包材3によって芯材4が常圧下でも立体形状に保持されているため、新しい外被材2を用いてそのまま真空排気することで真空断熱材1を作製することができるので、不良品を少なくでき、生産性に優れる。   Even if the vacuum insulation material 1 is broken by vacuum because the outer cover material 2 is damaged, the core material 4 is held in a three-dimensional shape even under normal pressure by the inner packaging material 3. Since the vacuum heat insulating material 1 can be produced by evacuating as it is, defective products can be reduced and productivity is excellent.

以上のような成形方法が適用されることによって、生産性を損なうことなく、しかも断熱性に優れた真空断熱材1を提供することができる。   By applying the molding method as described above, it is possible to provide the vacuum heat insulating material 1 having excellent heat insulating properties without impairing productivity.

また、図4及び図5で示すように、本発明の真空断熱材1を外箱と内箱からなる冷蔵庫に適用する際、その立体形状を内箱または外箱の形状や冷蔵庫内部の部品の形状に合わせることで、被断熱面積(カバー率)を増加させることができ、断熱性能の高い真空断熱材1によって効率的に断熱することが可能になる。特に、本発明の真空断熱材1によって冷蔵庫の庫内照明や、電気部品,圧縮機等の熱を発生する部品を直接断熱することで、冷蔵庫の熱漏洩を抑制することができ、結果として省エネに貢献する。   Moreover, as shown in FIG.4 and FIG.5, when applying the vacuum heat insulating material 1 of this invention to the refrigerator which consists of an outer box and an inner box, the three-dimensional shape is the shape of an inner box or an outer box, and the components inside a refrigerator. By conforming to the shape, the area to be insulated (coverage ratio) can be increased, and it is possible to efficiently insulate with the vacuum heat insulating material 1 having high heat insulation performance. In particular, the vacuum heat insulating material 1 according to the present invention directly insulates the refrigerator interior lighting, electrical parts, heat generating parts such as compressors, etc., thereby suppressing the heat leakage of the refrigerator, resulting in energy saving. To contribute.

本発明による真空断熱材1では製法上、芯材4をあらかじめ立体形状に保持するため、折り曲げ等の成形を行う部分に溝を設ける必要が無く、溝による板厚減少や繊維の破断による断熱性能の低下が無いため、高い断熱性能を有する。また、内包材3により芯材4を立体形状に固定する場合は、フェノール,硼酸等のバインダを用いる必要が無く、バインダを用いることによるデメリットを克服できる。バインダによるデメリットとして挙げられるものとしては、例えば、フェノールの場合では真空下での揮発による真空断熱材1の熱伝導率悪化がある。また、硼酸等の無機系バインダでは、立体形状保持のためにバインダ濃度を上げなければならず、バインダ固体分を伝わる固体熱伝導分の増加による熱伝導率の悪化に加え、バインダが固化してできる結晶分が外被材2を傷つけて破損してしまうおそれがある。   In the vacuum heat insulating material 1 according to the present invention, since the core material 4 is held in a three-dimensional shape in advance in the manufacturing method, it is not necessary to provide a groove in a portion to be bent or the like, and the heat insulating performance by reducing the plate thickness by the groove or breaking the fiber. Therefore, it has high heat insulation performance. Further, when the core material 4 is fixed in a three-dimensional shape by the inner packaging material 3, it is not necessary to use a binder such as phenol or boric acid, and the disadvantages of using the binder can be overcome. As a disadvantage of the binder, for example, in the case of phenol, there is a deterioration in the thermal conductivity of the vacuum heat insulating material 1 due to volatilization under vacuum. In addition, in the case of inorganic binders such as boric acid, the binder concentration must be increased in order to maintain the three-dimensional shape. In addition to the deterioration of the thermal conductivity due to the increase in the solid thermal conductivity that travels through the binder solid, the binder is solidified. There is a possibility that the produced crystal component may damage and damage the outer cover material 2.

次に、本実施例の真空断熱材1に関して、図1(b)を参照しながら説明する。図1(b)は本発明の一実施例を示す真空断熱材1の断面図である。尚、以下の記載は本発明における一実施例であり、本発明がこれに限定されるものではない。   Next, the vacuum heat insulating material 1 of a present Example is demonstrated, referring FIG.1 (b). FIG.1 (b) is sectional drawing of the vacuum heat insulating material 1 which shows one Example of this invention. In addition, the following description is one Example in this invention, This invention is not limited to this.

真空断熱材1は、内包材3と、芯材4と、吸着剤5と、内包材3,芯材4及び吸着剤5を収納し且つガスバリア性フィルムからなる外被材2とを備えて構成されている。この真空断熱材1は、内包材3に包まれた芯材4と吸着剤5とを外被材2に挿入した状態で、外被材2の内部を減圧し、外被材2の周縁部を熱溶着して封止することによって作製される。真空断熱材1の形状は、特に限定されず、適用される箇所と作業性に応じて各種形状及び厚さのものが適用可能である。   The vacuum heat insulating material 1 includes an inner packaging material 3, a core material 4, an adsorbent 5, an inner packaging material 3, a core material 4, and an adsorbent 5 and a jacket material 2 made of a gas barrier film. Has been. The vacuum heat insulating material 1 is formed by decompressing the inside of the outer covering material 2 in a state where the core material 4 and the adsorbent 5 wrapped in the inner covering material 3 are inserted into the outer covering material 2, and It is produced by heat-sealing and sealing. The shape of the vacuum heat insulating material 1 is not specifically limited, The thing of various shapes and thickness is applicable according to the location and workability | operativity applied.

芯材4は、ガラス短繊維材,有機繊維の積層体等の繊維系材料を適当なサイズ,形状にカットして用い、これを吸着剤5と共に内包材3に収納し、圧縮プレスしながら内包材3の周縁部を熱溶着して封止する。この処理により、芯材4を外被材2にスムーズに挿入することができ、作業性が向上する。   The core material 4 is a fiber material such as a short glass fiber material or a laminate of organic fibers, cut into an appropriate size and shape, accommodated in the encapsulating material 3 together with the adsorbent 5, and encapsulated while being compressed. The peripheral part of the material 3 is thermally welded and sealed. By this processing, the core material 4 can be smoothly inserted into the jacket material 2, and workability is improved.

芯材4の脱水,脱ガスを目的として、外被材2への挿入前に芯材4のエージングを施すことは有効である。このときの加熱温度は最低限表面に付着した水分の除去が可能であるということから、110℃以上であることが望ましく、特にガラス短繊維材の場合は芯材の含水率を極力減少させるために180℃以上でエージングするのがより好ましい。   For the purpose of dehydration and degassing of the core material 4, it is effective to age the core material 4 before insertion into the jacket material 2. The heating temperature at this time is preferably at least 110 ° C. because it is possible to remove the moisture adhering to the surface at least, and in the case of a short glass fiber material, in order to reduce the moisture content of the core material as much as possible. It is more preferable to age at 180 ° C. or higher.

ガラス短繊維材としては、平均繊維径が3〜5μmであることが好ましい。ガラス短繊維材は平均繊維径により熱伝導率特性及びコストに大きく影響する。コストが安価である平均繊維径が5μmを超えるグラスウール等は、繊維が同一方向に配列して繊維の接触が線に近くなるために接触熱抵抗が小さくなるので、熱伝導率及び経時劣化が大きく劣る。一方、平均繊維径が2μm未満では、繊維の接触が小さくなることで接触熱抵抗は大きくなるが、1枚当たりの厚みが薄く断熱性能が劣るため、シート状の無機繊維集合体を重ねて厚みを稼ぐことで熱伝導率と経時劣化を低減しなければならず、生産性が劣ると共にコストも高騰する。   As a short glass fiber material, it is preferable that an average fiber diameter is 3-5 micrometers. The short glass fiber material greatly affects the thermal conductivity characteristics and cost depending on the average fiber diameter. Glass wool with an average fiber diameter of more than 5 μm, which is low in cost, has a large thermal conductivity and deterioration over time because the contact heat of the fibers is close to the line because the fibers are arranged in the same direction, Inferior. On the other hand, when the average fiber diameter is less than 2 μm, the contact thermal resistance is increased by decreasing the contact of the fibers, but the thickness per sheet is thin and the heat insulation performance is inferior. By earning, heat conductivity and deterioration over time must be reduced, resulting in inferior productivity and cost.

このように、繊維径が5μmを超えると熱伝導率が高くなってしまうため、伝熱方向に不連続で素材間の接触抵抗を有効に活用する繊維材を選定した。また、接触熱抵抗の他に熱流路がジグザグとなり、熱抵抗が増大して熱伝導率が低くなる多くの繊維材の中から、平均繊維径が3〜5μmのガラス短繊維材を選定することにより、熱伝導率や経時劣化の低減,厚み減少率の低減及び低コスト化を両立することが可能である。   As described above, since the thermal conductivity increases when the fiber diameter exceeds 5 μm, a fiber material that is discontinuous in the heat transfer direction and that effectively utilizes the contact resistance between the materials is selected. In addition to the contact thermal resistance, the heat flow path becomes zigzag, and a short glass fiber material having an average fiber diameter of 3 to 5 μm is selected from many fiber materials whose thermal resistance increases and thermal conductivity decreases. Therefore, it is possible to achieve both reduction in thermal conductivity and deterioration with time, reduction in thickness reduction rate, and cost reduction.

ガラス短繊維材及び有機繊維の繊維方向については、真空断熱材の厚み方向に対し水平方向に並んで配列するものが断熱性能の点で好ましい。   About the fiber direction of a short glass fiber material and an organic fiber, what is arranged along with a horizontal direction with respect to the thickness direction of a vacuum heat insulating material is preferable at the point of heat insulation performance.

有機繊維積層体としては、ポリエチレン繊維,ポリプロピレン繊維,ポリアミド繊維,ポリエチレンテレフタレート繊維,ポリエステル繊維等の断熱性と加工性を両立できるものであれば何でもよく、特に限定されるものではない。   The organic fiber laminate is not particularly limited as long as it can achieve both heat insulation and processability, such as polyethylene fiber, polypropylene fiber, polyamide fiber, polyethylene terephthalate fiber, and polyester fiber.

内包材3としては、熱溶着や接着剤等による接着が可能で、かつ、成形が可能であり、アウトガスが発生しない袋状または容器状のものであればよい。材質は特に限定されるわけではないが、例えば、シール性や耐ケミカルアタック性に優れたポリエチレン樹脂(高密度,中密度,低密度)や、ポリプロピレン樹脂をはじめ、ポリスチレン樹脂,ABS樹脂(アクリロニトリル/ブタジエン/スチレン樹脂),ポリエチレンテレフタレート樹脂,ポリブチレンテレフタレート樹脂,ポリアミド樹脂等の熱可塑性樹脂や、フェノール樹脂,エポキシ樹脂,ユリア樹脂,ポリウレタン等の熱硬化性樹脂,メタクリル系共重合体等の光硬化性樹脂が挙げられる。用いる樹脂は無延伸であっても延伸されていてもよい。また、樹脂には強度向上のためにフィラー等が混入されていても良い。ここでは樹脂を中心に例を挙げたが、樹脂に限定する必要は無く、内包材3は無機物であってもよい。内包材3の厚さは成形時に芯材4の立体形状を保持できる厚みとすればよく、特に限定されない(適切な厚さは内包材3の材質により異なる)。   The inner packaging material 3 may be a bag-like or container-like material that can be bonded by heat welding, an adhesive, or the like, can be molded, and does not generate outgas. The material is not particularly limited. For example, polyethylene resin (high density, medium density, low density) excellent in sealing properties and chemical attack resistance, polypropylene resin, polystyrene resin, ABS resin (acrylonitrile / (Butadiene / styrene resin), polyethylene terephthalate resin, polybutylene terephthalate resin, polyamide resin and other thermoplastic resins, phenolic resin, epoxy resin, urea resin, polyurethane and other thermosetting resins, and methacrylic copolymers. Resin. The resin used may be unstretched or stretched. In addition, a filler or the like may be mixed in the resin to improve the strength. Here, an example is given centering on resin, but it is not necessary to limit to resin, and the inner packaging material 3 may be an inorganic substance. The thickness of the inner packaging material 3 is not particularly limited as long as the three-dimensional shape of the core material 4 can be maintained at the time of molding (the appropriate thickness varies depending on the material of the inner packaging material 3).

芯材4を内包材3に挿入した後、成形型11にセットし、加圧成形を行う。必要に応じて加熱成形,真空成形等を組み合わせても良い。次に芯材4を加圧したまま、内包材3における芯材4が含まれない余剰な部分をすべて熱溶着して形状を固定する。但し、内包材3は芯材4が固定されていればすべてを熱溶着する必要は無い。例えば、内包材3の余剰部分の内、芯材4の端から10mmまでを熱溶着することで芯材4を固定できれば、残りの余剰部分は熱溶着しなくても良い。また、加熱により硬化する性質を持つ熱硬化性樹脂等を内包材3に用いる場合は全体を加熱圧縮することで芯材4の立体形状を保持することが可能となる。また、紫外線等の光照射により硬化する性質を持つ光硬化性樹脂等を内包材3に用いる場合は芯材4を加圧成形しながら光照射をして形状固定することで、芯材4の立体形状を保持することが可能となる。   After the core material 4 is inserted into the inner packaging material 3, the core material 4 is set on the molding die 11 and subjected to pressure molding. You may combine heat forming, vacuum forming, etc. as needed. Next, while pressurizing the core material 4, all the excess portions of the inner packaging material 3 not including the core material 4 are thermally welded to fix the shape. However, if the core material 4 is fixed, the inner packaging material 3 does not need to be thermally welded. For example, if the core material 4 can be fixed by heat-welding up to 10 mm from the end of the core material 4 among the surplus portions of the inner packaging material 3, the remaining surplus portions may not be heat-welded. Moreover, when using the thermosetting resin etc. which have the property hardened | cured by heating for the inner packaging material 3, it becomes possible to hold | maintain the three-dimensional shape of the core material 4 by heat-compressing the whole. Moreover, when using the photocurable resin etc. which have the property hardened | cured by light irradiations, such as an ultraviolet-ray, for the inner packaging material 3, the shape of the core material 4 is fixed by irradiating light while pressing the core material 4, and fixing the shape. A three-dimensional shape can be maintained.

真空排気する際には芯材4の内部を減圧するため、一箇所以上の通気口を設けなければならないが、通気口の大きさや形状,数,場所は特に限定されない。例えば、(1)芯材4の端部に直径3mmの円状の通気口を5箇所設ける、(2)芯材4の端部にスリット状の通気口を1箇所設ける等、芯材4の形状保持と真空排気に支障が無ければ、特に限定されない。   In order to depressurize the inside of the core material 4 when evacuating, one or more vent holes must be provided, but the size, shape, number, and location of the vent holes are not particularly limited. For example, (1) five circular vents with a diameter of 3 mm are provided at the end of the core member 4, (2) one slit-like vent is provided at the end of the core member 4, etc. There is no particular limitation as long as there is no problem with shape retention and evacuation.

外被材2は、外層より耐傷付き性向上のための表面保護層としてポリアミドフィルム(15μm)、アルミニウムを蒸着したポリエチレンテレフタレートフィルム(12μm)、ガスバリア層としてアルミニウムを蒸着したエチレン−ビニルアルコール共重合体樹脂フィルム(12μm)、熱溶着層として高密度ポリエチレンフィルム(50μm)を用いたラミネートフィルムにより構成されている。このとき、表面保護層とガスバリア層における互いのアルミニウム蒸着面を貼り合わせると、ガスバリア性がより高くなる。また、各層を接着するための接着剤としては2液硬化型エステル型ウレタン系接着剤が用いられるが、特にこれに限定されるわけではない。例えば、代わりに2液硬化型エーテル型ウレタン系接着剤,アクリル系接着剤,ポリエステル系接着剤,エポキシ系接着剤,シリコン系接着剤等を用いてもよい。そして、この外被材2は熱溶着層同士を貼り合わせた袋として使用される。   The outer covering material 2 is a polyamide film (15 μm) as a surface protective layer for improving scratch resistance from the outer layer, a polyethylene terephthalate film (12 μm) on which aluminum is vapor-deposited, and an ethylene-vinyl alcohol copolymer on which aluminum is vapor-deposited as a gas barrier layer. A resin film (12 μm) and a laminate film using a high-density polyethylene film (50 μm) as a heat welding layer are used. At this time, if the aluminum deposition surfaces of the surface protective layer and the gas barrier layer are bonded together, the gas barrier property becomes higher. Moreover, as an adhesive for adhering each layer, a two-component curable ester-type urethane adhesive is used, but is not particularly limited thereto. For example, a two-component curable ether type urethane adhesive, an acrylic adhesive, a polyester adhesive, an epoxy adhesive, a silicon adhesive, or the like may be used instead. And this jacket material 2 is used as a bag which bonded the heat welding layers together.

外被材2において、表面保護層は耐衝撃性に対応するためのものであり、ガスバリア層はガスバリア性を確保するためのものであり、熱溶着層は熱溶着によって真空断熱材1の内部を密閉するためのものである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。また、更に改善する手段として、例えば、表面保護層に金属蒸着またはシリカ蒸着することで耐衝撃性の他にガスバリア性を付加したり、ガスバリア層に金属蒸着またはシリカ蒸着を有するフィルムを2層以上設けたり、あるいは金属箔を用いてもよい。熱溶着層としては、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。   In the jacket material 2, the surface protective layer is for dealing with impact resistance, the gas barrier layer is for securing gas barrier properties, and the heat welding layer is formed inside the vacuum heat insulating material 1 by heat welding. It is for sealing. Therefore, all known materials can be used as long as they meet these purposes. Further, as a means for further improvement, for example, by depositing metal or silica on the surface protective layer, gas barrier properties are added in addition to impact resistance, or two or more films having metal or silica deposited on the gas barrier layer. It may be provided or a metal foil may be used. As the heat welding layer, polypropylene resin, polyacrylonitrile resin, or the like may be used.

外被材2について、さらに具体的に説明する。外被材とは、内部に気密部を設けるために芯材を覆うものであり、構成材料としては特に限定されるものではない。例えば、表面保護層にポリアミド樹脂、アルミニウム蒸着を有するポリエチレンテレフタレート樹脂、ガスバリア層にアルミニウム箔、熱溶着層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムや、表面保護層にポリアミド樹脂、アルミニウム蒸着を有するポリエチレンテレフタレート樹脂、ガスバリア層にアルミニウム蒸着を有するエチレン−ビニルアルコール共重合体樹脂(商品名エバール、(株)クラレ製)、熱溶着層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムとを袋状にしたものなどが例示される。   The jacket material 2 will be described more specifically. The jacket material covers the core material in order to provide an airtight portion inside, and is not particularly limited as a constituent material. For example, a polyamide resin for the surface protective layer, a polyethylene terephthalate resin with aluminum vapor deposition, an aluminum foil for the gas barrier layer, a plastic laminate film made of high-density polyethylene resin for the heat welding layer, a polyamide resin for the surface protective layer, and a polyethylene with aluminum vapor deposition A bag of terephthalate resin, ethylene-vinyl alcohol copolymer resin (trade name EVAL, manufactured by Kuraray Co., Ltd.) with aluminum vapor deposition on the gas barrier layer, and a plastic laminate film made of high-density polyethylene resin on the heat-welded layer Etc. are exemplified.

さらに改善する手段として、表面保護層であるポリアミド樹脂にアルミニウム蒸着してガスバリア性を向上させたり、ガスバリア層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂を2層設けてもよい。熱溶着層としては、シール性や耐ケミカルアタック性などから高密度ポリエチレン樹脂が好ましいが、この他に、低密度ポリエチレン樹脂,ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。外被材の材料の具体的構成としては、例えば、外層より第1層目にポリアミド樹脂、第2層目にアルミニウム蒸着を有するポリエチレンテレフタレート樹脂、第3層目にアルミニウム箔、第4層目に高密度ポリエチレン樹脂からなるアルミラミネートフィルムである。   As a means for further improvement, two layers of ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer on the gas barrier layer may be provided by vapor deposition of aluminum on a polyamide resin as a surface protective layer. As the heat-welded layer, a high-density polyethylene resin is preferable from the viewpoint of sealing properties and chemical attack resistance, but other than this, a low-density polyethylene resin, a polypropylene resin, a polyacrylonitrile resin, or the like may be used. Specific examples of the material of the jacket material include, for example, a polyamide resin in the first layer from the outer layer, a polyethylene terephthalate resin having aluminum vapor deposition in the second layer, an aluminum foil in the third layer, and a fourth layer. It is an aluminum laminate film made of high-density polyethylene resin.

外被材2の残存有機溶剤等の脱ガスを目的として、芯材4の挿入前に外被材2のエージングを施すことは有効である。このときの条件は、各種有機溶剤の除去が可能であるということから、70℃以上及び3時間以上の加熱の後、1時間以上の真空乾燥を行うことが望ましい。   For the purpose of degassing the remaining organic solvent or the like of the jacket material 2, it is effective to age the jacket material 2 before inserting the core material 4. The condition at this time is that various organic solvents can be removed, and therefore, it is desirable to perform vacuum drying for 1 hour or more after heating at 70 ° C. or more and 3 hours or more.

吸着剤5は、アルミノ・シリケートの含水金属塩を主成分とした合成ゼオライトであるモレキュラーシーブが用いられる。換言すると、外被材2に封入する吸着剤5としてモレキュラーシーブを用いることで、芯材4から放出される水蒸気及び外被材2を通して外部より進入するガスを吸着し、真空断熱材1の経時劣化を低く抑えることができる。好ましくは、ドラム缶などの密閉容器から取り出してすぐの吸湿の少ない状態のものを使用する。また、モレキュラーシーブの形状はペレット,ビーズ,パウダー等、特に限定されるものではない。   The adsorbent 5 is a molecular sieve that is a synthetic zeolite mainly composed of a hydrous metal salt of alumino-silicate. In other words, by using a molecular sieve as the adsorbent 5 to be enclosed in the jacket material 2, water vapor released from the core material 4 and gas entering from the outside through the jacket material 2 are adsorbed, and the vacuum heat insulating material 1 is timed. Deterioration can be kept low. Preferably, it is used in a state where it absorbs little moisture immediately after being taken out from a sealed container such as a drum can. Further, the shape of the molecular sieve is not particularly limited, such as pellets, beads, and powders.

また、本実施例では、吸着剤成分としてモレキュラーシーブを使用しているが、真空断熱材の信頼性を向上させるために、必要に応じて生石灰,ドーソナイト,ハイドロサルタイト,金属酸化物等のガス吸着剤やバリウム−リチウム合金等の合金、更には揮発性または疎水性の有機系ガスの吸着能力を高めた疎水性モレキュラーシーブ等、公知の吸着剤を代用または併用することも有効である。また、これらの吸着剤が公知の包装材に覆われていてもよい。   In this example, molecular sieve is used as the adsorbent component, but in order to improve the reliability of the vacuum heat insulating material, a gas such as quick lime, dosonite, hydrosartite, or metal oxide is used as necessary. It is also effective to substitute or use a known adsorbent, such as an adsorbent, an alloy such as a barium-lithium alloy, or a hydrophobic molecular sieve with an enhanced adsorption capability of a volatile or hydrophobic organic gas. These adsorbents may be covered with a known packaging material.

また、吸着剤5は、真空断熱材1の製造時に、芯材4の繊維層内に挿入される。この挿入により、真空断熱材1の製造後において、吸着剤5が外被材2の表面に突出しないため、吸着剤5の粒によって外被材2を傷つけたり破断したりすることがなく、真空断熱材1の断熱性能に対する信頼性を損なうことがない。このとき、吸着剤5は発熱部品を収容する凹部には挿入せず、例えば図1(b)で示すように、真空断熱材1において凹部が形成されない最終封止部付近の芯材4繊維層内に挿入する。このようにすることで、吸着剤5が発熱部品によって加温されなくなるので、吸着剤5における水蒸気やガスの吸着性能を効率よく発揮することができ、真空断熱材1における断熱性能が向上する。さらに、真空断熱材1が立体成形される際に吸着剤5が外被材2を傷つけることによる真空断熱材1の破損を防止でき、信頼性を高めることができる。   Further, the adsorbent 5 is inserted into the fiber layer of the core material 4 when the vacuum heat insulating material 1 is manufactured. With this insertion, after the vacuum heat insulating material 1 is manufactured, the adsorbent 5 does not protrude from the surface of the outer cover material 2, so that the outer cover material 2 is not damaged or broken by the particles of the adsorbent 5. The reliability of the heat insulating material 1 with respect to the heat insulating performance is not impaired. At this time, the adsorbent 5 is not inserted into the recess for housing the heat-generating component. For example, as shown in FIG. 1B, the core material 4 fiber layer in the vicinity of the final sealing portion where no recess is formed in the vacuum heat insulating material 1 Insert inside. By doing so, since the adsorbent 5 is not heated by the heat-generating component, the adsorption performance of water vapor and gas in the adsorbent 5 can be efficiently exhibited, and the heat insulation performance in the vacuum heat insulating material 1 is improved. Furthermore, when the vacuum heat insulating material 1 is three-dimensionally molded, the adsorbent 5 can prevent the vacuum heat insulating material 1 from being damaged by damaging the outer cover material 2, and the reliability can be improved.

以上によって、真空断熱材1における作製時の取扱性及び作業性を悪化させることなく、さらに吸着剤5のガス吸着性能を維持することが可能であり、その結果、長期に亘り断熱性能に優れた真空断熱材を提供することができる。   As described above, the gas adsorbing performance of the adsorbent 5 can be further maintained without deteriorating the handleability and workability at the time of production in the vacuum heat insulating material 1, and as a result, the heat insulating performance is excellent over a long period of time. A vacuum insulation can be provided.

次に、本発明の実施例について、図1から図3を参照しながら説明する。図1及び図3は本発明の一実施例を示す真空断熱材の模式図と断面図である。図2は本発明の一実施例を示す芯材の成形方法の一例である。   Next, an embodiment of the present invention will be described with reference to FIGS. FIG.1 and FIG.3 is the schematic diagram and sectional drawing of a vacuum heat insulating material which show one Example of this invention. FIG. 2 shows an example of a method for forming a core material according to an embodiment of the present invention.

(実施例1)
真空断熱材1は内包材3と、芯材4と、吸着剤5と、内包材3,芯材4及び吸着剤5を収納し且つガスバリア性フィルムからなる外被材2とを備えて構成されている。この真空断熱材1は、内包材3に包まれた芯材4と吸着剤5とを外被材2に挿入した状態で、外被材2の内部を減圧し、外被材2の周縁部を熱溶着して封止することによって作製される。
Example 1
The vacuum heat insulating material 1 includes an inner packaging material 3, a core material 4, an adsorbent 5, an inner packaging material 3, a core material 4, and an outer shell material 2 that contains the adsorbent 5 and is made of a gas barrier film. ing. The vacuum heat insulating material 1 is formed by decompressing the inside of the outer covering material 2 in a state where the core material 4 and the adsorbent 5 wrapped in the inner covering material 3 are inserted into the outer covering material 2, and It is produced by heat-sealing and sealing.

内包材3はABS樹脂(厚さ1mm)を、芯材4はガラス短繊維材(平均繊維径4μm)を、吸着剤5は合成ゼオライトを、外被材2は表面保護層,ガスバリア層、及び熱溶着層で構成され、各層間が2液硬化型エステル型ウレタン系接着剤で接着されたラミネートフィルムを用いている。また、芯材4のサイズは幅450mm,長さ500mmとして、真空排気後の厚さが12mmとなるようにした。外被材2のサイズは幅560mm,長さ650mmとした。   The inner packaging material 3 is an ABS resin (thickness 1 mm), the core material 4 is a short glass fiber material (average fiber diameter 4 μm), the adsorbent 5 is synthetic zeolite, the outer jacket material 2 is a surface protective layer, a gas barrier layer, and A laminate film composed of a heat-welded layer and having each layer bonded with a two-component curable ester urethane adhesive is used. Further, the core material 4 has a width of 450 mm and a length of 500 mm so that the thickness after evacuation is 12 mm. The size of the jacket material 2 was 560 mm in width and 650 mm in length.

外被材2のラミネート構成は、外層より表面保護層としてポリアミドフィルム(15μm)、アルミニウム蒸着を有するポリエチレンテレフタレートフィルム(12μm)、ガスバリア層としてアルミニウム蒸着を有するエチレン−ビニルアルコール共重合体樹脂フィルム(12μm)、熱溶着層として高密度ポリエチレンフィルム(50μm)とした。   The laminate structure of the jacket material 2 is a polyamide film (15 μm) as a surface protective layer from the outer layer, a polyethylene terephthalate film (12 μm) having aluminum vapor deposition, and an ethylene-vinyl alcohol copolymer resin film (12 μm) having aluminum vapor deposition as a gas barrier layer. ), And a high-density polyethylene film (50 μm) as a heat-welded layer.

以上のように構成される真空断熱材1の作製手順を以下に示す。まず、芯材4を内包材3に収納し、成形型11を用いて上下からプレスすることによって圧縮並びに成形を行い、その状態で内包材3の開口部及び周縁部全体を熱溶着して封止することで芯材4を立体形状に保持した。内包材3には、各側面に対して複数の通気口となる穴を設けた。続いて、三方が熱溶着で溶着された袋状の外被材2へ立体形状に保持された芯材4を収納し、これを真空チャンバ内で真空排気して外被材2の内部を減圧した後、外被材2の開口部を熱溶着によって封止することで、図1に示す凹凸部6を有する立体形状をした真空断熱材1が得られた。   A procedure for producing the vacuum heat insulating material 1 configured as described above will be described below. First, the core material 4 is accommodated in the inner packaging material 3, and compression and molding are performed by pressing from above and below using a molding die 11, and in this state, the opening and the entire peripheral edge of the inner packaging material 3 are thermally welded and sealed. By stopping, the core material 4 was held in a three-dimensional shape. The inner packaging material 3 was provided with holes serving as a plurality of vent holes on each side surface. Subsequently, the core material 4 held in a three-dimensional shape is stored in the bag-like outer covering material 2 welded by heat welding on three sides, and this is evacuated in a vacuum chamber to reduce the pressure inside the outer covering material 2. After that, the vacuum insulating material 1 having a three-dimensional shape having the concavo-convex portion 6 shown in FIG. 1 was obtained by sealing the opening of the jacket material 2 by heat welding.

このようにして得られた真空断熱材1の熱伝導率は2.2mW/m・Kであった。これを70℃の高温槽内で45日間放置した後に熱伝導率を測定した結果、4.8mW/m・Kであり、初期性能との差は2.6mW/m・Kであった。   The heat conductivity of the vacuum heat insulating material 1 obtained in this way was 2.2 mW / m · K. As a result of measuring the thermal conductivity after leaving it in a high-temperature bath at 70 ° C. for 45 days, it was 4.8 mW / m · K, and the difference from the initial performance was 2.6 mW / m · K.

(実施例2)
実施例1と同様の材料構成,サイズ,製法によって、図3(a)に示すような段曲げ部7を有する立体形状の芯材4を形成した。これを三方が熱溶着で溶着された袋状の外被材2へ収納し、真空チャンバ内で真空排気して外被材2の内部を減圧した後、外被材2の開口部を熱溶着によって封止することで、図3(a)に示す立体形状をした真空断熱材1を得た。
(Example 2)
A three-dimensional core material 4 having a step-bent portion 7 as shown in FIG. This is housed in a bag-shaped outer cover material 2 which is welded on three sides by heat welding, the inside of the outer cover material 2 is depressurized by evacuation in a vacuum chamber, and then the opening of the outer cover material 2 is heat-welded. The vacuum heat insulating material 1 having the three-dimensional shape shown in FIG.

このようにして得られた真空断熱材1の熱伝導率は1.7mW/m・Kであった。これを70℃の高温槽内で45日間放置した後に熱伝導率を測定した結果、4.4mW/m・Kであり、初期性能との差は2.7mW/m・Kであった。   The heat conductivity of the vacuum heat insulating material 1 obtained in this way was 1.7 mW / m · K. As a result of measuring the thermal conductivity after leaving it in a high temperature bath at 70 ° C. for 45 days, it was 4.4 mW / m · K, and the difference from the initial performance was 2.7 mW / m · K.

(比較例1)
実施例1と同様の材料構成及びサイズであり、立体成形をしないパネル状の真空断熱材1を作製した。
(Comparative Example 1)
A panel-shaped vacuum heat insulating material 1 having the same material configuration and size as in Example 1 and not three-dimensionally formed was produced.

この真空断熱材1の熱伝導率は1.9mW/m・Kであった。これを70℃の高温槽内で45日間放置した後に熱伝導率を測定した結果、4.5mW/m・Kであり、初期性能との差は2.6mW/m・Kであった。   The thermal conductivity of the vacuum heat insulating material 1 was 1.9 mW / m · K. As a result of measuring the thermal conductivity after leaving it in a high-temperature bath at 70 ° C. for 45 days, it was 4.5 mW / m · K, and the difference from the initial performance was 2.6 mW / m · K.

実施例1及び2と比較例1の結果より、本発明における実施例と比較例において熱伝導率に明確な差は無く、本発明による製法では成形によるフィルムダメージは少ないと考えられ、熱伝導率の劣化にほとんど差が無いといえる。   From the results of Examples 1 and 2 and Comparative Example 1, there is no clear difference in thermal conductivity between the Example and Comparative Example in the present invention, and it is considered that the film damage due to molding is small in the production method according to the present invention, and the thermal conductivity. It can be said that there is almost no difference in the deterioration of.

本発明の実施例は本発明による真空断熱材の一例であり、上記の形状以外の真空断熱材についても芯材4を内包材3によって相応の形状に保持することで作製可能である。   The embodiment of the present invention is an example of the vacuum heat insulating material according to the present invention, and a vacuum heat insulating material other than the above shape can be manufactured by holding the core material 4 in a corresponding shape by the inner packaging material 3.

以上により、本発明によって、生産性を損なうことなく、真空断熱材1を立体形状に成形することが可能となり、また、真空断熱材1の立体形状を被断熱部位の形状に合わせてこれを適用することで、真空断熱材1による被断熱面積(カバー率)を増加させることが可能となるので、高い断熱効果を得ることができる。したがって、本発明による真空断熱材が冷蔵庫等の断熱を必要とする製品に適用されることで、その省エネ効果をより一層高めることができるのである。   As described above, according to the present invention, the vacuum heat insulating material 1 can be formed into a three-dimensional shape without impairing productivity, and the three-dimensional shape of the vacuum heat insulating material 1 is adapted to the shape of the part to be insulated. By doing so, since it becomes possible to increase the heat insulation area (coverage rate) by the vacuum heat insulating material 1, the high heat insulation effect can be acquired. Therefore, when the vacuum heat insulating material according to the present invention is applied to a product that requires heat insulation such as a refrigerator, the energy saving effect can be further enhanced.

本発明の一実施例を示す真空断熱材の(a)模式図と(b)断面図である。It is the (a) schematic diagram and (b) sectional drawing of the vacuum heat insulating material which show one Example of this invention. 本発明の一実施例を示す芯材の成形方法の一例である。It is an example of the shaping | molding method of the core material which shows one Example of this invention. 本発明の一実施例を示す真空断熱材の(a)模式図と(b)断面図である。It is the (a) schematic diagram and (b) sectional drawing of the vacuum heat insulating material which show one Example of this invention. 本発明の一実施例を示す真空断熱材が適用された冷蔵庫の模式図である。It is a schematic diagram of the refrigerator with which the vacuum heat insulating material which shows one Example of this invention was applied. 本発明の一実施例を示す真空断熱材が適用された冷蔵庫の模式図である。It is a schematic diagram of the refrigerator with which the vacuum heat insulating material which shows one Example of this invention was applied. 本発明の一実施例を示す外被材と内包材のみを示した模式図である。(a)成形なし、(b)成形ありIt is the schematic diagram which showed only the jacket material and inner packaging material which show one Example of this invention. (A) No molding, (b) Molding

符号の説明Explanation of symbols

1 真空断熱材
2 ガスバリア製フィルムからなる外被材
3 内包材
4 芯材
4a 芯材の切込部
5 吸着剤
6 真空断熱材における凹凸部
7 真空断熱材における段曲げ部
11 成形型
21 冷蔵庫
22 外箱
23 内箱
24 冷蔵庫の扉
25 冷蔵庫部品(庫内照明等)
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Jacket | cover material 3 which consists of a film made from a gas barrier 3 Inner packaging material 4 Core material 4a Core material notch part 5 Adsorbent 6 Uneven part 7 in a vacuum heat insulating material 7 Step bending part 11 in a vacuum heat insulating material Mold 21 Refrigerator 22 Outer box 23 Inner box 24 Refrigerator door 25 Refrigerator parts (interior lighting, etc.)

Claims (6)

少なくとも通気性を有する材料からなる芯材と、ガスバリア性を有する外被材とからなる真空断熱材において、前記芯材が予め立体形状に成形保持されていることを特徴とする真空断熱材。   A vacuum heat insulating material comprising at least a core material made of a material having air permeability and a jacket material having a gas barrier property, wherein the core material is preliminarily molded and held in a three-dimensional shape. 前記芯材が柔軟性を有する繊維系材料からなり、通気部を有する内包材によって該芯材を立体形状に保持したことを特徴とする請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the core material is made of a flexible fiber-based material, and the core material is held in a three-dimensional shape by an inclusion material having a ventilation portion. 前記芯材が柔軟性を有する繊維系材料からなり、結着剤によって該芯材を立体形状に保持したことを特徴とする請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the core material is made of a flexible fiber-based material, and the core material is held in a three-dimensional shape by a binder. 前記芯材が連続気泡を有する発泡材料からなり、金型や切削加工等によって該芯材を立体形状に保持したことを特徴とする請求項1に記載の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the core material is made of a foam material having open cells, and the core material is held in a three-dimensional shape by a mold, a cutting process, or the like. 少なくとも柔軟性を有する繊維系材料からなる芯材と、前記芯材を内包し、通気部を有する内包材と、ガスバリア性を有する外被材とからなる真空断熱材において、前記内包材によって前記芯材を立体形状に保持し、これを前記外被材内で減圧後封止することで、前記外被材が前記芯材形状に密着してなることを特徴とする真空断熱材。   A vacuum heat insulating material comprising at least a core material made of a fiber-based material having flexibility, an inner material containing the core material and having a ventilation portion, and an outer jacket material having a gas barrier property. A vacuum heat insulating material, wherein the material is held in a three-dimensional shape and sealed after being decompressed in the outer covering material, whereby the outer covering material is closely attached to the core shape. 前記真空断熱材が適用された冷蔵庫において、前記立体形状が少なくとも冷蔵庫を構成する外箱と内箱との間の空間内にある部品や、内箱または外箱の突き出し部,凹凸部等に合わせた形状であることを特徴とする冷蔵庫。   In the refrigerator to which the vacuum heat insulating material is applied, the three-dimensional shape is adjusted to at least a part in the space between the outer box and the inner box constituting the refrigerator, a protruding part of the inner box or the outer box, an uneven part, etc. A refrigerator characterized by its shape.
JP2007230910A 2007-09-06 2007-09-06 Vacuum heat insulating material and refrigerator using the same Pending JP2009063064A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007230910A JP2009063064A (en) 2007-09-06 2007-09-06 Vacuum heat insulating material and refrigerator using the same
CN200810129765XA CN101382377B (en) 2007-09-06 2008-08-18 Vacuum heat-insulating material and refrigerator using the same
KR1020080080890A KR101017776B1 (en) 2007-09-06 2008-08-19 Vacuum heat insulator and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230910A JP2009063064A (en) 2007-09-06 2007-09-06 Vacuum heat insulating material and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2009063064A true JP2009063064A (en) 2009-03-26

Family

ID=40462344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230910A Pending JP2009063064A (en) 2007-09-06 2007-09-06 Vacuum heat insulating material and refrigerator using the same

Country Status (3)

Country Link
JP (1) JP2009063064A (en)
KR (1) KR101017776B1 (en)
CN (1) CN101382377B (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2011149501A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
JP2011241988A (en) * 2010-05-14 2011-12-01 Hitachi Appliances Inc Heat insulation box and refrigerator
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012077864A (en) * 2010-10-04 2012-04-19 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box using the same
CN102971571A (en) * 2010-07-06 2013-03-13 日立空调·家用电器株式会社 Vacuum heat insulation member and refrigerator using same
CN103162062A (en) * 2011-12-15 2013-06-19 三菱电机株式会社 Vacuum heat insulation material, a heat insulation box employing the vacuum heat insulation material, equipment employing the vacuum heat insulation material, and a method of making the vacuum heat insulation material
WO2014208585A1 (en) * 2013-06-25 2014-12-31 株式会社 東芝 Refrigerator
JP2015200451A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 refrigerator
JP2016517944A (en) * 2013-05-07 2016-06-20 セイント−ゴバイン イソバー Method for manufacturing a vacuum insulation panel
JP2016173149A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
JP2019143809A (en) * 2019-04-18 2019-08-29 株式会社東芝 Vacuum heat insulation panel, core material and refrigerator
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
JP2022031524A (en) * 2013-06-25 2022-02-18 東芝ライフスタイル株式会社 refrigerator
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
JP7454827B2 (en) 2019-02-22 2024-03-25 旭ファイバーグラス株式会社 vacuum insulation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049304A2 (en) * 2009-10-23 2011-04-28 Lg Hausys, Ltd. Vacuum insulation panel
DE102010040346A1 (en) * 2010-09-07 2012-03-08 BSH Bosch und Siemens Hausgeräte GmbH Heat-insulating molded body and method for its production
CN102401216B (en) * 2010-09-14 2014-05-14 日立空调·家用电器株式会社 Vacuum insulating material and fridge using vacuum insulating material
US20160305598A1 (en) * 2014-02-26 2016-10-20 Sonoco Development, Inc. Method of Manufacturing Vacuum Insulation Panels
WO2015137700A1 (en) * 2014-03-11 2015-09-17 삼성전자주식회사 Vacuum insulating material and refrigerator including same
KR102442071B1 (en) * 2015-10-19 2022-09-13 삼성전자주식회사 Refrigerator amd producing method of same
WO2017100037A1 (en) 2015-12-09 2017-06-15 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
CN112284021A (en) * 2019-07-24 2021-01-29 青岛海尔电冰箱有限公司 Vacuum heat insulation plate, method for preparing vacuum heat insulation plate and refrigerator
CN113459378B (en) * 2020-03-30 2022-12-16 青岛海尔电冰箱有限公司 Ice thermal insulation box body, preparation method thereof and refrigerator with same
US20240044571A1 (en) * 2022-08-05 2024-02-08 Whirlpool Corporation Vacuum insulated structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168772A (en) * 1985-01-21 1986-07-30 株式会社東芝 Vacuum heat-insulating panel
JPH04297775A (en) * 1991-03-27 1992-10-21 Sharp Corp Vacuum thermal insulating panel
JPH06105152B2 (en) * 1986-12-25 1994-12-21 株式会社東芝 Vacuum insulation board manufacturing method
JPH07332587A (en) * 1994-06-03 1995-12-22 Asahi Chem Ind Co Ltd Vacuum heat insulating material
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2001108187A (en) * 1999-10-12 2001-04-20 Matsushita Refrig Co Ltd Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JP2006336722A (en) * 2005-06-01 2006-12-14 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2007009928A (en) * 2005-06-28 2007-01-18 Hitachi Appliances Inc Vacuum heat insulating material, its manufacturing method, and refrigerator
JP2007205530A (en) * 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120138A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Vacuum insulated box
JP3914908B2 (en) * 2003-09-29 2007-05-16 日立アプライアンス株式会社 Vacuum insulation
JP4576195B2 (en) * 2004-10-12 2010-11-04 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168772A (en) * 1985-01-21 1986-07-30 株式会社東芝 Vacuum heat-insulating panel
JPH06105152B2 (en) * 1986-12-25 1994-12-21 株式会社東芝 Vacuum insulation board manufacturing method
JPH04297775A (en) * 1991-03-27 1992-10-21 Sharp Corp Vacuum thermal insulating panel
JPH07332587A (en) * 1994-06-03 1995-12-22 Asahi Chem Ind Co Ltd Vacuum heat insulating material
JP2000097390A (en) * 1998-09-22 2000-04-04 Meisei Ind Co Ltd Heat insulating panel and manufacture thereof
JP2001108187A (en) * 1999-10-12 2001-04-20 Matsushita Refrig Co Ltd Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JP2006336722A (en) * 2005-06-01 2006-12-14 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2007009928A (en) * 2005-06-28 2007-01-18 Hitachi Appliances Inc Vacuum heat insulating material, its manufacturing method, and refrigerator
JP2007205530A (en) * 2006-02-06 2007-08-16 Hitachi Appliances Inc Vacuum heat-insulating material and its manufacturing method

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276167A (en) * 2009-05-29 2010-12-09 Hitachi Appliances Inc Vacuum heat insulating material, heat insulated box using the same, and equipment
JP2011149501A (en) * 2010-01-22 2011-08-04 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011174550A (en) * 2010-02-25 2011-09-08 Hitachi Appliances Inc Vacuum heat insulation material and equipment using the same
JP2011241988A (en) * 2010-05-14 2011-12-01 Hitachi Appliances Inc Heat insulation box and refrigerator
CN102971571A (en) * 2010-07-06 2013-03-13 日立空调·家用电器株式会社 Vacuum heat insulation member and refrigerator using same
JP2012062904A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2012077864A (en) * 2010-10-04 2012-04-19 Mitsubishi Electric Corp Vacuum heat insulation material and heat insulation box using the same
CN103162062A (en) * 2011-12-15 2013-06-19 三菱电机株式会社 Vacuum heat insulation material, a heat insulation box employing the vacuum heat insulation material, equipment employing the vacuum heat insulation material, and a method of making the vacuum heat insulation material
JP2013124724A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Vacuum heat insulating material, heat insulation box and device that use the same, and method for manufacturing vacuum heat insulating material
US9874394B2 (en) 2012-04-02 2018-01-23 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9835369B2 (en) 2012-04-02 2017-12-05 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US9885516B2 (en) 2012-04-02 2018-02-06 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US9463917B2 (en) 2012-04-11 2016-10-11 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9833942B2 (en) 2012-04-11 2017-12-05 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP2016517944A (en) * 2013-05-07 2016-06-20 セイント−ゴバイン イソバー Method for manufacturing a vacuum insulation panel
JP2022031524A (en) * 2013-06-25 2022-02-18 東芝ライフスタイル株式会社 refrigerator
JP7422724B2 (en) 2013-06-25 2024-01-26 東芝ライフスタイル株式会社 refrigerator
JP2016014484A (en) * 2013-06-25 2016-01-28 株式会社東芝 refrigerator
WO2014208585A1 (en) * 2013-06-25 2014-12-31 株式会社 東芝 Refrigerator
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
JP2015200451A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 refrigerator
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP2016173149A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing vacuum heat insulation panel, vacuum heat insulation panel, core material, and refrigerator
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
JP7454827B2 (en) 2019-02-22 2024-03-25 旭ファイバーグラス株式会社 vacuum insulation
JP2019143809A (en) * 2019-04-18 2019-08-29 株式会社東芝 Vacuum heat insulation panel, core material and refrigerator

Also Published As

Publication number Publication date
CN101382377A (en) 2009-03-11
CN101382377B (en) 2012-08-08
KR20090026045A (en) 2009-03-11
KR101017776B1 (en) 2011-02-28

Similar Documents

Publication Publication Date Title
JP2009063064A (en) Vacuum heat insulating material and refrigerator using the same
WO2012111311A1 (en) Heat insulation box body
US9975686B2 (en) Vacuum insulation panel and container comprising vacuum insulation panels
KR101283728B1 (en) Vacuum isolation panel and manufacturing method thereof
JP2004308691A (en) Vacuum heat insulating material and manufacturing method thereof
JP2011058538A (en) Vacuum heat insulating material, and cooling equipment or insulated container using the same
WO2007034906A1 (en) Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP2011058537A (en) Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
CN103370120A (en) Gas adsorption device and vacuum heat insulating material provided therewith
JP2004011705A (en) Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
JP2007064584A (en) Refrigerator
TWI599737B (en) Vacuum thermal insulator,thermal insulating box,and method for manufacturing vacuum thermal insulator
JP2008189373A (en) Heat/cold keeping container
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2007162824A (en) Vacuum heat insulation material, and heat insulation box using vacuum heat insulation material
JP2010096291A (en) Vacuum heat insulated casing
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP3549453B2 (en) refrigerator
JP6286900B2 (en) Insulation member and cold insulation box
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2013019475A (en) Insulating container
WO2014122939A1 (en) Insulation panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124